2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
27 #include <linux/compat.h>
28 #include <linux/device.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched/signal.h>
35 #include <linux/sched/mm.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40 #include <linux/mdev.h>
41 #include <linux/notifier.h>
42 #include <linux/dma-iommu.h>
43 #include <linux/irqdomain.h>
45 #define DRIVER_VERSION "0.2"
47 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
49 static bool allow_unsafe_interrupts;
50 module_param_named(allow_unsafe_interrupts,
51 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
52 MODULE_PARM_DESC(allow_unsafe_interrupts,
53 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
55 static bool disable_hugepages;
56 module_param_named(disable_hugepages,
57 disable_hugepages, bool, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(disable_hugepages,
59 "Disable VFIO IOMMU support for IOMMU hugepages.");
61 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
62 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
63 MODULE_PARM_DESC(dma_entry_limit,
64 "Maximum number of user DMA mappings per container (65535).");
67 struct list_head domain_list;
68 struct vfio_domain *external_domain; /* domain for external user */
70 struct rb_root dma_list;
71 struct blocking_notifier_head notifier;
72 unsigned int dma_avail;
78 struct iommu_domain *domain;
79 struct list_head next;
80 struct list_head group_list;
81 int prot; /* IOMMU_CACHE */
82 bool fgsp; /* Fine-grained super pages */
87 dma_addr_t iova; /* Device address */
88 unsigned long vaddr; /* Process virtual addr */
89 size_t size; /* Map size (bytes) */
90 int prot; /* IOMMU_READ/WRITE */
92 bool lock_cap; /* capable(CAP_IPC_LOCK) */
93 struct task_struct *task;
94 struct rb_root pfn_list; /* Ex-user pinned pfn list */
98 struct iommu_group *iommu_group;
99 struct list_head next;
100 bool mdev_group; /* An mdev group */
104 * Guest RAM pinning working set or DMA target
108 dma_addr_t iova; /* Device address */
109 unsigned long pfn; /* Host pfn */
113 struct vfio_regions {
114 struct list_head list;
120 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
121 (!list_empty(&iommu->domain_list))
123 static int put_pfn(unsigned long pfn, int prot);
126 * This code handles mapping and unmapping of user data buffers
127 * into DMA'ble space using the IOMMU
130 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
131 dma_addr_t start, size_t size)
133 struct rb_node *node = iommu->dma_list.rb_node;
136 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
138 if (start + size <= dma->iova)
139 node = node->rb_left;
140 else if (start >= dma->iova + dma->size)
141 node = node->rb_right;
149 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
151 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
152 struct vfio_dma *dma;
156 dma = rb_entry(parent, struct vfio_dma, node);
158 if (new->iova + new->size <= dma->iova)
159 link = &(*link)->rb_left;
161 link = &(*link)->rb_right;
164 rb_link_node(&new->node, parent, link);
165 rb_insert_color(&new->node, &iommu->dma_list);
168 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
170 rb_erase(&old->node, &iommu->dma_list);
174 * Helper Functions for host iova-pfn list
176 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
178 struct vfio_pfn *vpfn;
179 struct rb_node *node = dma->pfn_list.rb_node;
182 vpfn = rb_entry(node, struct vfio_pfn, node);
184 if (iova < vpfn->iova)
185 node = node->rb_left;
186 else if (iova > vpfn->iova)
187 node = node->rb_right;
194 static void vfio_link_pfn(struct vfio_dma *dma,
195 struct vfio_pfn *new)
197 struct rb_node **link, *parent = NULL;
198 struct vfio_pfn *vpfn;
200 link = &dma->pfn_list.rb_node;
203 vpfn = rb_entry(parent, struct vfio_pfn, node);
205 if (new->iova < vpfn->iova)
206 link = &(*link)->rb_left;
208 link = &(*link)->rb_right;
211 rb_link_node(&new->node, parent, link);
212 rb_insert_color(&new->node, &dma->pfn_list);
215 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
217 rb_erase(&old->node, &dma->pfn_list);
220 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
223 struct vfio_pfn *vpfn;
225 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
231 atomic_set(&vpfn->ref_count, 1);
232 vfio_link_pfn(dma, vpfn);
236 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
237 struct vfio_pfn *vpfn)
239 vfio_unlink_pfn(dma, vpfn);
243 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
246 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
249 atomic_inc(&vpfn->ref_count);
253 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
257 if (atomic_dec_and_test(&vpfn->ref_count)) {
258 ret = put_pfn(vpfn->pfn, dma->prot);
259 vfio_remove_from_pfn_list(dma, vpfn);
264 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
266 struct mm_struct *mm;
272 mm = async ? get_task_mm(dma->task) : dma->task->mm;
274 return -ESRCH; /* process exited */
276 ret = down_write_killable(&mm->mmap_sem);
279 if (!dma->lock_cap) {
282 limit = task_rlimit(dma->task,
283 RLIMIT_MEMLOCK) >> PAGE_SHIFT;
285 if (mm->locked_vm + npage > limit)
291 mm->locked_vm += npage;
293 up_write(&mm->mmap_sem);
303 * Some mappings aren't backed by a struct page, for example an mmap'd
304 * MMIO range for our own or another device. These use a different
305 * pfn conversion and shouldn't be tracked as locked pages.
