1 // SPDX-License-Identifier: GPL-2.0
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
30 #define TARGET_BUCKET_SIZE 64
32 struct nfsd_drc_bucket {
33 struct rb_root rb_head;
34 struct list_head lru_head;
35 spinlock_t cache_lock;
38 static struct kmem_cache *drc_slab;
40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 struct shrink_control *sc);
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers. Maybe that's OK.
68 nfsd_cache_size_limit(void)
71 unsigned long low_pages = totalram_pages() - totalhigh_pages();
73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 return min_t(unsigned int, limit, 256*1024);
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
82 nfsd_hashsize(unsigned int limit)
84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
88 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn)
90 return hash_32(be32_to_cpu(xid), nn->maskbits);
93 static struct svc_cacherep *
94 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
97 struct svc_cacherep *rp;
99 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
101 rp->c_state = RC_UNUSED;
102 rp->c_type = RC_NOCACHE;
103 RB_CLEAR_NODE(&rp->c_node);
104 INIT_LIST_HEAD(&rp->c_lru);
106 memset(&rp->c_key, 0, sizeof(rp->c_key));
107 rp->c_key.k_xid = rqstp->rq_xid;
108 rp->c_key.k_proc = rqstp->rq_proc;
109 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
110 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
111 rp->c_key.k_prot = rqstp->rq_prot;
112 rp->c_key.k_vers = rqstp->rq_vers;
113 rp->c_key.k_len = rqstp->rq_arg.len;
114 rp->c_key.k_csum = csum;
120 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
123 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
124 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
125 kfree(rp->c_replvec.iov_base);
127 if (rp->c_state != RC_UNUSED) {
128 rb_erase(&rp->c_node, &b->rb_head);
129 list_del(&rp->c_lru);
130 atomic_dec(&nn->num_drc_entries);
131 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
133 kmem_cache_free(drc_slab, rp);
137 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
140 spin_lock(&b->cache_lock);
141 nfsd_reply_cache_free_locked(b, rp, nn);
142 spin_unlock(&b->cache_lock);
145 int nfsd_drc_slab_create(void)
147 drc_slab = kmem_cache_create("nfsd_drc",
148 sizeof(struct svc_cacherep), 0, 0, NULL);
149 return drc_slab ? 0: -ENOMEM;
152 void nfsd_drc_slab_free(void)
154 kmem_cache_destroy(drc_slab);
157 static int nfsd_reply_cache_stats_init(struct nfsd_net *nn)
159 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
162 static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn)
164 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
167 int nfsd_reply_cache_init(struct nfsd_net *nn)
169 unsigned int hashsize;
173 nn->max_drc_entries = nfsd_cache_size_limit();
174 atomic_set(&nn->num_drc_entries, 0);
175 hashsize = nfsd_hashsize(nn->max_drc_entries);
176 nn->maskbits = ilog2(hashsize);
178 status = nfsd_reply_cache_stats_init(nn);
182 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
183 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
184 nn->nfsd_reply_cache_shrinker.seeks = 1;
185 status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
187 goto out_stats_destroy;
189 nn->drc_hashtbl = kvzalloc(array_size(hashsize,
190 sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
191 if (!nn->drc_hashtbl)
194 for (i = 0; i < hashsize; i++) {
195 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
196 spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
198 nn->drc_hashsize = hashsize;
202 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
204 nfsd_reply_cache_stats_destroy(nn);
206 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
210 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
212 struct svc_cacherep *rp;
215 nfsd_reply_cache_stats_destroy(nn);
216 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
218 for (i = 0; i < nn->drc_hashsize; i++) {
219 struct list_head *head = &nn->drc_hashtbl[i].lru_head;
220 while (!list_empty(head)) {
221 rp = list_first_entry(head, struct svc_cacherep, c_lru);
222 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
227 kvfree(nn->drc_hashtbl);
228 nn->drc_hashtbl = NULL;
229 nn->drc_hashsize = 0;
234 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
235 * not already scheduled.
238 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
240 rp->c_timestamp = jiffies;
241 list_move_tail(&rp->c_lru, &b->lru_head);
245 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
247 struct svc_cacherep *rp, *tmp;
250 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
252 * Don't free entries attached to calls that are still
253 * in-progress, but do keep scanning the list.
