2 * (C) 1997 Linus Torvalds
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/memblock.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops = {
67 EXPORT_SYMBOL(empty_aops);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 static struct kmem_cache *inode_cachep __read_mostly;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
117 static int no_open(struct inode *inode, struct file *file)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block *sb, struct inode *inode)
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
137 inode->i_blkbits = sb->s_blocksize_bits;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
160 inode->dirtied_when = 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
168 if (security_inode_alloc(inode))
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 atomic_set(&inode->i_dio_count, 0);
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
203 EXPORT_SYMBOL(inode_init_always);
205 void free_inode_nonrcu(struct inode *inode)
207 kmem_cache_free(inode_cachep, inode);
209 EXPORT_SYMBOL(free_inode_nonrcu);
211 static void i_callback(struct rcu_head *head)
213 struct inode *inode = container_of(head, struct inode, i_rcu);
214 if (inode->free_inode)
215 inode->free_inode(inode);
217 free_inode_nonrcu(inode);
220 static struct inode *alloc_inode(struct super_block *sb)
222 const struct super_operations *ops = sb->s_op;
225 if (ops->alloc_inode)
226 inode = ops->alloc_inode(sb);
228 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233 if (unlikely(inode_init_always(sb, inode))) {
234 if (ops->destroy_inode) {
235 ops->destroy_inode(inode);
236 if (!ops->free_inode)
239 inode->free_inode = ops->free_inode;
240 i_callback(&inode->i_rcu);
247 void __destroy_inode(struct inode *inode)
249 BUG_ON(inode_has_buffers(inode));
250 inode_detach_wb(inode);
251 security_inode_free(inode);
252 fsnotify_inode_delete(inode);
253 locks_free_lock_context(inode);
254 if (!inode->i_nlink) {
255 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
256 atomic_long_dec(&inode->i_sb->s_remove_count);
259 #ifdef CONFIG_FS_POSIX_ACL
260 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
261 posix_acl_release(inode->i_acl);
262 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
263 posix_acl_release(inode->i_default_acl);
265 this_cpu_dec(nr_inodes);
267 EXPORT_SYMBOL(__destroy_inode);
269 static void destroy_inode(struct inode *inode)
271 const struct super_operations *ops = inode->i_sb->s_op;
273 BUG_ON(!list_empty(&inode->i_lru));
274 __destroy_inode(inode);
275 if (ops->destroy_inode) {
276 ops->destroy_inode(inode);
277 if (!ops->free_inode)
280 inode->free_inode = ops->free_inode;
281 call_rcu(&inode->i_rcu, i_callback);
285 * drop_nlink - directly drop an inode's link count
288 * This is a low-level filesystem helper to replace any
289 * direct filesystem manipulation of i_nlink. In cases
290 * where we are attempting to track writes to the
291 * filesystem, a decrement to zero means an imminent
292 * write when the file is truncated and actually unlinked
295 void drop_nlink(struct inode *inode)
297 WARN_ON(inode->i_nlink == 0);
300 atomic_long_inc(&inode->i_sb->s_remove_count);
302 EXPORT_SYMBOL(drop_nlink);
305 * clear_nlink - directly zero an inode's link count
308 * This is a low-level filesystem helper to replace any
309 * direct filesystem manipulation of i_nlink. See
310 * drop_nlink() for why we care about i_nlink hitting zero.
312 void clear_nlink(struct inode *inode)
314 if (inode->i_nlink) {
315 inode->__i_nlink = 0;
316 atomic_long_inc(&inode->i_sb->s_remove_count);
319 EXPORT_SYMBOL(clear_nlink);
322 * set_nlink - directly set an inode's link count
324 * @nlink: new nlink (should be non-zero)
326 * This is a low-level filesystem helper to replace any
327 * direct filesystem manipulation of i_nlink.
329 void set_nlink(struct inode *inode, unsigned int nlink)
334 /* Yes, some filesystems do change nlink from zero to one */
335 if (inode->i_nlink == 0)
336 atomic_long_dec(&inode->i_sb->s_remove_count);
338 inode->__i_nlink = nlink;
341 EXPORT_SYMBOL(set_nlink);
344 * inc_nlink - directly increment an inode's link count
347 * This is a low-level filesystem helper to replace any
348 * direct filesystem manipulation of i_nlink. Currently,
349 * it is only here for parity with dec_nlink().
351 void inc_nlink(struct inode *inode)
353 if (unlikely(inode->i_nlink == 0)) {
354 WARN_ON(!(inode->i_state & I_LINKABLE));
355 atomic_long_dec(&inode->i_sb->s_remove_count);
360 EXPORT_SYMBOL(inc_nlink);
362 static void __address_space_init_once(struct address_space *mapping)
364 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ);
365 init_rwsem(&mapping->i_mmap_rwsem);
366 INIT_LIST_HEAD(&mapping->private_list);
367 spin_lock_init(&mapping->private_lock);
368 mapping->i_mmap = RB_ROOT_CACHED;
371 void address_space_init_once(struct address_space *mapping)
373 memset(mapping, 0, sizeof(*mapping));
374 __address_space_init_once(mapping);
376 EXPORT_SYMBOL(address_space_init_once);
379 * These are initializations that only need to be done
380 * once, because the fields are idempotent across use
381 * of the inode, so let the slab aware of that.
383 void inode_init_once(struct inode *inode)
385 memset(inode, 0, sizeof(*inode));
386 INIT_HLIST_NODE(&inode->i_hash);
387 INIT_LIST_HEAD(&inode->i_devices);
388 INIT_LIST_HEAD(&inode->i_io_list);
389 INIT_LIST_HEAD(&inode->i_wb_list);
390 INIT_LIST_HEAD(&inode->i_lru);
391 __address_space_init_once(&inode->i_data);
392 i_size_ordered_init(inode);
394 EXPORT_SYMBOL(inode_init_once);
396 static void init_once(void *foo)
398 struct inode *inode = (struct inode *) foo;
400 inode_init_once(inode);
404 * inode->i_lock must be held
406 void __iget(struct inode *inode)
408 atomic_inc(&inode->i_count);
412 * get additional reference to inode; caller must already hold one.