307 static bool is_invalid_reserved_pfn(unsigned long pfn)
309 if (pfn_valid(pfn)) {
311 struct page *tail = pfn_to_page(pfn);
312 struct page *head = compound_head(tail);
313 reserved = !!(PageReserved(head));
316 * "head" is not a dangling pointer
317 * (compound_head takes care of that)
318 * but the hugepage may have been split
319 * from under us (and we may not hold a
320 * reference count on the head page so it can
321 * be reused before we run PageReferenced), so
322 * we've to check PageTail before returning
329 return PageReserved(tail);
335 static int put_pfn(unsigned long pfn, int prot)
337 if (!is_invalid_reserved_pfn(pfn)) {
338 struct page *page = pfn_to_page(pfn);
339 if (prot & IOMMU_WRITE)
347 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
348 int prot, unsigned long *pfn)
350 struct page *page[1];
351 struct vm_area_struct *vma;
352 struct vm_area_struct *vmas[1];
353 unsigned int flags = 0;
356 if (prot & IOMMU_WRITE)
359 down_read(&mm->mmap_sem);
360 if (mm == current->mm) {
361 ret = get_user_pages(vaddr, 1, flags | FOLL_LONGTERM, page,
364 ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
367 * The lifetime of a vaddr_get_pfn() page pin is
368 * userspace-controlled. In the fs-dax case this could
369 * lead to indefinite stalls in filesystem operations.
370 * Disallow attempts to pin fs-dax pages via this
373 if (ret > 0 && vma_is_fsdax(vmas[0])) {
378 up_read(&mm->mmap_sem);
381 *pfn = page_to_pfn(page[0]);
385 down_read(&mm->mmap_sem);
387 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
389 if (vma && vma->vm_flags & VM_PFNMAP) {
390 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
391 if (is_invalid_reserved_pfn(*pfn))
395 up_read(&mm->mmap_sem);
400 * Attempt to pin pages. We really don't want to track all the pfns and
401 * the iommu can only map chunks of consecutive pfns anyway, so get the
402 * first page and all consecutive pages with the same locking.
404 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
405 long npage, unsigned long *pfn_base,
408 unsigned long pfn = 0;
409 long ret, pinned = 0, lock_acct = 0;
411 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
413 /* This code path is only user initiated */
417 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
422 rsvd = is_invalid_reserved_pfn(*pfn_base);
425 * Reserved pages aren't counted against the user, externally pinned
426 * pages are already counted against the user.
428 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
429 if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
430 put_pfn(*pfn_base, dma->prot);
431 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
432 limit << PAGE_SHIFT);
438 if (unlikely(disable_hugepages))
441 /* Lock all the consecutive pages from pfn_base */
442 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
443 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
444 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
448 if (pfn != *pfn_base + pinned ||
449 rsvd != is_invalid_reserved_pfn(pfn)) {
450 put_pfn(pfn, dma->prot);
454 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
455 if (!dma->lock_cap &&
456 current->mm->locked_vm + lock_acct + 1 > limit) {
457 put_pfn(pfn, dma->prot);
458 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
459 __func__, limit << PAGE_SHIFT);
468 ret = vfio_lock_acct(dma, lock_acct, false);
473 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
474 put_pfn(pfn, dma->prot);
483 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
484 unsigned long pfn, long npage,
487 long unlocked = 0, locked = 0;
490 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
491 if (put_pfn(pfn++, dma->prot)) {
493 if (vfio_find_vpfn(dma, iova))
499 vfio_lock_acct(dma, locked - unlocked, true);
504 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
505 unsigned long *pfn_base, bool do_accounting)
507 struct mm_struct *mm;
510 mm = get_task_mm(dma->task);
514 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
515 if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
516 ret = vfio_lock_acct(dma, 1, true);
518 put_pfn(*pfn_base, dma->prot);
520 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
521 "(%ld) exceeded\n", __func__,
522 dma->task->comm, task_pid_nr(dma->task),
523 task_rlimit(dma->task, RLIMIT_MEMLOCK));
531 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
535 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
540 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
543 vfio_lock_acct(dma, -unlocked, true);
548 static int vfio_iommu_type1_pin_pages(void *iommu_data,
549 unsigned long *user_pfn,
551 unsigned long *phys_pfn)
553 struct vfio_iommu *iommu = iommu_data;
555 unsigned long remote_vaddr;
556 struct vfio_dma *dma;
559 if (!iommu || !user_pfn || !phys_pfn)
562 /* Supported for v2 version only */
566 mutex_lock(&iommu->lock);
568 /* Fail if notifier list is empty */
569 if (!iommu->notifier.head) {
575 * If iommu capable domain exist in the container then all pages are
576 * already pinned and accounted. Accouting should be done if there is no
577 * iommu capable domain in the container.
