]> Git Repo - linux.git/blob - net/wireless/reg.c
net/smc: add sysctl interface for SMC
[linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <[email protected]>
5  * Copyright 2008-2011  Luis R. Rodriguez <[email protected]>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744         const u8 *end = p + buflen;
745         size_t plen;
746         key_ref_t key;
747
748         while (p < end) {
749                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750                  * than 256 bytes in size.
751                  */
752                 if (end - p < 4)
753                         goto dodgy_cert;
754                 if (p[0] != 0x30 &&
755                     p[1] != 0x82)
756                         goto dodgy_cert;
757                 plen = (p[2] << 8) | p[3];
758                 plen += 4;
759                 if (plen > end - p)
760                         goto dodgy_cert;
761
762                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763                                            "asymmetric", NULL, p, plen,
764                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                                             KEY_USR_VIEW | KEY_USR_READ),
766                                            KEY_ALLOC_NOT_IN_QUOTA |
767                                            KEY_ALLOC_BUILT_IN |
768                                            KEY_ALLOC_BYPASS_RESTRICTION);
769                 if (IS_ERR(key)) {
770                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771                                PTR_ERR(key));
772                 } else {
773                         pr_notice("Loaded X.509 cert '%s'\n",
774                                   key_ref_to_ptr(key)->description);
775                         key_ref_put(key);
776                 }
777                 p += plen;
778         }
779
780         return;
781
782 dodgy_cert:
783         pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
786 static int __init load_builtin_regdb_keys(void)
787 {
788         builtin_regdb_keys =
789                 keyring_alloc(".builtin_regdb_keys",
790                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794         if (IS_ERR(builtin_regdb_keys))
795                 return PTR_ERR(builtin_regdb_keys);
796
797         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807         return 0;
808 }
809
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811 {
812         const struct firmware *sig;
813         bool result;
814
815         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
816                 return false;
817
818         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819                                         builtin_regdb_keys,
820                                         VERIFYING_UNSPECIFIED_SIGNATURE,
821                                         NULL, NULL) == 0;
822
823         release_firmware(sig);
824
825         return result;
826 }
827
828 static void free_regdb_keyring(void)
829 {
830         key_put(builtin_regdb_keys);
831 }
832 #else
833 static int load_builtin_regdb_keys(void)
834 {
835         return 0;
836 }
837
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839 {
840         return true;
841 }
842
843 static void free_regdb_keyring(void)
844 {
845 }
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847
848 static bool valid_regdb(const u8 *data, unsigned int size)
849 {
850         const struct fwdb_header *hdr = (void *)data;
851         const struct fwdb_country *country;
852
853         if (size < sizeof(*hdr))
854                 return false;
855
856         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857                 return false;
858
859         if (hdr->version != cpu_to_be32(FWDB_VERSION))
860                 return false;
861
862         if (!regdb_has_valid_signature(data, size))
863                 return false;
864
865         country = &hdr->country[0];
866         while ((u8 *)(country + 1) <= data + size) {
867                 if (!country->coll_ptr)
868                         break;
869                 if (!valid_country(data, size, country))
870                         return false;
871                 country++;
872         }
873
874         return true;
875 }
876
877 static void set_wmm_rule(const struct fwdb_header *db,
878                          const struct fwdb_country *country,
879                          const struct fwdb_rule *rule,
880                          struct ieee80211_reg_rule *rrule)
881 {
882         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883         struct fwdb_wmm_rule *wmm;
884         unsigned int i, wmm_ptr;
885
886         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887         wmm = (void *)((u8 *)db + wmm_ptr);
888
889         if (!valid_wmm(wmm)) {
890                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892                        country->alpha2[0], country->alpha2[1]);
893                 return;
894         }
895
896         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897                 wmm_rule->client[i].cw_min =
898                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
901                 wmm_rule->client[i].cot =
902                         1000 * be16_to_cpu(wmm->client[i].cot);
903                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907         }
908
909         rrule->has_wmm = true;
910 }
911
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913                              const struct fwdb_country *country, int freq,
914                              struct ieee80211_reg_rule *rrule)
915 {
916         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918         int i;
919
920         for (i = 0; i < coll->n_rules; i++) {
921                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924
925                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926                         continue;
927
928                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930                         set_wmm_rule(db, country, rule, rrule);
931                         return 0;
932                 }
933         }
934
935         return -ENODATA;
936 }
937
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939 {
940         const struct fwdb_header *hdr = regdb;
941         const struct fwdb_country *country;
942
943         if (!regdb)
944                 return -ENODATA;
945
946         if (IS_ERR(regdb))
947                 return PTR_ERR(regdb);
948
949         country = &hdr->country[0];
950         while (country->coll_ptr) {
951                 if (alpha2_equal(alpha2, country->alpha2))
952                         return __regdb_query_wmm(regdb, country, freq, rule);
953
954                 country++;
955         }
956
957         return -ENODATA;
958 }
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
960
961 static int regdb_query_country(const struct fwdb_header *db,
962                                const struct fwdb_country *country)
963 {
964         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966         struct ieee80211_regdomain *regdom;
967         unsigned int i;
968
969         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970                          GFP_KERNEL);
971         if (!regdom)
