1 // SPDX-License-Identifier: GPL-2.0
3 * Architecture-specific unaligned trap handling.
5 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
9 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
10 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
11 * stacked register returns an undefined value; it does NOT trigger a
12 * "rsvd register fault").
13 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
14 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
15 * 2001/01/17 Add support emulation of unaligned kernel accesses.
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/sched/signal.h>
20 #include <linux/tty.h>
21 #include <linux/extable.h>
22 #include <linux/ratelimit.h>
23 #include <linux/uaccess.h>
25 #include <asm/intrinsics.h>
26 #include <asm/processor.h>
28 #include <asm/exception.h>
29 #include <asm/unaligned.h>
31 extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
33 #undef DEBUG_UNALIGNED_TRAP
35 #ifdef DEBUG_UNALIGNED_TRAP
36 # define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
37 # define DDUMP(str,vp,len) dump(str, vp, len)
40 dump (const char *str, void *vp, size_t len)
42 unsigned char *cp = vp;
46 for (i = 0; i < len; ++i)
47 printk (" %02x", *cp++);
52 # define DDUMP(str,vp,len)
55 #define IA64_FIRST_STACKED_GR 32
56 #define IA64_FIRST_ROTATING_FR 32
57 #define SIGN_EXT9 0xffffffffffffff00ul
60 * sysctl settable hook which tells the kernel whether to honor the
61 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
62 * to allow the super user to enable/disable this for security reasons
63 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
65 int no_unaligned_warning;
66 int unaligned_dump_stack;
72 * --------|------|---------|
73 * [40-37] | [36] | [35:30] |
74 * --------|------|---------|
75 * 4 | 1 | 6 | = 11 bits
76 * --------------------------
77 * However bits [31:30] are not directly useful to distinguish between
78 * load/store so we can use [35:32] instead, which gives the following
79 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
80 * checking the m-bit until later in the load/store emulation.
82 #define IA64_OPCODE_MASK 0x1ef
83 #define IA64_OPCODE_SHIFT 32
86 * Table C-28 Integer Load/Store
88 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
90 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
91 * the address (bits [8:3]), so we must failed.
97 #define LDBIAS_OP 0x084
98 #define LDACQ_OP 0x085
99 /* 0x086, 0x087 are not relevant */
100 #define LDCCLR_OP 0x088
101 #define LDCNC_OP 0x089
102 #define LDCCLRACQ_OP 0x08a
104 #define STREL_OP 0x08d
105 /* 0x08e,0x8f are not relevant */
108 * Table C-29 Integer Load +Reg
110 * we use the ld->m (bit [36:36]) field to determine whether or not we have
111 * a load/store of this form.
115 * Table C-30 Integer Load/Store +Imm
117 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
119 * ld8.fill, st8.fill must be aligned because the Nat register are based on
120 * the address, so we must fail and the program must be fixed.
122 #define LD_IMM_OP 0x0a0
123 #define LDS_IMM_OP 0x0a1
124 #define LDA_IMM_OP 0x0a2
125 #define LDSA_IMM_OP 0x0a3
126 #define LDBIAS_IMM_OP 0x0a4
127 #define LDACQ_IMM_OP 0x0a5
128 /* 0x0a6, 0xa7 are not relevant */
129 #define LDCCLR_IMM_OP 0x0a8
130 #define LDCNC_IMM_OP 0x0a9
131 #define LDCCLRACQ_IMM_OP 0x0aa
132 #define ST_IMM_OP 0x0ac
133 #define STREL_IMM_OP 0x0ad
134 /* 0x0ae,0xaf are not relevant */
137 * Table C-32 Floating-point Load/Store
140 #define LDFS_OP 0x0c1
141 #define LDFA_OP 0x0c2
142 #define LDFSA_OP 0x0c3
143 /* 0x0c6 is irrelevant */
144 #define LDFCCLR_OP 0x0c8
145 #define LDFCNC_OP 0x0c9
146 /* 0x0cb is irrelevant */
150 * Table C-33 Floating-point Load +Reg
152 * we use the ld->m (bit [36:36]) field to determine whether or not we have
153 * a load/store of this form.
