]> Git Repo - linux.git/blob - lib/rhashtable.c
tcp: add one skb cache for tx
[linux.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <[email protected]>
5  * Copyright (c) 2014-2015 Thomas Graf <[email protected]>
6  * Copyright (c) 2008-2014 Patrick McHardy <[email protected]>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE       64UL
33 #define HASH_MIN_SIZE           4U
34 #define BUCKET_LOCKS_PER_CPU    32UL
35
36 union nested_table {
37         union nested_table __rcu *table;
38         struct rhash_head __rcu *bucket;
39 };
40
41 static u32 head_hashfn(struct rhashtable *ht,
42                        const struct bucket_table *tbl,
43                        const struct rhash_head *he)
44 {
45         return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59         spinlock_t *lock = rht_bucket_lock(tbl, hash);
60
61         return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71         const unsigned int len = 1 << shift;
72         unsigned int i;
73
74         ntbl = rcu_dereference_raw(ntbl->table);
75         if (!ntbl)
76                 return;
77
78         if (size > len) {
79                 size >>= shift;
80                 for (i = 0; i < len; i++)
81                         nested_table_free(ntbl + i, size);
82         }
83
84         kfree(ntbl);
85 }
86
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89         unsigned int size = tbl->size >> tbl->nest;
90         unsigned int len = 1 << tbl->nest;
91         union nested_table *ntbl;
92         unsigned int i;
93
94         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95
96         for (i = 0; i < len; i++)
97                 nested_table_free(ntbl + i, size);
98
99         kfree(ntbl);
100 }
101
102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104         if (tbl->nest)
105                 nested_bucket_table_free(tbl);
106
107         free_bucket_spinlocks(tbl->locks);
108         kvfree(tbl);
109 }
110
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113         bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117                                               union nested_table __rcu **prev,
118                                               bool leaf)
119 {
120         union nested_table *ntbl;
121         int i;
122
123         ntbl = rcu_dereference(*prev);
124         if (ntbl)
125                 return ntbl;
126
127         ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128
129         if (ntbl && leaf) {
130                 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131                         INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132         }
133
134         rcu_assign_pointer(*prev, ntbl);
135
136         return ntbl;
137 }
138
139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
140                                                       size_t nbuckets,
141                                                       gfp_t gfp)
142 {
143         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
144         struct bucket_table *tbl;
145         size_t size;
146
147         if (nbuckets < (1 << (shift + 1)))
148                 return NULL;
149
150         size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
151
152         tbl = kzalloc(size, gfp);
153         if (!tbl)
154                 return NULL;
155
156         if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
157                                 false)) {
158                 kfree(tbl);
159                 return NULL;
160         }
161
162         tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
163
164         return tbl;
165 }
166
167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
168                                                size_t nbuckets,
169                                                gfp_t gfp)
170 {
171         struct bucket_table *tbl = NULL;
172         size_t size, max_locks;
173         int i;
174
175         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
176         tbl = kvzalloc(size, gfp);
177
178         size = nbuckets;
179
180         if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
181                 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
182                 nbuckets = 0;
183         }
184
185         if (tbl == NULL)
186                 return NULL;
187
188         tbl->size = size;
189
190         max_locks = size >> 1;
191         if (tbl->nest)
192                 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
193
194         if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
195                                    ht->p.locks_mul, gfp) < 0) {
196                 bucket_table_free(tbl);
197                 return NULL;
198         }
199
200         rcu_head_init(&tbl->rcu);
201         INIT_LIST_HEAD(&tbl->walkers);
202
203         tbl->hash_rnd = get_random_u32();
204
205         for (i = 0; i < nbuckets; i++)
206                 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
207
208         return tbl;
209 }
210
211 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
212                                                   struct bucket_table *tbl)
213 {
214         struct bucket_table *new_tbl;
215
216         do {
217                 new_tbl = tbl;
218                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
219         } while (tbl);
220
221         return new_tbl;
222 }
223
