2 * MTK NAND Flash controller driver.
3 * Copyright (C) 2016 MediaTek Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
27 #include <linux/of_device.h>
30 /* NAND controller register definition */
31 #define NFI_CNFG (0x00)
32 #define CNFG_AHB BIT(0)
33 #define CNFG_READ_EN BIT(1)
34 #define CNFG_DMA_BURST_EN BIT(2)
35 #define CNFG_BYTE_RW BIT(6)
36 #define CNFG_HW_ECC_EN BIT(8)
37 #define CNFG_AUTO_FMT_EN BIT(9)
38 #define CNFG_OP_CUST (6 << 12)
39 #define NFI_PAGEFMT (0x04)
40 #define PAGEFMT_FDM_ECC_SHIFT (12)
41 #define PAGEFMT_FDM_SHIFT (8)
42 #define PAGEFMT_SEC_SEL_512 BIT(2)
43 #define PAGEFMT_512_2K (0)
44 #define PAGEFMT_2K_4K (1)
45 #define PAGEFMT_4K_8K (2)
46 #define PAGEFMT_8K_16K (3)
48 #define NFI_CON (0x08)
49 #define CON_FIFO_FLUSH BIT(0)
50 #define CON_NFI_RST BIT(1)
51 #define CON_BRD BIT(8) /* burst read */
52 #define CON_BWR BIT(9) /* burst write */
53 #define CON_SEC_SHIFT (12)
54 /* Timming control register */
55 #define NFI_ACCCON (0x0C)
56 #define NFI_INTR_EN (0x10)
57 #define INTR_AHB_DONE_EN BIT(6)
58 #define NFI_INTR_STA (0x14)
59 #define NFI_CMD (0x20)
60 #define NFI_ADDRNOB (0x30)
61 #define NFI_COLADDR (0x34)
62 #define NFI_ROWADDR (0x38)
63 #define NFI_STRDATA (0x40)
66 #define NFI_CNRNB (0x44)
67 #define NFI_DATAW (0x50)
68 #define NFI_DATAR (0x54)
69 #define NFI_PIO_DIRDY (0x58)
70 #define PIO_DI_RDY (0x01)
71 #define NFI_STA (0x60)
72 #define STA_CMD BIT(0)
73 #define STA_ADDR BIT(1)
74 #define STA_BUSY BIT(8)
75 #define STA_EMP_PAGE BIT(12)
76 #define NFI_FSM_CUSTDATA (0xe << 16)
77 #define NFI_FSM_MASK (0xf << 16)
78 #define NFI_ADDRCNTR (0x70)
79 #define CNTR_MASK GENMASK(16, 12)
80 #define ADDRCNTR_SEC_SHIFT (12)
81 #define ADDRCNTR_SEC(val) \
82 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR (0x80)
84 #define NFI_BYTELEN (0x84)
85 #define NFI_CSEL (0x90)
86 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE (8)
89 #define NFI_FDM_MIN_SIZE (1)
90 #define NFI_MASTER_STA (0x224)
91 #define MASTER_STA_MASK (0x0FFF)
92 #define NFI_EMPTY_THRESH (0x23C)
94 #define MTK_NAME "mtk-nand"
95 #define KB(x) ((x) * 1024UL)
96 #define MB(x) (KB(x) * 1024UL)
98 #define MTK_TIMEOUT (500000)
99 #define MTK_RESET_TIMEOUT (1000000)
100 #define MTK_NAND_MAX_NSELS (2)
101 #define MTK_NFC_MIN_SPARE (16)
102 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
103 ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
104 (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
106 struct mtk_nfc_caps {
107 const u8 *spare_size;
109 u8 pageformat_spare_shift;
115 struct mtk_nfc_bad_mark_ctl {
116 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
122 * FDM: region used to store free OOB data
129 struct mtk_nfc_nand_chip {
130 struct list_head node;
131 struct nand_chip nand;
133 struct mtk_nfc_bad_mark_ctl bad_mark;
134 struct mtk_nfc_fdm fdm;
135 u32 spare_per_sector;
139 /* nothing after this field */
148 struct nand_controller controller;
149 struct mtk_ecc_config ecc_cfg;
150 struct mtk_nfc_clk clk;
154 const struct mtk_nfc_caps *caps;
157 struct completion done;
158 struct list_head chips;
164 * supported spare size of each IP.