414 void ihold(struct inode *inode)
416 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
418 EXPORT_SYMBOL(ihold);
420 static void inode_lru_list_add(struct inode *inode)
422 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
423 this_cpu_inc(nr_unused);
425 inode->i_state |= I_REFERENCED;
429 * Add inode to LRU if needed (inode is unused and clean).
431 * Needs inode->i_lock held.
433 void inode_add_lru(struct inode *inode)
435 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
436 I_FREEING | I_WILL_FREE)) &&
437 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
438 inode_lru_list_add(inode);
442 static void inode_lru_list_del(struct inode *inode)
445 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
446 this_cpu_dec(nr_unused);
450 * inode_sb_list_add - add inode to the superblock list of inodes
451 * @inode: inode to add
453 void inode_sb_list_add(struct inode *inode)
455 spin_lock(&inode->i_sb->s_inode_list_lock);
456 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
457 spin_unlock(&inode->i_sb->s_inode_list_lock);
459 EXPORT_SYMBOL_GPL(inode_sb_list_add);
461 static inline void inode_sb_list_del(struct inode *inode)
463 if (!list_empty(&inode->i_sb_list)) {
464 spin_lock(&inode->i_sb->s_inode_list_lock);
465 list_del_init(&inode->i_sb_list);
466 spin_unlock(&inode->i_sb->s_inode_list_lock);
470 static unsigned long hash(struct super_block *sb, unsigned long hashval)
474 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
476 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
477 return tmp & i_hash_mask;
481 * __insert_inode_hash - hash an inode
482 * @inode: unhashed inode
483 * @hashval: unsigned long value used to locate this object in the
486 * Add an inode to the inode hash for this superblock.
488 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
490 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
492 spin_lock(&inode_hash_lock);
493 spin_lock(&inode->i_lock);
494 hlist_add_head(&inode->i_hash, b);
495 spin_unlock(&inode->i_lock);
496 spin_unlock(&inode_hash_lock);
498 EXPORT_SYMBOL(__insert_inode_hash);
501 * __remove_inode_hash - remove an inode from the hash
502 * @inode: inode to unhash
504 * Remove an inode from the superblock.
506 void __remove_inode_hash(struct inode *inode)
508 spin_lock(&inode_hash_lock);
509 spin_lock(&inode->i_lock);
510 hlist_del_init(&inode->i_hash);
511 spin_unlock(&inode->i_lock);
512 spin_unlock(&inode_hash_lock);
514 EXPORT_SYMBOL(__remove_inode_hash);
516 void clear_inode(struct inode *inode)
519 * We have to cycle the i_pages lock here because reclaim can be in the
520 * process of removing the last page (in __delete_from_page_cache())
521 * and we must not free the mapping under it.
523 xa_lock_irq(&inode->i_data.i_pages);
524 BUG_ON(inode->i_data.nrpages);
525 BUG_ON(inode->i_data.nrexceptional);
526 xa_unlock_irq(&inode->i_data.i_pages);
527 BUG_ON(!list_empty(&inode->i_data.private_list));
528 BUG_ON(!(inode->i_state & I_FREEING));
529 BUG_ON(inode->i_state & I_CLEAR);
530 BUG_ON(!list_empty(&inode->i_wb_list));
531 /* don't need i_lock here, no concurrent mods to i_state */
532 inode->i_state = I_FREEING | I_CLEAR;
534 EXPORT_SYMBOL(clear_inode);
537 * Free the inode passed in, removing it from the lists it is still connected
538 * to. We remove any pages still attached to the inode and wait for any IO that
539 * is still in progress before finally destroying the inode.
541 * An inode must already be marked I_FREEING so that we avoid the inode being
542 * moved back onto lists if we race with other code that manipulates the lists
543 * (e.g. writeback_single_inode). The caller is responsible for setting this.
545 * An inode must already be removed from the LRU list before being evicted from
546 * the cache. This should occur atomically with setting the I_FREEING state
547 * flag, so no inodes here should ever be on the LRU when being evicted.
549 static void evict(struct inode *inode)
551 const struct super_operations *op = inode->i_sb->s_op;
553 BUG_ON(!(inode->i_state & I_FREEING));
554 BUG_ON(!list_empty(&inode->i_lru));
556 if (!list_empty(&inode->i_io_list))
557 inode_io_list_del(inode);
559 inode_sb_list_del(inode);
562 * Wait for flusher thread to be done with the inode so that filesystem
563 * does not start destroying it while writeback is still running. Since
564 * the inode has I_FREEING set, flusher thread won't start new work on
565 * the inode. We just have to wait for running writeback to finish.
567 inode_wait_for_writeback(inode);
569 if (op->evict_inode) {
570 op->evict_inode(inode);
572 truncate_inode_pages_final(&inode->i_data);
575 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
577 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
580 remove_inode_hash(inode);
582 spin_lock(&inode->i_lock);
583 wake_up_bit(&inode->i_state, __I_NEW);
584 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
585 spin_unlock(&inode->i_lock);
587 destroy_inode(inode);
591 * dispose_list - dispose of the contents of a local list
592 * @head: the head of the list to free
594 * Dispose-list gets a local list with local inodes in it, so it doesn't
595 * need to worry about list corruption and SMP locks.
597 static void dispose_list(struct list_head *head)
599 while (!list_empty(head)) {
602 inode = list_first_entry(head, struct inode, i_lru);
603 list_del_init(&inode->i_lru);
611 * evict_inodes - evict all evictable inodes for a superblock
612 * @sb: superblock to operate on
614 * Make sure that no inodes with zero refcount are retained. This is
615 * called by superblock shutdown after having SB_ACTIVE flag removed,
616 * so any inode reaching zero refcount during or after that call will
617 * be immediately evicted.
619 void evict_inodes(struct super_block *sb)
621 struct inode *inode, *next;
625 spin_lock(&sb->s_inode_list_lock);
626 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
627 if (atomic_read(&inode->i_count))
630 spin_lock(&inode->i_lock);
631 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
632 spin_unlock(&inode->i_lock);
636 inode->i_state |= I_FREEING;
637 inode_lru_list_del(inode);
638 spin_unlock(&inode->i_lock);
639 list_add(&inode->i_lru, &dispose);
642 * We can have a ton of inodes to evict at unmount time given
643 * enough memory, check to see if we need to go to sleep for a
644 * bit so we don't livelock.
