]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/cafe_nand.c
ARM: dts: imx7s: Enable SNVS power key according to board design
[linux.git] / drivers / mtd / nand / raw / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets 
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <[email protected]>
9  */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1         0x00
28 #define CAFE_NAND_CTRL2         0x04
29 #define CAFE_NAND_CTRL3         0x08
30 #define CAFE_NAND_STATUS        0x0c
31 #define CAFE_NAND_IRQ           0x10
32 #define CAFE_NAND_IRQ_MASK      0x14
33 #define CAFE_NAND_DATA_LEN      0x18
34 #define CAFE_NAND_ADDR1         0x1c
35 #define CAFE_NAND_ADDR2         0x20
36 #define CAFE_NAND_TIMING1       0x24
37 #define CAFE_NAND_TIMING2       0x28
38 #define CAFE_NAND_TIMING3       0x2c
39 #define CAFE_NAND_NONMEM        0x30
40 #define CAFE_NAND_ECC_RESULT    0x3C
41 #define CAFE_NAND_DMA_CTRL      0x40
42 #define CAFE_NAND_DMA_ADDR0     0x44
43 #define CAFE_NAND_DMA_ADDR1     0x48
44 #define CAFE_NAND_ECC_SYN01     0x50
45 #define CAFE_NAND_ECC_SYN23     0x54
46 #define CAFE_NAND_ECC_SYN45     0x58
47 #define CAFE_NAND_ECC_SYN67     0x5c
48 #define CAFE_NAND_READ_DATA     0x1000
49 #define CAFE_NAND_WRITE_DATA    0x2000
50
51 #define CAFE_GLOBAL_CTRL        0x3004
52 #define CAFE_GLOBAL_IRQ         0x3008
53 #define CAFE_GLOBAL_IRQ_MASK    0x300c
54 #define CAFE_NAND_RESET         0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT        (1<<19)
58
59 struct cafe_priv {
60         struct nand_chip nand;
61         struct pci_dev *pdev;
62         void __iomem *mmio;
63         struct rs_control *rs;
64         uint32_t ctl1;
65         uint32_t ctl2;
66         int datalen;
67         int nr_data;
68         int data_pos;
69         int page_addr;
70         bool usedma;
71         dma_addr_t dmaaddr;
72         unsigned char *dmabuf;
73 };
74
75 static int usedma = 1;
76 module_param(usedma, int, 0644);
77
78 static int skipbbt = 0;
79 module_param(skipbbt, int, 0644);
80
81 static int debug = 0;
82 module_param(debug, int, 0644);
83
84 static int regdebug = 0;
85 module_param(regdebug, int, 0644);
86
87 static int checkecc = 1;
88 module_param(checkecc, int, 0644);
89
90 static unsigned int numtimings;
91 static int timing[3];
92 module_param_array(timing, int, &numtimings, 0644);
93
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
102
103 static int cafe_device_ready(struct nand_chip *chip)
104 {
105         struct cafe_priv *cafe = nand_get_controller_data(chip);
106         int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108
109         cafe_writel(cafe, irqs, NAND_IRQ);
110
111         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114
115         return result;
116 }
117
118
119 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
120 {
121         struct cafe_priv *cafe = nand_get_controller_data(chip);
122
123         if (cafe->usedma)
124                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
125         else
126                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127
128         cafe->datalen += len;
129
130         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131                 len, cafe->datalen);
132 }
133
134 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
135 {
136         struct cafe_priv *cafe = nand_get_controller_data(chip);
137
138         if (cafe->usedma)
139                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
140         else
141                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
142
143         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144                   len, cafe->datalen);
145         cafe->datalen += len;
146 }
147
148 static uint8_t cafe_read_byte(struct nand_chip *chip)
149 {
150         struct cafe_priv *cafe = nand_get_controller_data(chip);
151         uint8_t d;
152
153         cafe_read_buf(chip, &d, 1);
154         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155
156         return d;
157 }
158
159 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
160                               int column, int page_addr)
161 {
162         struct mtd_info *mtd = nand_to_mtd(chip);
163         struct cafe_priv *cafe = nand_get_controller_data(chip);
164         int adrbytes = 0;
165         uint32_t ctl1;
166         uint32_t doneint = 0x80000000;
167
168         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169                 command, column, page_addr);
170
171         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172                 /* Second half of a command we already calculated */
173                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174                 ctl1 = cafe->ctl1;
175                 cafe->ctl2 &= ~(1<<30);
176                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177                           cafe->ctl1, cafe->nr_data);
178                 goto do_command;
179         }
180         /* Reset ECC engine */
181         cafe_writel(cafe, 0, NAND_CTRL2);
182
183         /* Emulate NAND_CMD_READOOB on large-page chips */
184         if (mtd->writesize > 512 &&
185             command == NAND_CMD_READOOB) {
186                 column += mtd->writesize;
187                 command = NAND_CMD_READ0;
188         }
189
