2 * inode.c - NTFS kernel inode handling.
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
64 if (vi->i_ino != na->mft_no)
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
76 if (ni->name_len != na->name_len)
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 ntfs_inode *ni = NTFS_I(vi);
108 vi->i_ino = na->mft_no;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
115 ni->name_len = na->name_len;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
120 BUG_ON(na->name_len);
124 /* It is a fake inode. */
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
134 if (na->name_len && na->name != I30) {
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
184 return ERR_PTR(-ENOMEM);
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err == -ENOMEM)) {
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
237 na.mft_no = base_vi->i_ino;
240 na.name_len = name_len;
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
245 return ERR_PTR(-ENOMEM);
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
295 na.name_len = name_len;
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
300 return ERR_PTR(-ENOMEM);
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
335 void ntfs_free_big_inode(struct inode *inode)
337 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
340 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
344 ntfs_debug("Entering.");
345 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
346 if (likely(ni != NULL)) {
350 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
354 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
356 ntfs_debug("Entering.");
358 if (!atomic_dec_and_test(&ni->count))
360 kmem_cache_free(ntfs_inode_cache, ni);
364 * The attribute runlist lock has separate locking rules from the
365 * normal runlist lock, so split the two lock-classes:
367 static struct lock_class_key attr_list_rl_lock_class;
370 * __ntfs_init_inode - initialize ntfs specific part of an inode
371 * @sb: super block of mounted volume
372 * @ni: freshly allocated ntfs inode which to initialize
374 * Initialize an ntfs inode to defaults.
376 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
377 * untouched. Make sure to initialize them elsewhere.
379 * Return zero on success and -ENOMEM on error.
381 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
383 ntfs_debug("Entering.");
384 rwlock_init(&ni->size_lock);
385 ni->initialized_size = ni->allocated_size = 0;
387 atomic_set(&ni->count, 1);
388 ni->vol = NTFS_SB(sb);
389 ntfs_init_runlist(&ni->runlist);
390 mutex_init(&ni->mrec_lock);
393 ni->attr_list_size = 0;
394 ni->attr_list = NULL;
395 ntfs_init_runlist(&ni->attr_list_rl);
396 lockdep_set_class(&ni->attr_list_rl.lock,
397 &attr_list_rl_lock_class);
398 ni->itype.index.block_size = 0;
399 ni->itype.index.vcn_size = 0;
400 ni->itype.index.collation_rule = 0;
401 ni->itype.index.block_size_bits = 0;
402 ni->itype.index.vcn_size_bits = 0;
403 mutex_init(&ni->extent_lock);
405 ni->ext.base_ntfs_ino = NULL;
409 * Extent inodes get MFT-mapped in a nested way, while the base inode
410 * is still mapped. Teach this nesting to the lock validator by creating
411 * a separate class for nested inode's mrec_lock's:
413 static struct lock_class_key extent_inode_mrec_lock_key;
415 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
416 unsigned long mft_no)
418 ntfs_inode *ni = ntfs_alloc_extent_inode();
420 ntfs_debug("Entering.");
421 if (likely(ni != NULL)) {
422 __ntfs_init_inode(sb, ni);
423 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
425 ni->type = AT_UNUSED;
433 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
434 * @ctx: initialized attribute search context
436 * Search all file name attributes in the inode described by the attribute
437 * search context @ctx and check if any of the names are in the $Extend system
441 * 1: file is in $Extend directory
442 * 0: file is not in $Extend directory
443 * -errno: failed to determine if the file is in the $Extend directory
445 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
449 /* Restart search. */
450 ntfs_attr_reinit_search_ctx(ctx);
452 /* Get number of hard links. */
453 nr_links = le16_to_cpu(ctx->mrec->link_count);
455 /* Loop through all hard links. */
456 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
458 FILE_NAME_ATTR *file_name_attr;
459 ATTR_RECORD *attr = ctx->attr;
464 * Maximum sanity checking as we are called on an inode that
465 * we suspect might be corrupt.
467 p = (u8*)attr + le32_to_cpu(attr->length);
468 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
469 le32_to_cpu(ctx->mrec->bytes_in_use)) {
471 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
472 "attribute. You should run chkdsk.");
475 if (attr->non_resident) {
476 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
477 "name. You should run chkdsk.");
481 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
482 "invalid flags. You should run "
486 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
487 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
488 "name. You should run chkdsk.");
491 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
492 le16_to_cpu(attr->data.resident.value_offset));
493 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
494 if (p2 < (u8*)attr || p2 > p)
495 goto err_corrupt_attr;
496 /* This attribute is ok, but is it in the $Extend directory? */
497 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
498 return 1; /* YES, it's an extended system file. */
500 if (unlikely(err != -ENOENT))
502 if (unlikely(nr_links)) {
503 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
504 "doesn't match number of name attributes. You "
505 "should run chkdsk.");
508 return 0; /* NO, it is not an extended system file. */
512 * ntfs_read_locked_inode - read an inode from its device
515 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
516 * described by @vi into memory from the device.
518 * The only fields in @vi that we need to/can look at when the function is
519 * called are i_sb, pointing to the mounted device's super block, and i_ino,
520 * the number of the inode to load.
522 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
523 * for reading and sets up the necessary @vi fields as well as initializing
526 * Q: What locks are held when the function is called?
527 * A: i_state has I_NEW set, hence the inode is locked, also
528 * i_count is set to 1, so it is not going to go away
529 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
530 * is allowed to write to them. We should of course be honouring them but
531 * we need to do that using the IS_* macros defined in include/linux/fs.h.
532 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
534 * Return 0 on success and -errno on error. In the error case, the inode will
535 * have had make_bad_inode() executed on it.
537 static int ntfs_read_locked_inode(struct inode *vi)
539 ntfs_volume *vol = NTFS_SB(vi->i_sb);
544 STANDARD_INFORMATION *si;
545 ntfs_attr_search_ctx *ctx;
548 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
550 /* Setup the generic vfs inode parts now. */
551 vi->i_uid = vol->uid;
552 vi->i_gid = vol->gid;
556 * Initialize the ntfs specific part of @vi special casing
557 * FILE_MFT which we need to do at mount time.
559 if (vi->i_ino != FILE_MFT)
560 ntfs_init_big_inode(vi);
563 m = map_mft_record(ni);
568 ctx = ntfs_attr_get_search_ctx(ni, m);
574 if (!(m->flags & MFT_RECORD_IN_USE)) {
575 ntfs_error(vi->i_sb, "Inode is not in use!");
578 if (m->base_mft_record) {
579 ntfs_error(vi->i_sb, "Inode is an extent inode!");
583 /* Transfer information from mft record into vfs and ntfs inodes. */
584 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
587 * FIXME: Keep in mind that link_count is two for files which have both
588 * a long file name and a short file name as separate entries, so if
589 * we are hiding short file names this will be too high. Either we need
590 * to account for the short file names by subtracting them or we need
591 * to make sure we delete files even though i_nlink is not zero which
592 * might be tricky due to vfs interactions. Need to think about this
593 * some more when implementing the unlink command.
595 set_nlink(vi, le16_to_cpu(m->link_count));
597 * FIXME: Reparse points can have the directory bit set even though
598 * they would be S_IFLNK. Need to deal with this further below when we
599 * implement reparse points / symbolic links but it will do for now.
600 * Also if not a directory, it could be something else, rather than
601 * a regular file. But again, will do for now.
603 /* Everyone gets all permissions. */
604 vi->i_mode |= S_IRWXUGO;
605 /* If read-only, no one gets write permissions. */
607 vi->i_mode &= ~S_IWUGO;
608 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
609 vi->i_mode |= S_IFDIR;
611 * Apply the directory permissions mask set in the mount
614 vi->i_mode &= ~vol->dmask;
615 /* Things break without this kludge! */
619 vi->i_mode |= S_IFREG;
620 /* Apply the file permissions mask set in the mount options. */
621 vi->i_mode &= ~vol->fmask;
624 * Find the standard information attribute in the mft record. At this
625 * stage we haven't setup the attribute list stuff yet, so this could
626 * in fact fail if the standard information is in an extent record, but
627 * I don't think this actually ever happens.
629 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
632 if (err == -ENOENT) {
634 * TODO: We should be performing a hot fix here (if the
635 * recover mount option is set) by creating a new
638 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
644 /* Get the standard information attribute value. */
645 si = (STANDARD_INFORMATION*)((u8*)a +
646 le16_to_cpu(a->data.resident.value_offset));
648 /* Transfer information from the standard information into vi. */
650 * Note: The i_?times do not quite map perfectly onto the NTFS times,
651 * but they are close enough, and in the end it doesn't really matter
655 * mtime is the last change of the data within the file. Not changed
656 * when only metadata is changed, e.g. a rename doesn't affect mtime.
658 vi->i_mtime = ntfs2utc(si->last_data_change_time);
660 * ctime is the last change of the metadata of the file. This obviously
661 * always changes, when mtime is changed. ctime can be changed on its
662 * own, mtime is then not changed, e.g. when a file is renamed.
664 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
666 * Last access to the data within the file. Not changed during a rename
667 * for example but changed whenever the file is written to.