224 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
225 {
226         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
227         struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
228         struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
229         int err = -EAGAIN;
230         struct rhash_head *head, *next, *entry;
231         spinlock_t *new_bucket_lock;
232         unsigned int new_hash;
233
234         if (new_tbl->nest)
235                 goto out;
236
237         err = -ENOENT;
238
239         rht_for_each(entry, old_tbl, old_hash) {
240                 err = 0;
241                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
242
243                 if (rht_is_a_nulls(next))
244                         break;
245
246                 pprev = &entry->next;
247         }
248
249         if (err)
250                 goto out;
251
252         new_hash = head_hashfn(ht, new_tbl, entry);
253
254         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
255
256         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
257         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
258                                       new_tbl, new_hash);
259
260         RCU_INIT_POINTER(entry->next, head);
261
262         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
263         spin_unlock(new_bucket_lock);
264
265         rcu_assign_pointer(*pprev, next);
266
267 out:
268         return err;
269 }
270
271 static int rhashtable_rehash_chain(struct rhashtable *ht,
272                                     unsigned int old_hash)
273 {
274         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
275         spinlock_t *old_bucket_lock;
276         int err;
277
278         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
279
280         spin_lock_bh(old_bucket_lock);
281         while (!(err = rhashtable_rehash_one(ht, old_hash)))
282                 ;
283
284         if (err == -ENOENT)
285                 err = 0;
286
287         spin_unlock_bh(old_bucket_lock);
288
289         return err;
290 }
291
292 static int rhashtable_rehash_attach(struct rhashtable *ht,
293                                     struct bucket_table *old_tbl,
294                                     struct bucket_table *new_tbl)
295 {
296         /* Make insertions go into the new, empty table right away. Deletions
297          * and lookups will be attempted in both tables until we synchronize.
298          * As cmpxchg() provides strong barriers, we do not need
299          * rcu_assign_pointer().
300          */
301
302         if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
303                 return -EEXIST;
304
305         return 0;
306 }
307
308 static int rhashtable_rehash_table(struct rhashtable *ht)
309 {
310         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311         struct bucket_table *new_tbl;
312         struct rhashtable_walker *walker;
313         unsigned int old_hash;
314         int err;
315
316         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
317         if (!new_tbl)
318                 return 0;
319
320         for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
321                 err = rhashtable_rehash_chain(ht, old_hash);
322                 if (err)
323                         return err;
324                 cond_resched();
325         }
326
327         /* Publish the new table pointer. */
328         rcu_assign_pointer(ht->tbl, new_tbl);
329
330         spin_lock(&ht->lock);
331         list_for_each_entry(walker, &old_tbl->walkers, list)
332                 walker->tbl = NULL;
333
334         /* Wait for readers. All new readers will see the new
335          * table, and thus no references to the old table will
336          * remain.
337          * We do this inside the locked region so that
338          * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
339          * to check if it should not re-link the table.
340          */
341         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
342         spin_unlock(&ht->lock);
343
344         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
345 }
346
347 static int rhashtable_rehash_alloc(struct rhashtable *ht,
348                                    struct bucket_table *old_tbl,
349                                    unsigned int size)
350 {
351         struct bucket_table *new_tbl;
352         int err;
353
354         ASSERT_RHT_MUTEX(ht);
355
356         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
357         if (new_tbl == NULL)
358                 return -ENOMEM;
359
360         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
361         if (err)
362                 bucket_table_free(new_tbl);
363
364         return err;
365 }
366
367 /**
368  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
369  * @ht:         the hash table to shrink
370  *
371  * This function shrinks the hash table to fit, i.e., the smallest
372  * size would not cause it to expand right away automatically.
373  *
374  * The caller must ensure that no concurrent resizing occurs by holding
375  * ht->mutex.
376  *
377  * The caller must ensure that no concurrent table mutations take place.
378  * It is however valid to have concurrent lookups if they are RCU protected.
379  *
380  * It is valid to have concurrent insertions and deletions protected by per
381  * bucket locks or concurrent RCU protected lookups and traversals.