190         /* FIXME: Do we need to send read command before sending data
191            for small-page chips, to position the buffer correctly? */
192
193         if (column != -1) {
194                 cafe_writel(cafe, column, NAND_ADDR1);
195                 adrbytes = 2;
196                 if (page_addr != -1)
197                         goto write_adr2;
198         } else if (page_addr != -1) {
199                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200                 page_addr >>= 16;
201         write_adr2:
202                 cafe_writel(cafe, page_addr, NAND_ADDR2);
203                 adrbytes += 2;
204                 if (mtd->size > mtd->writesize << 16)
205                         adrbytes++;
206         }
207
208         cafe->data_pos = cafe->datalen = 0;
209
210         /* Set command valid bit, mask in the chip select bit  */
211         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212
213         /* Set RD or WR bits as appropriate */
214         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
215                 ctl1 |= (1<<26); /* rd */
216                 /* Always 5 bytes, for now */
217                 cafe->datalen = 4;
218                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219                 adrbytes = 1;
220         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
221                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
222                 ctl1 |= 1<<26; /* rd */
223                 /* For now, assume just read to end of page */
224                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
225         } else if (command == NAND_CMD_SEQIN)
226                 ctl1 |= 1<<25; /* wr */
227
228         /* Set number of address bytes */
229         if (adrbytes)
230                 ctl1 |= ((adrbytes-1)|8) << 27;
231
232         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
233                 /* Ignore the first command of a pair; the hardware
234                    deals with them both at once, later */
235                 cafe->ctl1 = ctl1;
236                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237                           cafe->ctl1, cafe->datalen);
238                 return;
239         }
240         /* RNDOUT and READ0 commands need a following byte */
241         if (command == NAND_CMD_RNDOUT)
242                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
245
246  do_command:
247         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249
250         /* NB: The datasheet lies -- we really should be subtracting 1 here */
251         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
252         cafe_writel(cafe, 0x90000000, NAND_IRQ);
253         if (cafe->usedma && (ctl1 & (3<<25))) {
254                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
255                 /* If WR or RD bits set, set up DMA */
256                 if (ctl1 & (1<<26)) {
257                         /* It's a read */
258                         dmactl |= (1<<29);
259                         /* ... so it's done when the DMA is done, not just
260                            the command. */
261                         doneint = 0x10000000;
262                 }
263                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
264         }
265         cafe->datalen = 0;
266
267         if (unlikely(regdebug)) {
268                 int i;
269                 printk("About to write command %08x to register 0\n", ctl1);
270                 for (i=4; i< 0x5c; i+=4)
271                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
272         }
273
274         cafe_writel(cafe, ctl1, NAND_CTRL1);
275         /* Apply this short delay always to ensure that we do wait tWB in
276          * any case on any machine. */
277         ndelay(100);
278
279         if (1) {
280                 int c;
281                 uint32_t irqs;
282
283                 for (c = 500000; c != 0; c--) {
284                         irqs = cafe_readl(cafe, NAND_IRQ);
285                         if (irqs & doneint)
286                                 break;
287                         udelay(1);
288                         if (!(c % 100000))
289                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290                         cpu_relax();
291                 }
292                 cafe_writel(cafe, doneint, NAND_IRQ);
293                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
295         }
296
297         WARN_ON(cafe->ctl2 & (1<<30));
298
299         switch (command) {
300
301         case NAND_CMD_CACHEDPROG:
302         case NAND_CMD_PAGEPROG:
303         case NAND_CMD_ERASE1:
304         case NAND_CMD_ERASE2:
305         case NAND_CMD_SEQIN:
306         case NAND_CMD_RNDIN:
307         case NAND_CMD_STATUS:
308         case NAND_CMD_RNDOUT:
309                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
310                 return;
311         }
312         nand_wait_ready(chip);
313         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314 }
315
316 static void cafe_select_chip(struct nand_chip *chip, int chipnr)
317 {
318         struct cafe_priv *cafe = nand_get_controller_data(chip);
319
320         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
321
322         /* Mask the appropriate bit into the stored value of ctl1