669 vi->i_atime = ntfs2utc(si->last_access_time);
671 /* Find the attribute list attribute if present. */
672 ntfs_attr_reinit_search_ctx(ctx);
673 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
675 if (unlikely(err != -ENOENT)) {
676 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
680 } else /* if (!err) */ {
681 if (vi->i_ino == FILE_MFT)
682 goto skip_attr_list_load;
683 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
686 if (a->flags & ATTR_COMPRESSION_MASK) {
687 ntfs_error(vi->i_sb, "Attribute list attribute is "
691 if (a->flags & ATTR_IS_ENCRYPTED ||
692 a->flags & ATTR_IS_SPARSE) {
693 if (a->non_resident) {
694 ntfs_error(vi->i_sb, "Non-resident attribute "
695 "list attribute is encrypted/"
699 ntfs_warning(vi->i_sb, "Resident attribute list "
700 "attribute in inode 0x%lx is marked "
701 "encrypted/sparse which is not true. "
702 "However, Windows allows this and "
703 "chkdsk does not detect or correct it "
704 "so we will just ignore the invalid "
705 "flags and pretend they are not set.",
708 /* Now allocate memory for the attribute list. */
709 ni->attr_list_size = (u32)ntfs_attr_size(a);
710 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
711 if (!ni->attr_list) {
712 ntfs_error(vi->i_sb, "Not enough memory to allocate "
713 "buffer for attribute list.");
717 if (a->non_resident) {
718 NInoSetAttrListNonResident(ni);
719 if (a->data.non_resident.lowest_vcn) {
720 ntfs_error(vi->i_sb, "Attribute list has non "
725 * Setup the runlist. No need for locking as we have
726 * exclusive access to the inode at this time.
728 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
730 if (IS_ERR(ni->attr_list_rl.rl)) {
731 err = PTR_ERR(ni->attr_list_rl.rl);
732 ni->attr_list_rl.rl = NULL;
733 ntfs_error(vi->i_sb, "Mapping pairs "
734 "decompression failed.");
737 /* Now load the attribute list. */
738 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
739 ni->attr_list, ni->attr_list_size,
740 sle64_to_cpu(a->data.non_resident.
741 initialized_size)))) {
742 ntfs_error(vi->i_sb, "Failed to load "
743 "attribute list attribute.");
746 } else /* if (!a->non_resident) */ {
747 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
749 a->data.resident.value_length) >
750 (u8*)ctx->mrec + vol->mft_record_size) {
751 ntfs_error(vi->i_sb, "Corrupt attribute list "
755 /* Now copy the attribute list. */
756 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
757 a->data.resident.value_offset),
759 a->data.resident.value_length));
764 * If an attribute list is present we now have the attribute list value
765 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
767 if (S_ISDIR(vi->i_mode)) {
771 u8 *ir_end, *index_end;
773 /* It is a directory, find index root attribute. */
774 ntfs_attr_reinit_search_ctx(ctx);
775 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
778 if (err == -ENOENT) {
779 // FIXME: File is corrupt! Hot-fix with empty
780 // index root attribute if recovery option is
782 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
788 /* Set up the state. */
789 if (unlikely(a->non_resident)) {
790 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
794 /* Ensure the attribute name is placed before the value. */
795 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
796 le16_to_cpu(a->data.resident.value_offset)))) {
797 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
798 "placed after the attribute value.");
802 * Compressed/encrypted index root just means that the newly
803 * created files in that directory should be created compressed/
804 * encrypted. However index root cannot be both compressed and
807 if (a->flags & ATTR_COMPRESSION_MASK)
808 NInoSetCompressed(ni);
809 if (a->flags & ATTR_IS_ENCRYPTED) {
810 if (a->flags & ATTR_COMPRESSION_MASK) {
811 ntfs_error(vi->i_sb, "Found encrypted and "
812 "compressed attribute.");
815 NInoSetEncrypted(ni);
817 if (a->flags & ATTR_IS_SPARSE)
819 ir = (INDEX_ROOT*)((u8*)a +
820 le16_to_cpu(a->data.resident.value_offset));
821 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
822 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
823 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
827 index_end = (u8*)&ir->index +
828 le32_to_cpu(ir->index.index_length);
829 if (index_end > ir_end) {
830 ntfs_error(vi->i_sb, "Directory index is corrupt.");
833 if (ir->type != AT_FILE_NAME) {
834 ntfs_error(vi->i_sb, "Indexed attribute is not "
838 if (ir->collation_rule != COLLATION_FILE_NAME) {
839 ntfs_error(vi->i_sb, "Index collation rule is not "
840 "COLLATION_FILE_NAME.");
843 ni->itype.index.collation_rule = ir->collation_rule;
844 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
845 if (ni->itype.index.block_size &
846 (ni->itype.index.block_size - 1)) {
847 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
849 ni->itype.index.block_size);
852 if (ni->itype.index.block_size > PAGE_SIZE) {
853 ntfs_error(vi->i_sb, "Index block size (%u) > "
854 "PAGE_SIZE (%ld) is not "
856 ni->itype.index.block_size,
861 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
862 ntfs_error(vi->i_sb, "Index block size (%u) < "
863 "NTFS_BLOCK_SIZE (%i) is not "
865 ni->itype.index.block_size,
870 ni->itype.index.block_size_bits =
871 ffs(ni->itype.index.block_size) - 1;
872 /* Determine the size of a vcn in the directory index. */
873 if (vol->cluster_size <= ni->itype.index.block_size) {
874 ni->itype.index.vcn_size = vol->cluster_size;
875 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
877 ni->itype.index.vcn_size = vol->sector_size;
878 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
881 /* Setup the index allocation attribute, even if not present. */
882 NInoSetMstProtected(ni);
883 ni->type = AT_INDEX_ALLOCATION;
887 if (!(ir->index.flags & LARGE_INDEX)) {
888 /* No index allocation. */
889 vi->i_size = ni->initialized_size =
890 ni->allocated_size = 0;
891 /* We are done with the mft record, so we release it. */
892 ntfs_attr_put_search_ctx(ctx);
893 unmap_mft_record(ni);
896 goto skip_large_dir_stuff;
897 } /* LARGE_INDEX: Index allocation present. Setup state. */
898 NInoSetIndexAllocPresent(ni);
899 /* Find index allocation attribute. */
900 ntfs_attr_reinit_search_ctx(ctx);
901 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
902 CASE_SENSITIVE, 0, NULL, 0, ctx);
905 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
906 "attribute is not present but "
907 "$INDEX_ROOT indicated it is.");
909 ntfs_error(vi->i_sb, "Failed to lookup "
915 if (!a->non_resident) {
916 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
921 * Ensure the attribute name is placed before the mapping pairs
924 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
926 a->data.non_resident.mapping_pairs_offset)))) {
927 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
928 "is placed after the mapping pairs "
932 if (a->flags & ATTR_IS_ENCRYPTED) {
933 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 if (a->flags & ATTR_IS_SPARSE) {
938 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
942 if (a->flags & ATTR_COMPRESSION_MASK) {
943 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
947 if (a->data.non_resident.lowest_vcn) {
948 ntfs_error(vi->i_sb, "First extent of "
949 "$INDEX_ALLOCATION attribute has non "
953 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
954 ni->initialized_size = sle64_to_cpu(
955 a->data.non_resident.initialized_size);
956 ni->allocated_size = sle64_to_cpu(
957 a->data.non_resident.allocated_size);
959 * We are done with the mft record, so we release it. Otherwise
960 * we would deadlock in ntfs_attr_iget().
962 ntfs_attr_put_search_ctx(ctx);
963 unmap_mft_record(ni);
966 /* Get the index bitmap attribute inode. */
967 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
969 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
974 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
976 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
977 "and/or encrypted and/or sparse.");
978 goto iput_unm_err_out;
980 /* Consistency check bitmap size vs. index allocation size. */
981 bvi_size = i_size_read(bvi);
982 if ((bvi_size << 3) < (vi->i_size >>
983 ni->itype.index.block_size_bits)) {
984 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
985 "for index allocation (0x%llx).",
986 bvi_size << 3, vi->i_size);
987 goto iput_unm_err_out;
989 /* No longer need the bitmap attribute inode. */
991 skip_large_dir_stuff:
992 /* Setup the operations for this inode. */
993 vi->i_op = &ntfs_dir_inode_ops;
994 vi->i_fop = &ntfs_dir_ops;
995 vi->i_mapping->a_ops = &ntfs_mst_aops;
998 ntfs_attr_reinit_search_ctx(ctx);
1000 /* Setup the data attribute, even if not present. */
1005 /* Find first extent of the unnamed data attribute. */
1006 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1007 if (unlikely(err)) {
1008 vi->i_size = ni->initialized_size =
1009 ni->allocated_size = 0;
1010 if (err != -ENOENT) {
1011 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1016 * FILE_Secure does not have an unnamed $DATA
1017 * attribute, so we special case it here.
1019 if (vi->i_ino == FILE_Secure)
1020 goto no_data_attr_special_case;
1022 * Most if not all the system files in the $Extend
1023 * system directory do not have unnamed data
1024 * attributes so we need to check if the parent
1025 * directory of the file is FILE_Extend and if it is
1026 * ignore this error. To do this we need to get the
1027 * name of this inode from the mft record as the name
1028 * contains the back reference to the parent directory.
1030 if (ntfs_is_extended_system_file(ctx) > 0)
1031 goto no_data_attr_special_case;
1032 // FIXME: File is corrupt! Hot-fix with empty data
1033 // attribute if recovery option is set.