646 if (need_resched()) {
647 spin_unlock(&sb->s_inode_list_lock);
649 dispose_list(&dispose);
653 spin_unlock(&sb->s_inode_list_lock);
655 dispose_list(&dispose);
657 EXPORT_SYMBOL_GPL(evict_inodes);
660 * invalidate_inodes - attempt to free all inodes on a superblock
661 * @sb: superblock to operate on
662 * @kill_dirty: flag to guide handling of dirty inodes
664 * Attempts to free all inodes for a given superblock. If there were any
665 * busy inodes return a non-zero value, else zero.
666 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
669 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
672 struct inode *inode, *next;
675 spin_lock(&sb->s_inode_list_lock);
676 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
677 spin_lock(&inode->i_lock);
678 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
679 spin_unlock(&inode->i_lock);
682 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
683 spin_unlock(&inode->i_lock);
687 if (atomic_read(&inode->i_count)) {
688 spin_unlock(&inode->i_lock);
693 inode->i_state |= I_FREEING;
694 inode_lru_list_del(inode);
695 spin_unlock(&inode->i_lock);
696 list_add(&inode->i_lru, &dispose);
698 spin_unlock(&sb->s_inode_list_lock);
700 dispose_list(&dispose);
706 * Isolate the inode from the LRU in preparation for freeing it.
708 * Any inodes which are pinned purely because of attached pagecache have their
709 * pagecache removed. If the inode has metadata buffers attached to
710 * mapping->private_list then try to remove them.
712 * If the inode has the I_REFERENCED flag set, then it means that it has been
713 * used recently - the flag is set in iput_final(). When we encounter such an
714 * inode, clear the flag and move it to the back of the LRU so it gets another
715 * pass through the LRU before it gets reclaimed. This is necessary because of
716 * the fact we are doing lazy LRU updates to minimise lock contention so the
717 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
718 * with this flag set because they are the inodes that are out of order.
720 static enum lru_status inode_lru_isolate(struct list_head *item,
721 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
723 struct list_head *freeable = arg;
724 struct inode *inode = container_of(item, struct inode, i_lru);
727 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
728 * If we fail to get the lock, just skip it.
730 if (!spin_trylock(&inode->i_lock))
734 * Referenced or dirty inodes are still in use. Give them another pass
735 * through the LRU as we canot reclaim them now.
737 if (atomic_read(&inode->i_count) ||
738 (inode->i_state & ~I_REFERENCED)) {
739 list_lru_isolate(lru, &inode->i_lru);
740 spin_unlock(&inode->i_lock);
741 this_cpu_dec(nr_unused);
745 /* recently referenced inodes get one more pass */
746 if (inode->i_state & I_REFERENCED) {
747 inode->i_state &= ~I_REFERENCED;
748 spin_unlock(&inode->i_lock);
752 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
754 spin_unlock(&inode->i_lock);
755 spin_unlock(lru_lock);
756 if (remove_inode_buffers(inode)) {
758 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
759 if (current_is_kswapd())
760 __count_vm_events(KSWAPD_INODESTEAL, reap);
762 __count_vm_events(PGINODESTEAL, reap);
763 if (current->reclaim_state)
764 current->reclaim_state->reclaimed_slab += reap;
771 WARN_ON(inode->i_state & I_NEW);
772 inode->i_state |= I_FREEING;
773 list_lru_isolate_move(lru, &inode->i_lru, freeable);
774 spin_unlock(&inode->i_lock);
776 this_cpu_dec(nr_unused);
781 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
782 * This is called from the superblock shrinker function with a number of inodes
783 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
784 * then are freed outside inode_lock by dispose_list().
786 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
791 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
792 inode_lru_isolate, &freeable);
793 dispose_list(&freeable);
797 static void __wait_on_freeing_inode(struct inode *inode);
799 * Called with the inode lock held.
801 static struct inode *find_inode(struct super_block *sb,
802 struct hlist_head *head,
803 int (*test)(struct inode *, void *),
806 struct inode *inode = NULL;
809 hlist_for_each_entry(inode, head, i_hash) {
810 if (inode->i_sb != sb)
812 if (!test(inode, data))
814 spin_lock(&inode->i_lock);
815 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
816 __wait_on_freeing_inode(inode);
819 if (unlikely(inode->i_state & I_CREATING)) {
820 spin_unlock(&inode->i_lock);
821 return ERR_PTR(-ESTALE);
824 spin_unlock(&inode->i_lock);
831 * find_inode_fast is the fast path version of find_inode, see the comment at
832 * iget_locked for details.
834 static struct inode *find_inode_fast(struct super_block *sb,
835 struct hlist_head *head, unsigned long ino)
837 struct inode *inode = NULL;
840 hlist_for_each_entry(inode, head, i_hash) {
841 if (inode->i_ino != ino)
843 if (inode->i_sb != sb)
845 spin_lock(&inode->i_lock);
846 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
847 __wait_on_freeing_inode(inode);
850 if (unlikely(inode->i_state & I_CREATING)) {
851 spin_unlock(&inode->i_lock);
852 return ERR_PTR(-ESTALE);
855 spin_unlock(&inode->i_lock);
862 * Each cpu owns a range of LAST_INO_BATCH numbers.
863 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
864 * to renew the exhausted range.
866 * This does not significantly increase overflow rate because every CPU can
867 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
868 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
869 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
870 * overflow rate by 2x, which does not seem too significant.
872 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
873 * error if st_ino won't fit in target struct field. Use 32bit counter
874 * here to attempt to avoid that.
876 #define LAST_INO_BATCH 1024
877 static DEFINE_PER_CPU(unsigned int, last_ino);
879 unsigned int get_next_ino(void)
881 unsigned int *p = &get_cpu_var(last_ino);
882 unsigned int res = *p;
885 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
886 static atomic_t shared_last_ino;
887 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
889 res = next - LAST_INO_BATCH;
894 /* get_next_ino should not provide a 0 inode number */
898 put_cpu_var(last_ino);
901 EXPORT_SYMBOL(get_next_ino);
904 * new_inode_pseudo - obtain an inode
907 * Allocates a new inode for given superblock.