323            which will be used by cafe_nand_cmdfunc() */
324         if (chipnr)
325                 cafe->ctl1 |= CTRL1_CHIPSELECT;
326         else
327                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
328 }
329
330 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
331 {
332         struct mtd_info *mtd = id;
333         struct nand_chip *chip = mtd_to_nand(mtd);
334         struct cafe_priv *cafe = nand_get_controller_data(chip);
335         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
336         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
337         if (!irqs)
338                 return IRQ_NONE;
339
340         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
341         return IRQ_HANDLED;
342 }
343
344 static int cafe_nand_write_oob(struct nand_chip *chip, int page)
345 {
346         struct mtd_info *mtd = nand_to_mtd(chip);
347
348         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
349                                  mtd->oobsize);
350 }
351
352 /* Don't use -- use nand_read_oob_std for now */
353 static int cafe_nand_read_oob(struct nand_chip *chip, int page)
354 {
355         struct mtd_info *mtd = nand_to_mtd(chip);
356
357         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
358 }
359 /**
360  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
361  * @mtd:        mtd info structure
362  * @chip:       nand chip info structure
363  * @buf:        buffer to store read data
364  * @oob_required:       caller expects OOB data read to chip->oob_poi
365  *
366  * The hw generator calculates the error syndrome automatically. Therefore
367  * we need a special oob layout and handling.
368  */
369 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
370                                int oob_required, int page)
371 {
372         struct mtd_info *mtd = nand_to_mtd(chip);
373         struct cafe_priv *cafe = nand_get_controller_data(chip);
374         unsigned int max_bitflips = 0;
375
376         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
377                      cafe_readl(cafe, NAND_ECC_RESULT),
378                      cafe_readl(cafe, NAND_ECC_SYN01));
379
380         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
381         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
382
383         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
384                 unsigned short syn[8], pat[4];
385                 int pos[4];
386                 u8 *oob = chip->oob_poi;
387                 int i, n;
388
389                 for (i=0; i<8; i+=2) {
390                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
391
392                         syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
393                         syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
394                 }
395
396                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
397                                 pat);
398
399                 for (i = 0; i < n; i++) {
400                         int p = pos[i];
401
402                         /* The 12-bit symbols are mapped to bytes here */
403
404                         if (p > 1374) {
405                                 /* out of range */
406                                 n = -1374;
407                         } else if (p == 0) {
408                                 /* high four bits do not correspond to data */
409                                 if (pat[i] > 0xff)
410                                         n = -2048;
411                                 else
412                                         buf[0] ^= pat[i];
413                         } else if (p == 1365) {
414                                 buf[2047] ^= pat[i] >> 4;
415                                 oob[0] ^= pat[i] << 4;
416                         } else if (p > 1365) {
417                                 if ((p & 1) == 1) {
418                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
419                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
420                                 } else {
421                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
422                                         oob[3*p/2 - 2048] ^= pat[i];
423                                 }
424                         } else if ((p & 1) == 1) {
425                                 buf[3*p/2] ^= pat[i] >> 4;
426                                 buf[3*p/2 + 1] ^= pat[i] << 4;
427                         } else {
428                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
429                                 buf[3*p/2] ^= pat[i];
430                         }
431                 }
432
433                 if (n < 0) {
434                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
435                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
436                         for (i = 0; i < 0x5c; i += 4)
437                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
438                         mtd->ecc_stats.failed++;
439                 } else {
440                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
441                         mtd->ecc_stats.corrected += n;
442                         max_bitflips = max_t(unsigned int, max_bitflips, n);