1034 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1038 /* Setup the state. */
1039 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1040 if (a->flags & ATTR_COMPRESSION_MASK) {
1041 NInoSetCompressed(ni);
1042 if (vol->cluster_size > 4096) {
1043 ntfs_error(vi->i_sb, "Found "
1044 "compressed data but "
1047 "cluster size (%i) > "
1052 if ((a->flags & ATTR_COMPRESSION_MASK)
1053 != ATTR_IS_COMPRESSED) {
1054 ntfs_error(vi->i_sb, "Found unknown "
1055 "compression method "
1056 "or corrupt file.");
1060 if (a->flags & ATTR_IS_SPARSE)
1063 if (a->flags & ATTR_IS_ENCRYPTED) {
1064 if (NInoCompressed(ni)) {
1065 ntfs_error(vi->i_sb, "Found encrypted and "
1066 "compressed data.");
1069 NInoSetEncrypted(ni);
1071 if (a->non_resident) {
1072 NInoSetNonResident(ni);
1073 if (NInoCompressed(ni) || NInoSparse(ni)) {
1074 if (NInoCompressed(ni) && a->data.non_resident.
1075 compression_unit != 4) {
1076 ntfs_error(vi->i_sb, "Found "
1078 "compression unit (%u "
1080 "Cannot handle this.",
1081 a->data.non_resident.
1086 if (a->data.non_resident.compression_unit) {
1087 ni->itype.compressed.block_size = 1U <<
1088 (a->data.non_resident.
1090 vol->cluster_size_bits);
1091 ni->itype.compressed.block_size_bits =
1095 ni->itype.compressed.block_clusters =
1100 ni->itype.compressed.block_size = 0;
1101 ni->itype.compressed.block_size_bits =
1103 ni->itype.compressed.block_clusters =
1106 ni->itype.compressed.size = sle64_to_cpu(
1107 a->data.non_resident.
1110 if (a->data.non_resident.lowest_vcn) {
1111 ntfs_error(vi->i_sb, "First extent of $DATA "
1112 "attribute has non zero "
1116 vi->i_size = sle64_to_cpu(
1117 a->data.non_resident.data_size);
1118 ni->initialized_size = sle64_to_cpu(
1119 a->data.non_resident.initialized_size);
1120 ni->allocated_size = sle64_to_cpu(
1121 a->data.non_resident.allocated_size);
1122 } else { /* Resident attribute. */
1123 vi->i_size = ni->initialized_size = le32_to_cpu(
1124 a->data.resident.value_length);
1125 ni->allocated_size = le32_to_cpu(a->length) -
1127 a->data.resident.value_offset);
1128 if (vi->i_size > ni->allocated_size) {
1129 ntfs_error(vi->i_sb, "Resident data attribute "
1130 "is corrupt (size exceeds "
1135 no_data_attr_special_case:
1136 /* We are done with the mft record, so we release it. */
1137 ntfs_attr_put_search_ctx(ctx);
1138 unmap_mft_record(ni);
1141 /* Setup the operations for this inode. */
1142 vi->i_op = &ntfs_file_inode_ops;
1143 vi->i_fop = &ntfs_file_ops;
1144 vi->i_mapping->a_ops = &ntfs_normal_aops;
1145 if (NInoMstProtected(ni))
1146 vi->i_mapping->a_ops = &ntfs_mst_aops;
1147 else if (NInoCompressed(ni))
1148 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1151 * The number of 512-byte blocks used on disk (for stat). This is in so
1152 * far inaccurate as it doesn't account for any named streams or other
1153 * special non-resident attributes, but that is how Windows works, too,
1154 * so we are at least consistent with Windows, if not entirely
1155 * consistent with the Linux Way. Doing it the Linux Way would cause a
1156 * significant slowdown as it would involve iterating over all
1157 * attributes in the mft record and adding the allocated/compressed
1158 * sizes of all non-resident attributes present to give us the Linux
1159 * correct size that should go into i_blocks (after division by 512).
1161 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1162 vi->i_blocks = ni->itype.compressed.size >> 9;
1164 vi->i_blocks = ni->allocated_size >> 9;
1165 ntfs_debug("Done.");
1173 ntfs_attr_put_search_ctx(ctx);
1175 unmap_mft_record(ni);
1177 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1178 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1180 if (err != -EOPNOTSUPP && err != -ENOMEM)
1186 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1187 * @base_vi: base inode
1188 * @vi: attribute inode to read
1190 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1191 * attribute inode described by @vi into memory from the base mft record
1192 * described by @base_ni.
1194 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1195 * reading and looks up the attribute described by @vi before setting up the
1196 * necessary fields in @vi as well as initializing the ntfs inode.
1198 * Q: What locks are held when the function is called?
1199 * A: i_state has I_NEW set, hence the inode is locked, also
1200 * i_count is set to 1, so it is not going to go away
1202 * Return 0 on success and -errno on error. In the error case, the inode will
1203 * have had make_bad_inode() executed on it.
1205 * Note this cannot be called for AT_INDEX_ALLOCATION.
1207 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1209 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1210 ntfs_inode *ni, *base_ni;
1213 ntfs_attr_search_ctx *ctx;
1216 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1218 ntfs_init_big_inode(vi);
1221 base_ni = NTFS_I(base_vi);
1223 /* Just mirror the values from the base inode. */
1224 vi->i_uid = base_vi->i_uid;
1225 vi->i_gid = base_vi->i_gid;
1226 set_nlink(vi, base_vi->i_nlink);
1227 vi->i_mtime = base_vi->i_mtime;
1228 vi->i_ctime = base_vi->i_ctime;
1229 vi->i_atime = base_vi->i_atime;
1230 vi->i_generation = ni->seq_no = base_ni->seq_no;
1232 /* Set inode type to zero but preserve permissions. */
1233 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1235 m = map_mft_record(base_ni);
1240 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1245 /* Find the attribute. */
1246 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1247 CASE_SENSITIVE, 0, NULL, 0, ctx);
1251 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1252 if (a->flags & ATTR_COMPRESSION_MASK) {
1253 NInoSetCompressed(ni);
1254 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1256 ntfs_error(vi->i_sb, "Found compressed "
1257 "non-data or named data "
1258 "attribute. Please report "
1259 "you saw this message to "
1260 "linux-ntfs-dev@lists."
1264 if (vol->cluster_size > 4096) {
1265 ntfs_error(vi->i_sb, "Found compressed "
1266 "attribute but compression is "
1267 "disabled due to cluster size "
1272 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1273 ATTR_IS_COMPRESSED) {
1274 ntfs_error(vi->i_sb, "Found unknown "
1275 "compression method.");
1280 * The compressed/sparse flag set in an index root just means
1281 * to compress all files.
1283 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1284 ntfs_error(vi->i_sb, "Found mst protected attribute "
1285 "but the attribute is %s. Please "
1286 "report you saw this message to "
1288 NInoCompressed(ni) ? "compressed" :
1292 if (a->flags & ATTR_IS_SPARSE)
1295 if (a->flags & ATTR_IS_ENCRYPTED) {
1296 if (NInoCompressed(ni)) {
1297 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1302 * The encryption flag set in an index root just means to
1303 * encrypt all files.
1305 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1306 ntfs_error(vi->i_sb, "Found mst protected attribute "
1307 "but the attribute is encrypted. "
1308 "Please report you saw this message "
1313 if (ni->type != AT_DATA) {
1314 ntfs_error(vi->i_sb, "Found encrypted non-data "
1318 NInoSetEncrypted(ni);
1320 if (!a->non_resident) {
1321 /* Ensure the attribute name is placed before the value. */
1322 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1323 le16_to_cpu(a->data.resident.value_offset)))) {
1324 ntfs_error(vol->sb, "Attribute name is placed after "
1325 "the attribute value.");
1328 if (NInoMstProtected(ni)) {
1329 ntfs_error(vi->i_sb, "Found mst protected attribute "
1330 "but the attribute is resident. "
1331 "Please report you saw this message to "
1335 vi->i_size = ni->initialized_size = le32_to_cpu(
1336 a->data.resident.value_length);
1337 ni->allocated_size = le32_to_cpu(a->length) -
1338 le16_to_cpu(a->data.resident.value_offset);
1339 if (vi->i_size > ni->allocated_size) {
1340 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1341 "(size exceeds allocation).");
1345 NInoSetNonResident(ni);
1347 * Ensure the attribute name is placed before the mapping pairs
1350 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1352 a->data.non_resident.mapping_pairs_offset)))) {
1353 ntfs_error(vol->sb, "Attribute name is placed after "
1354 "the mapping pairs array.");
1357 if (NInoCompressed(ni) || NInoSparse(ni)) {
1358 if (NInoCompressed(ni) && a->data.non_resident.
1359 compression_unit != 4) {
1360 ntfs_error(vi->i_sb, "Found non-standard "
1361 "compression unit (%u instead "
1362 "of 4). Cannot handle this.",
1363 a->data.non_resident.
1368 if (a->data.non_resident.compression_unit) {
1369 ni->itype.compressed.block_size = 1U <<
1370 (a->data.non_resident.
1372 vol->cluster_size_bits);
1373 ni->itype.compressed.block_size_bits =
1374 ffs(ni->itype.compressed.
1376 ni->itype.compressed.block_clusters = 1U <<
1377 a->data.non_resident.