908 * Inode wont be chained in superblock s_inodes list
910 * - fs can't be unmount
911 * - quotas, fsnotify, writeback can't work
913 struct inode *new_inode_pseudo(struct super_block *sb)
915 struct inode *inode = alloc_inode(sb);
918 spin_lock(&inode->i_lock);
920 spin_unlock(&inode->i_lock);
921 INIT_LIST_HEAD(&inode->i_sb_list);
927 * new_inode - obtain an inode
930 * Allocates a new inode for given superblock. The default gfp_mask
931 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
932 * If HIGHMEM pages are unsuitable or it is known that pages allocated
933 * for the page cache are not reclaimable or migratable,
934 * mapping_set_gfp_mask() must be called with suitable flags on the
935 * newly created inode's mapping
938 struct inode *new_inode(struct super_block *sb)
942 spin_lock_prefetch(&sb->s_inode_list_lock);
944 inode = new_inode_pseudo(sb);
946 inode_sb_list_add(inode);
949 EXPORT_SYMBOL(new_inode);
951 #ifdef CONFIG_DEBUG_LOCK_ALLOC
952 void lockdep_annotate_inode_mutex_key(struct inode *inode)
954 if (S_ISDIR(inode->i_mode)) {
955 struct file_system_type *type = inode->i_sb->s_type;
957 /* Set new key only if filesystem hasn't already changed it */
958 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
960 * ensure nobody is actually holding i_mutex
962 // mutex_destroy(&inode->i_mutex);
963 init_rwsem(&inode->i_rwsem);
964 lockdep_set_class(&inode->i_rwsem,
965 &type->i_mutex_dir_key);
969 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
973 * unlock_new_inode - clear the I_NEW state and wake up any waiters
974 * @inode: new inode to unlock
976 * Called when the inode is fully initialised to clear the new state of the
977 * inode and wake up anyone waiting for the inode to finish initialisation.
979 void unlock_new_inode(struct inode *inode)
981 lockdep_annotate_inode_mutex_key(inode);
982 spin_lock(&inode->i_lock);
983 WARN_ON(!(inode->i_state & I_NEW));
984 inode->i_state &= ~I_NEW & ~I_CREATING;
986 wake_up_bit(&inode->i_state, __I_NEW);
987 spin_unlock(&inode->i_lock);
989 EXPORT_SYMBOL(unlock_new_inode);
991 void discard_new_inode(struct inode *inode)
993 lockdep_annotate_inode_mutex_key(inode);
994 spin_lock(&inode->i_lock);
995 WARN_ON(!(inode->i_state & I_NEW));
996 inode->i_state &= ~I_NEW;
998 wake_up_bit(&inode->i_state, __I_NEW);
999 spin_unlock(&inode->i_lock);
1002 EXPORT_SYMBOL(discard_new_inode);
1005 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1007 * Lock any non-NULL argument that is not a directory.
1008 * Zero, one or two objects may be locked by this function.
1010 * @inode1: first inode to lock
1011 * @inode2: second inode to lock
1013 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1015 if (inode1 > inode2)
1016 swap(inode1, inode2);
1018 if (inode1 && !S_ISDIR(inode1->i_mode))
1020 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1021 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1023 EXPORT_SYMBOL(lock_two_nondirectories);
1026 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1027 * @inode1: first inode to unlock
1028 * @inode2: second inode to unlock
1030 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1032 if (inode1 && !S_ISDIR(inode1->i_mode))
1033 inode_unlock(inode1);
1034 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1035 inode_unlock(inode2);
1037 EXPORT_SYMBOL(unlock_two_nondirectories);
1040 * inode_insert5 - obtain an inode from a mounted file system
1041 * @inode: pre-allocated inode to use for insert to cache
1042 * @hashval: hash value (usually inode number) to get
1043 * @test: callback used for comparisons between inodes
1044 * @set: callback used to initialize a new struct inode
1045 * @data: opaque data pointer to pass to @test and @set
1047 * Search for the inode specified by @hashval and @data in the inode cache,
1048 * and if present it is return it with an increased reference count. This is
1049 * a variant of iget5_locked() for callers that don't want to fail on memory
1050 * allocation of inode.
1052 * If the inode is not in cache, insert the pre-allocated inode to cache and
1053 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1054 * to fill it in before unlocking it via unlock_new_inode().
1056 * Note both @test and @set are called with the inode_hash_lock held, so can't
1059 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1060 int (*test)(struct inode *, void *),
1061 int (*set)(struct inode *, void *), void *data)
1063 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1065 bool creating = inode->i_state & I_CREATING;
1068 spin_lock(&inode_hash_lock);
1069 old = find_inode(inode->i_sb, head, test, data);
1070 if (unlikely(old)) {
1072 * Uhhuh, somebody else created the same inode under us.
1073 * Use the old inode instead of the preallocated one.
1075 spin_unlock(&inode_hash_lock);
1079 if (unlikely(inode_unhashed(old))) {
1086 if (set && unlikely(set(inode, data))) {
1092 * Return the locked inode with I_NEW set, the
1093 * caller is responsible for filling in the contents
1095 spin_lock(&inode->i_lock);
1096 inode->i_state |= I_NEW;
1097 hlist_add_head(&inode->i_hash, head);
1098 spin_unlock(&inode->i_lock);
1100 inode_sb_list_add(inode);
1102 spin_unlock(&inode_hash_lock);
1106 EXPORT_SYMBOL(inode_insert5);
1109 * iget5_locked - obtain an inode from a mounted file system
1110 * @sb: super block of file system
1111 * @hashval: hash value (usually inode number) to get
1112 * @test: callback used for comparisons between inodes
1113 * @set: callback used to initialize a new struct inode
1114 * @data: opaque data pointer to pass to @test and @set
1116 * Search for the inode specified by @hashval and @data in the inode cache,
1117 * and if present it is return it with an increased reference count. This is
1118 * a generalized version of iget_locked() for file systems where the inode
1119 * number is not sufficient for unique identification of an inode.
1121 * If the inode is not in cache, allocate a new inode and return it locked,
1122 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1123 * before unlocking it via unlock_new_inode().