165 * order should be the same with the spare size bitfiled defination of
166 * register NFI_PAGEFMT.
168 static const u8 spare_size_mt2701[] = {
169 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
172 static const u8 spare_size_mt2712[] = {
173 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
177 static const u8 spare_size_mt7622[] = {
181 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
183 return container_of(nand, struct mtk_nfc_nand_chip, nand);
186 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
188 return (u8 *)p + i * chip->ecc.size;
191 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
193 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
196 /* map the sector's FDM data to free oob:
197 * the beginning of the oob area stores the FDM data of bad mark sectors
200 if (i < mtk_nand->bad_mark.sec)
201 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
202 else if (i == mtk_nand->bad_mark.sec)
205 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
210 static inline int mtk_data_len(struct nand_chip *chip)
212 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
214 return chip->ecc.size + mtk_nand->spare_per_sector;
217 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
219 struct mtk_nfc *nfc = nand_get_controller_data(chip);
221 return nfc->buffer + i * mtk_data_len(chip);
224 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
226 struct mtk_nfc *nfc = nand_get_controller_data(chip);
228 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
231 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
233 writel(val, nfc->regs + reg);
236 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
238 writew(val, nfc->regs + reg);
241 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
243 writeb(val, nfc->regs + reg);
246 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
248 return readl_relaxed(nfc->regs + reg);
251 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
253 return readw_relaxed(nfc->regs + reg);
256 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
258 return readb_relaxed(nfc->regs + reg);
261 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
263 struct device *dev = nfc->dev;
267 /* reset all registers and force the NFI master to terminate */
268 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
270 /* wait for the master to finish the last transaction */
271 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
272 !(val & MASTER_STA_MASK), 50,
275 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
276 NFI_MASTER_STA, val);
278 /* ensure any status register affected by the NFI master is reset */
279 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
280 nfi_writew(nfc, STAR_DE, NFI_STRDATA);
283 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
285 struct device *dev = nfc->dev;
289 nfi_writel(nfc, command, NFI_CMD);
291 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
292 !(val & STA_CMD), 10, MTK_TIMEOUT);
294 dev_warn(dev, "nfi core timed out entering command mode\n");
301 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
303 struct device *dev = nfc->dev;
307 nfi_writel(nfc, addr, NFI_COLADDR);
308 nfi_writel(nfc, 0, NFI_ROWADDR);
309 nfi_writew(nfc, 1, NFI_ADDRNOB);
311 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
312 !(val & STA_ADDR), 10, MTK_TIMEOUT);
314 dev_warn(dev, "nfi core timed out entering address mode\n");
321 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
323 struct nand_chip *chip = mtd_to_nand(mtd);
324 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
325 struct mtk_nfc *nfc = nand_get_controller_data(chip);
331 spare = mtk_nand->spare_per_sector;
333 switch (mtd->writesize) {
335 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
338 if (chip->ecc.size == 512)
339 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
341 fmt = PAGEFMT_512_2K;
344 if (chip->ecc.size == 512)
345 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
350 if (chip->ecc.size == 512)
351 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
356 fmt = PAGEFMT_8K_16K;
359 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
364 * the hardware will double the value for this eccsize, so we need to
367 if (chip->ecc.size == 1024)
370 for (i = 0; i < nfc->caps->num_spare_size; i++) {
371 if (nfc->caps->spare_size[i] == spare)
375 if (i == nfc->caps->num_spare_size) {
376 dev_err(nfc->dev, "invalid spare size %d\n", spare);
380 fmt |= i << nfc->caps->pageformat_spare_shift;
382 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
383 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
384 nfi_writel(nfc, fmt, NFI_PAGEFMT);