1380 ni->itype.compressed.block_size = 0;
1381 ni->itype.compressed.block_size_bits = 0;
1382 ni->itype.compressed.block_clusters = 0;
1384 ni->itype.compressed.size = sle64_to_cpu(
1385 a->data.non_resident.compressed_size);
1387 if (a->data.non_resident.lowest_vcn) {
1388 ntfs_error(vi->i_sb, "First extent of attribute has "
1389 "non-zero lowest_vcn.");
1392 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1393 ni->initialized_size = sle64_to_cpu(
1394 a->data.non_resident.initialized_size);
1395 ni->allocated_size = sle64_to_cpu(
1396 a->data.non_resident.allocated_size);
1398 vi->i_mapping->a_ops = &ntfs_normal_aops;
1399 if (NInoMstProtected(ni))
1400 vi->i_mapping->a_ops = &ntfs_mst_aops;
1401 else if (NInoCompressed(ni))
1402 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1403 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1404 vi->i_blocks = ni->itype.compressed.size >> 9;
1406 vi->i_blocks = ni->allocated_size >> 9;
1408 * Make sure the base inode does not go away and attach it to the
1412 ni->ext.base_ntfs_ino = base_ni;
1413 ni->nr_extents = -1;
1415 ntfs_attr_put_search_ctx(ctx);
1416 unmap_mft_record(base_ni);
1418 ntfs_debug("Done.");
1425 ntfs_attr_put_search_ctx(ctx);
1426 unmap_mft_record(base_ni);
1428 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1429 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1430 "Marking corrupt inode and base inode 0x%lx as bad. "
1431 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1440 * ntfs_read_locked_index_inode - read an index inode from its base inode
1441 * @base_vi: base inode
1442 * @vi: index inode to read
1444 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1445 * index inode described by @vi into memory from the base mft record described
1448 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1449 * reading and looks up the attributes relating to the index described by @vi
1450 * before setting up the necessary fields in @vi as well as initializing the
1453 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1454 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1455 * are setup like directory inodes since directories are a special case of
1456 * indices ao they need to be treated in much the same way. Most importantly,
1457 * for small indices the index allocation attribute might not actually exist.
1458 * However, the index root attribute always exists but this does not need to
1459 * have an inode associated with it and this is why we define a new inode type
1460 * index. Also, like for directories, we need to have an attribute inode for
1461 * the bitmap attribute corresponding to the index allocation attribute and we
1462 * can store this in the appropriate field of the inode, just like we do for
1463 * normal directory inodes.
1465 * Q: What locks are held when the function is called?
1466 * A: i_state has I_NEW set, hence the inode is locked, also
1467 * i_count is set to 1, so it is not going to go away
1469 * Return 0 on success and -errno on error. In the error case, the inode will
1470 * have had make_bad_inode() executed on it.
1472 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1475 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1476 ntfs_inode *ni, *base_ni, *bni;
1480 ntfs_attr_search_ctx *ctx;
1482 u8 *ir_end, *index_end;
1485 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1486 ntfs_init_big_inode(vi);
1488 base_ni = NTFS_I(base_vi);
1489 /* Just mirror the values from the base inode. */
1490 vi->i_uid = base_vi->i_uid;
1491 vi->i_gid = base_vi->i_gid;
1492 set_nlink(vi, base_vi->i_nlink);
1493 vi->i_mtime = base_vi->i_mtime;
1494 vi->i_ctime = base_vi->i_ctime;
1495 vi->i_atime = base_vi->i_atime;
1496 vi->i_generation = ni->seq_no = base_ni->seq_no;
1497 /* Set inode type to zero but preserve permissions. */
1498 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1499 /* Map the mft record for the base inode. */
1500 m = map_mft_record(base_ni);
1505 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1510 /* Find the index root attribute. */
1511 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1512 CASE_SENSITIVE, 0, NULL, 0, ctx);
1513 if (unlikely(err)) {
1515 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1520 /* Set up the state. */
1521 if (unlikely(a->non_resident)) {
1522 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1525 /* Ensure the attribute name is placed before the value. */
1526 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1527 le16_to_cpu(a->data.resident.value_offset)))) {
1528 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1529 "after the attribute value.");
1533 * Compressed/encrypted/sparse index root is not allowed, except for
1534 * directories of course but those are not dealt with here.
1536 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1538 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1542 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1543 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1544 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1545 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1548 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1549 if (index_end > ir_end) {
1550 ntfs_error(vi->i_sb, "Index is corrupt.");
1554 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1555 le32_to_cpu(ir->type));
1558 ni->itype.index.collation_rule = ir->collation_rule;
1559 ntfs_debug("Index collation rule is 0x%x.",
1560 le32_to_cpu(ir->collation_rule));
1561 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1562 if (!is_power_of_2(ni->itype.index.block_size)) {
1563 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1564 "two.", ni->itype.index.block_size);
1567 if (ni->itype.index.block_size > PAGE_SIZE) {
1568 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1569 "(%ld) is not supported. Sorry.",
1570 ni->itype.index.block_size, PAGE_SIZE);
1574 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1575 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1576 "(%i) is not supported. Sorry.",
1577 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1581 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1582 /* Determine the size of a vcn in the index. */
1583 if (vol->cluster_size <= ni->itype.index.block_size) {
1584 ni->itype.index.vcn_size = vol->cluster_size;
1585 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1587 ni->itype.index.vcn_size = vol->sector_size;
1588 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1590 /* Check for presence of index allocation attribute. */
1591 if (!(ir->index.flags & LARGE_INDEX)) {
1592 /* No index allocation. */
1593 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1594 /* We are done with the mft record, so we release it. */
1595 ntfs_attr_put_search_ctx(ctx);
1596 unmap_mft_record(base_ni);
1599 goto skip_large_index_stuff;
1600 } /* LARGE_INDEX: Index allocation present. Setup state. */
1601 NInoSetIndexAllocPresent(ni);
1602 /* Find index allocation attribute. */
1603 ntfs_attr_reinit_search_ctx(ctx);
1604 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1605 CASE_SENSITIVE, 0, NULL, 0, ctx);
1606 if (unlikely(err)) {
1608 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1609 "not present but $INDEX_ROOT "
1610 "indicated it is.");
1612 ntfs_error(vi->i_sb, "Failed to lookup "
1613 "$INDEX_ALLOCATION attribute.");
1617 if (!a->non_resident) {
1618 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1623 * Ensure the attribute name is placed before the mapping pairs array.
1625 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1627 a->data.non_resident.mapping_pairs_offset)))) {
1628 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1629 "placed after the mapping pairs array.");
1632 if (a->flags & ATTR_IS_ENCRYPTED) {
1633 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637 if (a->flags & ATTR_IS_SPARSE) {
1638 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1641 if (a->flags & ATTR_COMPRESSION_MASK) {
1642 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646 if (a->data.non_resident.lowest_vcn) {
1647 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1648 "attribute has non zero lowest_vcn.");
1651 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1652 ni->initialized_size = sle64_to_cpu(
1653 a->data.non_resident.initialized_size);
1654 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1656 * We are done with the mft record, so we release it. Otherwise
1657 * we would deadlock in ntfs_attr_iget().
1659 ntfs_attr_put_search_ctx(ctx);
1660 unmap_mft_record(base_ni);
1663 /* Get the index bitmap attribute inode. */
1664 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1666 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1671 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1673 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1674 "encrypted and/or sparse.");
1675 goto iput_unm_err_out;
1677 /* Consistency check bitmap size vs. index allocation size. */
1678 bvi_size = i_size_read(bvi);
1679 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1680 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1681 "index allocation (0x%llx).", bvi_size << 3,
1683 goto iput_unm_err_out;
1686 skip_large_index_stuff:
1687 /* Setup the operations for this index inode. */
1688 vi->i_mapping->a_ops = &ntfs_mst_aops;
1689 vi->i_blocks = ni->allocated_size >> 9;
1691 * Make sure the base inode doesn't go away and attach it to the
1695 ni->ext.base_ntfs_ino = base_ni;
1696 ni->nr_extents = -1;
1698 ntfs_debug("Done.");
1706 ntfs_attr_put_search_ctx(ctx);
1708 unmap_mft_record(base_ni);
1710 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1711 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1714 if (err != -EOPNOTSUPP && err != -ENOMEM)
1720 * The MFT inode has special locking, so teach the lock validator
1721 * about this by splitting off the locking rules of the MFT from
1722 * the locking rules of other inodes. The MFT inode can never be
1723 * accessed from the VFS side (or even internally), only by the
1724 * map_mft functions.
1726 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1729 * ntfs_read_inode_mount - special read_inode for mount time use only
1730 * @vi: inode to read
1732 * Read inode FILE_MFT at mount time, only called with super_block lock
1733 * held from within the read_super() code path.
1735 * This function exists because when it is called the page cache for $MFT/$DATA
1736 * is not initialized and hence we cannot get at the contents of mft records
1737 * by calling map_mft_record*().
1739 * Further it needs to cope with the circular references problem, i.e. cannot
1740 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1741 * we do not know where the other extent mft records are yet and again, because
1742 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1743 * attribute list is actually present in $MFT inode.
1745 * We solve these problems by starting with the $DATA attribute before anything
1746 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1747 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1748 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1749 * sufficient information for the next step to complete.
1751 * This should work but there are two possible pit falls (see inline comments
1752 * below), but only time will tell if they are real pits or just smoke...
1754 int ntfs_read_inode_mount(struct inode *vi)
1756 VCN next_vcn, last_vcn, highest_vcn;
1758 struct super_block *sb = vi->i_sb;
1759 ntfs_volume *vol = NTFS_SB(sb);
1760 struct buffer_head *bh;
1762 MFT_RECORD *m = NULL;
1764 ntfs_attr_search_ctx *ctx;
1765 unsigned int i, nr_blocks;
1768 ntfs_debug("Entering.");
1770 /* Initialize the ntfs specific part of @vi. */
1771 ntfs_init_big_inode(vi);
1775 /* Setup the data attribute. It is special as it is mst protected. */
1776 NInoSetNonResident(ni);
1777 NInoSetMstProtected(ni);
1778 NInoSetSparseDisabled(ni);
1783 * This sets up our little cheat allowing us to reuse the async read io
1784 * completion handler for directories.
