]> Git Repo - linux.git/blob - drivers/media/dvb-frontends/drxd_hard.c
ARM: dts: imx7s: Enable SNVS power key according to board design
[linux.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include <media/dvb_frontend.h>
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT    1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58         CSCD_INIT = 0,
59         CSCD_SET,
60         CSCD_SAVED
61 };
62
63 enum CDrxdState {
64         DRXD_UNINITIALIZED = 0,
65         DRXD_STOPPED,
66         DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70         AGC_CTRL_AUTO = 0,
71         AGC_CTRL_USER,
72         AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76         OM_Default,
77         OM_DVBT_Diversity_Front,
78         OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82         enum AGC_CTRL_MODE ctrlMode;
83         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
84         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
85         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
86         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
87         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
88
89         u16 R1;
90         u16 R2;
91         u16 R3;
92 };
93
94 struct SNoiseCal {
95         int cpOpt;
96         short cpNexpOfs;
97         short tdCal2k;
98         short tdCal8k;
99 };
100
101 enum app_env {
102         APPENV_STATIC = 0,
103         APPENV_PORTABLE = 1,
104         APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108         IFFILTER_SAW = 0,
109         IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113         struct dvb_frontend frontend;
114         struct dvb_frontend_ops ops;
115         struct dtv_frontend_properties props;
116
117         const struct firmware *fw;
118         struct device *dev;
119
120         struct i2c_adapter *i2c;
121         void *priv;
122         struct drxd_config config;
123
124         int i2c_access;
125         int init_done;
126         struct mutex mutex;
127
128         u8 chip_adr;
129         u16 hi_cfg_timing_div;
130         u16 hi_cfg_bridge_delay;
131         u16 hi_cfg_wakeup_key;
132         u16 hi_cfg_ctrl;
133
134         u16 intermediate_freq;
135         u16 osc_clock_freq;
136
137         enum CSCDState cscd_state;
138         enum CDrxdState drxd_state;
139
140         u16 sys_clock_freq;
141         s16 osc_clock_deviation;
142         u16 expected_sys_clock_freq;
143
144         u16 insert_rs_byte;
145         u16 enable_parallel;
146
147         int operation_mode;
148
149         struct SCfgAgc if_agc_cfg;
150         struct SCfgAgc rf_agc_cfg;
151
152         struct SNoiseCal noise_cal;
153
154         u32 fe_fs_add_incr;
155         u32 org_fe_fs_add_incr;
156         u16 current_fe_if_incr;
157
158         u16 m_FeAgRegAgPwd;
159         u16 m_FeAgRegAgAgcSio;
160
161         u16 m_EcOcRegOcModeLop;
162         u16 m_EcOcRegSncSncLvl;
163         u8 *m_InitAtomicRead;
164         u8 *m_HiI2cPatch;
165
166         u8 *m_ResetCEFR;
167         u8 *m_InitFE_1;
168         u8 *m_InitFE_2;
169         u8 *m_InitCP;
170         u8 *m_InitCE;
171         u8 *m_InitEQ;
172         u8 *m_InitSC;
173         u8 *m_InitEC;
174         u8 *m_ResetECRAM;
175         u8 *m_InitDiversityFront;
176         u8 *m_InitDiversityEnd;
177         u8 *m_DisableDiversity;
178         u8 *m_StartDiversityFront;
179         u8 *m_StartDiversityEnd;
180
181         u8 *m_DiversityDelay8MHZ;
182         u8 *m_DiversityDelay6MHZ;
183
184         u8 *microcode;
185         u32 microcode_length;
186
187         int type_A;
188         int PGA;
189         int diversity;
190         int tuner_mirrors;
191
192         enum app_env app_env_default;
193         enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205         if (i2c_transfer(adap, &msg, 1) != 1)
206                 return -1;
207         return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213         struct i2c_msg msgs[2] = {
214                 {
215                         .addr = adr, .flags = 0,
216                         .buf = msg, .len = len
217                 }, {
218                         .addr = adr, .flags = I2C_M_RD,
219                         .buf = answ, .len = alen
220                 }
221         };
222         if (i2c_transfer(adap, msgs, 2) != 2)
223                 return -1;
224         return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229         u64 tmp64;
230
231         tmp64 = (u64)a * (u64)b;
232         do_div(tmp64, c);
233
234         return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239         u8 adr = state->config.demod_address;
240         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242         };
243         u8 mm2[2];
244         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245                 return -1;
246         if (data)
247                 *data = mm2[0] | (mm2[1] << 8);
248         return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253         u8 adr = state->config.demod_address;
254         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256         };
257         u8 mm2[4];
258
259         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260                 return -1;
261         if (data)
262                 *data =
263                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264         return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269         u8 adr = state->config.demod_address;
270         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272                 data & 0xff, (data >> 8) & 0xff
273         };
274
275         if (i2c_write(state->i2c, adr, mm, 6) < 0)
276                 return -1;
277         return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282         u8 adr = state->config.demod_address;
283         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285                 data & 0xff, (data >> 8) & 0xff,
286                 (data >> 16) & 0xff, (data >> 24) & 0xff
287         };
288
289         if (i2c_write(state->i2c, adr, mm, 8) < 0)
290                 return -1;
291         return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295                        u32 reg, u8 *data, u32 len, u8 flags)
296 {
297         u8 adr = state->config.demod_address;
298         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300         };
301         int i;
302
303         for (i = 0; i < len; i++)
304                 mm[4 + i] = data[i];
305         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306                 printk(KERN_ERR "error in write_chunk\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315         while (BlockSize > 0) {
316                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319                         return -1;
320                 pBlock += Chunk;
321                 Address += (Chunk >> 1);
322                 BlockSize -= Chunk;
323         }
324         return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329         int status = 0;
330
331         if (!pTable)
332                 return 0;
333
334         while (!status) {
335                 u16 Length;
336                 u32 Address = pTable[0] | (pTable[1] << 8) |
337                     (pTable[2] << 16) | (pTable[3] << 24);
338
339                 if (Address == 0xFFFFFFFF)
340                         break;
341                 pTable += sizeof(u32);
342
343                 Length = pTable[0] | (pTable[1] << 8);
344                 pTable += sizeof(u16);
345                 if (!Length)
346                         break;
347                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348                 pTable += (Length * 2);
349         }
350         return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359         return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364         return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369         int status;
370         enum app_env AppEnv = state->app_env_default;
371
372         do {
373                 status = WriteTable(state, state->m_InitCE);
374                 if (status < 0)
375                         break;
376
377                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378                     state->operation_mode == OM_DVBT_Diversity_End) {
379                         AppEnv = state->app_env_diversity;
380                 }
381                 if (AppEnv == APPENV_STATIC) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383                         if (status < 0)
384                                 break;
385                 } else if (AppEnv == APPENV_PORTABLE) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395                         if (status < 0)
396                                 break;
397                 }
398
399                 /* start ce */
400                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401                 if (status < 0)
402                         break;
403         } while (0);
404         return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409         int status = 0;
410         u16 ocSyncLvl = 0;
411         u16 ocModeLop = state->m_EcOcRegOcModeLop;
412         u16 dtoIncLop = 0;
413         u16 dtoIncHip = 0;
414
415         do {
416                 /* Store output configuration */
417                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418                 if (status < 0)
419                         break;
420                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422                 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424                 /* Flush FIFO (byte-boundary) at fixed rate */
425                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426                 if (status < 0)
427                         break;
428                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429                 if (status < 0)
430                         break;
431                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432                 if (status < 0)
433                         break;
434                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435                 if (status < 0)
436                         break;
437                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443                 if (status < 0)
444                         break;
445
446                 msleep(1);
447                 /* Output pins to '0' */
448                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449                 if (status < 0)
450                         break;
451
452                 /* Force the OC out of sync */
453                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455                 if (status < 0)
456                         break;
457                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
460                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461                 if (status < 0)
462                         break;
463                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464                 if (status < 0)
465                         break;
466                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467                 if (status < 0)
468                         break;
469         } while (0);
470
471         return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476         int status = 0;
477
478         do {
479                 /* Stop OC */
480                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481                 if (status < 0)
482                         break;
483
484                 /* Restore output configuration */
485                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486                 if (status < 0)
487                         break;
488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Output pins active again */
493                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494                 if (status < 0)
495                         break;
496
497                 /* Start OC */
498                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499                 if (status < 0)
500                         break;
501         } while (0);
502         return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507         return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512         return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517         return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522         return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529         u16 ScRaRamLock = 0;
530         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531                                     SC_RA_RAM_LOCK_FEC__M |
532                                     SC_RA_RAM_LOCK_DEMOD__M);
533         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534                                    SC_RA_RAM_LOCK_DEMOD__M);
535         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537         int status;
538
539         *pLockStatus = 0;
540
541         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542         if (status < 0) {
543                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544                 return status;
545         }
546
547         if (state->drxd_state != DRXD_STARTED)
548                 return 0;
549
550         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551                 *pLockStatus |= DRX_LOCK_MPEG;
552                 CorrectSysClockDeviation(state);
553         }
554
555         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556                 *pLockStatus |= DRX_LOCK_FEC;
557
558         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559                 *pLockStatus |= DRX_LOCK_DEMOD;
560         return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567         int status;
568
569         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570                 return -1;
571
572         if (cfg->ctrlMode == AGC_CTRL_USER) {
573                 do {
574                         u16 FeAgRegPm1AgcWri;
575                         u16 FeAgRegAgModeLop;
576
577                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578                         if (status < 0)
579                                 break;
580                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583                         if (status < 0)