386 nfc->ecc_cfg.strength = chip->ecc.strength;
387 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
392 static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
394 struct mtk_nfc *nfc = nand_get_controller_data(nand);
395 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
400 mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
402 nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
405 static int mtk_nfc_dev_ready(struct nand_chip *nand)
407 struct mtk_nfc *nfc = nand_get_controller_data(nand);
409 if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
415 static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
418 struct mtk_nfc *nfc = nand_get_controller_data(chip);
420 if (ctrl & NAND_ALE) {
421 mtk_nfc_send_address(nfc, dat);
422 } else if (ctrl & NAND_CLE) {
423 mtk_nfc_hw_reset(nfc);
425 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
426 mtk_nfc_send_command(nfc, dat);
430 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
435 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
436 val & PIO_DI_RDY, 10, MTK_TIMEOUT);
438 dev_err(nfc->dev, "data not ready\n");
441 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
443 struct mtk_nfc *nfc = nand_get_controller_data(chip);
446 /* after each byte read, the NFI_STA reg is reset by the hardware */
447 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
448 if (reg != NFI_FSM_CUSTDATA) {
449 reg = nfi_readw(nfc, NFI_CNFG);
450 reg |= CNFG_BYTE_RW | CNFG_READ_EN;
451 nfi_writew(nfc, reg, NFI_CNFG);
454 * set to max sector to allow the HW to continue reading over
457 reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
458 nfi_writel(nfc, reg, NFI_CON);
460 /* trigger to fetch data */
461 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
464 mtk_nfc_wait_ioready(nfc);
466 return nfi_readb(nfc, NFI_DATAR);
469 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
473 for (i = 0; i < len; i++)
474 buf[i] = mtk_nfc_read_byte(chip);
477 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
479 struct mtk_nfc *nfc = nand_get_controller_data(chip);
482 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
484 if (reg != NFI_FSM_CUSTDATA) {
485 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
486 nfi_writew(nfc, reg, NFI_CNFG);
488 reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
489 nfi_writel(nfc, reg, NFI_CON);
491 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
494 mtk_nfc_wait_ioready(nfc);
495 nfi_writeb(nfc, byte, NFI_DATAW);
498 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
502 for (i = 0; i < len; i++)
503 mtk_nfc_write_byte(chip, buf[i]);
506 static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
507 const struct nand_data_interface *conf)
509 struct mtk_nfc *nfc = nand_get_controller_data(chip);
510 const struct nand_sdr_timings *timings;
511 u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
513 timings = nand_get_sdr_timings(conf);
517 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
520 rate = clk_get_rate(nfc->clk.nfi_clk);
521 /* There is a frequency divider in some IPs */
522 rate /= nfc->caps->nfi_clk_div;
524 /* turn clock rate into KHZ */
527 tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
528 tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
531 tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
532 tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
535 /* sdr interface has no tCR which means CE# low to RE# low */
538 tw2r = timings->tWHR_min / 1000;
539 tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
540 tw2r = DIV_ROUND_UP(tw2r - 1, 2);
543 twh = max(timings->tREH_min, timings->tWH_min) / 1000;
544 twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
547 twst = timings->tWP_min / 1000;
548 twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
551 trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
552 trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
556 * ACCON: access timing control register
557 * -------------------------------------
558 * 31:28: tpoecs, minimum required time for CS post pulling down after
559 * accessing the device
560 * 27:22: tprecs, minimum required time for CS pre pulling down before
561 * accessing the device
562 * 21:16: tc2r, minimum required time from NCEB low to NREB low
563 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
564 * 11:08: twh, write enable hold time
565 * 07:04: twst, write wait states
566 * 03:00: trlt, read wait states
568 trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
569 nfi_writel(nfc, trlt, NFI_ACCCON);
574 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
576 struct mtk_nfc *nfc = nand_get_controller_data(chip);