382  */
383 static int rhashtable_shrink(struct rhashtable *ht)
384 {
385         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
386         unsigned int nelems = atomic_read(&ht->nelems);
387         unsigned int size = 0;
388
389         if (nelems)
390                 size = roundup_pow_of_two(nelems * 3 / 2);
391         if (size < ht->p.min_size)
392                 size = ht->p.min_size;
393
394         if (old_tbl->size <= size)
395                 return 0;
396
397         if (rht_dereference(old_tbl->future_tbl, ht))
398                 return -EEXIST;
399
400         return rhashtable_rehash_alloc(ht, old_tbl, size);
401 }
402
403 static void rht_deferred_worker(struct work_struct *work)
404 {
405         struct rhashtable *ht;
406         struct bucket_table *tbl;
407         int err = 0;
408
409         ht = container_of(work, struct rhashtable, run_work);
410         mutex_lock(&ht->mutex);
411
412         tbl = rht_dereference(ht->tbl, ht);
413         tbl = rhashtable_last_table(ht, tbl);
414
415         if (rht_grow_above_75(ht, tbl))
416                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
417         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
418                 err = rhashtable_shrink(ht);
419         else if (tbl->nest)
420                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
421
422         if (!err)
423                 err = rhashtable_rehash_table(ht);
424
425         mutex_unlock(&ht->mutex);
426
427         if (err)
428                 schedule_work(&ht->run_work);
429 }
430
431 static int rhashtable_insert_rehash(struct rhashtable *ht,
432                                     struct bucket_table *tbl)
433 {
434         struct bucket_table *old_tbl;
435         struct bucket_table *new_tbl;
436         unsigned int size;
437         int err;
438
439         old_tbl = rht_dereference_rcu(ht->tbl, ht);
440
441         size = tbl->size;
442
443         err = -EBUSY;
444
445         if (rht_grow_above_75(ht, tbl))
446                 size *= 2;
447         /* Do not schedule more than one rehash */
448         else if (old_tbl != tbl)
449                 goto fail;
450
451         err = -ENOMEM;
452
453         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
454         if (new_tbl == NULL)
455                 goto fail;
456
457         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
458         if (err) {
459                 bucket_table_free(new_tbl);
460                 if (err == -EEXIST)
461                         err = 0;
462         } else
463                 schedule_work(&ht->run_work);
464
465         return err;
466
467 fail:
468         /* Do not fail the insert if someone else did a rehash. */
469         if (likely(rcu_access_pointer(tbl->future_tbl)))
470                 return 0;
471
472         /* Schedule async rehash to retry allocation in process context. */
473         if (err == -ENOMEM)
474                 schedule_work(&ht->run_work);
475
476         return err;
477 }
478
479 static void *rhashtable_lookup_one(struct rhashtable *ht,
480                                    struct bucket_table *tbl, unsigned int hash,
481                                    const void *key, struct rhash_head *obj)
482 {
483         struct rhashtable_compare_arg arg = {
484                 .ht = ht,
485                 .key = key,
486         };
487         struct rhash_head __rcu **pprev;
488         struct rhash_head *head;
489         int elasticity;
490
491         elasticity = RHT_ELASTICITY;
492         pprev = rht_bucket_var(tbl, hash);
493         rht_for_each_from(head, *pprev, tbl, hash) {
494                 struct rhlist_head *list;
495                 struct rhlist_head *plist;
496
497                 elasticity--;
498                 if (!key ||
499                     (ht->p.obj_cmpfn ?
