]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/nuc900_nand.c
ARM: dts: imx7s: Enable SNVS power key according to board design
[linux.git] / drivers / mtd / nand / raw / nuc900_nand.c
1 /*
2  * Copyright © 2009 Nuvoton technology corporation.
3  *
4  * Wan ZongShun <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation;version 2 of the License.
9  *
10  */
11
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/platform_device.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/partitions.h>
24
25 #define REG_FMICSR      0x00
26 #define REG_SMCSR       0xa0
27 #define REG_SMISR       0xac
28 #define REG_SMCMD       0xb0
29 #define REG_SMADDR      0xb4
30 #define REG_SMDATA      0xb8
31
32 #define RESET_FMI       0x01
33 #define NAND_EN         0x08
34 #define READYBUSY       (0x01 << 18)
35
36 #define SWRST           0x01
37 #define PSIZE           (0x01 << 3)
38 #define DMARWEN         (0x03 << 1)
39 #define BUSWID          (0x01 << 4)
40 #define ECC4EN          (0x01 << 5)
41 #define WP              (0x01 << 24)
42 #define NANDCS          (0x01 << 25)
43 #define ENDADDR         (0x01 << 31)
44
45 #define read_data_reg(dev)              \
46         __raw_readl((dev)->reg + REG_SMDATA)
47
48 #define write_data_reg(dev, val)        \
49         __raw_writel((val), (dev)->reg + REG_SMDATA)
50
51 #define write_cmd_reg(dev, val)         \
52         __raw_writel((val), (dev)->reg + REG_SMCMD)
53
54 #define write_addr_reg(dev, val)        \
55         __raw_writel((val), (dev)->reg + REG_SMADDR)
56
57 struct nuc900_nand {
58         struct nand_chip chip;
59         void __iomem *reg;
60         struct clk *clk;
61         spinlock_t lock;
62 };
63
64 static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
65 {
66         return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
67 }
68
69 static const struct mtd_partition partitions[] = {
70         {
71          .name = "NAND FS 0",
72          .offset = 0,
73          .size = 8 * 1024 * 1024
74         },
75         {
76          .name = "NAND FS 1",
77          .offset = MTDPART_OFS_APPEND,
78          .size = MTDPART_SIZ_FULL
79         }
80 };
81
82 static unsigned char nuc900_nand_read_byte(struct nand_chip *chip)
83 {
84         unsigned char ret;
85         struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
86
87         ret = (unsigned char)read_data_reg(nand);
88
89         return ret;
90 }
91
92 static void nuc900_nand_read_buf(struct nand_chip *chip,
93                                  unsigned char *buf, int len)
94 {
95         int i;
96         struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
97
98         for (i = 0; i < len; i++)
99                 buf[i] = (unsigned char)read_data_reg(nand);
100 }
101
102 static void nuc900_nand_write_buf(struct nand_chip *chip,
103                                   const unsigned char *buf, int len)
104 {
105         int i;
106         struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
107
108         for (i = 0; i < len; i++)
109                 write_data_reg(nand, buf[i]);
110 }
111
112 static int nuc900_check_rb(struct nuc900_nand *nand)
113 {
114         unsigned int val;
115         spin_lock(&nand->lock);
116         val = __raw_readl(nand->reg + REG_SMISR);
117         val &= READYBUSY;
118         spin_unlock(&nand->lock);
119
120         return val;
121 }
122
123 static int nuc900_nand_devready(struct nand_chip *chip)
124 {
125         struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
126         int ready;
127
128         ready = (nuc900_check_rb(nand)) ? 1 : 0;
129         return ready;
130 }
131
132 static void nuc900_nand_command_lp(struct nand_chip *chip,
133                                    unsigned int command,
134                                    int column, int page_addr)
135 {
136         struct mtd_info *mtd = nand_to_mtd(chip);
137         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
138
139         if (command == NAND_CMD_READOOB) {
140                 column += mtd->writesize;
141                 command = NAND_CMD_READ0;
142         }
143
144         write_cmd_reg(nand, command & 0xff);
145
146         if (column != -1 || page_addr != -1) {
147
148                 if (column != -1) {
149                         if (chip->options & NAND_BUSWIDTH_16 &&
150                                         !nand_opcode_8bits(command))
151                                 column >>= 1;
152                         write_addr_reg(nand, column);
153                         write_addr_reg(nand, column >> 8 | ENDADDR);
154                 }
155                 if (page_addr != -1) {
156                         write_addr_reg(nand, page_addr);
157
158                         if (chip->options & NAND_ROW_ADDR_3) {
159                                 write_addr_reg(nand, page_addr >> 8);
160                                 write_addr_reg(nand, page_addr >> 16 | ENDADDR);