577 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
578 int size = chip->ecc.size + mtk_nand->fdm.reg_size;
580 nfc->ecc_cfg.mode = ECC_DMA_MODE;
581 nfc->ecc_cfg.op = ECC_ENCODE;
583 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
586 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
591 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
593 struct nand_chip *chip = mtd_to_nand(mtd);
594 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
595 u32 bad_pos = nand->bad_mark.pos;
598 bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
600 bad_pos += nand->bad_mark.sec * chip->ecc.size;
602 swap(chip->oob_poi[0], buf[bad_pos]);
605 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
606 u32 len, const u8 *buf)
608 struct nand_chip *chip = mtd_to_nand(mtd);
609 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
610 struct mtk_nfc *nfc = nand_get_controller_data(chip);
611 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
615 start = offset / chip->ecc.size;
616 end = DIV_ROUND_UP(offset + len, chip->ecc.size);
618 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
619 for (i = 0; i < chip->ecc.steps; i++) {
620 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
623 if (start > i || i >= end)
626 if (i == mtk_nand->bad_mark.sec)
627 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
629 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
631 /* program the CRC back to the OOB */
632 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
640 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
642 struct nand_chip *chip = mtd_to_nand(mtd);
643 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
644 struct mtk_nfc *nfc = nand_get_controller_data(chip);
645 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
648 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
649 for (i = 0; i < chip->ecc.steps; i++) {
651 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
654 if (i == mtk_nand->bad_mark.sec)
655 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
657 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
661 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
664 struct mtk_nfc *nfc = nand_get_controller_data(chip);
665 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
666 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
671 for (i = 0; i < sectors; i++) {
672 oobptr = oob_ptr(chip, start + i);
673 vall = nfi_readl(nfc, NFI_FDML(i));
674 valm = nfi_readl(nfc, NFI_FDMM(i));
676 for (j = 0; j < fdm->reg_size; j++)
677 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
681 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
683 struct mtk_nfc *nfc = nand_get_controller_data(chip);
684 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
685 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
690 for (i = 0; i < chip->ecc.steps; i++) {
691 oobptr = oob_ptr(chip, i);
694 for (j = 0; j < 8; j++) {
696 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
699 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
702 nfi_writel(nfc, vall, NFI_FDML(i));
703 nfi_writel(nfc, valm, NFI_FDMM(i));
707 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
708 const u8 *buf, int page, int len)
710 struct mtk_nfc *nfc = nand_get_controller_data(chip);
711 struct device *dev = nfc->dev;
716 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
717 ret = dma_mapping_error(nfc->dev, addr);
719 dev_err(nfc->dev, "dma mapping error\n");
723 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
724 nfi_writew(nfc, reg, NFI_CNFG);
726 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
727 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
728 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
730 init_completion(&nfc->done);
732 reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
733 nfi_writel(nfc, reg, NFI_CON);
734 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
736 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
738 dev_err(dev, "program ahb done timeout\n");
739 nfi_writew(nfc, 0, NFI_INTR_EN);
744 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
745 ADDRCNTR_SEC(reg) >= chip->ecc.steps,
748 dev_err(dev, "hwecc write timeout\n");
752 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
753 nfi_writel(nfc, 0, NFI_CON);
758 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
759 const u8 *buf, int page, int raw)
761 struct mtk_nfc *nfc = nand_get_controller_data(chip);
762 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
768 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
771 /* OOB => FDM: from register, ECC: from HW */