584                                 break;
585
586                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587                                                   FE_AG_REG_PM1_AGC_WRI__M);
588                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589                         if (status < 0)
590                                 break;
591                 } while (0);
592         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597                     )
598                         return -1;
599                 do {
600                         u16 FeAgRegAgModeLop;
601                         u16 FeAgRegEgcSetLvl;
602                         u16 slope, offset;
603
604                         /* == Mode == */
605
606                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607                         if (status < 0)
608                                 break;
609                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610                         FeAgRegAgModeLop |=
611                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613                         if (status < 0)
614                                 break;
615
616                         /* == Settle level == */
617
618                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619                                                   FE_AG_REG_EGC_SET_LVL__M);
620                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Min/Max == */
625
626                         slope = (u16) ((cfg->maxOutputLevel -
627                                         cfg->minOutputLevel) / 2);
628                         offset = (u16) ((cfg->maxOutputLevel +
629                                          cfg->minOutputLevel) / 2 - 511);
630
631                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632                         if (status < 0)
633                                 break;
634                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635                         if (status < 0)
636                                 break;
637
638                         /* == Speed == */
639                         {
640                                 const u16 maxRur = 8;
641                                 static const u16 slowIncrDecLUT[] = {
642                                         3, 4, 4, 5, 6 };
643                                 static const u16 fastIncrDecLUT[] = {
644                                         14, 15, 15, 16,
645                                         17, 18, 18, 19,
646                                         20, 21, 22, 23,
647                                         24, 26, 27, 28,
648                                         29, 31
649                                 };
650
651                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
652                                     (maxRur + 1);
653                                 u16 fineSpeed = (u16) (cfg->speed -
654                                                        ((cfg->speed /
655                                                          fineSteps) *
656                                                         fineSteps));
657                                 u16 invRurCount = (u16) (cfg->speed /
658                                                          fineSteps);
659                                 u16 rurCount;
660                                 if (invRurCount > maxRur) {
661                                         rurCount = 0;
662                                         fineSpeed += fineSteps;
663                                 } else {
664                                         rurCount = maxRur - invRurCount;
665                                 }
666
667                                 /*
668                                    fastInc = default *
669                                    (2^(fineSpeed/fineSteps))
670                                    => range[default...2*default>
671                                    slowInc = default *
672                                    (2^(fineSpeed/fineSteps))
673                                  */
674                                 {
675                                         u16 fastIncrDec =
676                                             fastIncrDecLUT[fineSpeed /
677                                                            ((fineSteps /
678                                                              (14 + 1)) + 1)];
679                                         u16 slowIncrDec =
680                                             slowIncrDecLUT[fineSpeed /
681                                                            (fineSteps /
682                                                             (3 + 1))];
683
684                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
685                                         if (status < 0)
686                                                 break;
687                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
688                                         if (status < 0)
689                                                 break;
690                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
691                                         if (status < 0)
692                                                 break;
693                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
694                                         if (status < 0)
695                                                 break;
696                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
697                                         if (status < 0)
698                                                 break;
699                                 }
700                         }
701                 } while (0);
702
703         } else {
704                 /* No OFF mode for IF control */
705                 return -1;
706         }
707         return status;
708 }
709
710 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
711 {
712         int status = 0;
713
714         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
715                 return -1;
716
717         if (cfg->ctrlMode == AGC_CTRL_USER) {
718                 do {
719                         u16 AgModeLop = 0;
720                         u16 level = (cfg->outputLevel);
721
722                         if (level == DRXD_FE_CTRL_MAX)
723                                 level++;
724
725                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
726                         if (status < 0)
727                                 break;
728
729                         /*==== Mode ====*/
730
731                         /* Powerdown PD2, WRI source */
732                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
733                         state->m_FeAgRegAgPwd |=
734                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
735                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
736                         if (status < 0)
737                                 break;
738
739                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
740                         if (status < 0)
741                                 break;
742                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
743                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
744                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
745                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
746                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
747                         if (status < 0)
748                                 break;
749
750                         /* enable AGC2 pin */
751                         {
752                                 u16 FeAgRegAgAgcSio = 0;
753                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
754                                 if (status < 0)
755                                         break;
756                                 FeAgRegAgAgcSio &=
757                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
758                                 FeAgRegAgAgcSio |=
759                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
760                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
761                                 if (status < 0)
762                                         break;
763                         }
764
765                 } while (0);
766         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
767                 u16 AgModeLop = 0;
768
769                 do {
770                         u16 level;
771                         /* Automatic control */
772                         /* Powerup PD2, AGC2 as output, TGC source */
773                         (state->m_FeAgRegAgPwd) &=
774                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
775                         (state->m_FeAgRegAgPwd) |=
776                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
777                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
778                         if (status < 0)
779                                 break;
780
781                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
782                         if (status < 0)
783                                 break;
784                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
785                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
786                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
787                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
788                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
789                         if (status < 0)
790                                 break;
791                         /* Settle level */
792                         level = (((cfg->settleLevel) >> 4) &
793                                  FE_AG_REG_TGC_SET_LVL__M);
794                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
795                         if (status < 0)
796                                 break;
797
798                         /* Min/max: don't care */
799
800                         /* Speed: TODO */
801
802                         /* enable AGC2 pin */
803                         {
804                                 u16 FeAgRegAgAgcSio = 0;
805                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
806                                 if (status < 0)
807                                         break;
808                                 FeAgRegAgAgcSio &=
809                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
810                                 FeAgRegAgAgcSio |=
811                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
812                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
813                                 if (status < 0)
814                                         break;
815                         }
816
817                 } while (0);
818         } else {
819                 u16 AgModeLop = 0;
820
821                 do {
822                         /* No RF AGC control */
823                         /* Powerdown PD2, AGC2 as output, WRI source */
824                         (state->m_FeAgRegAgPwd) &=
825                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
826                         (state->m_FeAgRegAgPwd) |=
827                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
828                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
829                         if (status < 0)
830                                 break;
831
832                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
833                         if (status < 0)
834                                 break;
835                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
836                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
837                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
838                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
839                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
840                         if (status < 0)
841                                 break;
842
843                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
844                         {
845                                 u16 FeAgRegAgAgcSio = 0;
846                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
847                                 if (status < 0)
848                                         break;
849                                 FeAgRegAgAgcSio &=
850                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
851                                 FeAgRegAgAgcSio |=
852                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
853                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
854                                 if (status < 0)
855                                         break;
856                         }
857                 } while (0);
858         }
859         return status;
860 }
861
862 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
863 {
864         int status = 0;
865
866         *pValue = 0;
867         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
868                 u16 Value;
869                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
870                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
871                 if (status >= 0) {
872                         /*           3.3V
873                            |
874                            R1
875                            |
876                            Vin - R3 - * -- Vout
877                            |
878                            R2
879                            |
880                            GND
881                          */
882                         u32 R1 = state->if_agc_cfg.R1;
883                         u32 R2 = state->if_agc_cfg.R2;
884                         u32 R3 = state->if_agc_cfg.R3;
885
886                         u32 Vmax, Rpar, Vmin, Vout;
887
888                         if (R2 == 0 && (R1 == 0 || R3 == 0))
889                                 return 0;
890
891                         Vmax = (3300 * R2) / (R1 + R2);