1125 * Note both @test and @set are called with the inode_hash_lock held, so can't
1128 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1129 int (*test)(struct inode *, void *),
1130 int (*set)(struct inode *, void *), void *data)
1132 struct inode *inode = ilookup5(sb, hashval, test, data);
1135 struct inode *new = alloc_inode(sb);
1139 inode = inode_insert5(new, hashval, test, set, data);
1140 if (unlikely(inode != new))
1146 EXPORT_SYMBOL(iget5_locked);
1149 * iget_locked - obtain an inode from a mounted file system
1150 * @sb: super block of file system
1151 * @ino: inode number to get
1153 * Search for the inode specified by @ino in the inode cache and if present
1154 * return it with an increased reference count. This is for file systems
1155 * where the inode number is sufficient for unique identification of an inode.
1157 * If the inode is not in cache, allocate a new inode and return it locked,
1158 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1159 * before unlocking it via unlock_new_inode().
1161 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1163 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1164 struct inode *inode;
1166 spin_lock(&inode_hash_lock);
1167 inode = find_inode_fast(sb, head, ino);
1168 spin_unlock(&inode_hash_lock);
1172 wait_on_inode(inode);
1173 if (unlikely(inode_unhashed(inode))) {
1180 inode = alloc_inode(sb);
1184 spin_lock(&inode_hash_lock);
1185 /* We released the lock, so.. */
1186 old = find_inode_fast(sb, head, ino);
1189 spin_lock(&inode->i_lock);
1190 inode->i_state = I_NEW;
1191 hlist_add_head(&inode->i_hash, head);
1192 spin_unlock(&inode->i_lock);
1193 inode_sb_list_add(inode);
1194 spin_unlock(&inode_hash_lock);
1196 /* Return the locked inode with I_NEW set, the
1197 * caller is responsible for filling in the contents
1203 * Uhhuh, somebody else created the same inode under
1204 * us. Use the old inode instead of the one we just
1207 spin_unlock(&inode_hash_lock);
1208 destroy_inode(inode);
1212 wait_on_inode(inode);
1213 if (unlikely(inode_unhashed(inode))) {
1220 EXPORT_SYMBOL(iget_locked);
1223 * search the inode cache for a matching inode number.
1224 * If we find one, then the inode number we are trying to
1225 * allocate is not unique and so we should not use it.
1227 * Returns 1 if the inode number is unique, 0 if it is not.
1229 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1231 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1232 struct inode *inode;
1234 spin_lock(&inode_hash_lock);
1235 hlist_for_each_entry(inode, b, i_hash) {
1236 if (inode->i_ino == ino && inode->i_sb == sb) {
1237 spin_unlock(&inode_hash_lock);
1241 spin_unlock(&inode_hash_lock);
1247 * iunique - get a unique inode number
1249 * @max_reserved: highest reserved inode number
1251 * Obtain an inode number that is unique on the system for a given
1252 * superblock. This is used by file systems that have no natural
1253 * permanent inode numbering system. An inode number is returned that
1254 * is higher than the reserved limit but unique.
1257 * With a large number of inodes live on the file system this function
1258 * currently becomes quite slow.
1260 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1263 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1264 * error if st_ino won't fit in target struct field. Use 32bit counter
1265 * here to attempt to avoid that.
1267 static DEFINE_SPINLOCK(iunique_lock);
1268 static unsigned int counter;
1271 spin_lock(&iunique_lock);
1273 if (counter <= max_reserved)
1274 counter = max_reserved + 1;
1276 } while (!test_inode_iunique(sb, res));
1277 spin_unlock(&iunique_lock);
1281 EXPORT_SYMBOL(iunique);
1283 struct inode *igrab(struct inode *inode)
1285 spin_lock(&inode->i_lock);
1286 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1288 spin_unlock(&inode->i_lock);
1290 spin_unlock(&inode->i_lock);
1292 * Handle the case where s_op->clear_inode is not been
1293 * called yet, and somebody is calling igrab
1294 * while the inode is getting freed.
1300 EXPORT_SYMBOL(igrab);
1303 * ilookup5_nowait - search for an inode in the inode cache
1304 * @sb: super block of file system to search
1305 * @hashval: hash value (usually inode number) to search for
1306 * @test: callback used for comparisons between inodes
1307 * @data: opaque data pointer to pass to @test
1309 * Search for the inode specified by @hashval and @data in the inode cache.
1310 * If the inode is in the cache, the inode is returned with an incremented
1313 * Note: I_NEW is not waited upon so you have to be very careful what you do
1314 * with the returned inode. You probably should be using ilookup5() instead.
1316 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1318 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1319 int (*test)(struct inode *, void *), void *data)
1321 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322 struct inode *inode;
1324 spin_lock(&inode_hash_lock);
1325 inode = find_inode(sb, head, test, data);
1326 spin_unlock(&inode_hash_lock);
1328 return IS_ERR(inode) ? NULL : inode;
1330 EXPORT_SYMBOL(ilookup5_nowait);
1333 * ilookup5 - search for an inode in the inode cache
1334 * @sb: super block of file system to search
1335 * @hashval: hash value (usually inode number) to search for
1336 * @test: callback used for comparisons between inodes
1337 * @data: opaque data pointer to pass to @test
1339 * Search for the inode specified by @hashval and @data in the inode cache,
1340 * and if the inode is in the cache, return the inode with an incremented
1341 * reference count. Waits on I_NEW before returning the inode.
1342 * returned with an incremented reference count.
1344 * This is a generalized version of ilookup() for file systems where the
1345 * inode number is not sufficient for unique identification of an inode.
1347 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1349 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1350 int (*test)(struct inode *, void *), void *data)
1352 struct inode *inode;
1354 inode = ilookup5_nowait(sb, hashval, test, data);
1356 wait_on_inode(inode);
1357 if (unlikely(inode_unhashed(inode))) {
1364 EXPORT_SYMBOL(ilookup5);
1367 * ilookup - search for an inode in the inode cache
1368 * @sb: super block of file system to search
1369 * @ino: inode number to search for
1371 * Search for the inode @ino in the inode cache, and if the inode is in the
1372 * cache, the inode is returned with an incremented reference count.