772 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
773 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
775 nfc->ecc_cfg.op = ECC_ENCODE;
776 nfc->ecc_cfg.mode = ECC_NFI_MODE;
777 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
779 /* clear NFI config */
780 reg = nfi_readw(nfc, NFI_CNFG);
781 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
782 nfi_writew(nfc, reg, NFI_CNFG);
787 memcpy(nfc->buffer, buf, mtd->writesize);
788 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
789 bufpoi = nfc->buffer;
791 /* write OOB into the FDM registers (OOB area in MTK NAND) */
792 mtk_nfc_write_fdm(chip);
797 len = mtd->writesize + (raw ? mtd->oobsize : 0);
798 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
801 mtk_ecc_disable(nfc->ecc);
806 return nand_prog_page_end_op(chip);
809 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
810 int oob_on, int page)
812 return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
815 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
818 struct mtd_info *mtd = nand_to_mtd(chip);
819 struct mtk_nfc *nfc = nand_get_controller_data(chip);
821 mtk_nfc_format_page(mtd, buf);
822 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
825 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
826 u32 data_len, const u8 *buf,
827 int oob_on, int page)
829 struct mtd_info *mtd = nand_to_mtd(chip);
830 struct mtk_nfc *nfc = nand_get_controller_data(chip);
833 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
837 /* use the data in the private buffer (now with FDM and CRC) */
838 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
841 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
843 return mtk_nfc_write_page_raw(chip, NULL, 1, page);
846 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
848 struct nand_chip *chip = mtd_to_nand(mtd);
849 struct mtk_nfc *nfc = nand_get_controller_data(chip);
850 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
851 struct mtk_ecc_stats stats;
854 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
856 memset(buf, 0xff, sectors * chip->ecc.size);
857 for (i = 0; i < sectors; i++)
858 memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
862 mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
863 mtd->ecc_stats.corrected += stats.corrected;
864 mtd->ecc_stats.failed += stats.failed;
866 return stats.bitflips;
869 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
870 u32 data_offs, u32 readlen,
871 u8 *bufpoi, int page, int raw)
873 struct mtk_nfc *nfc = nand_get_controller_data(chip);
874 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
875 u32 spare = mtk_nand->spare_per_sector;
876 u32 column, sectors, start, end, reg;
883 start = data_offs / chip->ecc.size;
884 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
886 sectors = end - start;
887 column = start * (chip->ecc.size + spare);
889 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
890 buf = bufpoi + start * chip->ecc.size;
892 nand_read_page_op(chip, page, column, NULL, 0);
894 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
895 rc = dma_mapping_error(nfc->dev, addr);
897 dev_err(nfc->dev, "dma mapping error\n");
902 reg = nfi_readw(nfc, NFI_CNFG);
903 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
905 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
906 nfi_writew(nfc, reg, NFI_CNFG);
908 nfc->ecc_cfg.mode = ECC_NFI_MODE;
909 nfc->ecc_cfg.sectors = sectors;
910 nfc->ecc_cfg.op = ECC_DECODE;
911 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
913 dev_err(nfc->dev, "ecc enable\n");
915 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
916 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
917 nfi_writew(nfc, reg, NFI_CNFG);
918 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
923 nfi_writew(nfc, reg, NFI_CNFG);
926 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
927 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
928 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
930 init_completion(&nfc->done);
931 reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
932 nfi_writel(nfc, reg, NFI_CON);
933 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
935 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
937 dev_warn(nfc->dev, "read ahb/dma done timeout\n");
939 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
940 ADDRCNTR_SEC(reg) >= sectors, 10,
943 dev_err(nfc->dev, "subpage done timeout\n");
948 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
949 bitflips = rc < 0 ? -ETIMEDOUT :
950 mtk_nfc_update_ecc_stats(mtd, buf, sectors);
951 mtk_nfc_read_fdm(chip, start, sectors);
955 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