157 * Table C-34 Floating-point Load/Store +Imm
159 #define LDF_IMM_OP 0x0e0
160 #define LDFS_IMM_OP 0x0e1
161 #define LDFA_IMM_OP 0x0e2
162 #define LDFSA_IMM_OP 0x0e3
163 /* 0x0e6 is irrelevant */
164 #define LDFCCLR_IMM_OP 0x0e8
165 #define LDFCNC_IMM_OP 0x0e9
166 #define STF_IMM_OP 0x0ec
169 unsigned long qp:6; /* [0:5] */
170 unsigned long r1:7; /* [6:12] */
171 unsigned long imm:7; /* [13:19] */
172 unsigned long r3:7; /* [20:26] */
173 unsigned long x:1; /* [27:27] */
174 unsigned long hint:2; /* [28:29] */
175 unsigned long x6_sz:2; /* [30:31] */
176 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
177 unsigned long m:1; /* [36:36] */
178 unsigned long op:4; /* [37:40] */
179 unsigned long pad:23; /* [41:63] */
184 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
185 UPD_REG /* ldXZ r1=[r3],r2 */
189 * We use tables to keep track of the offsets of registers in the saved state.
190 * This way we save having big switch/case statements.
192 * We use bit 0 to indicate switch_stack or pt_regs.
193 * The offset is simply shifted by 1 bit.
194 * A 2-byte value should be enough to hold any kind of offset
196 * In case the calling convention changes (and thus pt_regs/switch_stack)
197 * simply use RSW instead of RPT or vice-versa.
200 #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
201 #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
203 #define RPT(x) (RPO(x) << 1)
204 #define RSW(x) (1| RSO(x)<<1)
206 #define GR_OFFS(x) (gr_info[x]>>1)
207 #define GR_IN_SW(x) (gr_info[x] & 0x1)
209 #define FR_OFFS(x) (fr_info[x]>>1)
210 #define FR_IN_SW(x) (fr_info[x] & 0x1)
212 static u16 gr_info[32]={
213 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
215 RPT(r1), RPT(r2), RPT(r3),
217 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
219 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
220 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
222 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
223 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
224 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
225 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
228 static u16 fr_info[32]={
229 0, /* constant : WE SHOULD NEVER GET THIS */
230 0, /* constant : WE SHOULD NEVER GET THIS */
232 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
234 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
237 RSW(f12), RSW(f13), RSW(f14),
238 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
239 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
240 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
244 /* Invalidate ALAT entry for integer register REGNO. */
246 invala_gr (int regno)
248 # define F(reg) case reg: ia64_invala_gr(reg); break
251 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
252 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
253 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
254 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
255 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
256 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
257 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
258 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
259 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
260 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
261 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
262 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
263 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
264 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
265 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
266 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
271 /* Invalidate ALAT entry for floating-point register REGNO. */
273 invala_fr (int regno)
275 # define F(reg) case reg: ia64_invala_fr(reg); break
278 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
279 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
280 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
281 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
282 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
283 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
284 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
285 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
286 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
287 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
288 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
289 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
290 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
291 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
292 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
293 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
298 static inline unsigned long
299 rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
308 set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
310 struct switch_stack *sw = (struct switch_stack *) regs - 1;
311 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
312 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
313 unsigned long rnats, nat_mask;
314 unsigned long on_kbs;
315 long sof = (regs->cr_ifs) & 0x7f;
316 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
317 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
321 /* this should never happen, as the "rsvd register fault" has higher priority */
322 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
327 ridx = rotate_reg(sor, rrb_gr, ridx);
329 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