579 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
581 for (i = 0; i < npage; i++) {
583 struct vfio_pfn *vpfn;
585 iova = user_pfn[i] << PAGE_SHIFT;
586 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
592 if ((dma->prot & prot) != prot) {
597 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
599 phys_pfn[i] = vpfn->pfn;
603 remote_vaddr = dma->vaddr + iova - dma->iova;
604 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
609 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
611 vfio_unpin_page_external(dma, iova, do_accounting);
621 for (j = 0; j < i; j++) {
624 iova = user_pfn[j] << PAGE_SHIFT;
625 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
626 vfio_unpin_page_external(dma, iova, do_accounting);
630 mutex_unlock(&iommu->lock);
634 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
635 unsigned long *user_pfn,
638 struct vfio_iommu *iommu = iommu_data;
642 if (!iommu || !user_pfn)
645 /* Supported for v2 version only */
649 mutex_lock(&iommu->lock);
651 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
652 for (i = 0; i < npage; i++) {
653 struct vfio_dma *dma;
656 iova = user_pfn[i] << PAGE_SHIFT;
657 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
660 vfio_unpin_page_external(dma, iova, do_accounting);
664 mutex_unlock(&iommu->lock);
665 return i > npage ? npage : (i > 0 ? i : -EINVAL);
668 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
669 struct list_head *regions)
672 struct vfio_regions *entry, *next;
674 iommu_tlb_sync(domain->domain);
676 list_for_each_entry_safe(entry, next, regions, list) {
677 unlocked += vfio_unpin_pages_remote(dma,
679 entry->phys >> PAGE_SHIFT,
680 entry->len >> PAGE_SHIFT,
682 list_del(&entry->list);
692 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
693 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
694 * of these regions (currently using a list).
696 * This value specifies maximum number of regions for each IOTLB flush sync.
698 #define VFIO_IOMMU_TLB_SYNC_MAX 512
700 static size_t unmap_unpin_fast(struct vfio_domain *domain,
701 struct vfio_dma *dma, dma_addr_t *iova,
702 size_t len, phys_addr_t phys, long *unlocked,
703 struct list_head *unmapped_list,
707 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
710 unmapped = iommu_unmap_fast(domain->domain, *iova, len);
715 iommu_tlb_range_add(domain->domain, *iova, unmapped);
718 entry->len = unmapped;
719 list_add_tail(&entry->list, unmapped_list);
727 * Sync if the number of fast-unmap regions hits the limit
728 * or in case of errors.
730 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
731 *unlocked += vfio_sync_unpin(dma, domain,
739 static size_t unmap_unpin_slow(struct vfio_domain *domain,
740 struct vfio_dma *dma, dma_addr_t *iova,
741 size_t len, phys_addr_t phys,
744 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
747 *unlocked += vfio_unpin_pages_remote(dma, *iova,
749 unmapped >> PAGE_SHIFT,
757 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
760 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
761 struct vfio_domain *domain, *d;
762 LIST_HEAD(unmapped_region_list);
763 int unmapped_region_cnt = 0;
769 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
773 * We use the IOMMU to track the physical addresses, otherwise we'd
774 * need a much more complicated tracking system. Unfortunately that
775 * means we need to use one of the iommu domains to figure out the
776 * pfns to unpin. The rest need to be unmapped in advance so we have
777 * no iommu translations remaining when the pages are unpinned.
779 domain = d = list_first_entry(&iommu->domain_list,
780 struct vfio_domain, next);
782 list_for_each_entry_continue(d, &iommu->domain_list, next) {
783 iommu_unmap(d->domain, dma->iova, dma->size);
788 size_t unmapped, len;
789 phys_addr_t phys, next;
791 phys = iommu_iova_to_phys(domain->domain, iova);
792 if (WARN_ON(!phys)) {
798 * To optimize for fewer iommu_unmap() calls, each of which
799 * may require hardware cache flushing, try to find the
800 * largest contiguous physical memory chunk to unmap.
802 for (len = PAGE_SIZE;
803 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
804 next = iommu_iova_to_phys(domain->domain, iova + len);
805 if (next != phys + len)
810 * First, try to use fast unmap/unpin. In case of failure,
811 * switch to slow unmap/unpin path.