892                         Rpar = (R2 * R3) / (R3 + R2);
893                         Vmin = (3300 * Rpar) / (R1 + Rpar);
894                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
895
896                         *pValue = Vout;
897                 }
898         }
899         return status;
900 }
901
902 static int load_firmware(struct drxd_state *state, const char *fw_name)
903 {
904         const struct firmware *fw;
905
906         if (request_firmware(&fw, fw_name, state->dev) < 0) {
907                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
908                 return -EIO;
909         }
910
911         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
912         if (!state->microcode) {
913                 release_firmware(fw);
914                 return -ENOMEM;
915         }
916
917         state->microcode_length = fw->size;
918         release_firmware(fw);
919         return 0;
920 }
921
922 static int DownloadMicrocode(struct drxd_state *state,
923                              const u8 *pMCImage, u32 Length)
924 {
925         u8 *pSrc;
926         u32 Address;
927         u16 nBlocks;
928         u16 BlockSize;
929         u32 offset = 0;
930         int i, status = 0;
931
932         pSrc = (u8 *) pMCImage;
933         /* We're not using Flags */
934         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
935         pSrc += sizeof(u16);
936         offset += sizeof(u16);
937         nBlocks = (pSrc[0] << 8) | pSrc[1];
938         pSrc += sizeof(u16);
939         offset += sizeof(u16);
940
941         for (i = 0; i < nBlocks; i++) {
942                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
943                     (pSrc[2] << 8) | pSrc[3];
944                 pSrc += sizeof(u32);
945                 offset += sizeof(u32);
946
947                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
948                 pSrc += sizeof(u16);
949                 offset += sizeof(u16);
950
951                 /* We're not using Flags */
952                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
953                 pSrc += sizeof(u16);
954                 offset += sizeof(u16);
955
956                 /* We're not using BlockCRC */
957                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
958                 pSrc += sizeof(u16);
959                 offset += sizeof(u16);
960
961                 status = WriteBlock(state, Address, BlockSize,
962                                     pSrc, DRX_I2C_CLEARCRC);
963                 if (status < 0)
964                         break;
965                 pSrc += BlockSize;
966                 offset += BlockSize;
967         }
968
969         return status;
970 }
971
972 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
973 {
974         u32 nrRetries = 0;
975         int status;
976
977         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978         if (status < 0)
979                 return status;
980
981         do {
982                 nrRetries += 1;
983                 if (nrRetries > DRXD_MAX_RETRIES) {
984                         status = -1;
985                         break;
986                 }
987                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
988         } while (status != 0);
989
990         if (status >= 0)
991                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992         return status;
993 }
994
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997         int status = 0;
998
999         mutex_lock(&state->mutex);
1000         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005
1006         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007
1008         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012         else
1013                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014         mutex_unlock(&state->mutex);
1015         return status;
1016 }
1017
1018 static int InitHI(struct drxd_state *state)
1019 {
1020         state->hi_cfg_wakeup_key = (state->chip_adr);
1021         /* port/bridge/power down ctrl */
1022         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023         return HI_CfgCommand(state);
1024 }
1025
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028         int status;
1029
1030         mutex_lock(&state->mutex);
1031         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033         if (status == 0)
1034                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035         mutex_unlock(&state->mutex);
1036         msleep(1);
1037         return status;
1038 }
1039
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043         if (bEnableBridge)
1044                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045         else
1046                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047
1048         return HI_CfgCommand(state);
1049 }
1050
1051 #define HI_TR_WRITE      0x9
1052 #define HI_TR_READ       0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST  0x4
1055
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060         int status;
1061         int i = 0;
1062
1063         /* Parameter check */
1064         if ((!pData) || ((DataSize & 1) != 0))
1065                 return -1;
1066
1067         mutex_lock(&state->mutex);
1068
1069         do {
1070                 /* Instruct HI to read n bytes */
1071                 /* TODO use proper names forthese egisters */
1072                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073                 if (status < 0)
1074                         break;
1075                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076                 if (status < 0)
1077                         break;
1078                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079                 if (status < 0)
1080                         break;
1081                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082                 if (status < 0)
1083                         break;
1084                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085                 if (status < 0)
1086                         break;
1087
1088                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089                 if (status < 0)
1090                         break;
1091
1092         } while (0);
1093
1094         if (status >= 0) {
1095                 for (i = 0; i < (DataSize / 2); i += 1) {
1096                         u16 word;
1097
1098                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099                                         &word, 0);
1100                         if (status < 0)
1101                                 break;
1102                         pData[2 * i] = (u8) (word & 0xFF);
1103                         pData[(2 * i) + 1] = (u8) (word >> 8);
1104                 }
1105         }
1106         mutex_unlock(&state->mutex);
1107         return status;
1108 }
1109
1110 static int AtomicReadReg32(struct drxd_state *state,
1111                            u32 Addr, u32 *pData, u8 Flags)
1112 {
1113         u8 buf[sizeof(u32)];
1114         int status;
1115
1116         if (!pData)
1117                 return -1;
1118         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119         *pData = (((u32) buf[0]) << 0) +
1120             (((u32) buf[1]) << 8) +
1121             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122         return status;
1123 }
1124 #endif
1125
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128         return Write16(state, HI_COMM_EXEC__A,
1129                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134         if (state->type_A) {
1135                 /* disable? monitor bus observe @ EC_OC */
1136                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137         }
1138
1139         /* do inverse broadcast, followed by explicit write to HI */
1140         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142         return 0;
1143 }
1144
1145 static int InitCC(struct drxd_state *state)
1146 {
1147         int status = 0;
1148
1149         if (state->osc_clock_freq == 0 ||
1150             state->osc_clock_freq > 20000 ||
1151             (state->osc_clock_freq % 4000) != 0) {
1152                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1153                 return -1;
1154         }
1155
1156         status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1157         status |= Write16(state, CC_REG_PLL_MODE__A,
1158                                 CC_REG_PLL_MODE_BYPASS_PLL |
1159                                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1160         status |= Write16(state, CC_REG_REF_DIVIDE__A,
1161                                 state->osc_clock_freq / 4000, 0);
1162         status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1163                                 0);
1164         status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1165
1166         return status;
1167 }
1168
1169 static int ResetECOD(struct drxd_state *state)
1170 {
1171         int status = 0;
1172
1173         if (state->type_A)
1174                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1175         else
1176                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1177
1178         if (!(status < 0))
1179                 status = WriteTable(state, state->m_ResetECRAM);
1180         if (!(status < 0))
1181                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1182         return status;
1183 }
1184
1185 /* Configure PGA switch */
1186
1187 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1188 {
1189         int status;
1190         u16 AgModeLop = 0;
1191         u16 AgModeHip = 0;
1192         do {
1193                 if (pgaSwitch) {
1194                         /* PGA on */
1195                         /* fine gain */
1196                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1197                         if (status < 0)
1198                                 break;
1199                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1200                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1201                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1202                         if (status < 0)
1203                                 break;
1204
1205                         /* coarse gain */
1206                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1207                         if (status < 0)
1208                                 break;
1209                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1210                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1211                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1212                         if (status < 0)
1213                                 break;
1214
1215                         /* enable fine and coarse gain, enable AAF,
1216                            no ext resistor */
1217                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1218                         if (status < 0)
1219                                 break;
1220                 } else {
1221                         /* PGA off, bypass */
1222
1223                         /* fine gain */
1224                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1225                         if (status < 0)
1226                                 break;
1227                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1228                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1229                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1230                         if (status < 0)
1231                                 break;
1232
1233                         /* coarse gain */
1234                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1235                         if (status < 0)
1236                                 break;
1237                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1238                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1239                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1240                         if (status < 0)
1241                                 break;
1242
1243                         /* disable fine and coarse gain, enable AAF,
1244                            no ext resistor */
1245                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1246                         if (status < 0)
1247                                 break;
1248                 }
1249         } while (0);
1250         return status;
1251 }
1252
1253 static int InitFE(struct drxd_state *state)
1254 {
1255         int status;
1256
1257         do {
1258                 status = WriteTable(state, state->m_InitFE_1);
1259                 if (status < 0)
1260                         break;
1261
1262                 if (state->type_A) {
1263                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1264                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1265                                          0);
1266                 } else {
1267                         if (state->PGA)
1268                                 status = SetCfgPga(state, 0);
1269                         else
1270                                 status =
1271                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1272                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1273                                             0);
1274                 }
1275
1276                 if (status < 0)
1277                         break;
1278                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1279                 if (status < 0)
1280                         break;
1281                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1282                 if (status < 0)
1283                         break;
1284
1285                 status = WriteTable(state, state->m_InitFE_2);
1286                 if (status < 0)
1287                         break;
1288
1289         } while (0);
1290
1291         return status;
1292 }
1293
1294 static int InitFT(struct drxd_state *state)
1295 {
1296         /*
1297            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1298            SC stuff
1299          */
1300         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1301 }