1786 ni->itype.index.block_size = vol->mft_record_size;
1787 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1789 /* Very important! Needed to be able to call map_mft_record*(). */
1792 /* Allocate enough memory to read the first mft record. */
1793 if (vol->mft_record_size > 64 * 1024) {
1794 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1795 vol->mft_record_size);
1798 i = vol->mft_record_size;
1799 if (i < sb->s_blocksize)
1800 i = sb->s_blocksize;
1801 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1803 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1807 /* Determine the first block of the $MFT/$DATA attribute. */
1808 block = vol->mft_lcn << vol->cluster_size_bits >>
1809 sb->s_blocksize_bits;
1810 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1814 /* Load $MFT/$DATA's first mft record. */
1815 for (i = 0; i < nr_blocks; i++) {
1816 bh = sb_bread(sb, block++);
1818 ntfs_error(sb, "Device read failed.");
1821 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1826 /* Apply the mst fixups. */
1827 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1828 /* FIXME: Try to use the $MFTMirr now. */
1829 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1833 /* Need this to sanity check attribute list references to $MFT. */
1834 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1836 /* Provides readpage() for map_mft_record(). */
1837 vi->i_mapping->a_ops = &ntfs_mst_aops;
1839 ctx = ntfs_attr_get_search_ctx(ni, m);
1845 /* Find the attribute list attribute if present. */
1846 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1848 if (unlikely(err != -ENOENT)) {
1849 ntfs_error(sb, "Failed to lookup attribute list "
1850 "attribute. You should run chkdsk.");
1853 } else /* if (!err) */ {
1854 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1856 static const char *es = " Not allowed. $MFT is corrupt. "
1857 "You should run chkdsk.";
1859 ntfs_debug("Attribute list attribute found in $MFT.");
1860 NInoSetAttrList(ni);
1862 if (a->flags & ATTR_COMPRESSION_MASK) {
1863 ntfs_error(sb, "Attribute list attribute is "
1864 "compressed.%s", es);
1867 if (a->flags & ATTR_IS_ENCRYPTED ||
1868 a->flags & ATTR_IS_SPARSE) {
1869 if (a->non_resident) {
1870 ntfs_error(sb, "Non-resident attribute list "
1871 "attribute is encrypted/"
1875 ntfs_warning(sb, "Resident attribute list attribute "
1876 "in $MFT system file is marked "
1877 "encrypted/sparse which is not true. "
1878 "However, Windows allows this and "
1879 "chkdsk does not detect or correct it "
1880 "so we will just ignore the invalid "
1881 "flags and pretend they are not set.");
1883 /* Now allocate memory for the attribute list. */
1884 ni->attr_list_size = (u32)ntfs_attr_size(a);
1885 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1886 if (!ni->attr_list) {
1887 ntfs_error(sb, "Not enough memory to allocate buffer "
1888 "for attribute list.");
1891 if (a->non_resident) {
1892 NInoSetAttrListNonResident(ni);
1893 if (a->data.non_resident.lowest_vcn) {
1894 ntfs_error(sb, "Attribute list has non zero "
1895 "lowest_vcn. $MFT is corrupt. "
1896 "You should run chkdsk.");
1899 /* Setup the runlist. */
1900 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1902 if (IS_ERR(ni->attr_list_rl.rl)) {
1903 err = PTR_ERR(ni->attr_list_rl.rl);
1904 ni->attr_list_rl.rl = NULL;
1905 ntfs_error(sb, "Mapping pairs decompression "
1906 "failed with error code %i.",
1910 /* Now load the attribute list. */
1911 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1912 ni->attr_list, ni->attr_list_size,
1913 sle64_to_cpu(a->data.
1914 non_resident.initialized_size)))) {
1915 ntfs_error(sb, "Failed to load attribute list "
1916 "attribute with error code %i.",
1920 } else /* if (!ctx.attr->non_resident) */ {
1921 if ((u8*)a + le16_to_cpu(
1922 a->data.resident.value_offset) +
1924 a->data.resident.value_length) >
1925 (u8*)ctx->mrec + vol->mft_record_size) {
1926 ntfs_error(sb, "Corrupt attribute list "
1930 /* Now copy the attribute list. */
1931 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1932 a->data.resident.value_offset),
1934 a->data.resident.value_length));
1936 /* The attribute list is now setup in memory. */
1938 * FIXME: I don't know if this case is actually possible.
1939 * According to logic it is not possible but I have seen too
1940 * many weird things in MS software to rely on logic... Thus we
1941 * perform a manual search and make sure the first $MFT/$DATA
1942 * extent is in the base inode. If it is not we abort with an
1943 * error and if we ever see a report of this error we will need
1944 * to do some magic in order to have the necessary mft record
1945 * loaded and in the right place in the page cache. But
1946 * hopefully logic will prevail and this never happens...
1948 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1949 al_end = (u8*)al_entry + ni->attr_list_size;
1950 for (;; al_entry = next_al_entry) {
1951 /* Out of bounds check. */
1952 if ((u8*)al_entry < ni->attr_list ||
1953 (u8*)al_entry > al_end)
1954 goto em_put_err_out;
1955 /* Catch the end of the attribute list. */
1956 if ((u8*)al_entry == al_end)
1957 goto em_put_err_out;
1958 if (!al_entry->length)
1959 goto em_put_err_out;
1960 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1961 le16_to_cpu(al_entry->length) > al_end)
1962 goto em_put_err_out;
1963 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1964 le16_to_cpu(al_entry->length));
1965 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1966 goto em_put_err_out;
1967 if (AT_DATA != al_entry->type)
1969 /* We want an unnamed attribute. */
1970 if (al_entry->name_length)
1971 goto em_put_err_out;
1972 /* Want the first entry, i.e. lowest_vcn == 0. */
1973 if (al_entry->lowest_vcn)
1974 goto em_put_err_out;
1975 /* First entry has to be in the base mft record. */
1976 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1977 /* MFT references do not match, logic fails. */
1978 ntfs_error(sb, "BUG: The first $DATA extent "
1979 "of $MFT is not in the base "
1980 "mft record. Please report "
1981 "you saw this message to "
1982 "linux-ntfs-dev@lists."
1986 /* Sequence numbers must match. */
1987 if (MSEQNO_LE(al_entry->mft_reference) !=
1989 goto em_put_err_out;
1990 /* Got it. All is ok. We can stop now. */
1996 ntfs_attr_reinit_search_ctx(ctx);
1998 /* Now load all attribute extents. */
2000 next_vcn = last_vcn = highest_vcn = 0;
2001 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2003 runlist_element *nrl;
2005 /* Cache the current attribute. */
2007 /* $MFT must be non-resident. */
2008 if (!a->non_resident) {
2009 ntfs_error(sb, "$MFT must be non-resident but a "
2010 "resident extent was found. $MFT is "
2011 "corrupt. Run chkdsk.");
2014 /* $MFT must be uncompressed and unencrypted. */
2015 if (a->flags & ATTR_COMPRESSION_MASK ||
2016 a->flags & ATTR_IS_ENCRYPTED ||
2017 a->flags & ATTR_IS_SPARSE) {
2018 ntfs_error(sb, "$MFT must be uncompressed, "
2019 "non-sparse, and unencrypted but a "
2020 "compressed/sparse/encrypted extent "
2021 "was found. $MFT is corrupt. Run "
2026 * Decompress the mapping pairs array of this extent and merge
2027 * the result into the existing runlist. No need for locking
2028 * as we have exclusive access to the inode at this time and we
2029 * are a mount in progress task, too.
2031 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2033 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2034 "failed with error code %ld. $MFT is "
2035 "corrupt.", PTR_ERR(nrl));
2038 ni->runlist.rl = nrl;
2040 /* Are we in the first extent? */
2042 if (a->data.non_resident.lowest_vcn) {
2043 ntfs_error(sb, "First extent of $DATA "
2044 "attribute has non zero "
2045 "lowest_vcn. $MFT is corrupt. "
2046 "You should run chkdsk.");
2049 /* Get the last vcn in the $DATA attribute. */
2050 last_vcn = sle64_to_cpu(
2051 a->data.non_resident.allocated_size)
2052 >> vol->cluster_size_bits;
2053 /* Fill in the inode size. */
2054 vi->i_size = sle64_to_cpu(
2055 a->data.non_resident.data_size);
2056 ni->initialized_size = sle64_to_cpu(
2057 a->data.non_resident.initialized_size);
2058 ni->allocated_size = sle64_to_cpu(
2059 a->data.non_resident.allocated_size);
2061 * Verify the number of mft records does not exceed
2064 if ((vi->i_size >> vol->mft_record_size_bits) >=
2066 ntfs_error(sb, "$MFT is too big! Aborting.");
2070 * We have got the first extent of the runlist for
2071 * $MFT which means it is now relatively safe to call
2072 * the normal ntfs_read_inode() function.
2073 * Complete reading the inode, this will actually
2074 * re-read the mft record for $MFT, this time entering
2075 * it into the page cache with which we complete the
2076 * kick start of the volume. It should be safe to do
2077 * this now as the first extent of $MFT/$DATA is
2078 * already known and we would hope that we don't need
2079 * further extents in order to find the other
2080 * attributes belonging to $MFT. Only time will tell if
2081 * this is really the case. If not we will have to play
2082 * magic at this point, possibly duplicating a lot of
2083 * ntfs_read_inode() at this point. We will need to
2084 * ensure we do enough of its work to be able to call
2085 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2086 * hope this never happens...
2088 ntfs_read_locked_inode(vi);
2089 if (is_bad_inode(vi)) {
2090 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2091 "failed. BUG or corrupt $MFT. "
2092 "Run chkdsk and if no errors "
2093 "are found, please report you "
2094 "saw this message to "
2095 "linux-ntfs-dev@lists."
