]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/nand_micron.c
ARM: dts: imx7s: Enable SNVS power key according to board design
[linux.git] / drivers / mtd / nand / raw / nand_micron.c
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/slab.h>
19
20 #include "internals.h"
21
22 /*
23  * Special Micron status bit 3 indicates that the block has been
24  * corrected by on-die ECC and should be rewritten.
25  */
26 #define NAND_ECC_STATUS_WRITE_RECOMMENDED       BIT(3)
27
28 /*
29  * On chips with 8-bit ECC and additional bit can be used to distinguish
30  * cases where a errors were corrected without needing a rewrite
31  *
32  * Bit 4 Bit 3 Bit 0 Description
33  * ----- ----- ----- -----------
34  * 0     0     0     No Errors
35  * 0     0     1     Multiple uncorrected errors
36  * 0     1     0     4 - 6 errors corrected, recommend rewrite
37  * 0     1     1     Reserved
38  * 1     0     0     1 - 3 errors corrected
39  * 1     0     1     Reserved
40  * 1     1     0     7 - 8 errors corrected, recommend rewrite
41  */
42 #define NAND_ECC_STATUS_MASK            (BIT(4) | BIT(3) | BIT(0))
43 #define NAND_ECC_STATUS_UNCORRECTABLE   BIT(0)
44 #define NAND_ECC_STATUS_4_6_CORRECTED   BIT(3)
45 #define NAND_ECC_STATUS_1_3_CORRECTED   BIT(4)
46 #define NAND_ECC_STATUS_7_8_CORRECTED   (BIT(4) | BIT(3))
47
48 struct nand_onfi_vendor_micron {
49         u8 two_plane_read;
50         u8 read_cache;
51         u8 read_unique_id;
52         u8 dq_imped;
53         u8 dq_imped_num_settings;
54         u8 dq_imped_feat_addr;
55         u8 rb_pulldown_strength;
56         u8 rb_pulldown_strength_feat_addr;
57         u8 rb_pulldown_strength_num_settings;
58         u8 otp_mode;
59         u8 otp_page_start;
60         u8 otp_data_prot_addr;
61         u8 otp_num_pages;
62         u8 otp_feat_addr;
63         u8 read_retry_options;
64         u8 reserved[72];
65         u8 param_revision;
66 } __packed;
67
68 struct micron_on_die_ecc {
69         bool forced;
70         bool enabled;
71         void *rawbuf;
72 };
73
74 struct micron_nand {
75         struct micron_on_die_ecc ecc;
76 };
77
78 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
79 {
80         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
81
82         return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 }
84
85 /*
86  * Configure chip properties from Micron vendor-specific ONFI table
87  */
88 static int micron_nand_onfi_init(struct nand_chip *chip)
89 {
90         struct nand_parameters *p = &chip->parameters;
91
92         if (p->onfi) {
93                 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
94
95                 chip->read_retries = micron->read_retry_options;
96                 chip->setup_read_retry = micron_nand_setup_read_retry;
97         }
98
99         if (p->supports_set_get_features) {
100                 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101                 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102                 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103                 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104         }
105
106         return 0;
107 }
108
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110                                               int section,
111                                               struct mtd_oob_region *oobregion)
112 {
113         if (section >= 4)
114                 return -ERANGE;
115
116         oobregion->offset = (section * 16) + 8;
117         oobregion->length = 8;
118
119         return 0;
120 }
121
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123                                                int section,
124                                                struct mtd_oob_region *oobregion)
125 {
126         if (section >= 4)
127                 return -ERANGE;
128
129         oobregion->offset = (section * 16) + 2;
130         oobregion->length = 6;
131
132         return 0;
133 }
134
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136         .ecc = micron_nand_on_die_4_ooblayout_ecc,
137         .free = micron_nand_on_die_4_ooblayout_free,
138 };
139
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141                                               int section,
142                                               struct mtd_oob_region *oobregion)
143 {
144         struct nand_chip *chip = mtd_to_nand(mtd);
145
146         if (section)