330 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
332 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
333 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
335 /* the register is on the kernel backing store: easy... */
336 rnat_addr = ia64_rse_rnat_addr(addr);
337 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
338 rnat_addr = &sw->ar_rnat;
339 nat_mask = 1UL << ia64_rse_slot_num(addr);
343 *rnat_addr |= nat_mask;
345 *rnat_addr &= ~nat_mask;
349 if (!user_stack(current, regs)) {
350 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
354 bspstore = (unsigned long *)regs->ar_bspstore;
355 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
356 bsp = ia64_rse_skip_regs(ubs_end, -sof);
357 addr = ia64_rse_skip_regs(bsp, ridx);
359 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
361 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
363 rnat_addr = ia64_rse_rnat_addr(addr);
365 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
366 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
367 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
369 nat_mask = 1UL << ia64_rse_slot_num(addr);
374 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
376 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
381 get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
383 struct switch_stack *sw = (struct switch_stack *) regs - 1;
384 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
385 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
386 unsigned long rnats, nat_mask;
387 unsigned long on_kbs;
388 long sof = (regs->cr_ifs) & 0x7f;
389 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
390 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
394 /* read of out-of-frame register returns an undefined value; 0 in our case. */
395 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
400 ridx = rotate_reg(sor, rrb_gr, ridx);
402 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
403 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
405 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
406 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
408 /* the register is on the kernel backing store: easy... */
411 rnat_addr = ia64_rse_rnat_addr(addr);
412 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
413 rnat_addr = &sw->ar_rnat;
414 nat_mask = 1UL << ia64_rse_slot_num(addr);
415 *nat = (*rnat_addr & nat_mask) != 0;
420 if (!user_stack(current, regs)) {
421 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
425 bspstore = (unsigned long *)regs->ar_bspstore;
426 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
427 bsp = ia64_rse_skip_regs(ubs_end, -sof);
428 addr = ia64_rse_skip_regs(bsp, ridx);
430 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
432 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
435 rnat_addr = ia64_rse_rnat_addr(addr);
436 nat_mask = 1UL << ia64_rse_slot_num(addr);
438 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
440 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
441 *nat = (rnats & nat_mask) != 0;
454 setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
456 struct switch_stack *sw = (struct switch_stack *) regs - 1;
458 unsigned long bitmask;
462 * First takes care of stacked registers
464 if (regnum >= IA64_FIRST_STACKED_GR) {
465 set_rse_reg(regs, regnum, val, nat);
470 * Using r0 as a target raises a General Exception fault which has higher priority
471 * than the Unaligned Reference fault.
475 * Now look at registers in [0-31] range and init correct UNAT
477 if (GR_IN_SW(regnum)) {
478 addr = (unsigned long)sw;
481 addr = (unsigned long)regs;
482 unat = &sw->caller_unat;
484 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
485 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
487 * add offset from base of struct
490 addr += GR_OFFS(regnum);
492 *(unsigned long *)addr = val;
495 * We need to clear the corresponding UNAT bit to fully emulate the load
496 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
498 bitmask = 1UL << (addr >> 3 & 0x3f);
499 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
505 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
509 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
510 * range from 32-127, result is in the range from 0-95.
512 static inline unsigned long
513 fph_index (struct pt_regs *regs, long regnum)
515 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
516 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
520 setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
522 struct switch_stack *sw = (struct switch_stack *)regs - 1;
526 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
527 * Fault. Thus, when we get here, we know the partition is enabled.
528 * To update f32-f127, there are three choices:
530 * (1) save f32-f127 to thread.fph and update the values there
531 * (2) use a gigantic switch statement to directly access the registers
532 * (3) generate code on the fly to update the desired register
534 * For now, we are using approach (1).
536 if (regnum >= IA64_FIRST_ROTATING_FR) {
537 ia64_sync_fph(current);
538 current->thread.fph[fph_index(regs, regnum)] = *fpval;
541 * pt_regs or switch_stack ?
543 if (FR_IN_SW(regnum)) {
544 addr = (unsigned long)sw;
546 addr = (unsigned long)regs;
549 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
551 addr += FR_OFFS(regnum);
552 *(struct ia64_fpreg *)addr = *fpval;
555 * mark the low partition as being used now
557 * It is highly unlikely that this bit is not already set, but
558 * let's do it for safety.