1374 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1376 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1377 struct inode *inode;
1379 spin_lock(&inode_hash_lock);
1380 inode = find_inode_fast(sb, head, ino);
1381 spin_unlock(&inode_hash_lock);
1386 wait_on_inode(inode);
1387 if (unlikely(inode_unhashed(inode))) {
1394 EXPORT_SYMBOL(ilookup);
1397 * find_inode_nowait - find an inode in the inode cache
1398 * @sb: super block of file system to search
1399 * @hashval: hash value (usually inode number) to search for
1400 * @match: callback used for comparisons between inodes
1401 * @data: opaque data pointer to pass to @match
1403 * Search for the inode specified by @hashval and @data in the inode
1404 * cache, where the helper function @match will return 0 if the inode
1405 * does not match, 1 if the inode does match, and -1 if the search
1406 * should be stopped. The @match function must be responsible for
1407 * taking the i_lock spin_lock and checking i_state for an inode being
1408 * freed or being initialized, and incrementing the reference count
1409 * before returning 1. It also must not sleep, since it is called with
1410 * the inode_hash_lock spinlock held.
1412 * This is a even more generalized version of ilookup5() when the
1413 * function must never block --- find_inode() can block in
1414 * __wait_on_freeing_inode() --- or when the caller can not increment
1415 * the reference count because the resulting iput() might cause an
1416 * inode eviction. The tradeoff is that the @match funtion must be
1417 * very carefully implemented.
1419 struct inode *find_inode_nowait(struct super_block *sb,
1420 unsigned long hashval,
1421 int (*match)(struct inode *, unsigned long,
1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426 struct inode *inode, *ret_inode = NULL;
1429 spin_lock(&inode_hash_lock);
1430 hlist_for_each_entry(inode, head, i_hash) {
1431 if (inode->i_sb != sb)
1433 mval = match(inode, hashval, data);
1441 spin_unlock(&inode_hash_lock);
1444 EXPORT_SYMBOL(find_inode_nowait);
1446 int insert_inode_locked(struct inode *inode)
1448 struct super_block *sb = inode->i_sb;
1449 ino_t ino = inode->i_ino;
1450 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1453 struct inode *old = NULL;
1454 spin_lock(&inode_hash_lock);
1455 hlist_for_each_entry(old, head, i_hash) {
1456 if (old->i_ino != ino)
1458 if (old->i_sb != sb)
1460 spin_lock(&old->i_lock);
1461 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1462 spin_unlock(&old->i_lock);
1468 spin_lock(&inode->i_lock);
1469 inode->i_state |= I_NEW | I_CREATING;
1470 hlist_add_head(&inode->i_hash, head);
1471 spin_unlock(&inode->i_lock);
1472 spin_unlock(&inode_hash_lock);
1475 if (unlikely(old->i_state & I_CREATING)) {
1476 spin_unlock(&old->i_lock);
1477 spin_unlock(&inode_hash_lock);
1481 spin_unlock(&old->i_lock);
1482 spin_unlock(&inode_hash_lock);
1484 if (unlikely(!inode_unhashed(old))) {
1491 EXPORT_SYMBOL(insert_inode_locked);
1493 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1494 int (*test)(struct inode *, void *), void *data)
1498 inode->i_state |= I_CREATING;
1499 old = inode_insert5(inode, hashval, test, NULL, data);
1507 EXPORT_SYMBOL(insert_inode_locked4);
1510 int generic_delete_inode(struct inode *inode)
1514 EXPORT_SYMBOL(generic_delete_inode);
1517 * Called when we're dropping the last reference
1520 * Call the FS "drop_inode()" function, defaulting to
1521 * the legacy UNIX filesystem behaviour. If it tells
1522 * us to evict inode, do so. Otherwise, retain inode
1523 * in cache if fs is alive, sync and evict if fs is
1526 static void iput_final(struct inode *inode)
1528 struct super_block *sb = inode->i_sb;
1529 const struct super_operations *op = inode->i_sb->s_op;
1532 WARN_ON(inode->i_state & I_NEW);
1535 drop = op->drop_inode(inode);
1537 drop = generic_drop_inode(inode);
1539 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1540 inode_add_lru(inode);
1541 spin_unlock(&inode->i_lock);
1546 inode->i_state |= I_WILL_FREE;
1547 spin_unlock(&inode->i_lock);
1548 write_inode_now(inode, 1);
1549 spin_lock(&inode->i_lock);
1550 WARN_ON(inode->i_state & I_NEW);
1551 inode->i_state &= ~I_WILL_FREE;
1554 inode->i_state |= I_FREEING;
1555 if (!list_empty(&inode->i_lru))
1556 inode_lru_list_del(inode);
1557 spin_unlock(&inode->i_lock);
1563 * iput - put an inode
1564 * @inode: inode to put
1566 * Puts an inode, dropping its usage count. If the inode use count hits
1567 * zero, the inode is then freed and may also be destroyed.
1569 * Consequently, iput() can sleep.
1571 void iput(struct inode *inode)
1575 BUG_ON(inode->i_state & I_CLEAR);
1577 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1578 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1579 atomic_inc(&inode->i_count);
1580 spin_unlock(&inode->i_lock);
1581 trace_writeback_lazytime_iput(inode);
1582 mark_inode_dirty_sync(inode);
1588 EXPORT_SYMBOL(iput);
1591 * bmap - find a block number in a file
1592 * @inode: inode of file
1593 * @block: block to find
1595 * Returns the block number on the device holding the inode that
1596 * is the disk block number for the block of the file requested.
1597 * That is, asked for block 4 of inode 1 the function will return the
1598 * disk block relative to the disk start that holds that block of the
1601 sector_t bmap(struct inode *inode, sector_t block)
1604 if (inode->i_mapping->a_ops->bmap)
1605 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1608 EXPORT_SYMBOL(bmap);
1611 * With relative atime, only update atime if the previous atime is
1612 * earlier than either the ctime or mtime or if at least a day has
1613 * passed since the last atime update.