147                 return -ERANGE;
148
149         oobregion->offset = mtd->oobsize - chip->ecc.total;
150         oobregion->length = chip->ecc.total;
151
152         return 0;
153 }
154
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156                                                int section,
157                                                struct mtd_oob_region *oobregion)
158 {
159         struct nand_chip *chip = mtd_to_nand(mtd);
160
161         if (section)
162                 return -ERANGE;
163
164         oobregion->offset = 2;
165         oobregion->length = mtd->oobsize - chip->ecc.total - 2;
166
167         return 0;
168 }
169
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171         .ecc = micron_nand_on_die_8_ooblayout_ecc,
172         .free = micron_nand_on_die_8_ooblayout_free,
173 };
174
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
176 {
177         struct micron_nand *micron = nand_get_manufacturer_data(chip);
178         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179         int ret;
180
181         if (micron->ecc.forced)
182                 return 0;
183
184         if (micron->ecc.enabled == enable)
185                 return 0;
186
187         if (enable)
188                 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
189
190         ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191         if (!ret)
192                 micron->ecc.enabled = enable;
193
194         return ret;
195 }
196
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198                                            void *buf, int page,
199                                            int oob_required)
200 {
201         struct micron_nand *micron = nand_get_manufacturer_data(chip);
202         struct mtd_info *mtd = nand_to_mtd(chip);
203         unsigned int step, max_bitflips = 0;
204         int ret;
205
206         if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207                 if (status & NAND_STATUS_FAIL)
208                         mtd->ecc_stats.failed++;
209
210                 return 0;
211         }
212
213         /*
214          * The internal ECC doesn't tell us the number of bitflips that have
215          * been corrected, but tells us if it recommends to rewrite the block.
216          * If it's the case, we need to read the page in raw mode and compare
217          * its content to the corrected version to extract the actual number of
218          * bitflips.
219          * But before we do that, we must make sure we have all OOB bytes read
220          * in non-raw mode, even if the user did not request those bytes.
221          */
222         if (!oob_required) {
223                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224                                         false);
225                 if (ret)
226                         return ret;
227         }
228
229         micron_nand_on_die_ecc_setup(chip, false);
230
231         ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232                                 mtd->writesize + mtd->oobsize);
233         if (ret)
234                 return ret;
235
236         for (step = 0; step < chip->ecc.steps; step++) {
237                 unsigned int offs, i, nbitflips = 0;
238                 u8 *rawbuf, *corrbuf;
239
240                 offs = step * chip->ecc.size;
241                 rawbuf = micron->ecc.rawbuf + offs;
242                 corrbuf = buf + offs;
243
244                 for (i = 0; i < chip->ecc.size; i++)
245                         nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
246
247                 offs = (step * 16) + 4;
248                 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249                 corrbuf = chip->oob_poi + offs;
250
251                 for (i = 0; i < chip->ecc.bytes + 4; i++)
252                         nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
253
254                 if (WARN_ON(nbitflips > chip->ecc.strength))
255                         return -EINVAL;
256
257                 max_bitflips = max(nbitflips, max_bitflips);
258                 mtd->ecc_stats.corrected += nbitflips;
259         }
260
261         return max_bitflips;
262 }
263
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
265 {
266         struct mtd_info *mtd = nand_to_mtd(chip);
267
268         /*
269          * With 8/512 we have more information but still don't know precisely
270          * how many bit-flips were seen.