560 regs->cr_ipsr |= IA64_PSR_MFL;
565 * Those 2 inline functions generate the spilled versions of the constant floating point
566 * registers which can be used with stfX
569 float_spill_f0 (struct ia64_fpreg *final)
571 ia64_stf_spill(final, 0);
575 float_spill_f1 (struct ia64_fpreg *final)
577 ia64_stf_spill(final, 1);
581 getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
583 struct switch_stack *sw = (struct switch_stack *) regs - 1;
587 * From EAS-2.5: FPDisableFault has higher priority than
588 * Unaligned Fault. Thus, when we get here, we know the partition is
591 * When regnum > 31, the register is still live and we need to force a save
592 * to current->thread.fph to get access to it. See discussion in setfpreg()
593 * for reasons and other ways of doing this.
595 if (regnum >= IA64_FIRST_ROTATING_FR) {
596 ia64_flush_fph(current);
597 *fpval = current->thread.fph[fph_index(regs, regnum)];
600 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
601 * not saved, we must generate their spilled form on the fly
605 float_spill_f0(fpval);
608 float_spill_f1(fpval);
612 * pt_regs or switch_stack ?
614 addr = FR_IN_SW(regnum) ? (unsigned long)sw
615 : (unsigned long)regs;
617 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
618 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
620 addr += FR_OFFS(regnum);
621 *fpval = *(struct ia64_fpreg *)addr;
628 getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
630 struct switch_stack *sw = (struct switch_stack *) regs - 1;
631 unsigned long addr, *unat;
633 if (regnum >= IA64_FIRST_STACKED_GR) {
634 get_rse_reg(regs, regnum, val, nat);
639 * take care of r0 (read-only always evaluate to 0)
649 * Now look at registers in [0-31] range and init correct UNAT
651 if (GR_IN_SW(regnum)) {
652 addr = (unsigned long)sw;
655 addr = (unsigned long)regs;
656 unat = &sw->caller_unat;
659 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
661 addr += GR_OFFS(regnum);
663 *val = *(unsigned long *)addr;
666 * do it only when requested
669 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
673 emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
677 * Given the way we handle unaligned speculative loads, we should
678 * not get to this point in the code but we keep this sanity check,
681 if (ld.x6_op == 1 || ld.x6_op == 3) {
682 printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
683 if (die_if_kernel("unaligned reference on speculative load with register update\n",
690 * at this point, we know that the base register to update is valid i.e.,
693 if (type == UPD_IMMEDIATE) {
697 * Load +Imm: ldXZ r1=[r3],imm(9)
700 * form imm9: [13:19] contain the first 7 bits
702 imm = ld.x << 7 | ld.imm;
705 * sign extend (1+8bits) if m set
707 if (ld.m) imm |= SIGN_EXT9;
710 * ifa == r3 and we know that the NaT bit on r3 was clear so
711 * we can directly use ifa.
715 setreg(ld.r3, ifa, 0, regs);
717 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
724 * Load +Reg Opcode: ldXZ r1=[r3],r2
726 * Note: that we update r3 even in the case of ldfX.a
727 * (where the load does not happen)
729 * The way the load algorithm works, we know that r3 does not
730 * have its NaT bit set (would have gotten NaT consumption
731 * before getting the unaligned fault). So we can use ifa
732 * which equals r3 at this point.
735 * The above statement holds ONLY because we know that we
736 * never reach this code when trying to do a ldX.s.
737 * If we ever make it to here on an ldfX.s then
739 getreg(ld.imm, &r2, &nat_r2, regs);
744 * propagate Nat r2 -> r3
746 setreg(ld.r3, ifa, nat_r2, regs);
748 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
752 static int emulate_store(unsigned long ifa, void *val, int len, bool kernel_mode)
755 return copy_to_kernel_nofault((void *)ifa, val, len);
757 return copy_to_user((void __user *)ifa, val, len);
760 static int emulate_load(void *val, unsigned long ifa, int len, bool kernel_mode)
763 return copy_from_kernel_nofault(val, (void *)ifa, len);
765 return copy_from_user(val, (void __user *)ifa, len);
769 emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs,
772 unsigned int len = 1 << ld.x6_sz;
773 unsigned long val = 0;
776 * r0, as target, doesn't need to be checked because Illegal Instruction
777 * faults have higher priority than unaligned faults.
