1 // SPDX-License-Identifier: GPL-2.0-only
3 * SMP boot-related support
5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
7 * Copyright (C) 2001, 2004-2005 Intel Corp
16 * smp_boot_cpus()/smp_commence() is replaced by
17 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
21 * Add multi-threading and multi-core detection
23 * Setup cpu_sibling_map and cpu_core_map
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/memblock.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
44 #include <linux/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
53 #include <asm/processor.h>
54 #include <asm/ptrace.h>
56 #include <asm/tlbflush.h>
57 #include <asm/unistd.h>
62 #define Dprintk(x...) printk(x)
67 #ifdef CONFIG_HOTPLUG_CPU
68 #ifdef CONFIG_PERMIT_BSP_REMOVE
69 #define bsp_remove_ok 1
71 #define bsp_remove_ok 0
75 * Global array allocated for NR_CPUS at boot time
77 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
80 * start_ap in head.S uses this to store current booting cpu
83 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
85 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
88 #define set_brendez_area(x)
93 * ITC synchronization related stuff:
96 #define SLAVE (SMP_CACHE_BYTES/8)
98 #define NUM_ROUNDS 64 /* magic value */
99 #define NUM_ITERS 5 /* likewise */
101 static DEFINE_SPINLOCK(itc_sync_lock);
102 static volatile unsigned long go[SLAVE + 1];
104 #define DEBUG_ITC_SYNC 0
106 extern void start_ap (void);
107 extern unsigned long ia64_iobase;
109 struct task_struct *task_for_booting_cpu;
114 DEFINE_PER_CPU(int, cpu_state);
116 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
117 EXPORT_SYMBOL(cpu_core_map);
118 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
119 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
121 int smp_num_siblings = 1;
123 /* which logical CPU number maps to which CPU (physical APIC ID) */
124 volatile int ia64_cpu_to_sapicid[NR_CPUS];
125 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
127 static cpumask_t cpu_callin_map;
129 struct smp_boot_data smp_boot_data __initdata;
131 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
133 char __initdata no_int_routing;
135 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
137 #ifdef CONFIG_FORCE_CPEI_RETARGET
138 #define CPEI_OVERRIDE_DEFAULT (1)
140 #define CPEI_OVERRIDE_DEFAULT (0)
143 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
146 cmdl_force_cpei(char *str)
150 get_option (&str, &value);
151 force_cpei_retarget = value;
156 __setup("force_cpei=", cmdl_force_cpei);
159 nointroute (char *str)
162 printk ("no_int_routing on\n");
166 __setup("nointroute", nointroute);
168 static void fix_b0_for_bsp(void)
170 #ifdef CONFIG_HOTPLUG_CPU
172 static int fix_bsp_b0 = 1;
174 cpuid = smp_processor_id();
177 * Cache the b0 value on the first AP that comes up
179 if (!(fix_bsp_b0 && cpuid))
182 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
183 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
190 sync_master (void *arg)
192 unsigned long flags, i;
196 local_irq_save(flags);
198 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
202 go[SLAVE] = ia64_get_itc();
205 local_irq_restore(flags);
209 * Return the number of cycles by which our itc differs from the itc on the master
210 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
211 * negative that it is behind.
214 get_delta (long *rt, long *master)
216 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
217 unsigned long tcenter, t0, t1, tm;
220 for (i = 0; i < NUM_ITERS; ++i) {
223 while (!(tm = go[SLAVE]))
228 if (t1 - t0 < best_t1 - best_t0)
229 best_t0 = t0, best_t1 = t1, best_tm = tm;
232 *rt = best_t1 - best_t0;
233 *master = best_tm - best_t0;
235 /* average best_t0 and best_t1 without overflow: */
236 tcenter = (best_t0/2 + best_t1/2);
237 if (best_t0 % 2 + best_t1 % 2 == 2)
239 return tcenter - best_tm;
243 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
244 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
245 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
246 * step). The basic idea is for the slave to ask the master what itc value it has and to
247 * read its own itc before and after the master responds. Each iteration gives us three
261 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
262 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
263 * between the slave and the master is symmetric. Even if the interconnect were
264 * asymmetric, we would still know that the synchronization error is smaller than the
265 * roundtrip latency (t0 - t1).