255 if (rp->c_state == RC_INPROG)
257 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
258 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
260 nfsd_reply_cache_free_locked(b, rp, nn);
267 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
268 * Also prune the oldest ones when the total exceeds the max number of entries.
271 prune_cache_entries(struct nfsd_net *nn)
276 for (i = 0; i < nn->drc_hashsize; i++) {
277 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
279 if (list_empty(&b->lru_head))
281 spin_lock(&b->cache_lock);
282 freed += prune_bucket(b, nn);
283 spin_unlock(&b->cache_lock);
289 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
291 struct nfsd_net *nn = container_of(shrink,
292 struct nfsd_net, nfsd_reply_cache_shrinker);
294 return atomic_read(&nn->num_drc_entries);
298 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
300 struct nfsd_net *nn = container_of(shrink,
301 struct nfsd_net, nfsd_reply_cache_shrinker);
303 return prune_cache_entries(nn);
306 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
309 nfsd_cache_csum(struct svc_rqst *rqstp)
314 struct xdr_buf *buf = &rqstp->rq_arg;
315 const unsigned char *p = buf->head[0].iov_base;
316 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
318 size_t len = min(buf->head[0].iov_len, csum_len);
320 /* rq_arg.head first */
321 csum = csum_partial(p, len, 0);
324 /* Continue into page array */
325 idx = buf->page_base / PAGE_SIZE;
326 base = buf->page_base & ~PAGE_MASK;
328 p = page_address(buf->pages[idx]) + base;
329 len = min_t(size_t, PAGE_SIZE - base, csum_len);
330 csum = csum_partial(p, len, csum);
339 nfsd_cache_key_cmp(const struct svc_cacherep *key,
340 const struct svc_cacherep *rp, struct nfsd_net *nn)
342 if (key->c_key.k_xid == rp->c_key.k_xid &&
343 key->c_key.k_csum != rp->c_key.k_csum) {
344 nfsd_stats_payload_misses_inc(nn);
345 trace_nfsd_drc_mismatch(nn, key, rp);
348 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
352 * Search the request hash for an entry that matches the given rqstp.
353 * Must be called with cache_lock held. Returns the found entry or
354 * inserts an empty key on failure.
356 static struct svc_cacherep *
357 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
360 struct svc_cacherep *rp, *ret = key;
361 struct rb_node **p = &b->rb_head.rb_node,
363 unsigned int entries = 0;
369 rp = rb_entry(parent, struct svc_cacherep, c_node);
371 cmp = nfsd_cache_key_cmp(key, rp, nn);
373 p = &parent->rb_left;
375 p = &parent->rb_right;
381 rb_link_node(&key->c_node, parent, p);
382 rb_insert_color(&key->c_node, &b->rb_head);
384 /* tally hash chain length stats */
385 if (entries > nn->longest_chain) {
386 nn->longest_chain = entries;
387 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
388 } else if (entries == nn->longest_chain) {
389 /* prefer to keep the smallest cachesize possible here */
390 nn->longest_chain_cachesize = min_t(unsigned int,
391 nn->longest_chain_cachesize,
392 atomic_read(&nn->num_drc_entries));
400 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
401 * @rqstp: Incoming Call to find
403 * Try to find an entry matching the current call in the cache. When none
404 * is found, we try to grab the oldest expired entry off the LRU list. If
405 * a suitable one isn't there, then drop the cache_lock and allocate a
406 * new one, then search again in case one got inserted while this thread
407 * didn't hold the lock.
410 * %RC_DOIT: Process the request normally
411 * %RC_REPLY: Reply from cache
412 * %RC_DROPIT: Do not process the request further
414 int nfsd_cache_lookup(struct svc_rqst *rqstp)
416 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
417 struct svc_cacherep *rp, *found;
418 __be32 xid = rqstp->rq_xid;
420 u32 hash = nfsd_cache_hash(xid, nn);
421 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash];
422 int type = rqstp->rq_cachetype;
425 rqstp->rq_cacherep = NULL;
426 if (type == RC_NOCACHE) {
427 nfsd_stats_rc_nocache_inc();
431 csum = nfsd_cache_csum(rqstp);
434 * Since the common case is a cache miss followed by an insert,
435 * preallocate an entry.