500                      ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
501                      rhashtable_compare(&arg, rht_obj(ht, head)))) {
502                         pprev = &head->next;
503                         continue;
504                 }
505
506                 if (!ht->rhlist)
507                         return rht_obj(ht, head);
508
509                 list = container_of(obj, struct rhlist_head, rhead);
510                 plist = container_of(head, struct rhlist_head, rhead);
511
512                 RCU_INIT_POINTER(list->next, plist);
513                 head = rht_dereference_bucket(head->next, tbl, hash);
514                 RCU_INIT_POINTER(list->rhead.next, head);
515                 rcu_assign_pointer(*pprev, obj);
516
517                 return NULL;
518         }
519
520         if (elasticity <= 0)
521                 return ERR_PTR(-EAGAIN);
522
523         return ERR_PTR(-ENOENT);
524 }
525
526 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
527                                                   struct bucket_table *tbl,
528                                                   unsigned int hash,
529                                                   struct rhash_head *obj,
530                                                   void *data)
531 {
532         struct rhash_head __rcu **pprev;
533         struct bucket_table *new_tbl;
534         struct rhash_head *head;
535
536         if (!IS_ERR_OR_NULL(data))
537                 return ERR_PTR(-EEXIST);
538
539         if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
540                 return ERR_CAST(data);
541
542         new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
543         if (new_tbl)
544                 return new_tbl;
545
546         if (PTR_ERR(data) != -ENOENT)
547                 return ERR_CAST(data);
548
549         if (unlikely(rht_grow_above_max(ht, tbl)))
550                 return ERR_PTR(-E2BIG);
551
552         if (unlikely(rht_grow_above_100(ht, tbl)))
553                 return ERR_PTR(-EAGAIN);
554
555         pprev = rht_bucket_insert(ht, tbl, hash);
556         if (!pprev)
557                 return ERR_PTR(-ENOMEM);
558
559         head = rht_dereference_bucket(*pprev, tbl, hash);
560
561         RCU_INIT_POINTER(obj->next, head);
562         if (ht->rhlist) {
563                 struct rhlist_head *list;
564
565                 list = container_of(obj, struct rhlist_head, rhead);
566                 RCU_INIT_POINTER(list->next, NULL);
567         }
568
569         rcu_assign_pointer(*pprev, obj);
570
571         atomic_inc(&ht->nelems);
572         if (rht_grow_above_75(ht, tbl))
573                 schedule_work(&ht->run_work);
574
575         return NULL;
576 }
577
578 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
579                                    struct rhash_head *obj)
580 {
581         struct bucket_table *new_tbl;
582         struct bucket_table *tbl;
583         unsigned int hash;
584         void *data;
585
586         new_tbl = rcu_dereference(ht->tbl);
587
588         do {
589                 tbl = new_tbl;
590                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
591                 spin_lock_bh(rht_bucket_lock(tbl, hash));
592
593                 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
594                 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
595                 if (PTR_ERR(new_tbl) != -EEXIST)
596                         data = ERR_CAST(new_tbl);
597
598                 spin_unlock_bh(rht_bucket_lock(tbl, hash));
599         } while (!IS_ERR_OR_NULL(new_tbl));
600
601         if (PTR_ERR(data) == -EAGAIN)
602                 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
603                                -EAGAIN);
604
605         return data;
606 }
607
608 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
609                              struct rhash_head *obj)
610 {
611         void *data;
612
613         do {
614                 rcu_read_lock();
615                 data = rhashtable_try_insert(ht, key, obj);
616                 rcu_read_unlock();
617         } while (PTR_ERR(data) == -EAGAIN);
618
619         return data;
620 }
621 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
622
623 /**
624  * rhashtable_walk_enter - Initialise an iterator
625  * @ht:         Table to walk over
626  * @iter:       Hash table Iterator
627  *
628  * This function prepares a hash table walk.
629  *
630  * Note that if you restart a walk after rhashtable_walk_stop you
631  * may see the same object twice.  Also, you may miss objects if
632  * there are removals in between rhashtable_walk_stop and the next
633  * call to rhashtable_walk_start.
634  *
635  * For a completely stable walk you should construct your own data
636  * structure outside the hash table.
637  *
638  * This function may be called from any process context, including
639  * non-preemptable context, but cannot be called from softirq or
640  * hardirq context.
641  *
642  * You must call rhashtable_walk_exit after this function returns.
643  */
644 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
645 {
646         iter->ht = ht;
647         iter->p = NULL;
648         iter->slot = 0;
649         iter->skip = 0;
650         iter->end_of_table = 0;
651
652         spin_lock(&ht->lock);
653         iter->walker.tbl =
654                 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
655         list_add(&iter->walker.list, &iter->walker.tbl->walkers);
656         spin_unlock(&ht->lock);
657 }
658 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
659
660 /**
661  * rhashtable_walk_exit - Free an iterator
662  * @iter:       Hash table Iterator
663  *
664  * This function frees resources allocated by rhashtable_walk_enter.