960 mtk_ecc_disable(nfc->ecc);
962 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
963 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
965 nfi_writel(nfc, 0, NFI_CON);
970 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
971 u32 len, u8 *p, int pg)
973 return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
977 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
980 struct mtd_info *mtd = nand_to_mtd(chip);
982 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
985 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
988 struct mtd_info *mtd = nand_to_mtd(chip);
989 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
990 struct mtk_nfc *nfc = nand_get_controller_data(chip);
991 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
994 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
995 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
1000 for (i = 0; i < chip->ecc.steps; i++) {
1001 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1003 if (i == mtk_nand->bad_mark.sec)
1004 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1007 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1014 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1016 return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1019 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1022 * CNRNB: nand ready/busy register
1023 * -------------------------------
1024 * 7:4: timeout register for polling the NAND busy/ready signal
1025 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
1027 nfi_writew(nfc, 0xf1, NFI_CNRNB);
1028 nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1030 mtk_nfc_hw_reset(nfc);
1032 nfi_readl(nfc, NFI_INTR_STA);
1033 nfi_writel(nfc, 0, NFI_INTR_EN);
1036 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1038 struct mtk_nfc *nfc = id;
1041 sta = nfi_readw(nfc, NFI_INTR_STA);
1042 ien = nfi_readw(nfc, NFI_INTR_EN);
1047 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1048 complete(&nfc->done);
1053 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1057 ret = clk_prepare_enable(clk->nfi_clk);
1059 dev_err(dev, "failed to enable nfi clk\n");
1063 ret = clk_prepare_enable(clk->pad_clk);
1065 dev_err(dev, "failed to enable pad clk\n");
1066 clk_disable_unprepare(clk->nfi_clk);
1073 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1075 clk_disable_unprepare(clk->nfi_clk);
1076 clk_disable_unprepare(clk->pad_clk);
1079 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1080 struct mtd_oob_region *oob_region)
1082 struct nand_chip *chip = mtd_to_nand(mtd);
1083 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1084 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1087 eccsteps = mtd->writesize / chip->ecc.size;
1089 if (section >= eccsteps)
1092 oob_region->length = fdm->reg_size - fdm->ecc_size;
1093 oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1098 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1099 struct mtd_oob_region *oob_region)
1101 struct nand_chip *chip = mtd_to_nand(mtd);
1102 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1108 eccsteps = mtd->writesize / chip->ecc.size;
1109 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1110 oob_region->length = mtd->oobsize - oob_region->offset;
1115 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1116 .free = mtk_nfc_ooblayout_free,
1117 .ecc = mtk_nfc_ooblayout_ecc,
1120 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1122 struct nand_chip *nand = mtd_to_nand(mtd);
1123 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1124 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1127 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1128 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1130 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1131 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1132 fdm->reg_size = NFI_FDM_MAX_SIZE;
1134 /* bad block mark storage */
1138 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1139 struct mtd_info *mtd)
1141 struct nand_chip *nand = mtd_to_nand(mtd);
1143 if (mtd->writesize == 512) {
1144 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1146 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1147 bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1148 bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1152 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1154 struct nand_chip *nand = mtd_to_nand(mtd);
1155 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1156 const u8 *spare = nfc->caps->spare_size;
1157 u32 eccsteps, i, closest_spare = 0;
1159 eccsteps = mtd->writesize / nand->ecc.size;
1160 *sps = mtd->oobsize / eccsteps;