813 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
814 &unlocked, &unmapped_region_list,
815 &unmapped_region_cnt);
817 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
819 if (WARN_ON(!unmapped))
824 dma->iommu_mapped = false;
826 if (unmapped_region_cnt)
827 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list);
830 vfio_lock_acct(dma, -unlocked, true);
836 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
838 vfio_unmap_unpin(iommu, dma, true);
839 vfio_unlink_dma(iommu, dma);
840 put_task_struct(dma->task);
845 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
847 struct vfio_domain *domain;
848 unsigned long bitmap = ULONG_MAX;
850 mutex_lock(&iommu->lock);
851 list_for_each_entry(domain, &iommu->domain_list, next)
852 bitmap &= domain->domain->pgsize_bitmap;
853 mutex_unlock(&iommu->lock);
856 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
857 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
858 * That way the user will be able to map/unmap buffers whose size/
859 * start address is aligned with PAGE_SIZE. Pinning code uses that
860 * granularity while iommu driver can use the sub-PAGE_SIZE size
863 if (bitmap & ~PAGE_MASK) {
871 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
872 struct vfio_iommu_type1_dma_unmap *unmap)
875 struct vfio_dma *dma, *dma_last = NULL;
877 int ret = 0, retries = 0;
879 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
881 if (unmap->iova & mask)
883 if (!unmap->size || unmap->size & mask)
885 if (unmap->iova + unmap->size - 1 < unmap->iova ||
886 unmap->size > SIZE_MAX)
889 WARN_ON(mask & PAGE_MASK);
891 mutex_lock(&iommu->lock);
894 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
895 * avoid tracking individual mappings. This means that the granularity
896 * of the original mapping was lost and the user was allowed to attempt
897 * to unmap any range. Depending on the contiguousness of physical
898 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
899 * or may not have worked. We only guaranteed unmap granularity
900 * matching the original mapping; even though it was untracked here,
901 * the original mappings are reflected in IOMMU mappings. This
902 * resulted in a couple unusual behaviors. First, if a range is not
903 * able to be unmapped, ex. a set of 4k pages that was mapped as a
904 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
905 * a zero sized unmap. Also, if an unmap request overlaps the first
906 * address of a hugepage, the IOMMU will unmap the entire hugepage.
907 * This also returns success and the returned unmap size reflects the
908 * actual size unmapped.
910 * We attempt to maintain compatibility with this "v1" interface, but
911 * we take control out of the hands of the IOMMU. Therefore, an unmap
912 * request offset from the beginning of the original mapping will
913 * return success with zero sized unmap. And an unmap request covering
914 * the first iova of mapping will unmap the entire range.
916 * The v2 version of this interface intends to be more deterministic.
917 * Unmap requests must fully cover previous mappings. Multiple
918 * mappings may still be unmaped by specifying large ranges, but there
919 * must not be any previous mappings bisected by the range. An error
920 * will be returned if these conditions are not met. The v2 interface
921 * will only return success and a size of zero if there were no
922 * mappings within the range.
925 dma = vfio_find_dma(iommu, unmap->iova, 1);
926 if (dma && dma->iova != unmap->iova) {
930 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
931 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
937 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
938 if (!iommu->v2 && unmap->iova > dma->iova)
941 * Task with same address space who mapped this iova range is
942 * allowed to unmap the iova range.
944 if (dma->task->mm != current->mm)
947 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
948 struct vfio_iommu_type1_dma_unmap nb_unmap;
950 if (dma_last == dma) {
951 BUG_ON(++retries > 10);
957 nb_unmap.iova = dma->iova;
958 nb_unmap.size = dma->size;
961 * Notify anyone (mdev vendor drivers) to invalidate and
962 * unmap iovas within the range we're about to unmap.