665  */
666 void rhashtable_walk_exit(struct rhashtable_iter *iter)
667 {
668         spin_lock(&iter->ht->lock);
669         if (iter->walker.tbl)
670                 list_del(&iter->walker.list);
671         spin_unlock(&iter->ht->lock);
672 }
673 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
674
675 /**
676  * rhashtable_walk_start_check - Start a hash table walk
677  * @iter:       Hash table iterator
678  *
679  * Start a hash table walk at the current iterator position.  Note that we take
680  * the RCU lock in all cases including when we return an error.  So you must
681  * always call rhashtable_walk_stop to clean up.
682  *
683  * Returns zero if successful.
684  *
685  * Returns -EAGAIN if resize event occured.  Note that the iterator
686  * will rewind back to the beginning and you may use it immediately
687  * by calling rhashtable_walk_next.
688  *
689  * rhashtable_walk_start is defined as an inline variant that returns
690  * void. This is preferred in cases where the caller would ignore
691  * resize events and always continue.
692  */
693 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
694         __acquires(RCU)
695 {
696         struct rhashtable *ht = iter->ht;
697         bool rhlist = ht->rhlist;
698
699         rcu_read_lock();
700
701         spin_lock(&ht->lock);
702         if (iter->walker.tbl)
703                 list_del(&iter->walker.list);
704         spin_unlock(&ht->lock);
705
706         if (iter->end_of_table)
707                 return 0;
708         if (!iter->walker.tbl) {
709                 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
710                 iter->slot = 0;
711                 iter->skip = 0;
712                 return -EAGAIN;
713         }
714
715         if (iter->p && !rhlist) {
716                 /*
717                  * We need to validate that 'p' is still in the table, and
718                  * if so, update 'skip'
719                  */
720                 struct rhash_head *p;
721                 int skip = 0;
722                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
723                         skip++;
724                         if (p == iter->p) {
725                                 iter->skip = skip;
726                                 goto found;
727                         }
728                 }
729                 iter->p = NULL;
730         } else if (iter->p && rhlist) {
731                 /* Need to validate that 'list' is still in the table, and
732                  * if so, update 'skip' and 'p'.
733                  */
734                 struct rhash_head *p;
735                 struct rhlist_head *list;
736                 int skip = 0;
737                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
738                         for (list = container_of(p, struct rhlist_head, rhead);
739                              list;
740                              list = rcu_dereference(list->next)) {
741                                 skip++;
742                                 if (list == iter->list) {
743                                         iter->p = p;
744                                         iter->skip = skip;
745                                         goto found;
746                                 }
747                         }
748                 }
749                 iter->p = NULL;
750         }
751 found:
752         return 0;
753 }
754 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
755
756 /**
757  * __rhashtable_walk_find_next - Find the next element in a table (or the first
758  * one in case of a new walk).
759  *
760  * @iter:       Hash table iterator
761  *
762  * Returns the found object or NULL when the end of the table is reached.
763  *
764  * Returns -EAGAIN if resize event occurred.
765  */
766 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
767 {
768         struct bucket_table *tbl = iter->walker.tbl;
769         struct rhlist_head *list = iter->list;
770         struct rhashtable *ht = iter->ht;
771         struct rhash_head *p = iter->p;
772         bool rhlist = ht->rhlist;
773
774         if (!tbl)
775                 return NULL;
776
777         for (; iter->slot < tbl->size; iter->slot++) {
778                 int skip = iter->skip;
779
780                 rht_for_each_rcu(p, tbl, iter->slot) {
781                         if (rhlist) {
782                                 list = container_of(p, struct rhlist_head,
783                                                     rhead);
784                                 do {
785                                         if (!skip)
786                                                 goto next;
787                                         skip--;
788                                         list = rcu_dereference(list->next);
789                                 } while (list);
790
791                                 continue;
792                         }
793                         if (!skip)
794                                 break;
795                         skip--;
796                 }
797
798 next:
799                 if (!rht_is_a_nulls(p)) {
800                         iter->skip++;
801                         iter->p = p;
802                         iter->list = list;
803                         return rht_obj(ht, rhlist ? &list->rhead : p);
804                 }
805
806                 iter->skip = 0;
807         }
808
809         iter->p = NULL;
810
811         /* Ensure we see any new tables. */
812         smp_rmb();
813
814         iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
815         if (iter->walker.tbl) {
816                 iter->slot = 0;
817                 iter->skip = 0;
818                 return ERR_PTR(-EAGAIN);
819         } else {
820                 iter->end_of_table = true;
821         }
822
823         return NULL;
824 }
825
826 /**
827  * rhashtable_walk_next - Return the next object and advance the iterator
828  * @iter:       Hash table iterator
829  *
830  * Note that you must call rhashtable_walk_stop when you are finished
831  * with the walk.