2097 ntfs_attr_put_search_ctx(ctx);
2098 /* Revert to the safe super operations. */
2103 * Re-initialize some specifics about $MFT's inode as
2104 * ntfs_read_inode() will have set up the default ones.
2106 /* Set uid and gid to root. */
2107 vi->i_uid = GLOBAL_ROOT_UID;
2108 vi->i_gid = GLOBAL_ROOT_GID;
2109 /* Regular file. No access for anyone. */
2110 vi->i_mode = S_IFREG;
2111 /* No VFS initiated operations allowed for $MFT. */
2112 vi->i_op = &ntfs_empty_inode_ops;
2113 vi->i_fop = &ntfs_empty_file_ops;
2116 /* Get the lowest vcn for the next extent. */
2117 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2118 next_vcn = highest_vcn + 1;
2120 /* Only one extent or error, which we catch below. */
2124 /* Avoid endless loops due to corruption. */
2125 if (next_vcn < sle64_to_cpu(
2126 a->data.non_resident.lowest_vcn)) {
2127 ntfs_error(sb, "$MFT has corrupt attribute list "
2128 "attribute. Run chkdsk.");
2132 if (err != -ENOENT) {
2133 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2134 "$MFT is corrupt. Run chkdsk.");
2138 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2139 "corrupt. Run chkdsk.");
2142 if (highest_vcn && highest_vcn != last_vcn - 1) {
2143 ntfs_error(sb, "Failed to load the complete runlist for "
2144 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2146 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2147 (unsigned long long)highest_vcn,
2148 (unsigned long long)last_vcn - 1);
2151 ntfs_attr_put_search_ctx(ctx);
2152 ntfs_debug("Done.");
2156 * Split the locking rules of the MFT inode from the
2157 * locking rules of other inodes:
2159 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2160 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2165 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2166 "attribute list. $MFT is corrupt. Run chkdsk.");
2168 ntfs_attr_put_search_ctx(ctx);
2170 ntfs_error(sb, "Failed. Marking inode as bad.");
2176 static void __ntfs_clear_inode(ntfs_inode *ni)
2178 /* Free all alocated memory. */
2179 down_write(&ni->runlist.lock);
2180 if (ni->runlist.rl) {
2181 ntfs_free(ni->runlist.rl);
2182 ni->runlist.rl = NULL;
2184 up_write(&ni->runlist.lock);
2186 if (ni->attr_list) {
2187 ntfs_free(ni->attr_list);
2188 ni->attr_list = NULL;
2191 down_write(&ni->attr_list_rl.lock);
2192 if (ni->attr_list_rl.rl) {
2193 ntfs_free(ni->attr_list_rl.rl);
2194 ni->attr_list_rl.rl = NULL;
2196 up_write(&ni->attr_list_rl.lock);
2198 if (ni->name_len && ni->name != I30) {
2205 void ntfs_clear_extent_inode(ntfs_inode *ni)
2207 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2209 BUG_ON(NInoAttr(ni));
2210 BUG_ON(ni->nr_extents != -1);
2213 if (NInoDirty(ni)) {
2214 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2215 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2216 "Losing data! This is a BUG!!!");
2217 // FIXME: Do something!!!
2219 #endif /* NTFS_RW */
2221 __ntfs_clear_inode(ni);
2224 ntfs_destroy_extent_inode(ni);
2228 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2229 * @vi: vfs inode pending annihilation
2231 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2232 * is called, which deallocates all memory belonging to the NTFS specific part
2233 * of the inode and returns.
2235 * If the MFT record is dirty, we commit it before doing anything else.
2237 void ntfs_evict_big_inode(struct inode *vi)
2239 ntfs_inode *ni = NTFS_I(vi);
2241 truncate_inode_pages_final(&vi->i_data);
2245 if (NInoDirty(ni)) {
2246 bool was_bad = (is_bad_inode(vi));
2248 /* Committing the inode also commits all extent inodes. */
2249 ntfs_commit_inode(vi);
2251 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2252 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2253 "0x%lx. Losing data!", vi->i_ino);
2254 // FIXME: Do something!!!
2257 #endif /* NTFS_RW */
2259 /* No need to lock at this stage as no one else has a reference. */
2260 if (ni->nr_extents > 0) {
2263 for (i = 0; i < ni->nr_extents; i++)
2264 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2265 kfree(ni->ext.extent_ntfs_inos);
2268 __ntfs_clear_inode(ni);
2271 /* Release the base inode if we are holding it. */
2272 if (ni->nr_extents == -1) {
2273 iput(VFS_I(ni->ext.base_ntfs_ino));
2275 ni->ext.base_ntfs_ino = NULL;
2279 if (!atomic_dec_and_test(&ni->count))
2285 * ntfs_show_options - show mount options in /proc/mounts
2286 * @sf: seq_file in which to write our mount options
2287 * @root: root of the mounted tree whose mount options to display
2289 * Called by the VFS once for each mounted ntfs volume when someone reads
2290 * /proc/mounts in order to display the NTFS specific mount options of each
2291 * mount. The mount options of fs specified by @root are written to the seq file
2292 * @sf and success is returned.
2294 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2296 ntfs_volume *vol = NTFS_SB(root->d_sb);
2299 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2300 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2301 if (vol->fmask == vol->dmask)
2302 seq_printf(sf, ",umask=0%o", vol->fmask);
2304 seq_printf(sf, ",fmask=0%o", vol->fmask);
2305 seq_printf(sf, ",dmask=0%o", vol->dmask);
2307 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2308 if (NVolCaseSensitive(vol))
2309 seq_printf(sf, ",case_sensitive");
2310 if (NVolShowSystemFiles(vol))
2311 seq_printf(sf, ",show_sys_files");
2312 if (!NVolSparseEnabled(vol))
2313 seq_printf(sf, ",disable_sparse");
2314 for (i = 0; on_errors_arr[i].val; i++) {
2315 if (on_errors_arr[i].val & vol->on_errors)
2316 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2318 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2324 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2328 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2329 * @vi: inode for which the i_size was changed
2331 * We only support i_size changes for normal files at present, i.e. not
2332 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2335 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2336 * that the change is allowed.
2338 * This implies for us that @vi is a file inode rather than a directory, index,
2339 * or attribute inode as well as that @vi is a base inode.
2341 * Returns 0 on success or -errno on error.
2343 * Called with ->i_mutex held.
2345 int ntfs_truncate(struct inode *vi)
2347 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2349 unsigned long flags;
2350 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2351 ntfs_volume *vol = ni->vol;
2352 ntfs_attr_search_ctx *ctx;
2355 const char *te = " Leaving file length out of sync with i_size.";
2356 int err, mp_size, size_change, alloc_change;
2359 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2360 BUG_ON(NInoAttr(ni));
2361 BUG_ON(S_ISDIR(vi->i_mode));
2362 BUG_ON(NInoMstProtected(ni));
2363 BUG_ON(ni->nr_extents < 0);
2366 * Lock the runlist for writing and map the mft record to ensure it is
2367 * safe to mess with the attribute runlist and sizes.
2369 down_write(&ni->runlist.lock);
2373 base_ni = ni->ext.base_ntfs_ino;
2374 m = map_mft_record(base_ni);
2377 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2378 "(error code %d).%s", vi->i_ino, err, te);
2383 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2384 if (unlikely(!ctx)) {
2385 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2386 "inode 0x%lx (not enough memory).%s",
2391 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2392 CASE_SENSITIVE, 0, NULL, 0, ctx);
2393 if (unlikely(err)) {
2394 if (err == -ENOENT) {
2395 ntfs_error(vi->i_sb, "Open attribute is missing from "
2396 "mft record. Inode 0x%lx is corrupt. "
2397 "Run chkdsk.%s", vi->i_ino, te);
2400 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2401 "inode 0x%lx (error code %d).%s",
2402 vi->i_ino, err, te);
2408 * The i_size of the vfs inode is the new size for the attribute value.
2410 new_size = i_size_read(vi);
2411 /* The current size of the attribute value is the old size. */
2412 old_size = ntfs_attr_size(a);
2413 /* Calculate the new allocated size. */
2414 if (NInoNonResident(ni))
2415 new_alloc_size = (new_size + vol->cluster_size - 1) &
2416 ~(s64)vol->cluster_size_mask;
2418 new_alloc_size = (new_size + 7) & ~7;
2419 /* The current allocated size is the old allocated size. */
2420 read_lock_irqsave(&ni->size_lock, flags);
2421 old_alloc_size = ni->allocated_size;
2422 read_unlock_irqrestore(&ni->size_lock, flags);
2424 * The change in the file size. This will be 0 if no change, >0 if the
2425 * size is growing, and <0 if the size is shrinking.