443                 }
444         }
445
446         return max_bitflips;
447 }
448
449 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
450                               struct mtd_oob_region *oobregion)
451 {
452         struct nand_chip *chip = mtd_to_nand(mtd);
453
454         if (section)
455                 return -ERANGE;
456
457         oobregion->offset = 0;
458         oobregion->length = chip->ecc.total;
459
460         return 0;
461 }
462
463 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
464                                struct mtd_oob_region *oobregion)
465 {
466         struct nand_chip *chip = mtd_to_nand(mtd);
467
468         if (section)
469                 return -ERANGE;
470
471         oobregion->offset = chip->ecc.total;
472         oobregion->length = mtd->oobsize - chip->ecc.total;
473
474         return 0;
475 }
476
477 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
478         .ecc = cafe_ooblayout_ecc,
479         .free = cafe_ooblayout_free,
480 };
481
482 /* Ick. The BBT code really ought to be able to work this bit out
483    for itself from the above, at least for the 2KiB case */
484 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
485 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
486
487 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
488 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
489
490
491 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
492         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
493                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
494         .offs = 14,
495         .len = 4,
496         .veroffs = 18,
497         .maxblocks = 4,
498         .pattern = cafe_bbt_pattern_2048
499 };
500
501 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
502         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
504         .offs = 14,
505         .len = 4,
506         .veroffs = 18,
507         .maxblocks = 4,
508         .pattern = cafe_mirror_pattern_2048
509 };
510
511 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
512         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
514         .offs = 14,
515         .len = 1,
516         .veroffs = 15,
517         .maxblocks = 4,
518         .pattern = cafe_bbt_pattern_512
519 };
520
521 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
522         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
523                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
524         .offs = 14,
525         .len = 1,
526         .veroffs = 15,
527         .maxblocks = 4,
528         .pattern = cafe_mirror_pattern_512
529 };
530
531
532 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
533                                          const uint8_t *buf, int oob_required,
534                                          int page)
535 {
536         struct mtd_info *mtd = nand_to_mtd(chip);
537         struct cafe_priv *cafe = nand_get_controller_data(chip);
538
539         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
540         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
541
542         /* Set up ECC autogeneration */
543         cafe->ctl2 |= (1<<30);
544
545         return nand_prog_page_end_op(chip);
546 }
547
548 static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
549 {
550         return 0;
551 }
552
553 /* F_2[X]/(X**6+X+1)  */
554 static unsigned short gf64_mul(u8 a, u8 b)
555 {
556         u8 c;
557         unsigned int i;
558
559         c = 0;
560         for (i = 0; i < 6; i++) {
561                 if (a & 1)
562                         c ^= b;
563                 a >>= 1;
564                 b <<= 1;
565                 if ((b & 0x40) != 0)
566                         b ^= 0x43;
567         }
568
569         return c;
570 }
571
572 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
573 static u16 gf4096_mul(u16 a, u16 b)
574 {
575         u8 ah, al, bh, bl, ch, cl;
576
577         ah = a >> 6;
578         al = a & 0x3f;
579         bh = b >> 6;
580         bl = b & 0x3f;
581
582         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
583         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
584
585         return (ch << 6) ^ cl;
586 }
587
588 static int cafe_mul(int x)
589 {
590         if (x == 0)
591                 return 1;
592         return gf4096_mul(x, 0xe01);
593 }
594
595 static int cafe_nand_attach_chip(struct nand_chip *chip)
596 {
597         struct mtd_info *mtd = nand_to_mtd(chip);
598         struct cafe_priv *cafe = nand_get_controller_data(chip);
599         int err = 0;
600
601         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
602                                           &cafe->dmaaddr, GFP_KERNEL);
603         if (!cafe->dmabuf)
604                 return -ENOMEM;
605
606         /* Set up DMA address */
607         cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
608         cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
609
610         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
611                      cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
612
613         /* Restore the DMA flag */
614         cafe->usedma = usedma;
615
616         cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
617         if (mtd->writesize == 2048)