779 * r0 cannot be found as the base as it would never generate an
780 * unaligned reference.
784 * ldX.a we will emulate load and also invalidate the ALAT entry.
785 * See comment below for explanation on how we handle ldX.a
788 if (len != 2 && len != 4 && len != 8) {
789 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
792 /* this assumes little-endian byte-order: */
793 if (emulate_load(&val, ifa, len, kernel_mode))
795 setreg(ld.r1, val, 0, regs);
798 * check for updates on any kind of loads
800 if (ld.op == 0x5 || ld.m)
801 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
804 * handling of various loads (based on EAS2.4):
806 * ldX.acq (ordered load):
807 * - acquire semantics would have been used, so force fence instead.
809 * ldX.c.clr (check load and clear):
810 * - if we get to this handler, it's because the entry was not in the ALAT.
811 * Therefore the operation reverts to a normal load
813 * ldX.c.nc (check load no clear):
814 * - same as previous one
816 * ldX.c.clr.acq (ordered check load and clear):
817 * - same as above for c.clr part. The load needs to have acquire semantics. So
818 * we use the fence semantics which is stronger and thus ensures correctness.
820 * ldX.a (advanced load):
821 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
822 * address doesn't match requested size alignment. This means that we would
823 * possibly need more than one load to get the result.
825 * The load part can be handled just like a normal load, however the difficult
826 * part is to get the right thing into the ALAT. The critical piece of information
827 * in the base address of the load & size. To do that, a ld.a must be executed,
828 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
829 * if we use the same target register, we will be okay for the check.a instruction.
830 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
831 * which would overlap within [r3,r3+X] (the size of the load was store in the
832 * ALAT). If such an entry is found the entry is invalidated. But this is not good
833 * enough, take the following example:
837 * Could be emulated by doing:
839 * store to temporary;
841 * store & shift to temporary;
843 * store & shift to temporary;
845 * store & shift to temporary;
848 * So in this case, you would get the right value is r1 but the wrong info in
849 * the ALAT. Notice that you could do it in reverse to finish with address 3
850 * but you would still get the size wrong. To get the size right, one needs to
851 * execute exactly the same kind of load. You could do it from a aligned
852 * temporary location, but you would get the address wrong.
854 * So no matter what, it is not possible to emulate an advanced load
855 * correctly. But is that really critical ?
857 * We will always convert ld.a into a normal load with ALAT invalidated. This
858 * will enable compiler to do optimization where certain code path after ld.a
859 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
861 * If there is a store after the advanced load, one must either do a ld.c.* or
862 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
863 * entry found in ALAT), and that's perfectly ok because:
865 * - ld.c.*, if the entry is not present a normal load is executed
866 * - chk.a.*, if the entry is not present, execution jumps to recovery code
868 * In either case, the load can be potentially retried in another form.
870 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
871 * up a stale entry later). The register base update MUST also be performed.
875 * when the load has the .acq completer then
876 * use ordering fence.
878 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
882 * invalidate ALAT entry in case of advanced load
891 emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs,
895 unsigned int len = 1 << ld.x6_sz;
898 * if we get to this handler, Nat bits on both r3 and r2 have already
899 * been checked. so we don't need to do it
901 * extract the value to be stored
903 getreg(ld.imm, &r2, NULL, regs);
906 * we rely on the macros in unaligned.h for now i.e.,
907 * we let the compiler figure out how to read memory gracefully.
909 * We need this switch/case because the way the inline function
910 * works. The code is optimized by the compiler and looks like
911 * a single switch/case.