267 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
268 * within one or two cycles. However, we can only *guarantee* that the synchronization is
269 * accurate to within a round-trip time, which is typically in the range of several
270 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
271 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
272 * than half a micro second or so.
275 ia64_sync_itc (unsigned int master)
277 long i, delta, adj, adjust_latency = 0, done = 0;
278 unsigned long flags, rt, master_time_stamp, bound;
281 long rt; /* roundtrip time */
282 long master; /* master's timestamp */
283 long diff; /* difference between midpoint and master's timestamp */
284 long lat; /* estimate of itc adjustment latency */
289 * Make sure local timer ticks are disabled while we sync. If
290 * they were enabled, we'd have to worry about nasty issues
291 * like setting the ITC ahead of (or a long time before) the
292 * next scheduled tick.
294 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
298 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
299 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
304 cpu_relax(); /* wait for master to be ready */
306 spin_lock_irqsave(&itc_sync_lock, flags);
308 for (i = 0; i < NUM_ROUNDS; ++i) {
309 delta = get_delta(&rt, &master_time_stamp);
311 done = 1; /* let's lock on to this... */
317 adjust_latency += -delta;
318 adj = -delta + adjust_latency/4;
322 ia64_set_itc(ia64_get_itc() + adj);
326 t[i].master = master_time_stamp;
328 t[i].lat = adjust_latency/4;
332 spin_unlock_irqrestore(&itc_sync_lock, flags);
335 for (i = 0; i < NUM_ROUNDS; ++i)
336 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
337 t[i].rt, t[i].master, t[i].diff, t[i].lat);
340 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
341 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
345 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
347 static inline void smp_setup_percpu_timer(void)
354 int cpuid, phys_id, itc_master;
355 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
356 extern void ia64_init_itm(void);
357 extern volatile int time_keeper_id;
359 cpuid = smp_processor_id();
360 phys_id = hard_smp_processor_id();
361 itc_master = time_keeper_id;
363 if (cpu_online(cpuid)) {
364 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
372 * numa_node_id() works after this.
374 set_numa_node(cpu_to_node_map[cpuid]);
375 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
377 spin_lock(&vector_lock);
378 /* Setup the per cpu irq handling data structures */
379 __setup_vector_irq(cpuid);
380 notify_cpu_starting(cpuid);
381 set_cpu_online(cpuid, true);
382 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
383 spin_unlock(&vector_lock);
385 smp_setup_percpu_timer();
387 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
391 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
393 * Synchronize the ITC with the BP. Need to do this after irqs are
394 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
395 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
396 * local_bh_enable(), which bugs out if irqs are not enabled...
398 Dprintk("Going to syncup ITC with ITC Master.\n");
399 ia64_sync_itc(itc_master);
408 * Delay calibration can be skipped if new processor is identical to the
409 * previous processor.
411 last_cpuinfo = cpu_data(cpuid - 1);
412 this_cpuinfo = local_cpu_data;
413 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
414 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
415 last_cpuinfo->features != this_cpuinfo->features ||
416 last_cpuinfo->revision != this_cpuinfo->revision ||
417 last_cpuinfo->family != this_cpuinfo->family ||
418 last_cpuinfo->archrev != this_cpuinfo->archrev ||
419 last_cpuinfo->model != this_cpuinfo->model)
421 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
424 * Allow the master to continue.
426 cpumask_set_cpu(cpuid, &cpu_callin_map);
427 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
432 * Activate a secondary processor. head.S calls this.
