]> Git Repo - linux.git/blob - drivers/mtd/lpddr/lpddr_cmds.c
ARM: dts: imx7s: Enable SNVS power key according to board design
[linux.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <[email protected]>
5  * (C) 2008 Vasiliy Leonenko <[email protected]>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33                                         size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35                                 size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37                                 unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50         struct lpddr_private *lpddr = map->fldrv_priv;
51         struct flchip_shared *shared;
52         struct flchip *chip;
53         struct mtd_info *mtd;
54         int numchips;
55         int i, j;
56
57         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58         if (!mtd)
59                 return NULL;
60         mtd->priv = map;
61         mtd->type = MTD_NORFLASH;
62
63         /* Fill in the default mtd operations */
64         mtd->_read = lpddr_read;
65         mtd->type = MTD_NORFLASH;
66         mtd->flags = MTD_CAP_NORFLASH;
67         mtd->flags &= ~MTD_BIT_WRITEABLE;
68         mtd->_erase = lpddr_erase;
69         mtd->_write = lpddr_write_buffers;
70         mtd->_writev = lpddr_writev;
71         mtd->_lock = lpddr_lock;
72         mtd->_unlock = lpddr_unlock;
73         if (map_is_linear(map)) {
74                 mtd->_point = lpddr_point;
75                 mtd->_unpoint = lpddr_unpoint;
76         }
77         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
78         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
79         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
80
81         shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
82                                                 GFP_KERNEL);
83         if (!shared) {
84                 kfree(lpddr);
85                 kfree(mtd);
86                 return NULL;
87         }
88
89         chip = &lpddr->chips[0];
90         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
91         for (i = 0; i < numchips; i++) {
92                 shared[i].writing = shared[i].erasing = NULL;
93                 mutex_init(&shared[i].lock);
94                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
95                         *chip = lpddr->chips[i];
96                         chip->start += j << lpddr->chipshift;
97                         chip->oldstate = chip->state = FL_READY;
98                         chip->priv = &shared[i];
99                         /* those should be reset too since
100                            they create memory references. */
101                         init_waitqueue_head(&chip->wq);
102                         mutex_init(&chip->mutex);
103                         chip++;
104                 }
105         }
106
107         return mtd;
108 }
109 EXPORT_SYMBOL(lpddr_cmdset);
110
111 static int wait_for_ready(struct map_info *map, struct flchip *chip,
112                 unsigned int chip_op_time)
113 {
114         unsigned int timeo, reset_timeo, sleep_time;
115         unsigned int dsr;
116         flstate_t chip_state = chip->state;
117         int ret = 0;
118
119         /* set our timeout to 8 times the expected delay */
120         timeo = chip_op_time * 8;
121         if (!timeo)
122                 timeo = 500000;
123         reset_timeo = timeo;
124         sleep_time = chip_op_time / 2;
125
126         for (;;) {
127                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128                 if (dsr & DSR_READY_STATUS)
129                         break;
130                 if (!timeo) {
131                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
132                                                         map->name, chip_state);
133                         ret = -ETIME;
134                         break;
135                 }
136
137                 /* OK Still waiting. Drop the lock, wait a while and retry. */
138                 mutex_unlock(&chip->mutex);
139                 if (sleep_time >= 1000000/HZ) {
140                         /*
141                          * Half of the normal delay still remaining
142                          * can be performed with a sleeping delay instead
143                          * of busy waiting.
144                          */
145                         msleep(sleep_time/1000);
146                         timeo -= sleep_time;
147                         sleep_time = 1000000/HZ;
148                 } else {
149                         udelay(1);
150                         cond_resched();
151                         timeo--;
152                 }
153                 mutex_lock(&chip->mutex);
154
155                 while (chip->state != chip_state) {
156                         /* Someone's suspended the operation: sleep */
157                         DECLARE_WAITQUEUE(wait, current);
158                         set_current_state(TASK_UNINTERRUPTIBLE);
159                         add_wait_queue(&chip->wq, &wait);
160                         mutex_unlock(&chip->mutex);
161                         schedule();
162                         remove_wait_queue(&chip->wq, &wait);
163                         mutex_lock(&chip->mutex);
164                 }
165                 if (chip->erase_suspended || chip->write_suspended)  {
166                         /* Suspend has occurred while sleep: reset timeout */
167                         timeo = reset_timeo;
168                         chip->erase_suspended = chip->write_suspended = 0;
169                 }
170         }
171         /* check status for errors */
172         if (dsr & DSR_ERR) {
173                 /* Clear DSR*/
174                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176                                 map->name, dsr);
177                 print_drs_error(dsr);
178                 ret = -EIO;
179         }
180         chip->state = FL_READY;
181         return ret;
182 }
183
184 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185 {
186         int ret;
187         DECLARE_WAITQUEUE(wait, current);
188
189  retry:
190         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191                 && chip->state != FL_SYNCING) {
192                 /*
193                  * OK. We have possibility for contension on the write/erase
194                  * operations which are global to the real chip and not per
195                  * partition.  So let's fight it over in the partition which
196                  * currently has authority on the operation.