2428 if (new_size - old_size >= 0) {
2430 if (new_size == old_size)
2433 /* As above for the allocated size. */
2435 if (new_alloc_size - old_alloc_size >= 0) {
2437 if (new_alloc_size == old_alloc_size)
2441 * If neither the size nor the allocation are being changed there is
2444 if (!size_change && !alloc_change)
2446 /* If the size is changing, check if new size is allowed in $AttrDef. */
2448 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2449 if (unlikely(err)) {
2450 if (err == -ERANGE) {
2451 ntfs_error(vol->sb, "Truncate would cause the "
2452 "inode 0x%lx to %simum size "
2453 "for its attribute type "
2454 "(0x%x). Aborting truncate.",
2456 new_size > old_size ? "exceed "
2457 "the max" : "go under the min",
2458 le32_to_cpu(ni->type));
2461 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2462 "attribute type 0x%x. "
2463 "Aborting truncate.",
2465 le32_to_cpu(ni->type));
2468 /* Reset the vfs inode size to the old size. */
2469 i_size_write(vi, old_size);
2473 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2474 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2475 "supported yet for %s files, ignoring.",
2476 NInoCompressed(ni) ? "compressed" :
2481 if (a->non_resident)
2482 goto do_non_resident_truncate;
2483 BUG_ON(NInoNonResident(ni));
2484 /* Resize the attribute record to best fit the new attribute size. */
2485 if (new_size < vol->mft_record_size &&
2486 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2487 /* The resize succeeded! */
2488 flush_dcache_mft_record_page(ctx->ntfs_ino);
2489 mark_mft_record_dirty(ctx->ntfs_ino);
2490 write_lock_irqsave(&ni->size_lock, flags);
2491 /* Update the sizes in the ntfs inode and all is done. */
2492 ni->allocated_size = le32_to_cpu(a->length) -
2493 le16_to_cpu(a->data.resident.value_offset);
2495 * Note ntfs_resident_attr_value_resize() has already done any
2496 * necessary data clearing in the attribute record. When the
2497 * file is being shrunk vmtruncate() will already have cleared
2498 * the top part of the last partial page, i.e. since this is
2499 * the resident case this is the page with index 0. However,
2500 * when the file is being expanded, the page cache page data
2501 * between the old data_size, i.e. old_size, and the new_size
2502 * has not been zeroed. Fortunately, we do not need to zero it
2503 * either since on one hand it will either already be zero due
2504 * to both readpage and writepage clearing partial page data
2505 * beyond i_size in which case there is nothing to do or in the
2506 * case of the file being mmap()ped at the same time, POSIX
2507 * specifies that the behaviour is unspecified thus we do not
2508 * have to do anything. This means that in our implementation
2509 * in the rare case that the file is mmap()ped and a write
2510 * occurred into the mmap()ped region just beyond the file size
2511 * and writepage has not yet been called to write out the page
2512 * (which would clear the area beyond the file size) and we now
2513 * extend the file size to incorporate this dirty region
2514 * outside the file size, a write of the page would result in
2515 * this data being written to disk instead of being cleared.
2516 * Given both POSIX and the Linux mmap(2) man page specify that
2517 * this corner case is undefined, we choose to leave it like
2518 * that as this is much simpler for us as we cannot lock the
2519 * relevant page now since we are holding too many ntfs locks
2520 * which would result in a lock reversal deadlock.
2522 ni->initialized_size = new_size;
2523 write_unlock_irqrestore(&ni->size_lock, flags);
2526 /* If the above resize failed, this must be an attribute extension. */
2527 BUG_ON(size_change < 0);
2529 * We have to drop all the locks so we can call
2530 * ntfs_attr_make_non_resident(). This could be optimised by try-
2531 * locking the first page cache page and only if that fails dropping
2532 * the locks, locking the page, and redoing all the locking and
2533 * lookups. While this would be a huge optimisation, it is not worth
2534 * it as this is definitely a slow code path as it only ever can happen
2535 * once for any given file.
2537 ntfs_attr_put_search_ctx(ctx);
2538 unmap_mft_record(base_ni);
2539 up_write(&ni->runlist.lock);
2541 * Not enough space in the mft record, try to make the attribute
2542 * non-resident and if successful restart the truncation process.
2544 err = ntfs_attr_make_non_resident(ni, old_size);
2546 goto retry_truncate;
2548 * Could not make non-resident. If this is due to this not being
2549 * permitted for this attribute type or there not being enough space,
2550 * try to make other attributes non-resident. Otherwise fail.
2552 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2553 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2554 "type 0x%x, because the conversion from "
2555 "resident to non-resident attribute failed "
2556 "with error code %i.", vi->i_ino,
2557 (unsigned)le32_to_cpu(ni->type), err);
2562 /* TODO: Not implemented from here, abort. */
2564 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2565 "disk for the non-resident attribute value. "
2566 "This case is not implemented yet.");
2567 else /* if (err == -EPERM) */
2568 ntfs_error(vol->sb, "This attribute type may not be "
2569 "non-resident. This case is not implemented "
2574 // TODO: Attempt to make other attributes non-resident.
2576 goto do_resident_extend;
2578 * Both the attribute list attribute and the standard information
2579 * attribute must remain in the base inode. Thus, if this is one of
2580 * these attributes, we have to try to move other attributes out into
2581 * extent mft records instead.
2583 if (ni->type == AT_ATTRIBUTE_LIST ||
2584 ni->type == AT_STANDARD_INFORMATION) {
2585 // TODO: Attempt to move other attributes into extent mft
2589 goto do_resident_extend;
2592 // TODO: Attempt to move this attribute to an extent mft record, but
2593 // only if it is not already the only attribute in an mft record in
2594 // which case there would be nothing to gain.
2597 goto do_resident_extend;
2598 /* There is nothing we can do to make enough space. )-: */
2601 do_non_resident_truncate:
2602 BUG_ON(!NInoNonResident(ni));
2603 if (alloc_change < 0) {
2604 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2605 if (highest_vcn > 0 &&
2606 old_alloc_size >> vol->cluster_size_bits >
2609 * This attribute has multiple extents. Not yet
2612 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2613 "attribute type 0x%x, because the "
2614 "attribute is highly fragmented (it "
2615 "consists of multiple extents) and "
2616 "this case is not implemented yet.",
2618 (unsigned)le32_to_cpu(ni->type));
2624 * If the size is shrinking, need to reduce the initialized_size and
2625 * the data_size before reducing the allocation.
2627 if (size_change < 0) {
2629 * Make the valid size smaller (i_size is already up-to-date).
2631 write_lock_irqsave(&ni->size_lock, flags);
2632 if (new_size < ni->initialized_size) {
2633 ni->initialized_size = new_size;
2634 a->data.non_resident.initialized_size =
2635 cpu_to_sle64(new_size);
2637 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2638 write_unlock_irqrestore(&ni->size_lock, flags);
2639 flush_dcache_mft_record_page(ctx->ntfs_ino);
2640 mark_mft_record_dirty(ctx->ntfs_ino);
2641 /* If the allocated size is not changing, we are done. */
2645 * If the size is shrinking it makes no sense for the
2646 * allocation to be growing.
2648 BUG_ON(alloc_change > 0);
2649 } else /* if (size_change >= 0) */ {
2651 * The file size is growing or staying the same but the
2652 * allocation can be shrinking, growing or staying the same.
2654 if (alloc_change > 0) {
2656 * We need to extend the allocation and possibly update
2657 * the data size. If we are updating the data size,
2658 * since we are not touching the initialized_size we do
2659 * not need to worry about the actual data on disk.
2660 * And as far as the page cache is concerned, there
2661 * will be no pages beyond the old data size and any
2662 * partial region in the last page between the old and
2663 * new data size (or the end of the page if the new
2664 * data size is outside the page) does not need to be
2665 * modified as explained above for the resident
2666 * attribute truncate case. To do this, we simply drop
2667 * the locks we hold and leave all the work to our
2668 * friendly helper ntfs_attr_extend_allocation().
2670 ntfs_attr_put_search_ctx(ctx);
2671 unmap_mft_record(base_ni);
2672 up_write(&ni->runlist.lock);
2673 err = ntfs_attr_extend_allocation(ni, new_size,
2674 size_change > 0 ? new_size : -1, -1);
2676 * ntfs_attr_extend_allocation() will have done error
2684 /* alloc_change < 0 */
2685 /* Free the clusters. */
2686 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2687 vol->cluster_size_bits, -1, ctx);
2690 if (unlikely(nr_freed < 0)) {
2691 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2692 "%lli). Unmount and run chkdsk to recover "
2693 "the lost cluster(s).", (long long)nr_freed);
2697 /* Truncate the runlist. */
2698 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2699 new_alloc_size >> vol->cluster_size_bits);
2701 * If the runlist truncation failed and/or the search context is no
2702 * longer valid, we cannot resize the attribute record or build the
2703 * mapping pairs array thus we mark the inode bad so that no access to
2704 * the freed clusters can happen.
2706 if (unlikely(err || IS_ERR(m))) {
2707 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2709 "restore attribute search context" :
2710 "truncate attribute runlist",
2711 IS_ERR(m) ? PTR_ERR(m) : err, es);
2715 /* Get the size for the shrunk mapping pairs array for the runlist. */
2716 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2717 if (unlikely(mp_size <= 0)) {
2718 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2719 "attribute type 0x%x, because determining the "
2720 "size for the mapping pairs failed with error "
2721 "code %i.%s", vi->i_ino,
2722 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2727 * Shrink the attribute record for the new mapping pairs array. Note,
2728 * this cannot fail since we are making the attribute smaller thus by
2729 * definition there is enough space to do so.
2731 attr_len = le32_to_cpu(a->length);
2732 err = ntfs_attr_record_resize(m, a, mp_size +
2733 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2736 * Generate the mapping pairs array directly into the attribute record.