435 start_secondary (void *unused)
437 /* Early console may use I/O ports */
438 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
439 #ifndef CONFIG_PRINTK_TIME
440 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
446 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
451 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
455 task_for_booting_cpu = idle;
456 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
458 set_brendez_area(cpu);
459 ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
462 * Wait 10s total for the AP to start
464 Dprintk("Waiting on callin_map ...");
465 for (timeout = 0; timeout < 100000; timeout++) {
466 if (cpumask_test_cpu(cpu, &cpu_callin_map))
467 break; /* It has booted */
468 barrier(); /* Make sure we re-read cpu_callin_map */
473 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
474 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
475 ia64_cpu_to_sapicid[cpu] = -1;
476 set_cpu_online(cpu, false); /* was set in smp_callin() */
486 get_option (&str, &ticks);
490 __setup("decay=", decay);
493 * Initialize the logical CPU number to SAPICID mapping
496 smp_build_cpu_map (void)
499 int boot_cpu_id = hard_smp_processor_id();
501 for (cpu = 0; cpu < NR_CPUS; cpu++) {
502 ia64_cpu_to_sapicid[cpu] = -1;
505 ia64_cpu_to_sapicid[0] = boot_cpu_id;
506 init_cpu_present(cpumask_of(0));
507 set_cpu_possible(0, true);
508 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
509 sapicid = smp_boot_data.cpu_phys_id[i];
510 if (sapicid == boot_cpu_id)
512 set_cpu_present(cpu, true);
513 set_cpu_possible(cpu, true);
514 ia64_cpu_to_sapicid[cpu] = sapicid;
520 * Cycle through the APs sending Wakeup IPIs to boot each.
523 smp_prepare_cpus (unsigned int max_cpus)
525 int boot_cpu_id = hard_smp_processor_id();
528 * Initialize the per-CPU profiling counter/multiplier
531 smp_setup_percpu_timer();
533 cpumask_set_cpu(0, &cpu_callin_map);
535 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
536 ia64_cpu_to_sapicid[0] = boot_cpu_id;
538 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
540 current_thread_info()->cpu = 0;
543 * If SMP should be disabled, then really disable it!
546 printk(KERN_INFO "SMP mode deactivated.\n");
547 init_cpu_online(cpumask_of(0));
548 init_cpu_present(cpumask_of(0));
549 init_cpu_possible(cpumask_of(0));
554 void smp_prepare_boot_cpu(void)
556 set_cpu_online(smp_processor_id(), true);
557 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
558 set_numa_node(cpu_to_node_map[smp_processor_id()]);
559 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
562 #ifdef CONFIG_HOTPLUG_CPU
564 clear_cpu_sibling_map(int cpu)
568 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
569 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
570 for_each_cpu(i, &cpu_core_map[cpu])
571 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
573 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
577 remove_siblinginfo(int cpu)
579 if (cpu_data(cpu)->threads_per_core == 1 &&
580 cpu_data(cpu)->cores_per_socket == 1) {
581 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
582 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
586 /* remove it from all sibling map's */
587 clear_cpu_sibling_map(cpu);
590 extern void fixup_irqs(void);
592 int migrate_platform_irqs(unsigned int cpu)
595 struct irq_data *data = NULL;
596 const struct cpumask *mask;
600 * dont permit CPEI target to removed.
602 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
603 printk ("CPU (%d) is CPEI Target\n", cpu);
604 if (can_cpei_retarget()) {
606 * Now re-target the CPEI to a different processor
608 new_cpei_cpu = cpumask_any(cpu_online_mask);
609 mask = cpumask_of(new_cpei_cpu);
610 set_cpei_target_cpu(new_cpei_cpu);
611 data = irq_get_irq_data(ia64_cpe_irq);
613 * Switch for now, immediately, we need to do fake intr
614 * as other interrupts, but need to study CPEI behaviour with
615 * polling before making changes.