832  *
833  * Returns the next object or NULL when the end of the table is reached.
834  *
835  * Returns -EAGAIN if resize event occurred.  Note that the iterator
836  * will rewind back to the beginning and you may continue to use it.
837  */
838 void *rhashtable_walk_next(struct rhashtable_iter *iter)
839 {
840         struct rhlist_head *list = iter->list;
841         struct rhashtable *ht = iter->ht;
842         struct rhash_head *p = iter->p;
843         bool rhlist = ht->rhlist;
844
845         if (p) {
846                 if (!rhlist || !(list = rcu_dereference(list->next))) {
847                         p = rcu_dereference(p->next);
848                         list = container_of(p, struct rhlist_head, rhead);
849                 }
850                 if (!rht_is_a_nulls(p)) {
851                         iter->skip++;
852                         iter->p = p;
853                         iter->list = list;
854                         return rht_obj(ht, rhlist ? &list->rhead : p);
855                 }
856
857                 /* At the end of this slot, switch to next one and then find
858                  * next entry from that point.
859                  */
860                 iter->skip = 0;
861                 iter->slot++;
862         }
863
864         return __rhashtable_walk_find_next(iter);
865 }
866 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
867
868 /**
869  * rhashtable_walk_peek - Return the next object but don't advance the iterator
870  * @iter:       Hash table iterator
871  *
872  * Returns the next object or NULL when the end of the table is reached.
873  *
874  * Returns -EAGAIN if resize event occurred.  Note that the iterator
875  * will rewind back to the beginning and you may continue to use it.
876  */
877 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
878 {
879         struct rhlist_head *list = iter->list;
880         struct rhashtable *ht = iter->ht;
881         struct rhash_head *p = iter->p;
882
883         if (p)
884                 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
885
886         /* No object found in current iter, find next one in the table. */
887
888         if (iter->skip) {
889                 /* A nonzero skip value points to the next entry in the table
890                  * beyond that last one that was found. Decrement skip so
891                  * we find the current value. __rhashtable_walk_find_next
892                  * will restore the original value of skip assuming that
893                  * the table hasn't changed.
894                  */
895                 iter->skip--;
896         }
897
898         return __rhashtable_walk_find_next(iter);
899 }
900 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
901
902 /**
903  * rhashtable_walk_stop - Finish a hash table walk
904  * @iter:       Hash table iterator
905  *
906  * Finish a hash table walk.  Does not reset the iterator to the start of the
907  * hash table.
908  */
909 void rhashtable_walk_stop(struct rhashtable_iter *iter)
910         __releases(RCU)
911 {
912         struct rhashtable *ht;
913         struct bucket_table *tbl = iter->walker.tbl;
914
915         if (!tbl)
916                 goto out;
917
918         ht = iter->ht;
919
920         spin_lock(&ht->lock);
921         if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
922                 /* This bucket table is being freed, don't re-link it. */
923                 iter->walker.tbl = NULL;
924         else
925                 list_add(&iter->walker.list, &tbl->walkers);
926         spin_unlock(&ht->lock);
927
928 out:
929         rcu_read_unlock();
930 }
931 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
932
933 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
934 {
935         size_t retsize;
936
937         if (params->nelem_hint)
938                 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
939                               (unsigned long)params->min_size);
940         else
941                 retsize = max(HASH_DEFAULT_SIZE,
942                               (unsigned long)params->min_size);
943
944         return retsize;
945 }
946
947 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
948 {
949         return jhash2(key, length, seed);
950 }
951
952 /**
953  * rhashtable_init - initialize a new hash table
954  * @ht:         hash table to be initialized
955  * @params:     configuration parameters
956  *
957  * Initializes a new hash table based on the provided configuration
958  * parameters. A table can be configured either with a variable or
959  * fixed length key:
960  *
961  * Configuration Example 1: Fixed length keys
962  * struct test_obj {
963  *      int                     key;
964  *      void *                  my_member;
965  *      struct rhash_head       node;
966  * };
967  *
968  * struct rhashtable_params params = {
969  *      .head_offset = offsetof(struct test_obj, node),
970  *      .key_offset = offsetof(struct test_obj, key),
971  *      .key_len = sizeof(int),
972  *      .hashfn = jhash,
973  * };
974  *
975  * Configuration Example 2: Variable length keys
976  * struct test_obj {
977  *      [...]