271          */
272         switch (status & NAND_ECC_STATUS_MASK) {
273         case NAND_ECC_STATUS_UNCORRECTABLE:
274                 mtd->ecc_stats.failed++;
275                 return 0;
276         case NAND_ECC_STATUS_1_3_CORRECTED:
277                 mtd->ecc_stats.corrected += 3;
278                 return 3;
279         case NAND_ECC_STATUS_4_6_CORRECTED:
280                 mtd->ecc_stats.corrected += 6;
281                 /* rewrite recommended */
282                 return 6;
283         case NAND_ECC_STATUS_7_8_CORRECTED:
284                 mtd->ecc_stats.corrected += 8;
285                 /* rewrite recommended */
286                 return 8;
287         default:
288                 return 0;
289         }
290 }
291
292 static int
293 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
294                                  int oob_required, int page)
295 {
296         struct mtd_info *mtd = nand_to_mtd(chip);
297         u8 status;
298         int ret, max_bitflips = 0;
299
300         ret = micron_nand_on_die_ecc_setup(chip, true);
301         if (ret)
302                 return ret;
303
304         ret = nand_read_page_op(chip, page, 0, NULL, 0);
305         if (ret)
306                 goto out;
307
308         ret = nand_status_op(chip, &status);
309         if (ret)
310                 goto out;
311
312         ret = nand_exit_status_op(chip);
313         if (ret)
314                 goto out;
315
316         ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317         if (!ret && oob_required)
318                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319                                         false);
320
321         if (chip->ecc.strength == 4)
322                 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323                                                                buf, page,
324                                                                oob_required);
325         else
326                 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
327
328 out:
329         micron_nand_on_die_ecc_setup(chip, false);
330
331         return ret ? ret : max_bitflips;
332 }
333
334 static int
335 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
336                                   int oob_required, int page)
337 {
338         int ret;
339
340         ret = micron_nand_on_die_ecc_setup(chip, true);
341         if (ret)
342                 return ret;
343
344         ret = nand_write_page_raw(chip, buf, oob_required, page);
345         micron_nand_on_die_ecc_setup(chip, false);
346
347         return ret;
348 }
349
350 enum {
351         /* The NAND flash doesn't support on-die ECC */
352         MICRON_ON_DIE_UNSUPPORTED,
353
354         /*
355          * The NAND flash supports on-die ECC and it can be
356          * enabled/disabled by a set features command.
357          */
358         MICRON_ON_DIE_SUPPORTED,
359
360         /*
361          * The NAND flash supports on-die ECC, and it cannot be
362          * disabled.
363          */
364         MICRON_ON_DIE_MANDATORY,
365 };
366
367 #define MICRON_ID_INTERNAL_ECC_MASK     GENMASK(1, 0)
368 #define MICRON_ID_ECC_ENABLED           BIT(7)
369
370 /*
371  * Try to detect if the NAND support on-die ECC. To do this, we enable
372  * the feature, and read back if it has been enabled as expected. We
373  * also check if it can be disabled, because some Micron NANDs do not
374  * allow disabling the on-die ECC and we don't support such NANDs for
375  * now.
376  *
377  * This function also has the side effect of disabling on-die ECC if
378  * it had been left enabled by the firmware/bootloader.
379  */
380 static int micron_supports_on_die_ecc(struct nand_chip *chip)
381 {
382         u8 id[5];
383         int ret;
384
385         if (!chip->parameters.onfi)
386                 return MICRON_ON_DIE_UNSUPPORTED;
387
388         if (nanddev_bits_per_cell(&chip->base) != 1)
389                 return MICRON_ON_DIE_UNSUPPORTED;
390
391         /*
392          * We only support on-die ECC of 4/512 or 8/512
393          */
394         if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
395                 return MICRON_ON_DIE_UNSUPPORTED;
396
397         /* 0x2 means on-die ECC is available. */
398         if (chip->id.len != 5 ||
399             (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
400                 return MICRON_ON_DIE_UNSUPPORTED;
401
402         ret = micron_nand_on_die_ecc_setup(chip, true);
403         if (ret)
404                 return MICRON_ON_DIE_UNSUPPORTED;
405
406         ret = nand_readid_op(chip, 0, id, sizeof(id));
407         if (ret)
408                 return MICRON_ON_DIE_UNSUPPORTED;
409
410         if (!(id[4] & MICRON_ID_ECC_ENABLED))
411                 return MICRON_ON_DIE_UNSUPPORTED;
412
413         ret = micron_nand_on_die_ecc_setup(chip, false);
414         if (ret)
415                 return MICRON_ON_DIE_UNSUPPORTED;
416
417         ret = nand_readid_op(chip, 0, id, sizeof(id));
418         if (ret)
419                 return MICRON_ON_DIE_UNSUPPORTED;
420
421         if (id[4] & MICRON_ID_ECC_ENABLED)