1615 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1616 struct timespec64 now)
1619 if (!(mnt->mnt_flags & MNT_RELATIME))
1622 * Is mtime younger than atime? If yes, update atime:
1624 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1627 * Is ctime younger than atime? If yes, update atime:
1629 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1633 * Is the previous atime value older than a day? If yes,
1636 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1639 * Good, we can skip the atime update:
1644 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1646 int iflags = I_DIRTY_TIME;
1649 if (flags & S_ATIME)
1650 inode->i_atime = *time;
1651 if (flags & S_VERSION)
1652 dirty = inode_maybe_inc_iversion(inode, false);
1653 if (flags & S_CTIME)
1654 inode->i_ctime = *time;
1655 if (flags & S_MTIME)
1656 inode->i_mtime = *time;
1657 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1658 !(inode->i_sb->s_flags & SB_LAZYTIME))
1662 iflags |= I_DIRTY_SYNC;
1663 __mark_inode_dirty(inode, iflags);
1666 EXPORT_SYMBOL(generic_update_time);
1669 * This does the actual work of updating an inodes time or version. Must have
1670 * had called mnt_want_write() before calling this.
1672 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1674 int (*update_time)(struct inode *, struct timespec64 *, int);
1676 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1677 generic_update_time;
1679 return update_time(inode, time, flags);
1683 * touch_atime - update the access time
1684 * @path: the &struct path to update
1685 * @inode: inode to update
1687 * Update the accessed time on an inode and mark it for writeback.
1688 * This function automatically handles read only file systems and media,
1689 * as well as the "noatime" flag and inode specific "noatime" markers.
1691 bool atime_needs_update(const struct path *path, struct inode *inode)
1693 struct vfsmount *mnt = path->mnt;
1694 struct timespec64 now;
1696 if (inode->i_flags & S_NOATIME)
1699 /* Atime updates will likely cause i_uid and i_gid to be written
1700 * back improprely if their true value is unknown to the vfs.
1702 if (HAS_UNMAPPED_ID(inode))
1705 if (IS_NOATIME(inode))
1707 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1710 if (mnt->mnt_flags & MNT_NOATIME)
1712 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1715 now = current_time(inode);
1717 if (!relatime_need_update(mnt, inode, now))
1720 if (timespec64_equal(&inode->i_atime, &now))
1726 void touch_atime(const struct path *path)
1728 struct vfsmount *mnt = path->mnt;
1729 struct inode *inode = d_inode(path->dentry);
1730 struct timespec64 now;
1732 if (!atime_needs_update(path, inode))
1735 if (!sb_start_write_trylock(inode->i_sb))
1738 if (__mnt_want_write(mnt) != 0)
1741 * File systems can error out when updating inodes if they need to
1742 * allocate new space to modify an inode (such is the case for
1743 * Btrfs), but since we touch atime while walking down the path we
1744 * really don't care if we failed to update the atime of the file,
1745 * so just ignore the return value.
1746 * We may also fail on filesystems that have the ability to make parts
1747 * of the fs read only, e.g. subvolumes in Btrfs.
1749 now = current_time(inode);
1750 update_time(inode, &now, S_ATIME);
1751 __mnt_drop_write(mnt);
1753 sb_end_write(inode->i_sb);
1755 EXPORT_SYMBOL(touch_atime);
1758 * The logic we want is
1760 * if suid or (sgid and xgrp)
1763 int should_remove_suid(struct dentry *dentry)
1765 umode_t mode = d_inode(dentry)->i_mode;
1768 /* suid always must be killed */
1769 if (unlikely(mode & S_ISUID))
1770 kill = ATTR_KILL_SUID;
1773 * sgid without any exec bits is just a mandatory locking mark; leave
1774 * it alone. If some exec bits are set, it's a real sgid; kill it.
1776 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1777 kill |= ATTR_KILL_SGID;
1779 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784 EXPORT_SYMBOL(should_remove_suid);
1787 * Return mask of changes for notify_change() that need to be done as a
1788 * response to write or truncate. Return 0 if nothing has to be changed.
1789 * Negative value on error (change should be denied).
1791 int dentry_needs_remove_privs(struct dentry *dentry)
1793 struct inode *inode = d_inode(dentry);
1797 if (IS_NOSEC(inode))
1800 mask = should_remove_suid(dentry);
1801 ret = security_inode_need_killpriv(dentry);
1805 mask |= ATTR_KILL_PRIV;
1809 static int __remove_privs(struct dentry *dentry, int kill)
1811 struct iattr newattrs;
1813 newattrs.ia_valid = ATTR_FORCE | kill;
1815 * Note we call this on write, so notify_change will not
1816 * encounter any conflicting delegations:
1818 return notify_change(dentry, &newattrs, NULL);
1822 * Remove special file priviledges (suid, capabilities) when file is written
1825 int file_remove_privs(struct file *file)
1827 struct dentry *dentry = file_dentry(file);
1828 struct inode *inode = file_inode(file);
1833 * Fast path for nothing security related.
1834 * As well for non-regular files, e.g. blkdev inodes.
1835 * For example, blkdev_write_iter() might get here
1836 * trying to remove privs which it is not allowed to.
1838 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1841 kill = dentry_needs_remove_privs(dentry);
1845 error = __remove_privs(dentry, kill);
1847 inode_has_no_xattr(inode);
1851 EXPORT_SYMBOL(file_remove_privs);
1854 * file_update_time - update mtime and ctime time
1855 * @file: file accessed
1857 * Update the mtime and ctime members of an inode and mark the inode
1858 * for writeback. Note that this function is meant exclusively for
1859 * usage in the file write path of filesystems, and filesystems may
1860 * choose to explicitly ignore update via this function with the
1861 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1862 * timestamps are handled by the server. This can return an error for
1863 * file systems who need to allocate space in order to update an inode.
1866 int file_update_time(struct file *file)
1868 struct inode *inode = file_inode(file);
1869 struct timespec64 now;
1873 /* First try to exhaust all avenues to not sync */
1874 if (IS_NOCMTIME(inode))
1877 now = current_time(inode);
1878 if (!timespec64_equal(&inode->i_mtime, &now))
1881 if (!timespec64_equal(&inode->i_ctime, &now))
1884 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1885 sync_it |= S_VERSION;
1890 /* Finally allowed to write? Takes lock. */
1891 if (__mnt_want_write_file(file))
1894 ret = update_time(inode, &now, sync_it);
1895 __mnt_drop_write_file(file);
1899 EXPORT_SYMBOL(file_update_time);
1901 int inode_needs_sync(struct inode *inode)
1905 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1909 EXPORT_SYMBOL(inode_needs_sync);
1912 * If we try to find an inode in the inode hash while it is being
1913 * deleted, we have to wait until the filesystem completes its
1914 * deletion before reporting that it isn't found. This function waits
1915 * until the deletion _might_ have completed. Callers are responsible
1916 * to recheck inode state.