618                 cafe->ctl2 |= BIT(29); /* 2KiB page size */
619
620         /* Set up ECC according to the type of chip we found */
621         mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
622         if (mtd->writesize == 2048) {
623                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
624                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
625         } else if (mtd->writesize == 512) {
626                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
627                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
628         } else {
629                 dev_warn(&cafe->pdev->dev,
630                          "Unexpected NAND flash writesize %d. Aborting\n",
631                          mtd->writesize);
632                 err = -ENOTSUPP;
633                 goto out_free_dma;
634         }
635
636         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
637         cafe->nand.ecc.size = mtd->writesize;
638         cafe->nand.ecc.bytes = 14;
639         cafe->nand.ecc.strength = 4;
640         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
641         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
642         cafe->nand.ecc.read_page = cafe_nand_read_page;
643         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
644
645         return 0;
646
647  out_free_dma:
648         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
649
650         return err;
651 }
652
653 static void cafe_nand_detach_chip(struct nand_chip *chip)
654 {
655         struct cafe_priv *cafe = nand_get_controller_data(chip);
656
657         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
658 }
659
660 static const struct nand_controller_ops cafe_nand_controller_ops = {
661         .attach_chip = cafe_nand_attach_chip,
662         .detach_chip = cafe_nand_detach_chip,
663 };
664
665 static int cafe_nand_probe(struct pci_dev *pdev,
666                                      const struct pci_device_id *ent)
667 {
668         struct mtd_info *mtd;
669         struct cafe_priv *cafe;
670         uint32_t ctrl;
671         int err = 0;
672
673         /* Very old versions shared the same PCI ident for all three
674            functions on the chip. Verify the class too... */
675         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
676                 return -ENODEV;
677
678         err = pci_enable_device(pdev);
679         if (err)
680                 return err;
681
682         pci_set_master(pdev);
683
684         cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
685         if (!cafe)
686                 return  -ENOMEM;
687
688         mtd = nand_to_mtd(&cafe->nand);
689         mtd->dev.parent = &pdev->dev;
690         nand_set_controller_data(&cafe->nand, cafe);
691
692         cafe->pdev = pdev;
693         cafe->mmio = pci_iomap(pdev, 0, 0);
694         if (!cafe->mmio) {
695                 dev_warn(&pdev->dev, "failed to iomap\n");
696                 err = -ENOMEM;
697                 goto out_free_mtd;
698         }
699
700         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
701         if (!cafe->rs) {
702                 err = -ENOMEM;
703                 goto out_ior;
704         }
705
706         cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
707         cafe->nand.legacy.dev_ready = cafe_device_ready;
708         cafe->nand.legacy.read_byte = cafe_read_byte;
709         cafe->nand.legacy.read_buf = cafe_read_buf;
710         cafe->nand.legacy.write_buf = cafe_write_buf;
711         cafe->nand.legacy.select_chip = cafe_select_chip;
712         cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
713         cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
714
715         cafe->nand.legacy.chip_delay = 0;
716
717         /* Enable the following for a flash based bad block table */
718         cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
719
720         if (skipbbt) {
721                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
722                 cafe->nand.legacy.block_bad = cafe_nand_block_bad;
723         }
724
725         if (numtimings && numtimings != 3) {
726                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
727         }
728
729         if (numtimings == 3) {
730                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
731                              timing[0], timing[1], timing[2]);
732         } else {
733                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
734                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
735                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
736
737                 if (timing[0] | timing[1] | timing[2]) {
738                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
739                                      timing[0], timing[1], timing[2]);
740                 } else {
741                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
742                         timing[0] = timing[1] = timing[2] = 0xffffffff;
743                 }
744         }
745
746         /* Start off by resetting the NAND controller completely */
747         cafe_writel(cafe, 1, NAND_RESET);
748         cafe_writel(cafe, 0, NAND_RESET);
749
750         cafe_writel(cafe, timing[0], NAND_TIMING1);