1302
1303 static int SC_WaitForReady(struct drxd_state *state)
1304 {
1305         int i;
1306
1307         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308                 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1309                 if (status == 0)
1310                         return status;
1311         }
1312         return -1;
1313 }
1314
1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1316 {
1317         int status = 0, ret;
1318         u16 errCode;
1319
1320         status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321         if (status < 0)
1322                 return status;
1323
1324         SC_WaitForReady(state);
1325
1326         ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1327
1328         if (ret < 0 || errCode == 0xFFFF) {
1329                 printk(KERN_ERR "Command Error\n");
1330                 status = -1;
1331         }
1332
1333         return status;
1334 }
1335
1336 static int SC_ProcStartCommand(struct drxd_state *state,
1337                                u16 subCmd, u16 param0, u16 param1)
1338 {
1339         int ret, status = 0;
1340         u16 scExec;
1341
1342         mutex_lock(&state->mutex);
1343         do {
1344                 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1345                 if (ret < 0 || scExec != 1) {
1346                         status = -1;
1347                         break;
1348                 }
1349                 SC_WaitForReady(state);
1350                 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1351                 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1352                 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1353
1354                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1355         } while (0);
1356         mutex_unlock(&state->mutex);
1357         return status;
1358 }
1359
1360 static int SC_SetPrefParamCommand(struct drxd_state *state,
1361                                   u16 subCmd, u16 param0, u16 param1)
1362 {
1363         int status;
1364
1365         mutex_lock(&state->mutex);
1366         do {
1367                 status = SC_WaitForReady(state);
1368                 if (status < 0)
1369                         break;
1370                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1371                 if (status < 0)
1372                         break;
1373                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1374                 if (status < 0)
1375                         break;
1376                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1377                 if (status < 0)
1378                         break;
1379
1380                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1381                 if (status < 0)
1382                         break;
1383         } while (0);
1384         mutex_unlock(&state->mutex);
1385         return status;
1386 }
1387
1388 #if 0
1389 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1390 {
1391         int status = 0;
1392
1393         mutex_lock(&state->mutex);
1394         do {
1395                 status = SC_WaitForReady(state);
1396                 if (status < 0)
1397                         break;
1398                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1399                 if (status < 0)
1400                         break;
1401                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1402                 if (status < 0)
1403                         break;
1404         } while (0);
1405         mutex_unlock(&state->mutex);
1406         return status;
1407 }
1408 #endif
1409
1410 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1411 {
1412         int status;
1413
1414         do {
1415                 u16 EcOcRegIprInvMpg = 0;
1416                 u16 EcOcRegOcModeLop = 0;
1417                 u16 EcOcRegOcModeHip = 0;
1418                 u16 EcOcRegOcMpgSio = 0;
1419
1420                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1421
1422                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1423                         if (bEnableOutput) {
1424                                 EcOcRegOcModeHip |=
1425                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1426                         } else
1427                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1428                         EcOcRegOcModeLop |=
1429                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1430                 } else {
1431                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1432
1433                         if (bEnableOutput)
1434                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1435                         else
1436                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1437
1438                         /* Don't Insert RS Byte */
1439                         if (state->insert_rs_byte) {
1440                                 EcOcRegOcModeLop &=
1441                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1442                                 EcOcRegOcModeHip &=
1443                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1444                                 EcOcRegOcModeHip |=
1445                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1446                         } else {
1447                                 EcOcRegOcModeLop |=
1448                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1449                                 EcOcRegOcModeHip &=
1450                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1451                                 EcOcRegOcModeHip |=
1452                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1453                         }
1454
1455                         /* Mode = Parallel */
1456                         if (state->enable_parallel)
1457                                 EcOcRegOcModeLop &=
1458                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1459                         else
1460                                 EcOcRegOcModeLop |=
1461                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1462                 }
1463                 /* Invert Data */
1464                 /* EcOcRegIprInvMpg |= 0x00FF; */
1465                 EcOcRegIprInvMpg &= (~(0x00FF));
1466
1467                 /* Invert Error ( we don't use the pin ) */
1468                 /*  EcOcRegIprInvMpg |= 0x0100; */
1469                 EcOcRegIprInvMpg &= (~(0x0100));
1470
1471                 /* Invert Start ( we don't use the pin ) */
1472                 /* EcOcRegIprInvMpg |= 0x0200; */
1473                 EcOcRegIprInvMpg &= (~(0x0200));
1474
1475                 /* Invert Valid ( we don't use the pin ) */
1476                 /* EcOcRegIprInvMpg |= 0x0400; */
1477                 EcOcRegIprInvMpg &= (~(0x0400));
1478
1479                 /* Invert Clock */
1480                 /* EcOcRegIprInvMpg |= 0x0800; */
1481                 EcOcRegIprInvMpg &= (~(0x0800));
1482
1483                 /* EcOcRegOcModeLop =0x05; */
1484                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1485                 if (status < 0)
1486                         break;
1487                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1488                 if (status < 0)
1489                         break;
1490                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1491                 if (status < 0)
1492                         break;
1493                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1494                 if (status < 0)
1495                         break;
1496         } while (0);
1497         return status;
1498 }
1499
1500 static int SetDeviceTypeId(struct drxd_state *state)
1501 {
1502         int status = 0;
1503         u16 deviceId = 0;
1504
1505         do {
1506                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1507                 if (status < 0)
1508                         break;
1509                 /* TODO: why twice? */
1510                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1511                 if (status < 0)
1512                         break;
1513                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1514
1515                 state->type_A = 0;
1516                 state->PGA = 0;
1517                 state->diversity = 0;
1518                 if (deviceId == 0) {    /* on A2 only 3975 available */
1519                         state->type_A = 1;
1520                         printk(KERN_INFO "DRX3975D-A2\n");
1521                 } else {
1522                         deviceId >>= 12;
1523                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1524                         switch (deviceId) {
1525                         case 4:
1526                                 state->diversity = 1;
1527                                 /* fall through */
1528                         case 3:
1529                         case 7:
1530                                 state->PGA = 1;
1531                                 break;
1532                         case 6:
1533                                 state->diversity = 1;
1534                                 /* fall through */
1535                         case 5:
1536                         case 8:
1537                                 break;
1538                         default:
1539                                 status = -1;
1540                                 break;
1541                         }
1542                 }
1543         } while (0);
1544
1545         if (status < 0)
1546                 return status;
1547
1548         /* Init Table selection */
1549         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1550         state->m_InitSC = DRXD_InitSC;
1551         state->m_ResetECRAM = DRXD_ResetECRAM;
1552         if (state->type_A) {
1553                 state->m_ResetCEFR = DRXD_ResetCEFR;
1554                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1555                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1556                 state->m_InitCP = DRXD_InitCPA2;
1557                 state->m_InitCE = DRXD_InitCEA2;
1558                 state->m_InitEQ = DRXD_InitEQA2;
1559                 state->m_InitEC = DRXD_InitECA2;
1560                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1561                         return -EIO;
1562         } else {
1563                 state->m_ResetCEFR = NULL;
1564                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1565                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1566                 state->m_InitCP = DRXD_InitCPB1;
1567                 state->m_InitCE = DRXD_InitCEB1;
1568                 state->m_InitEQ = DRXD_InitEQB1;
1569                 state->m_InitEC = DRXD_InitECB1;
1570                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1571                         return -EIO;
1572         }
1573         if (state->diversity) {
1574                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1575                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1576                 state->m_DisableDiversity = DRXD_DisableDiversity;
1577                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1578                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1579                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1580                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1581         } else {
1582                 state->m_InitDiversityFront = NULL;
1583                 state->m_InitDiversityEnd = NULL;
1584                 state->m_DisableDiversity = NULL;
1585                 state->m_StartDiversityFront = NULL;
1586                 state->m_StartDiversityEnd = NULL;
1587                 state->m_DiversityDelay8MHZ = NULL;
1588                 state->m_DiversityDelay6MHZ = NULL;
1589         }
1590
1591         return status;
1592 }
1593
1594 static int CorrectSysClockDeviation(struct drxd_state *state)
1595 {
1596         int status;
1597         s32 incr = 0;
1598         s32 nomincr = 0;
1599         u32 bandwidth = 0;
1600         u32 sysClockInHz = 0;
1601         u32 sysClockFreq = 0;   /* in kHz */
1602         s16 oscClockDeviation;
1603         s16 Diff;
1604
1605         do {
1606                 /* Retrieve bandwidth and incr, sanity check */
1607
1608                 /* These accesses should be AtomicReadReg32, but that
1609                    causes trouble (at least for diversity */
1610                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1611                 if (status < 0)
1612                         break;
1613                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1614                 if (status < 0)
1615                         break;
1616
1617                 if (state->type_A) {
1618                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1619                                 break;
1620                 } else {
1621                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1622                                 break;
1623                 }
1624
1625                 switch (state->props.bandwidth_hz) {
1626                 case 8000000:
1627                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1628                         break;
1629                 case 7000000:
1630                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1631                         break;
1632                 case 6000000:
1633                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1634                         break;
1635                 default:
1636                         return -1;
1637                         break;
1638                 }
1639
1640                 /* Compute new sysclock value
1641                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1642                 incr += (1 << 23);
1643                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1644                 sysClockFreq = (u32) (sysClockInHz / 1000);
1645                 /* rounding */
1646                 if ((sysClockInHz % 1000) > 500)
1647                         sysClockFreq++;
1648
1649                 /* Compute clock deviation in ppm */
1650                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1651                                              (s32)