197                  *
198                  * The rules are as follows:
199                  *
200                  * - any write operation must own shared->writing.
201                  *
202                  * - any erase operation must own _both_ shared->writing and
203                  *   shared->erasing.
204                  *
205                  * - contension arbitration is handled in the owner's context.
206                  *
207                  * The 'shared' struct can be read and/or written only when
208                  * its lock is taken.
209                  */
210                 struct flchip_shared *shared = chip->priv;
211                 struct flchip *contender;
212                 mutex_lock(&shared->lock);
213                 contender = shared->writing;
214                 if (contender && contender != chip) {
215                         /*
216                          * The engine to perform desired operation on this
217                          * partition is already in use by someone else.
218                          * Let's fight over it in the context of the chip
219                          * currently using it.  If it is possible to suspend,
220                          * that other partition will do just that, otherwise
221                          * it'll happily send us to sleep.  In any case, when
222                          * get_chip returns success we're clear to go ahead.
223                          */
224                         ret = mutex_trylock(&contender->mutex);
225                         mutex_unlock(&shared->lock);
226                         if (!ret)
227                                 goto retry;
228                         mutex_unlock(&chip->mutex);
229                         ret = chip_ready(map, contender, mode);
230                         mutex_lock(&chip->mutex);
231
232                         if (ret == -EAGAIN) {
233                                 mutex_unlock(&contender->mutex);
234                                 goto retry;
235                         }
236                         if (ret) {
237                                 mutex_unlock(&contender->mutex);
238                                 return ret;
239                         }
240                         mutex_lock(&shared->lock);
241
242                         /* We should not own chip if it is already in FL_SYNCING
243                          * state. Put contender and retry. */
244                         if (chip->state == FL_SYNCING) {
245                                 put_chip(map, contender);
246                                 mutex_unlock(&contender->mutex);
247                                 goto retry;
248                         }
249                         mutex_unlock(&contender->mutex);
250                 }
251
252                 /* Check if we have suspended erase on this chip.
253                    Must sleep in such a case. */
254                 if (mode == FL_ERASING && shared->erasing
255                     && shared->erasing->oldstate == FL_ERASING) {
256                         mutex_unlock(&shared->lock);
257                         set_current_state(TASK_UNINTERRUPTIBLE);
258                         add_wait_queue(&chip->wq, &wait);
259                         mutex_unlock(&chip->mutex);
260                         schedule();
261                         remove_wait_queue(&chip->wq, &wait);
262                         mutex_lock(&chip->mutex);
263                         goto retry;
264                 }
265
266                 /* We now own it */
267                 shared->writing = chip;
268                 if (mode == FL_ERASING)
269                         shared->erasing = chip;
270                 mutex_unlock(&shared->lock);
271         }
272
273         ret = chip_ready(map, chip, mode);
274         if (ret == -EAGAIN)
275                 goto retry;
276
277         return ret;
278 }
279
280 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281 {
282         struct lpddr_private *lpddr = map->fldrv_priv;
283         int ret = 0;
284         DECLARE_WAITQUEUE(wait, current);
285
286         /* Prevent setting state FL_SYNCING for chip in suspended state. */
287         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288                 goto sleep;
289
290         switch (chip->state) {
291         case FL_READY:
292         case FL_JEDEC_QUERY:
293                 return 0;
294
295         case FL_ERASING:
296                 if (!lpddr->qinfo->SuspEraseSupp ||
297                         !(mode == FL_READY || mode == FL_POINT))
298                         goto sleep;
299
300                 map_write(map, CMD(LPDDR_SUSPEND),
301                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302                 chip->oldstate = FL_ERASING;
303                 chip->state = FL_ERASE_SUSPENDING;
304                 ret = wait_for_ready(map, chip, 0);
305                 if (ret) {
306                         /* Oops. something got wrong. */
307                         /* Resume and pretend we weren't here.  */
308                         put_chip(map, chip);
309                         printk(KERN_ERR "%s: suspend operation failed."