2738 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2739 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2740 mp_size, ni->runlist.rl, 0, -1, NULL);
2741 if (unlikely(err)) {
2742 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2743 "attribute type 0x%x, because building the "
2744 "mapping pairs failed with error code %i.%s",
2745 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2750 /* Update the allocated/compressed size as well as the highest vcn. */
2751 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2752 vol->cluster_size_bits) - 1);
2753 write_lock_irqsave(&ni->size_lock, flags);
2754 ni->allocated_size = new_alloc_size;
2755 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2756 if (NInoSparse(ni) || NInoCompressed(ni)) {
2758 ni->itype.compressed.size -= nr_freed <<
2759 vol->cluster_size_bits;
2760 BUG_ON(ni->itype.compressed.size < 0);
2761 a->data.non_resident.compressed_size = cpu_to_sle64(
2762 ni->itype.compressed.size);
2763 vi->i_blocks = ni->itype.compressed.size >> 9;
2766 vi->i_blocks = new_alloc_size >> 9;
2767 write_unlock_irqrestore(&ni->size_lock, flags);
2769 * We have shrunk the allocation. If this is a shrinking truncate we
2770 * have already dealt with the initialized_size and the data_size above
2771 * and we are done. If the truncate is only changing the allocation
2772 * and not the data_size, we are also done. If this is an extending
2773 * truncate, need to extend the data_size now which is ensured by the
2774 * fact that @size_change is positive.
2778 * If the size is growing, need to update it now. If it is shrinking,
2779 * we have already updated it above (before the allocation change).
2781 if (size_change > 0)
2782 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2783 /* Ensure the modified mft record is written out. */
2784 flush_dcache_mft_record_page(ctx->ntfs_ino);
2785 mark_mft_record_dirty(ctx->ntfs_ino);
2787 ntfs_attr_put_search_ctx(ctx);
2788 unmap_mft_record(base_ni);
2789 up_write(&ni->runlist.lock);
2791 /* Update the mtime and ctime on the base inode. */
2792 /* normally ->truncate shouldn't update ctime or mtime,
2793 * but ntfs did before so it got a copy & paste version
2794 * of file_update_time. one day someone should fix this
2797 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2798 struct timespec64 now = current_time(VFS_I(base_ni));
2801 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2802 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2804 VFS_I(base_ni)->i_mtime = now;
2805 VFS_I(base_ni)->i_ctime = now;
2808 mark_inode_dirty_sync(VFS_I(base_ni));
2812 NInoClearTruncateFailed(ni);
2813 ntfs_debug("Done.");
2819 if (err != -ENOMEM && err != -EOPNOTSUPP)
2821 if (err != -EOPNOTSUPP)
2822 NInoSetTruncateFailed(ni);
2823 else if (old_size >= 0)
2824 i_size_write(vi, old_size);
2827 ntfs_attr_put_search_ctx(ctx);
2829 unmap_mft_record(base_ni);
2830 up_write(&ni->runlist.lock);
2832 ntfs_debug("Failed. Returning error code %i.", err);
2835 if (err != -ENOMEM && err != -EOPNOTSUPP)
2837 if (err != -EOPNOTSUPP)
2838 NInoSetTruncateFailed(ni);
2840 i_size_write(vi, old_size);
2845 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2846 * @vi: inode for which the i_size was changed
2848 * Wrapper for ntfs_truncate() that has no return value.
2850 * See ntfs_truncate() description above for details.
2853 void ntfs_truncate_vfs(struct inode *vi) {
2859 * ntfs_setattr - called from notify_change() when an attribute is being changed
2860 * @dentry: dentry whose attributes to change
2861 * @attr: structure describing the attributes and the changes
2863 * We have to trap VFS attempts to truncate the file described by @dentry as
2864 * soon as possible, because we do not implement changes in i_size yet. So we
2865 * abort all i_size changes here.
2867 * We also abort all changes of user, group, and mode as we do not implement
2868 * the NTFS ACLs yet.
2870 * Called with ->i_mutex held.
2872 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2874 struct inode *vi = d_inode(dentry);
2876 unsigned int ia_valid = attr->ia_valid;
2878 err = setattr_prepare(dentry, attr);
2881 /* We do not support NTFS ACLs yet. */
2882 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2883 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2884 "supported yet, ignoring.");
2888 if (ia_valid & ATTR_SIZE) {
2889 if (attr->ia_size != i_size_read(vi)) {
2890 ntfs_inode *ni = NTFS_I(vi);
2892 * FIXME: For now we do not support resizing of
2893 * compressed or encrypted files yet.
2895 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2896 ntfs_warning(vi->i_sb, "Changes in inode size "
2897 "are not supported yet for "
2898 "%s files, ignoring.",
2899 NInoCompressed(ni) ?
2900 "compressed" : "encrypted");
2903 truncate_setsize(vi, attr->ia_size);
2904 ntfs_truncate_vfs(vi);
2906 if (err || ia_valid == ATTR_SIZE)
2910 * We skipped the truncate but must still update
2913 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2916 if (ia_valid & ATTR_ATIME)
2917 vi->i_atime = timespec64_trunc(attr->ia_atime,
2918 vi->i_sb->s_time_gran);
2919 if (ia_valid & ATTR_MTIME)
2920 vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2921 vi->i_sb->s_time_gran);
2922 if (ia_valid & ATTR_CTIME)
2923 vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2924 vi->i_sb->s_time_gran);
2925 mark_inode_dirty(vi);
2931 * ntfs_write_inode - write out a dirty inode
2932 * @vi: inode to write out
2933 * @sync: if true, write out synchronously
2935 * Write out a dirty inode to disk including any extent inodes if present.
2937 * If @sync is true, commit the inode to disk and wait for io completion. This
2938 * is done using write_mft_record().
2940 * If @sync is false, just schedule the write to happen but do not wait for i/o
2941 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2942 * marking the page (and in this case mft record) dirty but we do not implement
2943 * this yet as write_mft_record() largely ignores the @sync parameter and
2944 * always performs synchronous writes.
2946 * Return 0 on success and -errno on error.
2948 int __ntfs_write_inode(struct inode *vi, int sync)
2951 ntfs_inode *ni = NTFS_I(vi);
2952 ntfs_attr_search_ctx *ctx;
2954 STANDARD_INFORMATION *si;
2956 bool modified = false;
2958 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2961 * Dirty attribute inodes are written via their real inodes so just
2962 * clean them here. Access time updates are taken care off when the
2963 * real inode is written.
2967 ntfs_debug("Done.");
2970 /* Map, pin, and lock the mft record belonging to the inode. */
2971 m = map_mft_record(ni);
2976 /* Update the access times in the standard information attribute. */
2977 ctx = ntfs_attr_get_search_ctx(ni, m);
2978 if (unlikely(!ctx)) {
2982 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2983 CASE_SENSITIVE, 0, NULL, 0, ctx);
2984 if (unlikely(err)) {
2985 ntfs_attr_put_search_ctx(ctx);
2988 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2989 le16_to_cpu(ctx->attr->data.resident.value_offset));
2990 /* Update the access times if they have changed. */
2991 nt = utc2ntfs(vi->i_mtime);
2992 if (si->last_data_change_time != nt) {
2993 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2994 "new = 0x%llx", vi->i_ino, (long long)
2995 sle64_to_cpu(si->last_data_change_time),
2996 (long long)sle64_to_cpu(nt));
2997 si->last_data_change_time = nt;
3000 nt = utc2ntfs(vi->i_ctime);
3001 if (si->last_mft_change_time != nt) {
3002 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3003 "new = 0x%llx", vi->i_ino, (long long)
3004 sle64_to_cpu(si->last_mft_change_time),
3005 (long long)sle64_to_cpu(nt));
3006 si->last_mft_change_time = nt;
3009 nt = utc2ntfs(vi->i_atime);
3010 if (si->last_access_time != nt) {
3011 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3012 "new = 0x%llx", vi->i_ino,
3013 (long long)sle64_to_cpu(si->last_access_time),
3014 (long long)sle64_to_cpu(nt));
3015 si->last_access_time = nt;
3019 * If we just modified the standard information attribute we need to
3020 * mark the mft record it is in dirty. We do this manually so that
3021 * mark_inode_dirty() is not called which would redirty the inode and
3022 * hence result in an infinite loop of trying to write the inode.
3023 * There is no need to mark the base inode nor the base mft record
3024 * dirty, since we are going to write this mft record below in any case
3025 * and the base mft record may actually not have been modified so it
3026 * might not need to be written out.
3027 * NOTE: It is not a problem when the inode for $MFT itself is being
3028 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3029 * on the $MFT inode and hence ntfs_write_inode() will not be
3030 * re-invoked because of it which in turn is ok since the dirtied mft
3031 * record will be cleaned and written out to disk below, i.e. before
3032 * this function returns.
3035 flush_dcache_mft_record_page(ctx->ntfs_ino);
3036 if (!NInoTestSetDirty(ctx->ntfs_ino))
3037 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3038 ctx->ntfs_ino->page_ofs);
3040 ntfs_attr_put_search_ctx(ctx);
3041 /* Now the access times are updated, write the base mft record. */
3043 err = write_mft_record(ni, m, sync);
3044 /* Write all attached extent mft records. */
3045 mutex_lock(&ni->extent_lock);
3046 if (ni->nr_extents > 0) {
3047 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3050 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3051 for (i = 0; i < ni->nr_extents; i++) {
3052 ntfs_inode *tni = extent_nis[i];
3054 if (NInoDirty(tni)) {
3055 MFT_RECORD *tm = map_mft_record(tni);
3059 if (!err || err == -ENOMEM)
3063 ret = write_mft_record(tni, tm, sync);
3064 unmap_mft_record(tni);
3065 if (unlikely(ret)) {
3066 if (!err || err == -ENOMEM)
3072 mutex_unlock(&ni->extent_lock);
3073 unmap_mft_record(ni);
3076 ntfs_debug("Done.");
3079 unmap_mft_record(ni);
3081 if (err == -ENOMEM) {
3082 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3083 "Marking the inode dirty again, so the VFS "
3085 mark_inode_dirty(vi);
3087 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3088 NVolSetErrors(ni->vol);
3093 #endif /* NTFS_RW */