1652                                              (state->expected_sys_clock_freq)) *
1653                                             1000000L) /
1654                                            (s32)
1655                                            (state->expected_sys_clock_freq));
1656
1657                 Diff = oscClockDeviation - state->osc_clock_deviation;
1658                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1659                 if (Diff >= -200 && Diff <= 200) {
1660                         state->sys_clock_freq = (u16) sysClockFreq;
1661                         if (oscClockDeviation != state->osc_clock_deviation) {
1662                                 if (state->config.osc_deviation) {
1663                                         state->config.osc_deviation(state->priv,
1664                                                                     oscClockDeviation,
1665                                                                     1);
1666                                         state->osc_clock_deviation =
1667                                             oscClockDeviation;
1668                                 }
1669                         }
1670                         /* switch OFF SRMM scan in SC */
1671                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1672                         if (status < 0)
1673                                 break;
1674                         /* overrule FE_IF internal value for
1675                            proper re-locking */
1676                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1677                         if (status < 0)
1678                                 break;
1679                         state->cscd_state = CSCD_SAVED;
1680                 }
1681         } while (0);
1682
1683         return status;
1684 }
1685
1686 static int DRX_Stop(struct drxd_state *state)
1687 {
1688         int status;
1689
1690         if (state->drxd_state != DRXD_STARTED)
1691                 return 0;
1692
1693         do {
1694                 if (state->cscd_state != CSCD_SAVED) {
1695                         u32 lock;
1696                         status = DRX_GetLockStatus(state, &lock);
1697                         if (status < 0)
1698                                 break;
1699                 }
1700
1701                 status = StopOC(state);
1702                 if (status < 0)
1703                         break;
1704
1705                 state->drxd_state = DRXD_STOPPED;
1706
1707                 status = ConfigureMPEGOutput(state, 0);
1708                 if (status < 0)
1709                         break;
1710
1711                 if (state->type_A) {
1712                         /* Stop relevant processors off the device */
1713                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1714                         if (status < 0)
1715                                 break;
1716
1717                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1718                         if (status < 0)
1719                                 break;
1720                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                         if (status < 0)
1722                                 break;
1723                 } else {
1724                         /* Stop all processors except HI & CC & FE */
1725                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726                         if (status < 0)
1727                                 break;
1728                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729                         if (status < 0)
1730                                 break;
1731                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732                         if (status < 0)
1733                                 break;
1734                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1735                         if (status < 0)
1736                                 break;
1737                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1738                         if (status < 0)
1739                                 break;
1740                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1741                         if (status < 0)
1742                                 break;
1743                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1744                         if (status < 0)
1745                                 break;
1746                 }
1747
1748         } while (0);
1749         return status;
1750 }
1751
1752 #if 0   /* Currently unused */
1753 static int SetOperationMode(struct drxd_state *state, int oMode)
1754 {
1755         int status;
1756
1757         do {
1758                 if (state->drxd_state != DRXD_STOPPED) {
1759                         status = -1;
1760                         break;
1761                 }
1762
1763                 if (oMode == state->operation_mode) {
1764                         status = 0;
1765                         break;
1766                 }
1767
1768                 if (oMode != OM_Default && !state->diversity) {
1769                         status = -1;
1770                         break;
1771                 }
1772
1773                 switch (oMode) {
1774                 case OM_DVBT_Diversity_Front:
1775                         status = WriteTable(state, state->m_InitDiversityFront);
1776                         break;
1777                 case OM_DVBT_Diversity_End:
1778                         status = WriteTable(state, state->m_InitDiversityEnd);
1779                         break;
1780                 case OM_Default:
1781                         /* We need to check how to
1782                            get DRXD out of diversity */
1783                 default:
1784                         status = WriteTable(state, state->m_DisableDiversity);
1785                         break;
1786                 }
1787         } while (0);
1788
1789         if (!status)
1790                 state->operation_mode = oMode;
1791         return status;
1792 }
1793 #endif
1794
1795 static int StartDiversity(struct drxd_state *state)
1796 {
1797         int status = 0;
1798         u16 rcControl;
1799
1800         do {
1801                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1802                         status = WriteTable(state, state->m_StartDiversityFront);
1803                         if (status < 0)
1804                                 break;
1805                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1806                         status = WriteTable(state, state->m_StartDiversityEnd);
1807                         if (status < 0)
1808                                 break;
1809                         if (state->props.bandwidth_hz == 8000000) {
1810                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1811                                 if (status < 0)
1812                                         break;
1813                         } else {
1814                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1815                                 if (status < 0)
1816                                         break;
1817                         }
1818
1819                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1820                         if (status < 0)
1821                                 break;
1822                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1823                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1824                             /*  combining enabled */
1825                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1826                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1827                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1828                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1829                         if (status < 0)
1830                                 break;
1831                 }
1832         } while (0);
1833         return status;
1834 }
1835
1836 static int SetFrequencyShift(struct drxd_state *state,
1837                              u32 offsetFreq, int channelMirrored)
1838 {
1839         int negativeShift = (state->tuner_mirrors == channelMirrored);
1840
1841         /* Handle all mirroring
1842          *
1843          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1844          * feFsRegAddInc to 28 bits below
1845          * (if the result before masking is more than 28 bits, this means
1846          *  that the ADC is mirroring.
1847          * The masking is in fact the aliasing of the ADC)
1848          *
1849          */
1850
1851         /* Compute register value, unsigned computation */
1852         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1853                                          offsetFreq,
1854                                          1 << 28, state->sys_clock_freq);
1855         /* Remove integer part */
1856         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1857         if (negativeShift)
1858                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1859
1860         /* Save the frequency shift without tunerOffset compensation
1861            for CtrlGetChannel. */
1862         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1863                                              1 << 28, state->sys_clock_freq);
1864         /* Remove integer part */
1865         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1866         if (negativeShift)
1867                 state->org_fe_fs_add_incr = ((1L << 28) -
1868                                              state->org_fe_fs_add_incr);
1869
1870         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1871                        state->fe_fs_add_incr, 0);
1872 }
1873
1874 static int SetCfgNoiseCalibration(struct drxd_state *state,
1875                                   struct SNoiseCal *noiseCal)
1876 {
1877         u16 beOptEna;
1878         int status = 0;
1879
1880         do {
1881                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1882                 if (status < 0)
1883                         break;
1884                 if (noiseCal->cpOpt) {
1885                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1886                 } else {
1887                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1888                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1889                         if (status < 0)
1890                                 break;
1891                 }
1892                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1893                 if (status < 0)
1894                         break;
1895
1896                 if (!state->type_A) {
1897                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1898                         if (status < 0)
1899                                 break;
1900                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1901                         if (status < 0)
1902                                 break;
1903                 }
1904         } while (0);
1905
1906         return status;
1907 }
1908
1909 static int DRX_Start(struct drxd_state *state, s32 off)
1910 {
1911         struct dtv_frontend_properties *p = &state->props;
1912         int status;
1913
1914         u16 transmissionParams = 0;
1915         u16 operationMode = 0;
1916         u16 qpskTdTpsPwr = 0;
1917         u16 qam16TdTpsPwr = 0;
1918         u16 qam64TdTpsPwr = 0;
1919         u32 feIfIncr = 0;
1920         u32 bandwidth = 0;
1921         int mirrorFreqSpect;
1922
1923         u16 qpskSnCeGain = 0;
1924         u16 qam16SnCeGain = 0;
1925         u16 qam64SnCeGain = 0;
1926         u16 qpskIsGainMan = 0;
1927         u16 qam16IsGainMan = 0;
1928         u16 qam64IsGainMan = 0;
1929         u16 qpskIsGainExp = 0;
1930         u16 qam16IsGainExp = 0;
1931         u16 qam64IsGainExp = 0;
1932         u16 bandwidthParam = 0;
1933
1934         if (off < 0)
1935                 off = (off - 500) / 1000;
1936         else
1937                 off = (off + 500) / 1000;
1938
1939         do {
1940                 if (state->drxd_state != DRXD_STOPPED)
1941                         return -1;
1942                 status = ResetECOD(state);
1943                 if (status < 0)
1944                         break;
1945                 if (state->type_A) {
1946                         status = InitSC(state);
1947                         if (status < 0)
1948                                 break;
1949                 } else {
1950                         status = InitFT(state);
1951                         if (status < 0)
1952                                 break;
1953                         status = InitCP(state);
1954                         if (status < 0)
1955                                 break;
1956                         status = InitCE(state);
1957                         if (status < 0)
1958                                 break;
1959                         status = InitEQ(state);
1960                         if (status < 0)
1961                                 break;
1962                         status = InitSC(state);
1963                         if (status < 0)
1964                                 break;
1965                 }
1966
1967                 /* Restore current IF & RF AGC settings */
1968
1969                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1970                 if (status < 0)
1971                         break;
1972                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1973                 if (status < 0)
1974                         break;
1975
1976                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1977
1978                 switch (p->transmission_mode) {
1979                 default:        /* Not set, detect it automatically */
1980                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1981                         /* fall through - try first guess DRX_FFTMODE_8K */
1982                 case TRANSMISSION_MODE_8K:
1983                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1984                         if (state->type_A) {
1985                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1986                                 if (status < 0)