963 * Vendor drivers MUST unpin pages in response to an
966 mutex_unlock(&iommu->lock);
967 blocking_notifier_call_chain(&iommu->notifier,
968 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
972 unmapped += dma->size;
973 vfio_remove_dma(iommu, dma);
977 mutex_unlock(&iommu->lock);
979 /* Report how much was unmapped */
980 unmap->size = unmapped;
985 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
986 unsigned long pfn, long npage, int prot)
988 struct vfio_domain *d;
991 list_for_each_entry(d, &iommu->domain_list, next) {
992 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
993 npage << PAGE_SHIFT, prot | d->prot);
1003 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
1004 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1009 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1012 dma_addr_t iova = dma->iova;
1013 unsigned long vaddr = dma->vaddr;
1014 size_t size = map_size;
1016 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1020 /* Pin a contiguous chunk of memory */
1021 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1022 size >> PAGE_SHIFT, &pfn, limit);
1030 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1033 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1038 size -= npage << PAGE_SHIFT;
1039 dma->size += npage << PAGE_SHIFT;
1042 dma->iommu_mapped = true;
1045 vfio_remove_dma(iommu, dma);
1050 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1051 struct vfio_iommu_type1_dma_map *map)
1053 dma_addr_t iova = map->iova;
1054 unsigned long vaddr = map->vaddr;
1055 size_t size = map->size;
1056 int ret = 0, prot = 0;
1058 struct vfio_dma *dma;
1060 /* Verify that none of our __u64 fields overflow */
1061 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1064 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
1066 WARN_ON(mask & PAGE_MASK);
1068 /* READ/WRITE from device perspective */
1069 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1070 prot |= IOMMU_WRITE;
1071 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1074 if (!prot || !size || (size | iova | vaddr) & mask)
1077 /* Don't allow IOVA or virtual address wrap */
1078 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
1081 mutex_lock(&iommu->lock);
1083 if (vfio_find_dma(iommu, iova, size)) {
1088 if (!iommu->dma_avail) {
1093 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1105 * We need to be able to both add to a task's locked memory and test
1106 * against the locked memory limit and we need to be able to do both
1107 * outside of this call path as pinning can be asynchronous via the
1108 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1109 * task_struct and VM locked pages requires an mm_struct, however
1110 * holding an indefinite mm reference is not recommended, therefore we
1111 * only hold a reference to a task. We could hold a reference to
1112 * current, however QEMU uses this call path through vCPU threads,
1113 * which can be killed resulting in a NULL mm and failure in the unmap
1114 * path when called via a different thread. Avoid this problem by
1115 * using the group_leader as threads within the same group require
1116 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1119 * Previously we also used the task for testing CAP_IPC_LOCK at the
1120 * time of pinning and accounting, however has_capability() makes use
1121 * of real_cred, a copy-on-write field, so we can't guarantee that it
1122 * matches group_leader, or in fact that it might not change by the
1123 * time it's evaluated. If a process were to call MAP_DMA with
1124 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1125 * possibly see different results for an iommu_mapped vfio_dma vs
1126 * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the
1127 * time of calling MAP_DMA.
1129 get_task_struct(current->group_leader);
1130 dma->task = current->group_leader;
1131 dma->lock_cap = capable(CAP_IPC_LOCK);
1133 dma->pfn_list = RB_ROOT;
1135 /* Insert zero-sized and grow as we map chunks of it */
1136 vfio_link_dma(iommu, dma);
1138 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1139 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1142 ret = vfio_pin_map_dma(iommu, dma, size);
1145 mutex_unlock(&iommu->lock);
1149 static int vfio_bus_type(struct device *dev, void *data)
1151 struct bus_type **bus = data;
1153 if (*bus && *bus != dev->bus)
1161 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1162 struct vfio_domain *domain)
1164 struct vfio_domain *d;
1166 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1169 /* Arbitrarily pick the first domain in the list for lookups */
1170 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1171 n = rb_first(&iommu->dma_list);
1173 for (; n; n = rb_next(n)) {
1174 struct vfio_dma *dma;
1177 dma = rb_entry(n, struct vfio_dma, node);
1180 while (iova < dma->iova + dma->size) {
1184 if (dma->iommu_mapped) {
1188 phys = iommu_iova_to_phys(d->domain, iova);
1190 if (WARN_ON(!phys)) {
1198 while (i < dma->iova + dma->size &&
1199 p == iommu_iova_to_phys(d->domain, i)) {
1206 unsigned long vaddr = dma->vaddr +
1208 size_t n = dma->iova + dma->size - iova;
1211 npage = vfio_pin_pages_remote(dma, vaddr,
1220 phys = pfn << PAGE_SHIFT;
1221 size = npage << PAGE_SHIFT;
1224 ret = iommu_map(domain->domain, iova, phys,
1225 size, dma->prot | domain->prot);
1231 dma->iommu_mapped = true;
1237 * We change our unmap behavior slightly depending on whether the IOMMU
1238 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1239 * for practically any contiguous power-of-two mapping we give it. This means
1240 * we don't need to look for contiguous chunks ourselves to make unmapping
1241 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1242 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1243 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1244 * hugetlbfs is in use.