422                 return MICRON_ON_DIE_MANDATORY;
423
424         /*
425          * We only support on-die ECC of 4/512 or 8/512
426          */
427         if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
428                 return MICRON_ON_DIE_UNSUPPORTED;
429
430         return MICRON_ON_DIE_SUPPORTED;
431 }
432
433 static int micron_nand_init(struct nand_chip *chip)
434 {
435         struct mtd_info *mtd = nand_to_mtd(chip);
436         struct micron_nand *micron;
437         int ondie;
438         int ret;
439
440         micron = kzalloc(sizeof(*micron), GFP_KERNEL);
441         if (!micron)
442                 return -ENOMEM;
443
444         nand_set_manufacturer_data(chip, micron);
445
446         ret = micron_nand_onfi_init(chip);
447         if (ret)
448                 goto err_free_manuf_data;
449
450         if (mtd->writesize == 2048)
451                 chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
452
453         ondie = micron_supports_on_die_ecc(chip);
454
455         if (ondie == MICRON_ON_DIE_MANDATORY &&
456             chip->ecc.mode != NAND_ECC_ON_DIE) {
457                 pr_err("On-die ECC forcefully enabled, not supported\n");
458                 ret = -EINVAL;
459                 goto err_free_manuf_data;
460         }
461
462         if (chip->ecc.mode == NAND_ECC_ON_DIE) {
463                 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
464                         pr_err("On-die ECC selected but not supported\n");
465                         ret = -EINVAL;
466                         goto err_free_manuf_data;
467                 }
468
469                 if (ondie == MICRON_ON_DIE_MANDATORY) {
470                         micron->ecc.forced = true;
471                         micron->ecc.enabled = true;
472                 }
473
474                 /*
475                  * In case of 4bit on-die ECC, we need a buffer to store a
476                  * page dumped in raw mode so that we can compare its content
477                  * to the same page after ECC correction happened and extract
478                  * the real number of bitflips from this comparison.
479                  * That's not needed for 8-bit ECC, because the status expose
480                  * a better approximation of the number of bitflips in a page.
481                  */
482                 if (chip->base.eccreq.strength == 4) {
483                         micron->ecc.rawbuf = kmalloc(mtd->writesize +
484                                                      mtd->oobsize,
485                                                      GFP_KERNEL);
486                         if (!micron->ecc.rawbuf) {
487                                 ret = -ENOMEM;
488                                 goto err_free_manuf_data;
489                         }
490                 }
491
492                 if (chip->base.eccreq.strength == 4)
493                         mtd_set_ooblayout(mtd,
494                                           &micron_nand_on_die_4_ooblayout_ops);
495                 else
496                         mtd_set_ooblayout(mtd,
497                                           &micron_nand_on_die_8_ooblayout_ops);
498
499                 chip->ecc.bytes = chip->base.eccreq.strength * 2;
500                 chip->ecc.size = 512;
501                 chip->ecc.strength = chip->base.eccreq.strength;
502                 chip->ecc.algo = NAND_ECC_BCH;
503                 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
504                 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
505
506                 if (ondie == MICRON_ON_DIE_MANDATORY) {
507                         chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
508                         chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
509                 } else {
510                         chip->ecc.read_page_raw = nand_read_page_raw;
511                         chip->ecc.write_page_raw = nand_write_page_raw;
512                 }
513         }
514
515         return 0;
516
517 err_free_manuf_data:
518         kfree(micron->ecc.rawbuf);
519         kfree(micron);
520
521         return ret;
522 }
523
524 static void micron_nand_cleanup(struct nand_chip *chip)
525 {
526         struct micron_nand *micron = nand_get_manufacturer_data(chip);
527
528         kfree(micron->ecc.rawbuf);
529         kfree(micron);
530 }
531
532 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
533                                          struct nand_onfi_params *p)
534 {
535         /*
536          * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
537          * revision number field of the ONFI parameter page. Assume ONFI
538          * version 1.0 if the revision number is 00 00.
539          */
540         if (le16_to_cpu(p->revision) == 0)
541                 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
542 }
543
544 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
545         .init = micron_nand_init,
546         .cleanup = micron_nand_cleanup,
547         .fixup_onfi_param_page = micron_fixup_onfi_param_page,
548 };
This page took 0.064306 seconds and 4 git commands to generate.