1987                                         break;
1988                                 qpskSnCeGain = 99;
1989                                 qam16SnCeGain = 83;
1990                                 qam64SnCeGain = 67;
1991                         }
1992                         break;
1993                 case TRANSMISSION_MODE_2K:
1994                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1995                         if (state->type_A) {
1996                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1997                                 if (status < 0)
1998                                         break;
1999                                 qpskSnCeGain = 97;
2000                                 qam16SnCeGain = 71;
2001                                 qam64SnCeGain = 65;
2002                         }
2003                         break;
2004                 }
2005
2006                 switch (p->guard_interval) {
2007                 case GUARD_INTERVAL_1_4:
2008                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2009                         break;
2010                 case GUARD_INTERVAL_1_8:
2011                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2012                         break;
2013                 case GUARD_INTERVAL_1_16:
2014                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2015                         break;
2016                 case GUARD_INTERVAL_1_32:
2017                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2018                         break;
2019                 default:        /* Not set, detect it automatically */
2020                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2021                         /* try first guess 1/4 */
2022                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2023                         break;
2024                 }
2025
2026                 switch (p->hierarchy) {
2027                 case HIERARCHY_1:
2028                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2029                         if (state->type_A) {
2030                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2031                                 if (status < 0)
2032                                         break;
2033                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2034                                 if (status < 0)
2035                                         break;
2036
2037                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2038                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2039                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2040
2041                                 qpskIsGainMan =
2042                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2043                                 qam16IsGainMan =
2044                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2045                                 qam64IsGainMan =
2046                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2047
2048                                 qpskIsGainExp =
2049                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2050                                 qam16IsGainExp =
2051                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2052                                 qam64IsGainExp =
2053                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2054                         }
2055                         break;
2056
2057                 case HIERARCHY_2:
2058                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2059                         if (state->type_A) {
2060                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2061                                 if (status < 0)
2062                                         break;
2063                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2064                                 if (status < 0)
2065                                         break;
2066
2067                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2068                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2069                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2070
2071                                 qpskIsGainMan =
2072                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2073                                 qam16IsGainMan =
2074                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2075                                 qam64IsGainMan =
2076                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2077
2078                                 qpskIsGainExp =
2079                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2080                                 qam16IsGainExp =
2081                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2082                                 qam64IsGainExp =
2083                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2084                         }
2085                         break;
2086                 case HIERARCHY_4:
2087                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2088                         if (state->type_A) {
2089                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2090                                 if (status < 0)
2091                                         break;
2092                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2093                                 if (status < 0)
2094                                         break;
2095
2096                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2097                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2098                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2099
2100                                 qpskIsGainMan =
2101                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2102                                 qam16IsGainMan =
2103                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2104                                 qam64IsGainMan =
2105                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2106
2107                                 qpskIsGainExp =
2108                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2109                                 qam16IsGainExp =
2110                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2111                                 qam64IsGainExp =
2112                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2113                         }
2114                         break;
2115                 case HIERARCHY_AUTO:
2116                 default:
2117                         /* Not set, detect it automatically, start with none */
2118                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2119                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2120                         if (state->type_A) {
2121                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2122                                 if (status < 0)
2123                                         break;
2124                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2125                                 if (status < 0)
2126                                         break;
2127
2128                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2129                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2130                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2131
2132                                 qpskIsGainMan =
2133                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2134                                 qam16IsGainMan =
2135                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2136                                 qam64IsGainMan =
2137                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2138
2139                                 qpskIsGainExp =
2140                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2141                                 qam16IsGainExp =
2142                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2143                                 qam64IsGainExp =
2144                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2145                         }
2146                         break;
2147                 }
2148                 if (status < 0)
2149                         break;
2150
2151                 switch (p->modulation) {
2152                 default:
2153                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2154                         /* fall through - try first guess DRX_CONSTELLATION_QAM64 */
2155                 case QAM_64:
2156                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2157                         if (state->type_A) {
2158                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2159                                 if (status < 0)
2160                                         break;
2161                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2162                                 if (status < 0)
2163                                         break;
2164                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2165                                 if (status < 0)
2166                                         break;
2167                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2168                                 if (status < 0)
2169                                         break;
2170                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2171                                 if (status < 0)
2172                                         break;
2173
2174                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2175                                 if (status < 0)
2176                                         break;
2177                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2178                                 if (status < 0)
2179                                         break;
2180                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2181                                 if (status < 0)
2182                                         break;
2183                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2184                                 if (status < 0)
2185                                         break;
2186                         }
2187                         break;
2188                 case QPSK:
2189                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2190                         if (state->type_A) {
2191                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2192                                 if (status < 0)
2193                                         break;
2194                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2195                                 if (status < 0)
2196                                         break;
2197                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2198                                 if (status < 0)
2199                                         break;
2200                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2201                                 if (status < 0)
2202                                         break;
2203                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2204                                 if (status < 0)
2205                                         break;
2206
2207                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2208                                 if (status < 0)
2209                                         break;
2210                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2211                                 if (status < 0)
2212                                         break;
2213                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2214                                 if (status < 0)
2215                                         break;
2216                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2217                                 if (status < 0)
2218                                         break;
2219                         }
2220                         break;
2221
2222                 case QAM_16:
2223                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2224                         if (state->type_A) {
2225                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2226                                 if (status < 0)
2227                                         break;
2228                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2229                                 if (status < 0)
2230                                         break;
2231                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2232                                 if (status < 0)
2233                                         break;
2234                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2235                                 if (status < 0)
2236                                         break;
2237                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2238                                 if (status < 0)
2239                                         break;
2240
2241                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2242                                 if (status < 0)
2243                                         break;
2244                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2245                                 if (status < 0)
2246                                         break;
2247                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2248                                 if (status < 0)
2249                                         break;
2250                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2251                                 if (status < 0)
2252                                         break;
2253                         }
2254                         break;
2255
2256                 }
2257                 if (status < 0)
2258                         break;
2259
2260                 switch (DRX_CHANNEL_HIGH) {
2261                 default:
2262                 case DRX_CHANNEL_AUTO:
2263                 case DRX_CHANNEL_LOW:
2264                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2265                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2266                         break;
2267                 case DRX_CHANNEL_HIGH:
2268                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270                         break;
2271                 }
2272
2273                 switch (p->code_rate_HP) {
2274                 case FEC_1_2:
2275                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2276                         if (state->type_A)
2277                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2278                         break;
2279                 default:
2280                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2281                         /* fall through */
2282                 case FEC_2_3:
2283                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2284                         if (state->type_A)
2285                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2286                         break;
2287                 case FEC_3_4:
2288                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2289                         if (state->type_A)
2290                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2291                         break;
2292                 case FEC_5_6:
2293                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2294                         if (state->type_A)
2295                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2296                         break;
2297                 case FEC_7_8:
2298                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2299                         if (state->type_A)
2300                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2301                         break;
2302                 }
2303                 if (status < 0)
2304                         break;
2305
2306                 /* First determine real bandwidth (Hz) */
2307                 /* Also set delay for impulse noise cruncher (only A2) */
2308                 /* Also set parameters for EC_OC fix, note
2309                    EC_OC_REG_TMD_HIL_MAR is changed
2310                    by SC for fix for some 8K,1/8 guard but is restored by
2311                    InitEC and ResetEC
2312                    functions */
2313                 switch (p->bandwidth_hz) {
2314                 case 0:
2315                         p->bandwidth_hz = 8000000;
2316                         /* fall through */
2317                 case 8000000:
2318                         /* (64/7)*(8/8)*1000000 */
2319                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2320
2321                         bandwidthParam = 0;
2322                         status = Write16(state,
2323                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2324                         break;
2325                 case 7000000:
2326                         /* (64/7)*(7/8)*1000000 */
2327                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2328                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2329                         status = Write16(state,
2330                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2331                         break;
2332                 case 6000000:
2333                         /* (64/7)*(6/8)*1000000 */
2334                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2335                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2336                         status = Write16(state,
2337                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2338                         break;
2339                 default:
2340                         status = -EINVAL;
2341                 }
2342                 if (status < 0)
2343                         break;
2344
2345                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2346                 if (status < 0)
2347                         break;
2348
2349                 {
2350                         u16 sc_config;
2351                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2352                         if (status < 0)
2353                                 break;
2354
2355                         /* enable SLAVE mode in 2k 1/32 to
2356                            prevent timing change glitches */
2357                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2358                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2359                                 /* enable slave */
2360                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2361                         } else {
2362                                 /* disable slave */
2363                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2364                         }
2365                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2366                         if (status < 0)
2367                                 break;
2368                 }
2369
2370                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2371                 if (status < 0)
2372                         break;
2373
2374                 if (state->cscd_state == CSCD_INIT) {
2375                         /* switch on SRMM scan in SC */
2376                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2377                         if (status < 0)
2378                                 break;
2379 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2380                         state->cscd_state = CSCD_SET;
2381                 }
2382
2383                 /* Now compute FE_IF_REG_INCR */
2384                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2385                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2386                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2387                                     (1ULL << 21), bandwidth) - (1 << 23);
2388                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2389                 if (status < 0)
2390                         break;
2391                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2392                 if (status < 0)
2393                         break;
2394                 /* Bandwidth setting done */
2395
2396                 /* Mirror & frequency offset */
2397                 SetFrequencyShift(state, off, mirrorFreqSpect);
2398
2399                 /* Start SC, write channel settings to SC */
2400
2401                 /* Enable SC after setting all other parameters */
2402                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2403                 if (status < 0)
2404                         break;
2405                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2406                 if (status < 0)
2407                         break;
2408
2409                 /* Write SC parameter registers, operation mode */
2410 #if 1
2411                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2412                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2413                                  SC_RA_RAM_OP_AUTO_CONST__M |
2414                                  SC_RA_RAM_OP_AUTO_HIER__M |
2415                                  SC_RA_RAM_OP_AUTO_RATE__M);
2416 #endif
2417                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2418                 if (status < 0)
2419                         break;
2420
2421                 /* Start correct processes to get in lock */
2422                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2423                 if (status < 0)
2424                         break;
2425
2426                 status = StartOC(state);
2427                 if (status < 0)
2428                         break;
2429
2430                 if (state->operation_mode != OM_Default) {
2431                         status = StartDiversity(state);
2432                         if (status < 0)
2433                                 break;
2434                 }
2435
2436                 state->drxd_state = DRXD_STARTED;
2437         } while (0);
2438
2439         return status;
2440 }
2441
2442 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2443 {
2444         u32 ulRfAgcOutputLevel = 0xffffffff;
2445         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2446         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2447         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2448         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2449         u32 ulRfAgcMode = 0;    /*2;   Off */
2450         u32 ulRfAgcR1 = 820;
2451         u32 ulRfAgcR2 = 2200;
2452         u32 ulRfAgcR3 = 150;
2453         u32 ulIfAgcMode = 0;    /* Auto */
2454         u32 ulIfAgcOutputLevel = 0xffffffff;
2455         u32 ulIfAgcSettleLevel = 0xffffffff;
2456         u32 ulIfAgcMinLevel = 0xffffffff;
2457         u32 ulIfAgcMaxLevel = 0xffffffff;
2458         u32 ulIfAgcSpeed = 0xffffffff;
2459         u32 ulIfAgcR1 = 820;
2460         u32 ulIfAgcR2 = 2200;
2461         u32 ulIfAgcR3 = 150;
2462         u32 ulClock = state->config.clock;
2463         u32 ulSerialMode = 0;
2464         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2465         u32 ulHiI2cDelay = HI_I2C_DELAY;
2466         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2467         u32 ulHiI2cPatch = 0;
2468         u32 ulEnvironment = APPENV_PORTABLE;
2469         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2470         u32 ulIFFilter = IFFILTER_SAW;
2471
2472         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2473         state->if_agc_cfg.outputLevel = 0;
2474         state->if_agc_cfg.settleLevel = 140;
2475         state->if_agc_cfg.minOutputLevel = 0;
2476         state->if_agc_cfg.maxOutputLevel = 1023;
2477         state->if_agc_cfg.speed = 904;
2478
2479         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2480                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2481                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2482         }
2483
2484         if (ulIfAgcMode == 0 &&
2485             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2486             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2487             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2488             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2489                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2490                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2491                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2492                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2493                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2494         }
2495
2496         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2497         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2498         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2499
2500         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2501         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2502         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2503
2504         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2505         /* rest of the RFAgcCfg structure currently unused */
2506         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2507                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2508                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2509         }
2510
2511         if (ulRfAgcMode == 0 &&
2512             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2513             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2514             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2515             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2516                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2517                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2518                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2519                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2520                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2521         }
2522
2523         if (ulRfAgcMode == 2)
2524                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2525
2526         if (ulEnvironment <= 2)
2527                 state->app_env_default = (enum app_env)
2528                     (ulEnvironment);
2529         if (ulEnvironmentDiversity <= 2)
2530                 state->app_env_diversity = (enum app_env)
2531                     (ulEnvironmentDiversity);
2532
2533         if (ulIFFilter == IFFILTER_DISCRETE) {
2534                 /* discrete filter */
2535                 state->noise_cal.cpOpt = 0;
2536                 state->noise_cal.cpNexpOfs = 40;
2537                 state->noise_cal.tdCal2k = -40;
2538                 state->noise_cal.tdCal8k = -24;
2539         } else {
2540                 /* SAW filter */
2541                 state->noise_cal.cpOpt = 1;
2542                 state->noise_cal.cpNexpOfs = 0;
2543                 state->noise_cal.tdCal2k = -21;
2544                 state->noise_cal.tdCal8k = -24;
2545         }
2546         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2547
2548         state->chip_adr = (state->config.demod_address << 1) | 1;
2549         switch (ulHiI2cPatch) {
2550         case 1:
2551                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2552                 break;
2553         case 3:
2554                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2555                 break;
2556         default:
2557                 state->m_HiI2cPatch = NULL;
2558         }
2559
2560         /* modify tuner and clock attributes */
2561         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2562         /* expected system clock frequency in kHz */
2563         state->expected_sys_clock_freq = 48000;
2564         /* real system clock frequency in kHz */
2565         state->sys_clock_freq = 48000;
2566         state->osc_clock_freq = (u16) ulClock;
2567         state->osc_clock_deviation = 0;
2568         state->cscd_state = CSCD_INIT;
2569         state->drxd_state = DRXD_UNINITIALIZED;
2570
2571         state->PGA = 0;