1246 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1249 int ret, order = get_order(PAGE_SIZE * 2);
1251 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1255 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1256 IOMMU_READ | IOMMU_WRITE | domain->prot);
1258 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1260 if (unmapped == PAGE_SIZE)
1261 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1263 domain->fgsp = true;
1266 __free_pages(pages, order);
1269 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1270 struct iommu_group *iommu_group)
1272 struct vfio_group *g;
1274 list_for_each_entry(g, &domain->group_list, next) {
1275 if (g->iommu_group == iommu_group)
1282 static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
1284 struct list_head group_resv_regions;
1285 struct iommu_resv_region *region, *next;
1288 INIT_LIST_HEAD(&group_resv_regions);
1289 iommu_get_group_resv_regions(group, &group_resv_regions);
1290 list_for_each_entry(region, &group_resv_regions, list) {
1292 * The presence of any 'real' MSI regions should take
1293 * precedence over the software-managed one if the
1294 * IOMMU driver happens to advertise both types.
1296 if (region->type == IOMMU_RESV_MSI) {
1301 if (region->type == IOMMU_RESV_SW_MSI) {
1302 *base = region->start;
1306 list_for_each_entry_safe(region, next, &group_resv_regions, list)
1311 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1313 struct device *(*fn)(struct device *dev);
1314 struct device *iommu_device;
1316 fn = symbol_get(mdev_get_iommu_device);
1318 iommu_device = fn(dev);
1319 symbol_put(mdev_get_iommu_device);
1321 return iommu_device;
1327 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1329 struct iommu_domain *domain = data;
1330 struct device *iommu_device;
1332 iommu_device = vfio_mdev_get_iommu_device(dev);
1334 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1335 return iommu_aux_attach_device(domain, iommu_device);
1337 return iommu_attach_device(domain, iommu_device);
1343 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1345 struct iommu_domain *domain = data;
1346 struct device *iommu_device;
1348 iommu_device = vfio_mdev_get_iommu_device(dev);
1350 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1351 iommu_aux_detach_device(domain, iommu_device);
1353 iommu_detach_device(domain, iommu_device);
1359 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1360 struct vfio_group *group)
1362 if (group->mdev_group)
1363 return iommu_group_for_each_dev(group->iommu_group,
1365 vfio_mdev_attach_domain);
1367 return iommu_attach_group(domain->domain, group->iommu_group);
1370 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1371 struct vfio_group *group)
1373 if (group->mdev_group)
1374 iommu_group_for_each_dev(group->iommu_group, domain->domain,
1375 vfio_mdev_detach_domain);
1377 iommu_detach_group(domain->domain, group->iommu_group);
1380 static bool vfio_bus_is_mdev(struct bus_type *bus)
1382 struct bus_type *mdev_bus;
1385 mdev_bus = symbol_get(mdev_bus_type);
1387 ret = (bus == mdev_bus);
1388 symbol_put(mdev_bus_type);
1394 static int vfio_mdev_iommu_device(struct device *dev, void *data)
1396 struct device **old = data, *new;
1398 new = vfio_mdev_get_iommu_device(dev);
1399 if (!new || (*old && *old != new))
1407 static int vfio_iommu_type1_attach_group(void *iommu_data,
1408 struct iommu_group *iommu_group)
1410 struct vfio_iommu *iommu = iommu_data;
1411 struct vfio_group *group;
1412 struct vfio_domain *domain, *d;
1413 struct bus_type *bus = NULL;
1415 bool resv_msi, msi_remap;
1416 phys_addr_t resv_msi_base;
1418 mutex_lock(&iommu->lock);
1420 list_for_each_entry(d, &iommu->domain_list, next) {
1421 if (find_iommu_group(d, iommu_group)) {
1422 mutex_unlock(&iommu->lock);
1427 if (iommu->external_domain) {
1428 if (find_iommu_group(iommu->external_domain, iommu_group)) {
1429 mutex_unlock(&iommu->lock);
1434 group = kzalloc(sizeof(*group), GFP_KERNEL);
1435 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1436 if (!group || !domain) {
1441 group->iommu_group = iommu_group;
1443 /* Determine bus_type in order to allocate a domain */
1444 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1448 if (vfio_bus_is_mdev(bus)) {
1449 struct device *iommu_device = NULL;
1451 group->mdev_group = true;
1453 /* Determine the isolation type */
1454 ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
1455 vfio_mdev_iommu_device);
1456 if (ret || !iommu_device) {
1457 if (!iommu->external_domain) {
1458 INIT_LIST_HEAD(&domain->group_list);
1459 iommu->external_domain = domain;
1464 list_add(&group->next,
1465 &iommu->external_domain->group_list);
1466 mutex_unlock(&iommu->lock);
1471 bus = iommu_device->bus;
1474 domain->domain = iommu_domain_alloc(bus);
1475 if (!domain->domain) {
1480 if (iommu->nesting) {
1483 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1489 ret = vfio_iommu_attach_group(domain, group);
1493 resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
1495 INIT_LIST_HEAD(&domain->group_list);
1496 list_add(&group->next, &domain->group_list);
1498 msi_remap = irq_domain_check_msi_remap() ||
1499 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1501 if (!allow_unsafe_interrupts && !msi_remap) {
1502 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1508 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1509 domain->prot |= IOMMU_CACHE;
1512 * Try to match an existing compatible domain. We don't want to
1513 * preclude an IOMMU driver supporting multiple bus_types and being
1514 * able to include different bus_types in the same IOMMU domain, so
1515 * we test whether the domains use the same iommu_ops rather than
1516 * testing if they're on the same bus_type.