310                                         "State may be wrong \n", map->name);
311                         return -EIO;
312                 }
313                 chip->erase_suspended = 1;
314                 chip->state = FL_READY;
315                 return 0;
316                 /* Erase suspend */
317         case FL_POINT:
318                 /* Only if there's no operation suspended... */
319                 if (mode == FL_READY && chip->oldstate == FL_READY)
320                         return 0;
321                 /* fall through */
322
323         default:
324 sleep:
325                 set_current_state(TASK_UNINTERRUPTIBLE);
326                 add_wait_queue(&chip->wq, &wait);
327                 mutex_unlock(&chip->mutex);
328                 schedule();
329                 remove_wait_queue(&chip->wq, &wait);
330                 mutex_lock(&chip->mutex);
331                 return -EAGAIN;
332         }
333 }
334
335 static void put_chip(struct map_info *map, struct flchip *chip)
336 {
337         if (chip->priv) {
338                 struct flchip_shared *shared = chip->priv;
339                 mutex_lock(&shared->lock);
340                 if (shared->writing == chip && chip->oldstate == FL_READY) {
341                         /* We own the ability to write, but we're done */
342                         shared->writing = shared->erasing;
343                         if (shared->writing && shared->writing != chip) {
344                                 /* give back the ownership */
345                                 struct flchip *loaner = shared->writing;
346                                 mutex_lock(&loaner->mutex);
347                                 mutex_unlock(&shared->lock);
348                                 mutex_unlock(&chip->mutex);
349                                 put_chip(map, loaner);
350                                 mutex_lock(&chip->mutex);
351                                 mutex_unlock(&loaner->mutex);
352                                 wake_up(&chip->wq);
353                                 return;
354                         }
355                         shared->erasing = NULL;
356                         shared->writing = NULL;
357                 } else if (shared->erasing == chip && shared->writing != chip) {
358                         /*
359                          * We own the ability to erase without the ability
360                          * to write, which means the erase was suspended
361                          * and some other partition is currently writing.
362                          * Don't let the switch below mess things up since
363                          * we don't have ownership to resume anything.
364                          */
365                         mutex_unlock(&shared->lock);
366                         wake_up(&chip->wq);
367                         return;
368                 }
369                 mutex_unlock(&shared->lock);
370         }
371
372         switch (chip->oldstate) {
373         case FL_ERASING:
374                 map_write(map, CMD(LPDDR_RESUME),
375                                 map->pfow_base + PFOW_COMMAND_CODE);
376                 map_write(map, CMD(LPDDR_START_EXECUTION),
377                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
378                 chip->oldstate = FL_READY;
379                 chip->state = FL_ERASING;
380                 break;
381         case FL_READY:
382                 break;
383         default:
384                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
385                                 map->name, chip->oldstate);
386         }
387         wake_up(&chip->wq);
388 }
389
390 static int do_write_buffer(struct map_info *map, struct flchip *chip,
391                         unsigned long adr, const struct kvec **pvec,
392                         unsigned long *pvec_seek, int len)
393 {
394         struct lpddr_private *lpddr = map->fldrv_priv;
395         map_word datum;
396         int ret, wbufsize, word_gap, words;
397         const struct kvec *vec;
398         unsigned long vec_seek;
399         unsigned long prog_buf_ofs;
400
401         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
402
403         mutex_lock(&chip->mutex);
404         ret = get_chip(map, chip, FL_WRITING);
405         if (ret) {
406                 mutex_unlock(&chip->mutex);
407                 return ret;
408         }
409         /* Figure out the number of words to write */
410         word_gap = (-adr & (map_bankwidth(map)-1));
411         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
412         if (!word_gap) {
413                 words--;
414         } else {
415                 word_gap = map_bankwidth(map) - word_gap;
416                 adr -= word_gap;
417                 datum = map_word_ff(map);
418         }
419         /* Write data */
420         /* Get the program buffer offset from PFOW register data first*/
421         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
422                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
423         vec = *pvec;
424         vec_seek = *pvec_seek;
425         do {
426                 int n = map_bankwidth(map) - word_gap;
427
428                 if (n > vec->iov_len - vec_seek)
429                         n = vec->iov_len - vec_seek;
430                 if (n > len)
431                         n = len;
432