1162 if (nand->ecc.size == 1024)
1165 if (*sps < MTK_NFC_MIN_SPARE)
1168 for (i = 0; i < nfc->caps->num_spare_size; i++) {
1169 if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1171 if (*sps == spare[i])
1176 *sps = spare[closest_spare];
1178 if (nand->ecc.size == 1024)
1184 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1186 struct nand_chip *nand = mtd_to_nand(mtd);
1187 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1191 /* support only ecc hw mode */
1192 if (nand->ecc.mode != NAND_ECC_HW) {
1193 dev_err(dev, "ecc.mode not supported\n");
1197 /* if optional dt settings not present */
1198 if (!nand->ecc.size || !nand->ecc.strength) {
1199 /* use datasheet requirements */
1200 nand->ecc.strength = nand->base.eccreq.strength;
1201 nand->ecc.size = nand->base.eccreq.step_size;
1204 * align eccstrength and eccsize
1205 * this controller only supports 512 and 1024 sizes
1207 if (nand->ecc.size < 1024) {
1208 if (mtd->writesize > 512 &&
1209 nfc->caps->max_sector_size > 512) {
1210 nand->ecc.size = 1024;
1211 nand->ecc.strength <<= 1;
1213 nand->ecc.size = 512;
1216 nand->ecc.size = 1024;
1219 ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1223 /* calculate oob bytes except ecc parity data */
1224 free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1226 free = spare - free;
1229 * enhance ecc strength if oob left is bigger than max FDM size
1230 * or reduce ecc strength if oob size is not enough for ecc
1233 if (free > NFI_FDM_MAX_SIZE) {
1234 spare -= NFI_FDM_MAX_SIZE;
1235 nand->ecc.strength = (spare << 3) /
1236 mtk_ecc_get_parity_bits(nfc->ecc);
1237 } else if (free < 0) {
1238 spare -= NFI_FDM_MIN_SIZE;
1239 nand->ecc.strength = (spare << 3) /
1240 mtk_ecc_get_parity_bits(nfc->ecc);
1244 mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1246 dev_info(dev, "eccsize %d eccstrength %d\n",
1247 nand->ecc.size, nand->ecc.strength);
1252 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1254 struct mtd_info *mtd = nand_to_mtd(chip);
1255 struct device *dev = mtd->dev.parent;
1256 struct mtk_nfc *nfc = nand_get_controller_data(chip);
1257 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1261 if (chip->options & NAND_BUSWIDTH_16) {
1262 dev_err(dev, "16bits buswidth not supported");
1266 /* store bbt magic in page, cause OOB is not protected */
1267 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1268 chip->bbt_options |= NAND_BBT_NO_OOB;
1270 ret = mtk_nfc_ecc_init(dev, mtd);
1274 ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1278 mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1279 mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1281 len = mtd->writesize + mtd->oobsize;
1282 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1289 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1290 .attach_chip = mtk_nfc_attach_chip,
1291 .setup_data_interface = mtk_nfc_setup_data_interface,
1294 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1295 struct device_node *np)
1297 struct mtk_nfc_nand_chip *chip;
1298 struct nand_chip *nand;
1299 struct mtd_info *mtd;
1305 if (!of_get_property(np, "reg", &nsels))
1308 nsels /= sizeof(u32);
1309 if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1310 dev_err(dev, "invalid reg property size %d\n", nsels);
1314 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1319 chip->nsels = nsels;
1320 for (i = 0; i < nsels; i++) {
1321 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1323 dev_err(dev, "reg property failure : %d\n", ret);
1326 chip->sels[i] = tmp;
1330 nand->controller = &nfc->controller;
1332 nand_set_flash_node(nand, np);
1333 nand_set_controller_data(nand, nfc);
1335 nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1336 nand->legacy.dev_ready = mtk_nfc_dev_ready;
1337 nand->legacy.select_chip = mtk_nfc_select_chip;
1338 nand->legacy.write_byte = mtk_nfc_write_byte;
1339 nand->legacy.write_buf = mtk_nfc_write_buf;
1340 nand->legacy.read_byte = mtk_nfc_read_byte;
1341 nand->legacy.read_buf = mtk_nfc_read_buf;
1342 nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
1344 /* set default mode in case dt entry is missing */
1345 nand->ecc.mode = NAND_ECC_HW;
1347 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1348 nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1349 nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1350 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1351 nand->ecc.write_oob = mtk_nfc_write_oob_std;
1353 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1354 nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1355 nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1356 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1357 nand->ecc.read_oob = mtk_nfc_read_oob_std;