1518 list_for_each_entry(d, &iommu->domain_list, next) {
1519 if (d->domain->ops == domain->domain->ops &&
1520 d->prot == domain->prot) {
1521 vfio_iommu_detach_group(domain, group);
1522 if (!vfio_iommu_attach_group(d, group)) {
1523 list_add(&group->next, &d->group_list);
1524 iommu_domain_free(domain->domain);
1526 mutex_unlock(&iommu->lock);
1530 ret = vfio_iommu_attach_group(domain, group);
1536 vfio_test_domain_fgsp(domain);
1538 /* replay mappings on new domains */
1539 ret = vfio_iommu_replay(iommu, domain);
1544 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1549 list_add(&domain->next, &iommu->domain_list);
1551 mutex_unlock(&iommu->lock);
1556 vfio_iommu_detach_group(domain, group);
1558 iommu_domain_free(domain->domain);
1562 mutex_unlock(&iommu->lock);
1566 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1568 struct rb_node *node;
1570 while ((node = rb_first(&iommu->dma_list)))
1571 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1574 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1576 struct rb_node *n, *p;
1578 n = rb_first(&iommu->dma_list);
1579 for (; n; n = rb_next(n)) {
1580 struct vfio_dma *dma;
1581 long locked = 0, unlocked = 0;
1583 dma = rb_entry(n, struct vfio_dma, node);
1584 unlocked += vfio_unmap_unpin(iommu, dma, false);
1585 p = rb_first(&dma->pfn_list);
1586 for (; p; p = rb_next(p)) {
1587 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1590 if (!is_invalid_reserved_pfn(vpfn->pfn))
1593 vfio_lock_acct(dma, locked - unlocked, true);
1597 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1601 n = rb_first(&iommu->dma_list);
1602 for (; n; n = rb_next(n)) {
1603 struct vfio_dma *dma;
1605 dma = rb_entry(n, struct vfio_dma, node);
1607 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1610 /* mdev vendor driver must unregister notifier */
1611 WARN_ON(iommu->notifier.head);
1614 static void vfio_iommu_type1_detach_group(void *iommu_data,
1615 struct iommu_group *iommu_group)
1617 struct vfio_iommu *iommu = iommu_data;
1618 struct vfio_domain *domain;
1619 struct vfio_group *group;
1621 mutex_lock(&iommu->lock);
1623 if (iommu->external_domain) {
1624 group = find_iommu_group(iommu->external_domain, iommu_group);
1626 list_del(&group->next);
1629 if (list_empty(&iommu->external_domain->group_list)) {
1630 vfio_sanity_check_pfn_list(iommu);
1632 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1633 vfio_iommu_unmap_unpin_all(iommu);
1635 kfree(iommu->external_domain);
1636 iommu->external_domain = NULL;
1638 goto detach_group_done;
1642 list_for_each_entry(domain, &iommu->domain_list, next) {
1643 group = find_iommu_group(domain, iommu_group);
1647 vfio_iommu_detach_group(domain, group);
1648 list_del(&group->next);
1651 * Group ownership provides privilege, if the group list is
1652 * empty, the domain goes away. If it's the last domain with
1653 * iommu and external domain doesn't exist, then all the
1654 * mappings go away too. If it's the last domain with iommu and
1655 * external domain exist, update accounting
1657 if (list_empty(&domain->group_list)) {
1658 if (list_is_singular(&iommu->domain_list)) {
1659 if (!iommu->external_domain)
1660 vfio_iommu_unmap_unpin_all(iommu);
1662 vfio_iommu_unmap_unpin_reaccount(iommu);
1664 iommu_domain_free(domain->domain);
1665 list_del(&domain->next);
1672 mutex_unlock(&iommu->lock);
1675 static void *vfio_iommu_type1_open(unsigned long arg)
1677 struct vfio_iommu *iommu;
1679 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1681 return ERR_PTR(-ENOMEM);
1684 case VFIO_TYPE1_IOMMU:
1686 case VFIO_TYPE1_NESTING_IOMMU:
1687 iommu->nesting = true;
1689 case VFIO_TYPE1v2_IOMMU:
1694 return ERR_PTR(-EINVAL);
1697 INIT_LIST_HEAD(&iommu->domain_list);
1698 iommu->dma_list = RB_ROOT;
1699 iommu->dma_avail = dma_entry_limit;
1700 mutex_init(&iommu->lock);
1701 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1706 static void vfio_release_domain(struct vfio_domain *domain, bool external)
1708 struct vfio_group *group, *group_tmp;
1710 list_for_each_entry_safe(group, group_tmp,