913 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
915 if (len != 2 && len != 4 && len != 8) {
916 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
920 /* this assumes little-endian byte-order: */
921 if (emulate_store(ifa, &r2, len, kernel_mode))
928 * ld.r3 can never be r0, because r0 would not generate an
935 * form imm9: [12:6] contain first 7bits
937 imm = ld.x << 7 | ld.r1;
939 * sign extend (8bits) if m set
941 if (ld.m) imm |= SIGN_EXT9;
943 * ifa == r3 (NaT is necessarily cleared)
947 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
949 setreg(ld.r3, ifa, 0, regs);
952 * we don't have alat_invalidate_multiple() so we need
953 * to do the complete flush :-<<
958 * stX.rel: use fence instead of release
967 * floating point operations sizes in bytes
969 static const unsigned char float_fsz[4]={
970 10, /* extended precision (e) */
972 4, /* single precision (s) */
973 8 /* double precision (d) */
977 mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
981 ia64_stf_spill(final, 6);
985 mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
989 ia64_stf_spill(final, 6);
993 mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
997 ia64_stf_spill(final, 6);
1001 mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1005 ia64_stf_spill(final, 6);
1009 float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
1011 ia64_ldf_fill(6, init);
1013 ia64_stfe(final, 6);
1017 float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
1019 ia64_ldf_fill(6, init);
1021 ia64_stf8(final, 6);
1025 float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1027 ia64_ldf_fill(6, init);
1029 ia64_stfs(final, 6);
1033 float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1035 ia64_ldf_fill(6, init);
1037 ia64_stfd(final, 6);
1041 emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs, bool kernel_mode)
1043 struct ia64_fpreg fpr_init[2];
1044 struct ia64_fpreg fpr_final[2];
1045 unsigned long len = float_fsz[ld.x6_sz];
1048 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1049 * higher priority than unaligned faults.
1051 * r0 cannot be found as the base as it would never generate an unaligned
1056 * make sure we get clean buffers
1058 memset(&fpr_init, 0, sizeof(fpr_init));
1059 memset(&fpr_final, 0, sizeof(fpr_final));
1062 * ldfpX.a: we don't try to emulate anything but we must
1063 * invalidate the ALAT entry and execute updates, if any.
1065 if (ld.x6_op != 0x2) {
1067 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1070 if (emulate_load(&fpr_init[0], ifa, len, kernel_mode)
1071 || emulate_load(&fpr_init[1], (ifa + len), len, kernel_mode))
1074 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1075 DDUMP("frp_init =", &fpr_init, 2*len);
1078 * Could optimize inlines by using ldfpX & 2 spills
1080 switch( ld.x6_sz ) {
1082 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1083 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1086 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1087 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1090 mem2float_single(&fpr_init[0], &fpr_final[0]);
1091 mem2float_single(&fpr_init[1], &fpr_final[1]);
1094 mem2float_double(&fpr_init[0], &fpr_final[0]);
1095 mem2float_double(&fpr_init[1], &fpr_final[1]);
1098 DDUMP("fpr_final =", &fpr_final, 2*len);
1102 * A possible optimization would be to drop fpr_final and directly
1103 * use the storage from the saved context i.e., the actual final
1104 * destination (pt_regs, switch_stack or thread structure).
1106 setfpreg(ld.r1, &fpr_final[0], regs);
1107 setfpreg(ld.imm, &fpr_final[1], regs);
1111 * Check for updates: only immediate updates are available for this
1116 * the immediate is implicit given the ldsz of the operation:
1117 * single: 8 (2x4) and for all others it's 16 (2x8)
1123 * the fact that we force the NaT of r3 to zero is ONLY valid
1124 * as long as we don't come here with a ldfpX.s.
1125 * For this reason we keep this sanity check
1127 if (ld.x6_op == 1 || ld.x6_op == 3)
1128 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1131 setreg(ld.r3, ifa, 0, regs);
1135 * Invalidate ALAT entries, if any, for both registers.
1137 if (ld.x6_op == 0x2) {
1146 emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs,
1149 struct ia64_fpreg fpr_init;
1150 struct ia64_fpreg fpr_final;
1151 unsigned long len = float_fsz[ld.x6_sz];
1154 * fr0 & fr1 don't need to be checked because Illegal Instruction
1155 * faults have higher priority than unaligned faults.