978  *      struct rhash_head       node;
979  * };
980  *
981  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
982  * {
983  *      struct test_obj *obj = data;
984  *
985  *      return [... hash ...];
986  * }
987  *
988  * struct rhashtable_params params = {
989  *      .head_offset = offsetof(struct test_obj, node),
990  *      .hashfn = jhash,
991  *      .obj_hashfn = my_hash_fn,
992  * };
993  */
994 int rhashtable_init(struct rhashtable *ht,
995                     const struct rhashtable_params *params)
996 {
997         struct bucket_table *tbl;
998         size_t size;
999
1000         if ((!params->key_len && !params->obj_hashfn) ||
1001             (params->obj_hashfn && !params->obj_cmpfn))
1002                 return -EINVAL;
1003
1004         memset(ht, 0, sizeof(*ht));
1005         mutex_init(&ht->mutex);
1006         spin_lock_init(&ht->lock);
1007         memcpy(&ht->p, params, sizeof(*params));
1008
1009         if (params->min_size)
1010                 ht->p.min_size = roundup_pow_of_two(params->min_size);
1011
1012         /* Cap total entries at 2^31 to avoid nelems overflow. */
1013         ht->max_elems = 1u << 31;
1014
1015         if (params->max_size) {
1016                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1017                 if (ht->p.max_size < ht->max_elems / 2)
1018                         ht->max_elems = ht->p.max_size * 2;
1019         }
1020
1021         ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1022
1023         size = rounded_hashtable_size(&ht->p);
1024
1025         if (params->locks_mul)
1026                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1027         else
1028                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1029
1030         ht->key_len = ht->p.key_len;
1031         if (!params->hashfn) {
1032                 ht->p.hashfn = jhash;
1033
1034                 if (!(ht->key_len & (sizeof(u32) - 1))) {
1035                         ht->key_len /= sizeof(u32);
1036                         ht->p.hashfn = rhashtable_jhash2;
1037                 }
1038         }
1039
1040         /*
1041          * This is api initialization and thus we need to guarantee the
1042          * initial rhashtable allocation. Upon failure, retry with the
1043          * smallest possible size with __GFP_NOFAIL semantics.
1044          */
1045         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1046         if (unlikely(tbl == NULL)) {
1047                 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1048                 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1049         }
1050
1051         atomic_set(&ht->nelems, 0);
1052
1053         RCU_INIT_POINTER(ht->tbl, tbl);
1054
1055         INIT_WORK(&ht->run_work, rht_deferred_worker);
1056
1057         return 0;
1058 }
1059 EXPORT_SYMBOL_GPL(rhashtable_init);
1060
1061 /**
1062  * rhltable_init - initialize a new hash list table
1063  * @hlt:        hash list table to be initialized
1064  * @params:     configuration parameters
1065  *
1066  * Initializes a new hash list table.
1067  *
1068  * See documentation for rhashtable_init.
1069  */
1070 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1071 {
1072         int err;
1073
1074         err = rhashtable_init(&hlt->ht, params);
1075         hlt->ht.rhlist = true;
1076         return err;
1077 }
1078 EXPORT_SYMBOL_GPL(rhltable_init);
1079
1080 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1081                                 void (*free_fn)(void *ptr, void *arg),
1082                                 void *arg)
1083 {
1084         struct rhlist_head *list;
1085
1086         if (!ht->rhlist) {
1087                 free_fn(rht_obj(ht, obj), arg);
1088                 return;
1089         }
1090
1091         list = container_of(obj, struct rhlist_head, rhead);
1092         do {
1093                 obj = &list->rhead;
1094                 list = rht_dereference(list->next, ht);
1095                 free_fn(rht_obj(ht, obj), arg);
1096         } while (list);
1097 }
1098
1099 /**
1100  * rhashtable_free_and_destroy - free elements and destroy hash table
1101  * @ht:         the hash table to destroy
1102  * @free_fn:    callback to release resources of element
1103  * @arg:        pointer passed to free_fn
1104  *
1105  * Stops an eventual async resize. If defined, invokes free_fn for each
1106  * element to releasal resources. Please note that RCU protected
1107  * readers may still be accessing the elements. Releasing of resources
1108  * must occur in a compatible manner. Then frees the bucket array.