1711 &domain->group_list, next) {
1713 vfio_iommu_detach_group(domain, group);
1714 list_del(&group->next);
1719 iommu_domain_free(domain->domain);
1722 static void vfio_iommu_type1_release(void *iommu_data)
1724 struct vfio_iommu *iommu = iommu_data;
1725 struct vfio_domain *domain, *domain_tmp;
1727 if (iommu->external_domain) {
1728 vfio_release_domain(iommu->external_domain, true);
1729 vfio_sanity_check_pfn_list(iommu);
1730 kfree(iommu->external_domain);
1733 vfio_iommu_unmap_unpin_all(iommu);
1735 list_for_each_entry_safe(domain, domain_tmp,
1736 &iommu->domain_list, next) {
1737 vfio_release_domain(domain, false);
1738 list_del(&domain->next);
1744 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1746 struct vfio_domain *domain;
1749 mutex_lock(&iommu->lock);
1750 list_for_each_entry(domain, &iommu->domain_list, next) {
1751 if (!(domain->prot & IOMMU_CACHE)) {
1756 mutex_unlock(&iommu->lock);
1761 static long vfio_iommu_type1_ioctl(void *iommu_data,
1762 unsigned int cmd, unsigned long arg)
1764 struct vfio_iommu *iommu = iommu_data;
1765 unsigned long minsz;
1767 if (cmd == VFIO_CHECK_EXTENSION) {
1769 case VFIO_TYPE1_IOMMU:
1770 case VFIO_TYPE1v2_IOMMU:
1771 case VFIO_TYPE1_NESTING_IOMMU:
1773 case VFIO_DMA_CC_IOMMU:
1776 return vfio_domains_have_iommu_cache(iommu);
1780 } else if (cmd == VFIO_IOMMU_GET_INFO) {
1781 struct vfio_iommu_type1_info info;
1783 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1785 if (copy_from_user(&info, (void __user *)arg, minsz))
1788 if (info.argsz < minsz)
1791 info.flags = VFIO_IOMMU_INFO_PGSIZES;
1793 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1795 return copy_to_user((void __user *)arg, &info, minsz) ?
1798 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1799 struct vfio_iommu_type1_dma_map map;
1800 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1801 VFIO_DMA_MAP_FLAG_WRITE;
1803 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1805 if (copy_from_user(&map, (void __user *)arg, minsz))
1808 if (map.argsz < minsz || map.flags & ~mask)
1811 return vfio_dma_do_map(iommu, &map);
1813 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1814 struct vfio_iommu_type1_dma_unmap unmap;
1817 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1819 if (copy_from_user(&unmap, (void __user *)arg, minsz))
1822 if (unmap.argsz < minsz || unmap.flags)
1825 ret = vfio_dma_do_unmap(iommu, &unmap);
1829 return copy_to_user((void __user *)arg, &unmap, minsz) ?
1836 static int vfio_iommu_type1_register_notifier(void *iommu_data,
1837 unsigned long *events,
1838 struct notifier_block *nb)
1840 struct vfio_iommu *iommu = iommu_data;
1842 /* clear known events */
1843 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1845 /* refuse to register if still events remaining */
1849 return blocking_notifier_chain_register(&iommu->notifier, nb);
1852 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1853 struct notifier_block *nb)
1855 struct vfio_iommu *iommu = iommu_data;
1857 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1860 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1861 .name = "vfio-iommu-type1",
1862 .owner = THIS_MODULE,
1863 .open = vfio_iommu_type1_open,
1864 .release = vfio_iommu_type1_release,
1865 .ioctl = vfio_iommu_type1_ioctl,
1866 .attach_group = vfio_iommu_type1_attach_group,
1867 .detach_group = vfio_iommu_type1_detach_group,
1868 .pin_pages = vfio_iommu_type1_pin_pages,
1869 .unpin_pages = vfio_iommu_type1_unpin_pages,
1870 .register_notifier = vfio_iommu_type1_register_notifier,
1871 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
1874 static int __init vfio_iommu_type1_init(void)
1876 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1879 static void __exit vfio_iommu_type1_cleanup(void)
1881 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1884 module_init(vfio_iommu_type1_init);
1885 module_exit(vfio_iommu_type1_cleanup);
1887 MODULE_VERSION(DRIVER_VERSION);
1888 MODULE_LICENSE("GPL v2");
1889 MODULE_AUTHOR(DRIVER_AUTHOR);
1890 MODULE_DESCRIPTION(DRIVER_DESC);