161                         } else {
162                                 write_addr_reg(nand, page_addr >> 8 | ENDADDR);
163                         }
164                 }
165         }
166
167         switch (command) {
168         case NAND_CMD_CACHEDPROG:
169         case NAND_CMD_PAGEPROG:
170         case NAND_CMD_ERASE1:
171         case NAND_CMD_ERASE2:
172         case NAND_CMD_SEQIN:
173         case NAND_CMD_RNDIN:
174         case NAND_CMD_STATUS:
175                 return;
176
177         case NAND_CMD_RESET:
178                 if (chip->legacy.dev_ready)
179                         break;
180                 udelay(chip->legacy.chip_delay);
181
182                 write_cmd_reg(nand, NAND_CMD_STATUS);
183                 write_cmd_reg(nand, command);
184
185                 while (!nuc900_check_rb(nand))
186                         ;
187
188                 return;
189
190         case NAND_CMD_RNDOUT:
191                 write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
192                 return;
193
194         case NAND_CMD_READ0:
195                 write_cmd_reg(nand, NAND_CMD_READSTART);
196                 /* fall through */
197
198         default:
199
200                 if (!chip->legacy.dev_ready) {
201                         udelay(chip->legacy.chip_delay);
202                         return;
203                 }
204         }
205
206         /* Apply this short delay always to ensure that we do wait tWB in
207          * any case on any machine. */
208         ndelay(100);
209
210         while (!chip->legacy.dev_ready(chip))
211                 ;
212 }
213
214
215 static void nuc900_nand_enable(struct nuc900_nand *nand)
216 {
217         unsigned int val;
218         spin_lock(&nand->lock);
219         __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
220
221         val = __raw_readl(nand->reg + REG_FMICSR);
222
223         if (!(val & NAND_EN))
224                 __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
225
226         val = __raw_readl(nand->reg + REG_SMCSR);
227
228         val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
229         val |= WP;
230
231         __raw_writel(val, nand->reg + REG_SMCSR);
232
233         spin_unlock(&nand->lock);
234 }
235
236 static int nuc900_nand_probe(struct platform_device *pdev)
237 {
238         struct nuc900_nand *nuc900_nand;
239         struct nand_chip *chip;
240         struct mtd_info *mtd;
241         struct resource *res;
242
243         nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
244                                    GFP_KERNEL);
245         if (!nuc900_nand)
246                 return -ENOMEM;
247         chip = &(nuc900_nand->chip);
248         mtd = nand_to_mtd(chip);
249
250         mtd->dev.parent         = &pdev->dev;
251         spin_lock_init(&nuc900_nand->lock);
252
253         nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
254         if (IS_ERR(nuc900_nand->clk))
255                 return -ENOENT;
256         clk_enable(nuc900_nand->clk);
257
258         chip->legacy.cmdfunc    = nuc900_nand_command_lp;
259         chip->legacy.dev_ready  = nuc900_nand_devready;
260         chip->legacy.read_byte  = nuc900_nand_read_byte;
261         chip->legacy.write_buf  = nuc900_nand_write_buf;
262         chip->legacy.read_buf   = nuc900_nand_read_buf;
263         chip->legacy.chip_delay = 50;
264         chip->options           = 0;
265         chip->ecc.mode          = NAND_ECC_SOFT;
266         chip->ecc.algo          = NAND_ECC_HAMMING;
267
268         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
269         nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
270         if (IS_ERR(nuc900_nand->reg))
271                 return PTR_ERR(nuc900_nand->reg);
272
273         nuc900_nand_enable(nuc900_nand);
274
275         if (nand_scan(chip, 1))
276                 return -ENXIO;
277
278         mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
279
280         platform_set_drvdata(pdev, nuc900_nand);
281
282         return 0;
283 }
284
285 static int nuc900_nand_remove(struct platform_device *pdev)
286 {
287         struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
288
289         nand_release(&nuc900_nand->chip);
290         clk_disable(nuc900_nand->clk);
291
292         return 0;
293 }
294
295 static struct platform_driver nuc900_nand_driver = {
296         .probe          = nuc900_nand_probe,
297         .remove         = nuc900_nand_remove,
298         .driver         = {
299                 .name   = "nuc900-fmi",
300         },
301 };
302
303 module_platform_driver(nuc900_nand_driver);
304
305 MODULE_AUTHOR("Wan ZongShun <[email protected]>");
306 MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
307 MODULE_LICENSE("GPL");
308 MODULE_ALIAS("platform:nuc900-fmi");
This page took 0.051296 seconds and 4 git commands to generate.