1157 * r0 cannot be found as the base as it would never generate an
1158 * unaligned reference.
1162 * make sure we get clean buffers
1164 memset(&fpr_init,0, sizeof(fpr_init));
1165 memset(&fpr_final,0, sizeof(fpr_final));
1168 * ldfX.a we don't try to emulate anything but we must
1169 * invalidate the ALAT entry.
1170 * See comments in ldX for descriptions on how the various loads are handled.
1172 if (ld.x6_op != 0x2) {
1173 if (emulate_load(&fpr_init, ifa, len, kernel_mode))
1176 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1177 DDUMP("fpr_init =", &fpr_init, len);
1179 * we only do something for x6_op={0,8,9}
1181 switch( ld.x6_sz ) {
1183 mem2float_extended(&fpr_init, &fpr_final);
1186 mem2float_integer(&fpr_init, &fpr_final);
1189 mem2float_single(&fpr_init, &fpr_final);
1192 mem2float_double(&fpr_init, &fpr_final);
1195 DDUMP("fpr_final =", &fpr_final, len);
1199 * A possible optimization would be to drop fpr_final and directly
1200 * use the storage from the saved context i.e., the actual final
1201 * destination (pt_regs, switch_stack or thread structure).
1203 setfpreg(ld.r1, &fpr_final, regs);
1207 * check for updates on any loads
1209 if (ld.op == 0x7 || ld.m)
1210 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1213 * invalidate ALAT entry in case of advanced floating point loads
1215 if (ld.x6_op == 0x2)
1223 emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs,
1226 struct ia64_fpreg fpr_init;
1227 struct ia64_fpreg fpr_final;
1228 unsigned long len = float_fsz[ld.x6_sz];
1231 * make sure we get clean buffers
1233 memset(&fpr_init,0, sizeof(fpr_init));
1234 memset(&fpr_final,0, sizeof(fpr_final));
1237 * if we get to this handler, Nat bits on both r3 and r2 have already
1238 * been checked. so we don't need to do it
1240 * extract the value to be stored
1242 getfpreg(ld.imm, &fpr_init, regs);
1244 * during this step, we extract the spilled registers from the saved
1245 * context i.e., we refill. Then we store (no spill) to temporary
1248 switch( ld.x6_sz ) {
1250 float2mem_extended(&fpr_init, &fpr_final);
1253 float2mem_integer(&fpr_init, &fpr_final);
1256 float2mem_single(&fpr_init, &fpr_final);
1259 float2mem_double(&fpr_init, &fpr_final);
1262 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1263 DDUMP("fpr_init =", &fpr_init, len);
1264 DDUMP("fpr_final =", &fpr_final, len);
1266 if (emulate_store(ifa, &fpr_final, len, kernel_mode))
1270 * stfX [r3]=r2,imm(9)
1273 * ld.r3 can never be r0, because r0 would not generate an
1280 * form imm9: [12:6] contain first 7bits
1282 imm = ld.x << 7 | ld.r1;
1284 * sign extend (8bits) if m set
1289 * ifa == r3 (NaT is necessarily cleared)
1293 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1295 setreg(ld.r3, ifa, 0, regs);
1298 * we don't have alat_invalidate_multiple() so we need
1299 * to do the complete flush :-<<
1307 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1308 * eventually fix the program. However, we don't want to do that for every access so we
1309 * pace it with jiffies.
1311 static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5);
1314 ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1316 struct ia64_psr *ipsr = ia64_psr(regs);
1317 unsigned long bundle[2];
1318 unsigned long opcode;
1319 const struct exception_table_entry *eh = NULL;
1325 bool kernel_mode = false;
1327 if (ia64_psr(regs)->be) {
1328 /* we don't support big-endian accesses */
1329 if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1335 * Treat kernel accesses for which there is an exception handler entry the same as
1336 * user-level unaligned accesses. Otherwise, a clever program could trick this
1337 * handler into reading an arbitrary kernel addresses...