437 rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
441 spin_lock(&b->cache_lock);
442 found = nfsd_cache_insert(b, rp, nn);
444 nfsd_reply_cache_free_locked(NULL, rp, nn);
449 nfsd_stats_rc_misses_inc();
450 rqstp->rq_cacherep = rp;
451 rp->c_state = RC_INPROG;
453 atomic_inc(&nn->num_drc_entries);
454 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
456 /* go ahead and prune the cache */
460 spin_unlock(&b->cache_lock);
465 /* We found a matching entry which is either in progress or done. */
466 nfsd_stats_rc_hits_inc();
469 /* Request being processed */
470 if (rp->c_state == RC_INPROG)
473 /* From the hall of fame of impractical attacks:
474 * Is this a user who tries to snoop on the cache? */
476 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
479 /* Compose RPC reply header */
480 switch (rp->c_type) {
484 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
488 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
489 goto out_unlock; /* should not happen */
493 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
497 trace_nfsd_drc_found(nn, rqstp, rtn);
502 * nfsd_cache_update - Update an entry in the duplicate reply cache.
503 * @rqstp: svc_rqst with a finished Reply
504 * @cachetype: which cache to update
505 * @statp: Reply's status code
507 * This is called from nfsd_dispatch when the procedure has been
508 * executed and the complete reply is in rqstp->rq_res.
510 * We're copying around data here rather than swapping buffers because
511 * the toplevel loop requires max-sized buffers, which would be a waste
512 * of memory for a cache with a max reply size of 100 bytes (diropokres).
514 * If we should start to use different types of cache entries tailored
515 * specifically for attrstat and fh's, we may save even more space.
517 * Also note that a cachetype of RC_NOCACHE can legally be passed when
518 * nfsd failed to encode a reply that otherwise would have been cached.
519 * In this case, nfsd_cache_update is called with statp == NULL.
521 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
523 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
524 struct svc_cacherep *rp = rqstp->rq_cacherep;
525 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
527 struct nfsd_drc_bucket *b;
534 hash = nfsd_cache_hash(rp->c_key.k_xid, nn);
535 b = &nn->drc_hashtbl[hash];
537 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
540 /* Don't cache excessive amounts of data and XDR failures */
541 if (!statp || len > (256 >> 2)) {
542 nfsd_reply_cache_free(b, rp, nn);
549 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
550 rp->c_replstat = *statp;
553 cachv = &rp->c_replvec;
555 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
556 if (!cachv->iov_base) {
557 nfsd_reply_cache_free(b, rp, nn);
560 cachv->iov_len = bufsize;
561 memcpy(cachv->iov_base, statp, bufsize);
564 nfsd_reply_cache_free(b, rp, nn);
567 spin_lock(&b->cache_lock);
568 nfsd_stats_drc_mem_usage_add(nn, bufsize);
570 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
571 rp->c_type = cachetype;
572 rp->c_state = RC_DONE;
573 spin_unlock(&b->cache_lock);
578 * Copy cached reply to current reply buffer. Should always fit.
579 * FIXME as reply is in a page, we should just attach the page, and
580 * keep a refcount....
583 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
585 struct kvec *vec = &rqstp->rq_res.head[0];
587 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
588 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
592 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
593 vec->iov_len += data->iov_len;
598 * Note that fields may be added, removed or reordered in the future. Programs
599 * scraping this file for info should test the labels to ensure they're
600 * getting the correct field.
602 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
604 struct nfsd_net *nn = m->private;
606 seq_printf(m, "max entries: %u\n", nn->max_drc_entries);
607 seq_printf(m, "num entries: %u\n",
608 atomic_read(&nn->num_drc_entries));
609 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits);
610 seq_printf(m, "mem usage: %lld\n",
611 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
612 seq_printf(m, "cache hits: %lld\n",
613 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
614 seq_printf(m, "cache misses: %lld\n",
615 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
616 seq_printf(m, "not cached: %lld\n",
617 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
618 seq_printf(m, "payload misses: %lld\n",
619 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
620 seq_printf(m, "longest chain len: %u\n", nn->longest_chain);
621 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize);
625 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
627 struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
630 return single_open(file, nfsd_reply_cache_stats_show, nn);