617 if (data && data->chip) {
618 data->chip->irq_disable(data);
619 data->chip->irq_set_affinity(data, mask, false);
620 data->chip->irq_enable(data);
621 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
625 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
632 /* must be called with cpucontrol mutex held */
633 int __cpu_disable(void)
635 int cpu = smp_processor_id();
638 * dont permit boot processor for now
640 if (cpu == 0 && !bsp_remove_ok) {
641 printk ("Your platform does not support removal of BSP\n");
645 set_cpu_online(cpu, false);
647 if (migrate_platform_irqs(cpu)) {
648 set_cpu_online(cpu, true);
652 remove_siblinginfo(cpu);
654 local_flush_tlb_all();
655 cpumask_clear_cpu(cpu, &cpu_callin_map);
659 void __cpu_die(unsigned int cpu)
663 for (i = 0; i < 100; i++) {
664 /* They ack this in play_dead by setting CPU_DEAD */
665 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
667 printk ("CPU %d is now offline\n", cpu);
672 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
674 #endif /* CONFIG_HOTPLUG_CPU */
677 smp_cpus_done (unsigned int dummy)
680 unsigned long bogosum = 0;
683 * Allow the user to impress friends.
686 for_each_online_cpu(cpu) {
687 bogosum += cpu_data(cpu)->loops_per_jiffy;
690 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
691 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
694 static inline void set_cpu_sibling_map(int cpu)
698 for_each_online_cpu(i) {
699 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
700 cpumask_set_cpu(i, &cpu_core_map[cpu]);
701 cpumask_set_cpu(cpu, &cpu_core_map[i]);
702 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
704 &per_cpu(cpu_sibling_map, cpu));
706 &per_cpu(cpu_sibling_map, i));
713 __cpu_up(unsigned int cpu, struct task_struct *tidle)
718 sapicid = ia64_cpu_to_sapicid[cpu];
723 * Already booted cpu? not valid anymore since we dont
724 * do idle loop tightspin anymore.
726 if (cpumask_test_cpu(cpu, &cpu_callin_map))
729 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
730 /* Processor goes to start_secondary(), sets online flag */
731 ret = do_boot_cpu(sapicid, cpu, tidle);
735 if (cpu_data(cpu)->threads_per_core == 1 &&
736 cpu_data(cpu)->cores_per_socket == 1) {
737 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
738 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
742 set_cpu_sibling_map(cpu);
748 * Assume that CPUs have been discovered by some platform-dependent interface. For
749 * SoftSDV/Lion, that would be ACPI.
751 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
754 init_smp_config(void)
762 /* Tell SAL where to drop the APs. */
763 ap_startup = (struct fptr *) start_ap;
764 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
765 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
767 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
768 ia64_sal_strerror(sal_ret));
772 * identify_siblings(cpu) gets called from identify_cpu. This populates the
773 * information related to logical execution units in per_cpu_data structure.
775 void identify_siblings(struct cpuinfo_ia64 *c)
779 pal_logical_to_physical_t info;
781 status = ia64_pal_logical_to_phys(-1, &info);
782 if (status != PAL_STATUS_SUCCESS) {
783 if (status != PAL_STATUS_UNIMPLEMENTED) {
785 "ia64_pal_logical_to_phys failed with %ld\n",
790 info.overview_ppid = 0;
791 info.overview_cpp = 1;
792 info.overview_tpc = 1;
795 status = ia64_sal_physical_id_info(&pltid);
796 if (status != PAL_STATUS_SUCCESS) {
797 if (status != PAL_STATUS_UNIMPLEMENTED)
799 "ia64_sal_pltid failed with %ld\n",
804 c->socket_id = (pltid << 8) | info.overview_ppid;
806 if (info.overview_cpp == 1 && info.overview_tpc == 1)
809 c->cores_per_socket = info.overview_cpp;
810 c->threads_per_core = info.overview_tpc;
811 c->num_log = info.overview_num_log;
813 c->core_id = info.log1_cid;
814 c->thread_id = info.log1_tid;
818 * returns non zero, if multi-threading is enabled
819 * on at least one physical package. Due to hotplug cpu
820 * and (maxcpus=), all threads may not necessarily be enabled
821 * even though the processor supports multi-threading.
823 int is_multithreading_enabled(void)
827 for_each_present_cpu(i) {
828 for_each_present_cpu(j) {
831 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
832 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
839 EXPORT_SYMBOL_GPL(is_multithreading_enabled);