1339 if (!user_mode(regs))
1340 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1341 if (user_mode(regs) || eh) {
1342 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1345 if (!no_unaligned_warning &&
1346 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1347 __ratelimit(&logging_rate_limit))
1349 char buf[200]; /* comm[] is at most 16 bytes... */
1352 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1353 "ip=0x%016lx\n\r", current->comm,
1354 task_pid_nr(current),
1355 ifa, regs->cr_iip + ipsr->ri);
1357 * Don't call tty_write_message() if we're in the kernel; we might
1358 * be holding locks...
1360 if (user_mode(regs)) {
1361 struct tty_struct *tty = get_current_tty();
1362 tty_write_message(tty, buf);
1365 buf[len-1] = '\0'; /* drop '\r' */
1366 /* watch for command names containing %s */
1367 printk(KERN_WARNING "%s", buf);
1369 if (no_unaligned_warning) {
1370 printk_once(KERN_WARNING "%s(%d) encountered an "
1371 "unaligned exception which required\n"
1372 "kernel assistance, which degrades "
1373 "the performance of the application.\n"
1374 "Unaligned exception warnings have "
1375 "been disabled by the system "
1377 "echo 0 > /proc/sys/kernel/ignore-"
1378 "unaligned-usertrap to re-enable\n",
1379 current->comm, task_pid_nr(current));
1383 if (__ratelimit(&logging_rate_limit)) {
1384 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1385 ifa, regs->cr_iip + ipsr->ri);
1386 if (unaligned_dump_stack)
1392 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1393 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1395 if (emulate_load(bundle, regs->cr_iip, 16, kernel_mode))
1399 * extract the instruction from the bundle given the slot number
1403 case 0: u.l = (bundle[0] >> 5); break;
1404 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1405 case 2: u.l = (bundle[1] >> 23); break;
1407 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1409 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1410 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1411 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1415 * Notice that the switch statement DOES not cover all possible instructions
1416 * that DO generate unaligned references. This is made on purpose because for some
1417 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1418 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1419 * the program will get a signal and die:
1424 * Reason: RNATs are based on addresses
1427 * Reason: ld16 and st16 are supposed to occur in a single
1434 * Reason: ATOMIC operations cannot be emulated properly using multiple
1437 * speculative loads:
1439 * Reason: side effects, code must be ready to deal with failure so simpler
1440 * to let the load fail.
1441 * ---------------------------------------------------------------------------------
1444 * I would like to get rid of this switch case and do something
1451 /* oops, really a semaphore op (cmpxchg, etc) */
1460 * The instruction will be retried with deferred exceptions turned on, and
1461 * we should get Nat bit installed
1463 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1464 * are actually executed even though the operation failed. So we don't
1465 * need to take care of this.
1467 DPRINT("forcing PSR_ED\n");
1468 regs->cr_ipsr |= IA64_PSR_ED;
1479 /* oops, really a semaphore op (cmpxchg, etc) */
1488 case LDCCLRACQ_IMM_OP:
1489 ret = emulate_load_int(ifa, u.insn, regs, kernel_mode);
1495 /* oops, really a semaphore op (cmpxchg, etc) */
1500 ret = emulate_store_int(ifa, u.insn, regs, kernel_mode);
1508 ret = emulate_load_floatpair(ifa, u.insn, regs, kernel_mode);
1510 ret = emulate_load_float(ifa, u.insn, regs, kernel_mode);
1515 case LDFCCLR_IMM_OP:
1517 ret = emulate_load_float(ifa, u.insn, regs, kernel_mode);
1522 ret = emulate_store_float(ifa, u.insn, regs, kernel_mode);
1528 DPRINT("ret=%d\n", ret);
1534 * given today's architecture this case is not likely to happen because a
1535 * memory access instruction (M) can never be in the last slot of a
1536 * bundle. But let's keep it for now.
1539 ipsr->ri = (ipsr->ri + 1) & 0x3;
1541 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1546 /* something went wrong... */
1547 if (!user_mode(regs)) {
1549 ia64_handle_exception(regs, eh);
1552 if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1557 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) ifa,