2572         state->type_A = 0;
2573         state->tuner_mirrors = 0;
2574
2575         /* modify MPEG output attributes */
2576         state->insert_rs_byte = state->config.insert_rs_byte;
2577         state->enable_parallel = (ulSerialMode != 1);
2578
2579         /* Timing div, 250ns/Psys */
2580         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2581
2582         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2583                                           ulHiI2cDelay) / 1000;
2584         /* Bridge delay, uses oscilator clock */
2585         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2586         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2587                                             ulHiI2cBridgeDelay) / 1000;
2588
2589         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2590         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2591         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2592         return 0;
2593 }
2594
2595 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2596 {
2597         int status = 0;
2598         u32 driverVersion;
2599
2600         if (state->init_done)
2601                 return 0;
2602
2603         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2604
2605         do {
2606                 state->operation_mode = OM_Default;
2607
2608                 status = SetDeviceTypeId(state);
2609                 if (status < 0)
2610                         break;
2611
2612                 /* Apply I2c address patch to B1 */
2613                 if (!state->type_A && state->m_HiI2cPatch) {
2614                         status = WriteTable(state, state->m_HiI2cPatch);
2615                         if (status < 0)
2616                                 break;
2617                 }
2618
2619                 if (state->type_A) {
2620                         /* HI firmware patch for UIO readout,
2621                            avoid clearing of result register */
2622                         status = Write16(state, 0x43012D, 0x047f, 0);
2623                         if (status < 0)
2624                                 break;
2625                 }
2626
2627                 status = HI_ResetCommand(state);
2628                 if (status < 0)
2629                         break;
2630
2631                 status = StopAllProcessors(state);
2632                 if (status < 0)
2633                         break;
2634                 status = InitCC(state);
2635                 if (status < 0)
2636                         break;
2637
2638                 state->osc_clock_deviation = 0;
2639
2640                 if (state->config.osc_deviation)
2641                         state->osc_clock_deviation =
2642                             state->config.osc_deviation(state->priv, 0, 0);
2643                 {
2644                         /* Handle clock deviation */
2645                         s32 devB;
2646                         s32 devA = (s32) (state->osc_clock_deviation) *
2647                             (s32) (state->expected_sys_clock_freq);
2648                         /* deviation in kHz */
2649                         s32 deviation = (devA / (1000000L));
2650                         /* rounding, signed */
2651                         if (devA > 0)
2652                                 devB = (2);
2653                         else
2654                                 devB = (-2);
2655                         if ((devB * (devA % 1000000L) > 1000000L)) {
2656                                 /* add +1 or -1 */
2657                                 deviation += (devB / 2);
2658                         }
2659
2660                         state->sys_clock_freq =
2661                             (u16) ((state->expected_sys_clock_freq) +
2662                                    deviation);
2663                 }
2664                 status = InitHI(state);
2665                 if (status < 0)
2666                         break;
2667                 status = InitAtomicRead(state);
2668                 if (status < 0)
2669                         break;
2670
2671                 status = EnableAndResetMB(state);
2672                 if (status < 0)
2673                         break;
2674                 if (state->type_A) {
2675                         status = ResetCEFR(state);
2676                         if (status < 0)
2677                                 break;
2678                 }
2679                 if (fw) {
2680                         status = DownloadMicrocode(state, fw, fw_size);
2681                         if (status < 0)
2682                                 break;
2683                 } else {
2684                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2685                         if (status < 0)
2686                                 break;
2687                 }
2688
2689                 if (state->PGA) {
2690                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2691                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2692                 } else {
2693                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2694                 }
2695
2696                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2697
2698                 status = InitFE(state);
2699                 if (status < 0)
2700                         break;
2701                 status = InitFT(state);
2702                 if (status < 0)
2703                         break;
2704                 status = InitCP(state);
2705                 if (status < 0)
2706                         break;
2707                 status = InitCE(state);
2708                 if (status < 0)
2709                         break;
2710                 status = InitEQ(state);
2711                 if (status < 0)
2712                         break;
2713                 status = InitEC(state);
2714                 if (status < 0)
2715                         break;
2716                 status = InitSC(state);
2717                 if (status < 0)
2718                         break;
2719
2720                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2721                 if (status < 0)
2722                         break;
2723                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2724                 if (status < 0)
2725                         break;
2726
2727                 state->cscd_state = CSCD_INIT;
2728                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2729                 if (status < 0)
2730                         break;
2731                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2732                 if (status < 0)
2733                         break;
2734
2735                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2736                                  (VERSION_MAJOR % 10)) << 24;
2737                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2738                                   (VERSION_MINOR % 10)) << 16;
2739                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2740                     ((VERSION_PATCH / 100) << 8) +
2741                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2742
2743                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2744                 if (status < 0)
2745                         break;
2746
2747                 status = StopOC(state);
2748                 if (status < 0)
2749                         break;
2750
2751                 state->drxd_state = DRXD_STOPPED;
2752                 state->init_done = 1;
2753                 status = 0;
2754         } while (0);
2755         return status;
2756 }
2757
2758 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2759 {
2760         DRX_GetLockStatus(state, pLockStatus);
2761
2762         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2763         if (*pLockStatus & DRX_LOCK_FEC) {
2764                 ConfigureMPEGOutput(state, 1);
2765                 /* Get status again, in case we have MPEG lock now */
2766                 /*DRX_GetLockStatus(state, pLockStatus); */
2767         }
2768
2769         return 0;
2770 }
2771
2772 /****************************************************************************/
2773 /****************************************************************************/
2774 /****************************************************************************/
2775
2776 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2777 {
2778         struct drxd_state *state = fe->demodulator_priv;
2779         u32 value;
2780         int res;
2781
2782         res = ReadIFAgc(state, &value);
2783         if (res < 0)
2784                 *strength = 0;
2785         else
2786                 *strength = 0xffff - (value << 4);
2787         return 0;
2788 }
2789
2790 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2791 {
2792         struct drxd_state *state = fe->demodulator_priv;
2793         u32 lock;
2794
2795         DRXD_status(state, &lock);
2796         *status = 0;
2797         /* No MPEG lock in V255 firmware, bug ? */
2798 #if 1
2799         if (lock & DRX_LOCK_MPEG)
2800                 *status |= FE_HAS_LOCK;
2801 #else
2802         if (lock & DRX_LOCK_FEC)
2803                 *status |= FE_HAS_LOCK;
2804 #endif
2805         if (lock & DRX_LOCK_FEC)
2806                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2807         if (lock & DRX_LOCK_DEMOD)
2808                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2809
2810         return 0;
2811 }
2812
2813 static int drxd_init(struct dvb_frontend *fe)
2814 {
2815         struct drxd_state *state = fe->demodulator_priv;
2816
2817         return DRXD_init(state, NULL, 0);
2818 }
2819
2820 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2821 {
2822         struct drxd_state *state = fe->demodulator_priv;
2823
2824         if (state->config.disable_i2c_gate_ctrl == 1)
2825                 return 0;
2826
2827         return DRX_ConfigureI2CBridge(state, onoff);
2828 }
2829
2830 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2831                                   struct dvb_frontend_tune_settings *sets)
2832 {
2833         sets->min_delay_ms = 10000;
2834         sets->max_drift = 0;
2835         sets->step_size = 0;
2836         return 0;
2837 }
2838
2839 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2840 {
2841         *ber = 0;
2842         return 0;
2843 }
2844
2845 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2846 {
2847         *snr = 0;
2848         return 0;
2849 }
2850
2851 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2852 {
2853         *ucblocks = 0;
2854         return 0;
2855 }
2856
2857 static int drxd_sleep(struct dvb_frontend *fe)
2858 {
2859         struct drxd_state *state = fe->demodulator_priv;
2860
2861         ConfigureMPEGOutput(state, 0);
2862         return 0;
2863 }
2864
2865 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2866 {
2867         return drxd_config_i2c(fe, enable);
2868 }
2869
2870 static int drxd_set_frontend(struct dvb_frontend *fe)
2871 {
2872         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2873         struct drxd_state *state = fe->demodulator_priv;
2874         s32 off = 0;
2875
2876         state->props = *p;
2877         DRX_Stop(state);
2878
2879         if (fe->ops.tuner_ops.set_params) {
2880                 fe->ops.tuner_ops.set_params(fe);
2881                 if (fe->ops.i2c_gate_ctrl)
2882                         fe->ops.i2c_gate_ctrl(fe, 0);
2883         }
2884
2885         msleep(200);
2886
2887         return DRX_Start(state, off);
2888 }
2889
2890 static void drxd_release(struct dvb_frontend *fe)
2891 {
2892         struct drxd_state *state = fe->demodulator_priv;
2893
2894         kfree(state);
2895 }
2896
2897 static const struct dvb_frontend_ops drxd_ops = {
2898         .delsys = { SYS_DVBT},
2899         .info = {
2900                  .name = "Micronas DRXD DVB-T",
2901                  .frequency_min_hz =  47125 * kHz,
2902                  .frequency_max_hz = 855250 * kHz,
2903                  .frequency_stepsize_hz = 166667,
2904                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2905                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2906                  FE_CAN_FEC_AUTO |
2907                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2908                  FE_CAN_QAM_AUTO |
2909                  FE_CAN_TRANSMISSION_MODE_AUTO |
2910                  FE_CAN_GUARD_INTERVAL_AUTO |
2911                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2912
2913         .release = drxd_release,
2914         .init = drxd_init,
2915         .sleep = drxd_sleep,
2916         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2917
2918         .set_frontend = drxd_set_frontend,
2919         .get_tune_settings = drxd_get_tune_settings,
2920
2921         .read_status = drxd_read_status,
2922         .read_ber = drxd_read_ber,
2923         .read_signal_strength = drxd_read_signal_strength,
2924         .read_snr = drxd_read_snr,
2925         .read_ucblocks = drxd_read_ucblocks,
2926 };
2927
2928 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2929                                  void *priv, struct i2c_adapter *i2c,
2930                                  struct device *dev)
2931 {
2932         struct drxd_state *state = NULL;
2933
2934         state = kzalloc(sizeof(*state), GFP_KERNEL);
2935         if (!state)
2936                 return NULL;
2937
2938         state->ops = drxd_ops;
2939         state->dev = dev;
2940         state->config = *config;
2941         state->i2c = i2c;
2942         state->priv = priv;
2943
2944         mutex_init(&state->mutex);
2945
2946         if (Read16(state, 0, NULL, 0) < 0)
2947                 goto error;
2948
2949         state->frontend.ops = drxd_ops;
2950         state->frontend.demodulator_priv = state;
2951         ConfigureMPEGOutput(state, 0);
2952         /* add few initialization to allow gate control */
2953         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2954         InitHI(state);
2955
2956         return &state->frontend;
2957
2958 error:
2959         printk(KERN_ERR "drxd: not found\n");
2960         kfree(state);
2961         return NULL;
2962 }
2963 EXPORT_SYMBOL(drxd_attach);
2964
2965 MODULE_DESCRIPTION("DRXD driver");
2966 MODULE_AUTHOR("Micronas");
2967 MODULE_LICENSE("GPL");
This page took 0.215542 seconds and 4 git commands to generate.