433                 if (!word_gap && (len < map_bankwidth(map)))
434                         datum = map_word_ff(map);
435
436                 datum = map_word_load_partial(map, datum,
437                                 vec->iov_base + vec_seek, word_gap, n);
438
439                 len -= n;
440                 word_gap += n;
441                 if (!len || word_gap == map_bankwidth(map)) {
442                         map_write(map, datum, prog_buf_ofs);
443                         prog_buf_ofs += map_bankwidth(map);
444                         word_gap = 0;
445                 }
446
447                 vec_seek += n;
448                 if (vec_seek == vec->iov_len) {
449                         vec++;
450                         vec_seek = 0;
451                 }
452         } while (len);
453         *pvec = vec;
454         *pvec_seek = vec_seek;
455
456         /* GO GO GO */
457         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
458         chip->state = FL_WRITING;
459         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
460         if (ret)        {
461                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
462                         map->name, ret, adr);
463                 goto out;
464         }
465
466  out:   put_chip(map, chip);
467         mutex_unlock(&chip->mutex);
468         return ret;
469 }
470
471 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
472 {
473         struct map_info *map = mtd->priv;
474         struct lpddr_private *lpddr = map->fldrv_priv;
475         int chipnum = adr >> lpddr->chipshift;
476         struct flchip *chip = &lpddr->chips[chipnum];
477         int ret;
478
479         mutex_lock(&chip->mutex);
480         ret = get_chip(map, chip, FL_ERASING);
481         if (ret) {
482                 mutex_unlock(&chip->mutex);
483                 return ret;
484         }
485         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
486         chip->state = FL_ERASING;
487         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
488         if (ret) {
489                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
490                         map->name, ret, adr);
491                 goto out;
492         }
493  out:   put_chip(map, chip);
494         mutex_unlock(&chip->mutex);
495         return ret;
496 }
497
498 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
499                         size_t *retlen, u_char *buf)
500 {
501         struct map_info *map = mtd->priv;
502         struct lpddr_private *lpddr = map->fldrv_priv;
503         int chipnum = adr >> lpddr->chipshift;
504         struct flchip *chip = &lpddr->chips[chipnum];
505         int ret = 0;
506
507         mutex_lock(&chip->mutex);
508         ret = get_chip(map, chip, FL_READY);
509         if (ret) {
510                 mutex_unlock(&chip->mutex);
511                 return ret;
512         }
513
514         map_copy_from(map, buf, adr, len);
515         *retlen = len;
516
517         put_chip(map, chip);
518         mutex_unlock(&chip->mutex);
519         return ret;
520 }
521
522 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
523                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
524 {
525         struct map_info *map = mtd->priv;
526         struct lpddr_private *lpddr = map->fldrv_priv;
527         int chipnum = adr >> lpddr->chipshift;
528         unsigned long ofs, last_end = 0;
529         struct flchip *chip = &lpddr->chips[chipnum];
530         int ret = 0;
531
532         if (!map->virt)
533                 return -EINVAL;
534
535         /* ofs: offset within the first chip that the first read should start */
536         ofs = adr - (chipnum << lpddr->chipshift);
537         *mtdbuf = (void *)map->virt + chip->start + ofs;
538
539         while (len) {
540                 unsigned long thislen;
541
542                 if (chipnum >= lpddr->numchips)
543                         break;
544
545                 /* We cannot point across chips that are virtually disjoint */
546                 if (!last_end)
547                         last_end = chip->start;
548                 else if (chip->start != last_end)
549                         break;
550
551                 if ((len + ofs - 1) >> lpddr->chipshift)
552                         thislen = (1<<lpddr->chipshift) - ofs;
553                 else
554                         thislen = len;
555                 /* get the chip */
556                 mutex_lock(&chip->mutex);
557                 ret = get_chip(map, chip, FL_POINT);
558                 mutex_unlock(&chip->mutex);
559                 if (ret)
560                         break;
561
562                 chip->state = FL_POINT;
563                 chip->ref_point_counter++;
564                 *retlen += thislen;
565                 len -= thislen;
566
567                 ofs = 0;
568                 last_end += 1 << lpddr->chipshift;
569                 chipnum++;
570                 chip = &lpddr->chips[chipnum];
571         }
572         return 0;
573 }
574
575 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
576 {
577         struct map_info *map = mtd->priv;
578         struct lpddr_private *lpddr = map->fldrv_priv;
579         int chipnum = adr >> lpddr->chipshift, err = 0;
580         unsigned long ofs;
581
582         /* ofs: offset within the first chip that the first read should start */
583         ofs = adr - (chipnum << lpddr->chipshift);
584