1359 mtd = nand_to_mtd(nand);
1360 mtd->owner = THIS_MODULE;
1361 mtd->dev.parent = dev;
1362 mtd->name = MTK_NAME;
1363 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1365 mtk_nfc_hw_init(nfc);
1367 ret = nand_scan(nand, nsels);
1371 ret = mtd_device_register(mtd, NULL, 0);
1373 dev_err(dev, "mtd parse partition error\n");
1378 list_add_tail(&chip->node, &nfc->chips);
1383 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1385 struct device_node *np = dev->of_node;
1386 struct device_node *nand_np;
1389 for_each_child_of_node(np, nand_np) {
1390 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1392 of_node_put(nand_np);
1400 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1401 .spare_size = spare_size_mt2701,
1402 .num_spare_size = 16,
1403 .pageformat_spare_shift = 4,
1406 .max_sector_size = 1024,
1409 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1410 .spare_size = spare_size_mt2712,
1411 .num_spare_size = 19,
1412 .pageformat_spare_shift = 16,
1415 .max_sector_size = 1024,
1418 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1419 .spare_size = spare_size_mt7622,
1420 .num_spare_size = 4,
1421 .pageformat_spare_shift = 4,
1424 .max_sector_size = 512,
1427 static const struct of_device_id mtk_nfc_id_table[] = {
1429 .compatible = "mediatek,mt2701-nfc",
1430 .data = &mtk_nfc_caps_mt2701,
1432 .compatible = "mediatek,mt2712-nfc",
1433 .data = &mtk_nfc_caps_mt2712,
1435 .compatible = "mediatek,mt7622-nfc",
1436 .data = &mtk_nfc_caps_mt7622,
1440 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1442 static int mtk_nfc_probe(struct platform_device *pdev)
1444 struct device *dev = &pdev->dev;
1445 struct device_node *np = dev->of_node;
1446 struct mtk_nfc *nfc;
1447 struct resource *res;
1450 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1454 nand_controller_init(&nfc->controller);
1455 INIT_LIST_HEAD(&nfc->chips);
1456 nfc->controller.ops = &mtk_nfc_controller_ops;
1458 /* probe defer if not ready */
1459 nfc->ecc = of_mtk_ecc_get(np);
1460 if (IS_ERR(nfc->ecc))
1461 return PTR_ERR(nfc->ecc);
1465 nfc->caps = of_device_get_match_data(dev);
1468 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1469 nfc->regs = devm_ioremap_resource(dev, res);
1470 if (IS_ERR(nfc->regs)) {
1471 ret = PTR_ERR(nfc->regs);
1475 nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1476 if (IS_ERR(nfc->clk.nfi_clk)) {
1477 dev_err(dev, "no clk\n");
1478 ret = PTR_ERR(nfc->clk.nfi_clk);
1482 nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1483 if (IS_ERR(nfc->clk.pad_clk)) {
1484 dev_err(dev, "no pad clk\n");
1485 ret = PTR_ERR(nfc->clk.pad_clk);
1489 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1493 irq = platform_get_irq(pdev, 0);
1495 dev_err(dev, "no nfi irq resource\n");
1500 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1502 dev_err(dev, "failed to request nfi irq\n");
1506 ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1508 dev_err(dev, "failed to set dma mask\n");
1512 platform_set_drvdata(pdev, nfc);
1514 ret = mtk_nfc_nand_chips_init(dev, nfc);
1516 dev_err(dev, "failed to init nand chips\n");
1523 mtk_nfc_disable_clk(&nfc->clk);
1526 mtk_ecc_release(nfc->ecc);
1531 static int mtk_nfc_remove(struct platform_device *pdev)
1533 struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1534 struct mtk_nfc_nand_chip *chip;
1536 while (!list_empty(&nfc->chips)) {
1537 chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1539 nand_release(&chip->nand);
1540 list_del(&chip->node);
1543 mtk_ecc_release(nfc->ecc);
1544 mtk_nfc_disable_clk(&nfc->clk);
1549 #ifdef CONFIG_PM_SLEEP
1550 static int mtk_nfc_suspend(struct device *dev)
1552 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1554 mtk_nfc_disable_clk(&nfc->clk);
1559 static int mtk_nfc_resume(struct device *dev)
1561 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1562 struct mtk_nfc_nand_chip *chip;
1563 struct nand_chip *nand;
1569 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1573 /* reset NAND chip if VCC was powered off */
1574 list_for_each_entry(chip, &nfc->chips, node) {
1576 for (i = 0; i < chip->nsels; i++)
1577 nand_reset(nand, i);
1583 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1586 static struct platform_driver mtk_nfc_driver = {
1587 .probe = mtk_nfc_probe,
1588 .remove = mtk_nfc_remove,
1591 .of_match_table = mtk_nfc_id_table,
1592 #ifdef CONFIG_PM_SLEEP
1593 .pm = &mtk_nfc_pm_ops,
1598 module_platform_driver(mtk_nfc_driver);
1600 MODULE_LICENSE("GPL");
1602 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");