751         cafe_writel(cafe, timing[1], NAND_TIMING2);
752         cafe_writel(cafe, timing[2], NAND_TIMING3);
753
754         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
755         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
756                           "CAFE NAND", mtd);
757         if (err) {
758                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
759                 goto out_ior;
760         }
761
762         /* Disable master reset, enable NAND clock */
763         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
764         ctrl &= 0xffffeff0;
765         ctrl |= 0x00007000;
766         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
767         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
768         cafe_writel(cafe, 0, NAND_DMA_CTRL);
769
770         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
771         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
772
773         /* Enable NAND IRQ in global IRQ mask register */
774         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
775         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
776                 cafe_readl(cafe, GLOBAL_CTRL),
777                 cafe_readl(cafe, GLOBAL_IRQ_MASK));
778
779         /* Do not use the DMA during the NAND identification */
780         cafe->usedma = 0;
781
782         /* Scan to find existence of the device */
783         cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
784         err = nand_scan(&cafe->nand, 2);
785         if (err)
786                 goto out_irq;
787
788         pci_set_drvdata(pdev, mtd);
789
790         mtd->name = "cafe_nand";
791         err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
792         if (err)
793                 goto out_cleanup_nand;
794
795         goto out;
796
797  out_cleanup_nand:
798         nand_cleanup(&cafe->nand);
799  out_irq:
800         /* Disable NAND IRQ in global IRQ mask register */
801         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
802         free_irq(pdev->irq, mtd);
803  out_ior:
804         pci_iounmap(pdev, cafe->mmio);
805  out_free_mtd:
806         kfree(cafe);
807  out:
808         return err;
809 }
810
811 static void cafe_nand_remove(struct pci_dev *pdev)
812 {
813         struct mtd_info *mtd = pci_get_drvdata(pdev);
814         struct nand_chip *chip = mtd_to_nand(mtd);
815         struct cafe_priv *cafe = nand_get_controller_data(chip);
816
817         /* Disable NAND IRQ in global IRQ mask register */
818         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
819         free_irq(pdev->irq, mtd);
820         nand_release(chip);
821         free_rs(cafe->rs);
822         pci_iounmap(pdev, cafe->mmio);
823         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
824         kfree(cafe);
825 }
826
827 static const struct pci_device_id cafe_nand_tbl[] = {
828         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
829           PCI_ANY_ID, PCI_ANY_ID },
830         { }
831 };
832
833 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
834
835 static int cafe_nand_resume(struct pci_dev *pdev)
836 {
837         uint32_t ctrl;
838         struct mtd_info *mtd = pci_get_drvdata(pdev);
839         struct nand_chip *chip = mtd_to_nand(mtd);
840         struct cafe_priv *cafe = nand_get_controller_data(chip);
841
842        /* Start off by resetting the NAND controller completely */
843         cafe_writel(cafe, 1, NAND_RESET);
844         cafe_writel(cafe, 0, NAND_RESET);
845         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
846
847         /* Restore timing configuration */
848         cafe_writel(cafe, timing[0], NAND_TIMING1);
849         cafe_writel(cafe, timing[1], NAND_TIMING2);
850         cafe_writel(cafe, timing[2], NAND_TIMING3);
851
852         /* Disable master reset, enable NAND clock */
853         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
854         ctrl &= 0xffffeff0;
855         ctrl |= 0x00007000;
856         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
857         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
858         cafe_writel(cafe, 0, NAND_DMA_CTRL);
859         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
860         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
861
862         /* Set up DMA address */
863         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
864         if (sizeof(cafe->dmaaddr) > 4)
865         /* Shift in two parts to shut the compiler up */
866                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
867         else
868                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
869
870         /* Enable NAND IRQ in global IRQ mask register */
871         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
872         return 0;
873 }
874
875 static struct pci_driver cafe_nand_pci_driver = {
876         .name = "CAFÉ NAND",
877         .id_table = cafe_nand_tbl,
878         .probe = cafe_nand_probe,
879         .remove = cafe_nand_remove,
880         .resume = cafe_nand_resume,
881 };
882
883 module_pci_driver(cafe_nand_pci_driver);
884
885 MODULE_LICENSE("GPL");
886 MODULE_AUTHOR("David Woodhouse <[email protected]>");
887 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
This page took 0.083764 seconds and 4 git commands to generate.