585         while (len) {
586                 unsigned long thislen;
587                 struct flchip *chip;
588
589                 chip = &lpddr->chips[chipnum];
590                 if (chipnum >= lpddr->numchips)
591                         break;
592
593                 if ((len + ofs - 1) >> lpddr->chipshift)
594                         thislen = (1<<lpddr->chipshift) - ofs;
595                 else
596                         thislen = len;
597
598                 mutex_lock(&chip->mutex);
599                 if (chip->state == FL_POINT) {
600                         chip->ref_point_counter--;
601                         if (chip->ref_point_counter == 0)
602                                 chip->state = FL_READY;
603                 } else {
604                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
605                                         "pointed region\n", map->name);
606                         err = -EINVAL;
607                 }
608
609                 put_chip(map, chip);
610                 mutex_unlock(&chip->mutex);
611
612                 len -= thislen;
613                 ofs = 0;
614                 chipnum++;
615         }
616
617         return err;
618 }
619
620 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
621                                 size_t *retlen, const u_char *buf)
622 {
623         struct kvec vec;
624
625         vec.iov_base = (void *) buf;
626         vec.iov_len = len;
627
628         return lpddr_writev(mtd, &vec, 1, to, retlen);
629 }
630
631
632 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
633                                 unsigned long count, loff_t to, size_t *retlen)
634 {
635         struct map_info *map = mtd->priv;
636         struct lpddr_private *lpddr = map->fldrv_priv;
637         int ret = 0;
638         int chipnum;
639         unsigned long ofs, vec_seek, i;
640         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
641         size_t len = 0;
642
643         for (i = 0; i < count; i++)
644                 len += vecs[i].iov_len;
645
646         if (!len)
647                 return 0;
648
649         chipnum = to >> lpddr->chipshift;
650
651         ofs = to;
652         vec_seek = 0;
653
654         do {
655                 /* We must not cross write block boundaries */
656                 int size = wbufsize - (ofs & (wbufsize-1));
657
658                 if (size > len)
659                         size = len;
660
661                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
662                                           ofs, &vecs, &vec_seek, size);
663                 if (ret)
664                         return ret;
665
666                 ofs += size;
667                 (*retlen) += size;
668                 len -= size;
669
670                 /* Be nice and reschedule with the chip in a usable
671                  * state for other processes */
672                 cond_resched();
673
674         } while (len);
675
676         return 0;
677 }
678
679 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
680 {
681         unsigned long ofs, len;
682         int ret;
683         struct map_info *map = mtd->priv;
684         struct lpddr_private *lpddr = map->fldrv_priv;
685         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
686
687         ofs = instr->addr;
688         len = instr->len;
689
690         while (len > 0) {
691                 ret = do_erase_oneblock(mtd, ofs);
692                 if (ret)
693                         return ret;
694                 ofs += size;
695                 len -= size;
696         }
697
698         return 0;
699 }
700
701 #define DO_XXLOCK_LOCK          1
702 #define DO_XXLOCK_UNLOCK        2
703 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
704 {
705         int ret = 0;
706         struct map_info *map = mtd->priv;
707         struct lpddr_private *lpddr = map->fldrv_priv;
708         int chipnum = adr >> lpddr->chipshift;
709         struct flchip *chip = &lpddr->chips[chipnum];
710
711         mutex_lock(&chip->mutex);
712         ret = get_chip(map, chip, FL_LOCKING);
713         if (ret) {
714                 mutex_unlock(&chip->mutex);
715                 return ret;
716         }
717
718         if (thunk == DO_XXLOCK_LOCK) {
719                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
720                 chip->state = FL_LOCKING;
721         } else if (thunk == DO_XXLOCK_UNLOCK) {
722                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
723                 chip->state = FL_UNLOCKING;
724         } else
725                 BUG();
726
727         ret = wait_for_ready(map, chip, 1);
728         if (ret)        {
729                 printk(KERN_ERR "%s: block unlock error status %d \n",
730                                 map->name, ret);
731                 goto out;
732         }
733 out:    put_chip(map, chip);
734         mutex_unlock(&chip->mutex);
735         return ret;
736 }
737
738 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
739 {
740         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
741 }
742
743 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
744 {
745         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
746 }
747
748 MODULE_LICENSE("GPL");
749 MODULE_AUTHOR("Alexey Korolev <[email protected]>");
750 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
This page took 0.108921 seconds and 4 git commands to generate.