1918 * It doesn't matter if I_NEW is not set initially, a call to
1919 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1922 static void __wait_on_freeing_inode(struct inode *inode)
1924 wait_queue_head_t *wq;
1925 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1926 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1927 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1928 spin_unlock(&inode->i_lock);
1929 spin_unlock(&inode_hash_lock);
1931 finish_wait(wq, &wait.wq_entry);
1932 spin_lock(&inode_hash_lock);
1935 static __initdata unsigned long ihash_entries;
1936 static int __init set_ihash_entries(char *str)
1940 ihash_entries = simple_strtoul(str, &str, 0);
1943 __setup("ihash_entries=", set_ihash_entries);
1946 * Initialize the waitqueues and inode hash table.
1948 void __init inode_init_early(void)
1950 /* If hashes are distributed across NUMA nodes, defer
1951 * hash allocation until vmalloc space is available.
1957 alloc_large_system_hash("Inode-cache",
1958 sizeof(struct hlist_head),
1961 HASH_EARLY | HASH_ZERO,
1968 void __init inode_init(void)
1970 /* inode slab cache */
1971 inode_cachep = kmem_cache_create("inode_cache",
1972 sizeof(struct inode),
1974 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1975 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1978 /* Hash may have been set up in inode_init_early */
1983 alloc_large_system_hash("Inode-cache",
1984 sizeof(struct hlist_head),
1994 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1996 inode->i_mode = mode;
1997 if (S_ISCHR(mode)) {
1998 inode->i_fop = &def_chr_fops;
1999 inode->i_rdev = rdev;
2000 } else if (S_ISBLK(mode)) {
2001 inode->i_fop = &def_blk_fops;
2002 inode->i_rdev = rdev;
2003 } else if (S_ISFIFO(mode))
2004 inode->i_fop = &pipefifo_fops;
2005 else if (S_ISSOCK(mode))
2006 ; /* leave it no_open_fops */
2008 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2009 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2012 EXPORT_SYMBOL(init_special_inode);
2015 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2017 * @dir: Directory inode
2018 * @mode: mode of the new inode
2020 void inode_init_owner(struct inode *inode, const struct inode *dir,
2023 inode->i_uid = current_fsuid();
2024 if (dir && dir->i_mode & S_ISGID) {
2025 inode->i_gid = dir->i_gid;
2027 /* Directories are special, and always inherit S_ISGID */
2030 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2031 !in_group_p(inode->i_gid) &&
2032 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2035 inode->i_gid = current_fsgid();
2036 inode->i_mode = mode;
2038 EXPORT_SYMBOL(inode_init_owner);
2041 * inode_owner_or_capable - check current task permissions to inode
2042 * @inode: inode being checked
2044 * Return true if current either has CAP_FOWNER in a namespace with the
2045 * inode owner uid mapped, or owns the file.
2047 bool inode_owner_or_capable(const struct inode *inode)
2049 struct user_namespace *ns;
2051 if (uid_eq(current_fsuid(), inode->i_uid))
2054 ns = current_user_ns();
2055 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2059 EXPORT_SYMBOL(inode_owner_or_capable);
2062 * Direct i/o helper functions
2064 static void __inode_dio_wait(struct inode *inode)
2066 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2067 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2070 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2071 if (atomic_read(&inode->i_dio_count))
2073 } while (atomic_read(&inode->i_dio_count));
2074 finish_wait(wq, &q.wq_entry);
2078 * inode_dio_wait - wait for outstanding DIO requests to finish
2079 * @inode: inode to wait for
2081 * Waits for all pending direct I/O requests to finish so that we can
2082 * proceed with a truncate or equivalent operation.
2084 * Must be called under a lock that serializes taking new references
2085 * to i_dio_count, usually by inode->i_mutex.
2087 void inode_dio_wait(struct inode *inode)
2089 if (atomic_read(&inode->i_dio_count))
2090 __inode_dio_wait(inode);
2092 EXPORT_SYMBOL(inode_dio_wait);
2095 * inode_set_flags - atomically set some inode flags
2097 * Note: the caller should be holding i_mutex, or else be sure that
2098 * they have exclusive access to the inode structure (i.e., while the
2099 * inode is being instantiated). The reason for the cmpxchg() loop
2100 * --- which wouldn't be necessary if all code paths which modify
2101 * i_flags actually followed this rule, is that there is at least one
2102 * code path which doesn't today so we use cmpxchg() out of an abundance
2105 * In the long run, i_mutex is overkill, and we should probably look
2106 * at using the i_lock spinlock to protect i_flags, and then make sure
2107 * it is so documented in include/linux/fs.h and that all code follows
2108 * the locking convention!!
2110 void inode_set_flags(struct inode *inode, unsigned int flags,
2113 WARN_ON_ONCE(flags & ~mask);
2114 set_mask_bits(&inode->i_flags, mask, flags);
2116 EXPORT_SYMBOL(inode_set_flags);
2118 void inode_nohighmem(struct inode *inode)
2120 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2122 EXPORT_SYMBOL(inode_nohighmem);
2125 * timespec64_trunc - Truncate timespec64 to a granularity
2127 * @gran: Granularity in ns.
2129 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2130 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2132 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2134 /* Avoid division in the common cases 1 ns and 1 s. */
2137 } else if (gran == NSEC_PER_SEC) {
2139 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2140 t.tv_nsec -= t.tv_nsec % gran;
2142 WARN(1, "illegal file time granularity: %u", gran);
2146 EXPORT_SYMBOL(timespec64_trunc);
2149 * current_time - Return FS time
2152 * Return the current time truncated to the time granularity supported by
2155 * Note that inode and inode->sb cannot be NULL.
2156 * Otherwise, the function warns and returns time without truncation.
2158 struct timespec64 current_time(struct inode *inode)
2160 struct timespec64 now;
2162 ktime_get_coarse_real_ts64(&now);
2164 if (unlikely(!inode->i_sb)) {
2165 WARN(1, "current_time() called with uninitialized super_block in the inode");
2169 return timespec64_trunc(now, inode->i_sb->s_time_gran);
2171 EXPORT_SYMBOL(current_time);