1109  *
1110  * This function will eventually sleep to wait for an async resize
1111  * to complete. The caller is responsible that no further write operations
1112  * occurs in parallel.
1113  */
1114 void rhashtable_free_and_destroy(struct rhashtable *ht,
1115                                  void (*free_fn)(void *ptr, void *arg),
1116                                  void *arg)
1117 {
1118         struct bucket_table *tbl, *next_tbl;
1119         unsigned int i;
1120
1121         cancel_work_sync(&ht->run_work);
1122
1123         mutex_lock(&ht->mutex);
1124         tbl = rht_dereference(ht->tbl, ht);
1125 restart:
1126         if (free_fn) {
1127                 for (i = 0; i < tbl->size; i++) {
1128                         struct rhash_head *pos, *next;
1129
1130                         cond_resched();
1131                         for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1132                              next = !rht_is_a_nulls(pos) ?
1133                                         rht_dereference(pos->next, ht) : NULL;
1134                              !rht_is_a_nulls(pos);
1135                              pos = next,
1136                              next = !rht_is_a_nulls(pos) ?
1137                                         rht_dereference(pos->next, ht) : NULL)
1138                                 rhashtable_free_one(ht, pos, free_fn, arg);
1139                 }
1140         }
1141
1142         next_tbl = rht_dereference(tbl->future_tbl, ht);
1143         bucket_table_free(tbl);
1144         if (next_tbl) {
1145                 tbl = next_tbl;
1146                 goto restart;
1147         }
1148         mutex_unlock(&ht->mutex);
1149 }
1150 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1151
1152 void rhashtable_destroy(struct rhashtable *ht)
1153 {
1154         return rhashtable_free_and_destroy(ht, NULL, NULL);
1155 }
1156 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1157
1158 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1159                                             unsigned int hash)
1160 {
1161         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1162         static struct rhash_head __rcu *rhnull;
1163         unsigned int index = hash & ((1 << tbl->nest) - 1);
1164         unsigned int size = tbl->size >> tbl->nest;
1165         unsigned int subhash = hash;
1166         union nested_table *ntbl;
1167
1168         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1169         ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1170         subhash >>= tbl->nest;
1171
1172         while (ntbl && size > (1 << shift)) {
1173                 index = subhash & ((1 << shift) - 1);
1174                 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1175                                                   tbl, hash);
1176                 size >>= shift;
1177                 subhash >>= shift;
1178         }
1179
1180         if (!ntbl) {
1181                 if (!rhnull)
1182                         INIT_RHT_NULLS_HEAD(rhnull);
1183                 return &rhnull;
1184         }
1185
1186         return &ntbl[subhash].bucket;
1187
1188 }
1189 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1190
1191 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1192                                                    struct bucket_table *tbl,
1193                                                    unsigned int hash)
1194 {
1195         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1196         unsigned int index = hash & ((1 << tbl->nest) - 1);
1197         unsigned int size = tbl->size >> tbl->nest;
1198         union nested_table *ntbl;
1199
1200         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1201         hash >>= tbl->nest;
1202         ntbl = nested_table_alloc(ht, &ntbl[index].table,
1203                                   size <= (1 << shift));
1204
1205         while (ntbl && size > (1 << shift)) {
1206                 index = hash & ((1 << shift) - 1);
1207                 size >>= shift;
1208                 hash >>= shift;
1209                 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1210                                           size <= (1 << shift));
1211         }
1212
1213         if (!ntbl)
1214                 return NULL;
1215
1216         return &ntbl[hash].bucket;
1217
1218 }
1219 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
This page took 0.101913 seconds and 4 git commands to generate.