972                 return -ENOMEM;
973
974         regdom->n_reg_rules = coll->n_rules;
975         regdom->alpha2[0] = country->alpha2[0];
976         regdom->alpha2[1] = country->alpha2[1];
977         regdom->dfs_region = coll->dfs_region;
978
979         for (i = 0; i < regdom->n_reg_rules; i++) {
980                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
984
985                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988
989                 rrule->power_rule.max_antenna_gain = 0;
990                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991
992                 rrule->flags = 0;
993                 if (rule->flags & FWDB_FLAG_NO_OFDM)
994                         rrule->flags |= NL80211_RRF_NO_OFDM;
995                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997                 if (rule->flags & FWDB_FLAG_DFS)
998                         rrule->flags |= NL80211_RRF_DFS;
999                 if (rule->flags & FWDB_FLAG_NO_IR)
1000                         rrule->flags |= NL80211_RRF_NO_IR;
1001                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1002                         rrule->flags |= NL80211_RRF_AUTO_BW;
1003
1004                 rrule->dfs_cac_ms = 0;
1005
1006                 /* handle optional data */
1007                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008                         rrule->dfs_cac_ms =
1009                                 1000 * be16_to_cpu(rule->cac_timeout);
1010                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011                         set_wmm_rule(db, country, rule, rrule);
1012         }
1013
1014         return reg_schedule_apply(regdom);
1015 }
1016
1017 static int query_regdb(const char *alpha2)
1018 {
1019         const struct fwdb_header *hdr = regdb;
1020         const struct fwdb_country *country;
1021
1022         ASSERT_RTNL();
1023
1024         if (IS_ERR(regdb))
1025                 return PTR_ERR(regdb);
1026
1027         country = &hdr->country[0];
1028         while (country->coll_ptr) {
1029                 if (alpha2_equal(alpha2, country->alpha2))
1030                         return regdb_query_country(regdb, country);
1031                 country++;
1032         }
1033
1034         return -ENODATA;
1035 }
1036
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1038 {
1039         int set_error = 0;
1040         bool restore = true;
1041         void *db;
1042
1043         if (!fw) {
1044                 pr_info("failed to load regulatory.db\n");
1045                 set_error = -ENODATA;
1046         } else if (!valid_regdb(fw->data, fw->size)) {
1047                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048                 set_error = -EINVAL;
1049         }
1050
1051         rtnl_lock();
1052         if (regdb && !IS_ERR(regdb)) {
1053                 /* negative case - a bug
1054                  * positive case - can happen due to race in case of multiple cb's in
1055                  * queue, due to usage of asynchronous callback
1056                  *
1057                  * Either case, just restore and free new db.
1058                  */
1059         } else if (set_error) {
1060                 regdb = ERR_PTR(set_error);
1061         } else if (fw) {
1062                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063                 if (db) {
1064                         regdb = db;
1065                         restore = context && query_regdb(context);
1066                 } else {
1067                         restore = true;
1068                 }
1069         }
1070
1071         if (restore)
1072                 restore_regulatory_settings(true, false);
1073
1074         rtnl_unlock();
1075
1076         kfree(context);
1077
1078         release_firmware(fw);
1079 }
1080
1081 static int query_regdb_file(const char *alpha2)
1082 {
1083         ASSERT_RTNL();
1084
1085         if (regdb)
1086                 return query_regdb(alpha2);
1087
1088         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089         if (!alpha2)
1090                 return -ENOMEM;
1091
1092         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093                                        &reg_pdev->dev, GFP_KERNEL,
1094                                        (void *)alpha2, regdb_fw_cb);
1095 }
1096
1097 int reg_reload_regdb(void)
1098 {
1099         const struct firmware *fw;
1100         void *db;
1101         int err;
1102         const struct ieee80211_regdomain *current_regdomain;
1103         struct regulatory_request *request;
1104
1105         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1106         if (err)
1107                 return err;
1108
1109         if (!valid_regdb(fw->data, fw->size)) {
1110                 err = -ENODATA;
1111                 goto out;
1112         }
1113
1114         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115         if (!db) {
1116                 err = -ENOMEM;
1117                 goto out;
1118         }
1119
1120         rtnl_lock();
1121         if (!IS_ERR_OR_NULL(regdb))
1122                 kfree(regdb);
1123         regdb = db;
1124
1125         /* reset regulatory domain */
1126         current_regdomain = get_cfg80211_regdom();
1127
1128         request = kzalloc(sizeof(*request), GFP_KERNEL);
1129         if (!request) {
1130                 err = -ENOMEM;
1131                 goto out_unlock;
1132         }
1133
1134         request->wiphy_idx = WIPHY_IDX_INVALID;
1135         request->alpha2[0] = current_regdomain->alpha2[0];
1136         request->alpha2[1] = current_regdomain->alpha2[1];
1137         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139
1140         reg_process_hint(request);
1141
1142 out_unlock:
1143         rtnl_unlock();
1144  out:
1145         release_firmware(fw);
1146         return err;
1147 }
1148
1149 static bool reg_query_database(struct regulatory_request *request)
1150 {
1151         if (query_regdb_file(request->alpha2) == 0)
1152                 return true;
1153
1154         if (call_crda(request->alpha2) == 0)
1155                 return true;
1156
1157         return false;
1158 }
1159
1160 bool reg_is_valid_request(const char *alpha2)
1161 {
1162         struct regulatory_request *lr = get_last_request();
1163
1164         if (!lr || lr->processed)
1165                 return false;
1166
1167         return alpha2_equal(lr->alpha2, alpha2);
1168 }
1169
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171 {
1172         struct regulatory_request *lr = get_last_request();
1173
1174         /*
1175          * Follow the driver's regulatory domain, if present, unless a country
1176          * IE has been processed or a user wants to help complaince further
1177          */
1178         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180             wiphy->regd)
1181                 return get_wiphy_regdom(wiphy);
1182
1183         return get_cfg80211_regdom();
1184 }
1185
1186 static unsigned int
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188                                  const struct ieee80211_reg_rule *rule)
1189 {
1190         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191         const struct ieee80211_freq_range *freq_range_tmp;
1192         const struct ieee80211_reg_rule *tmp;
1193         u32 start_freq, end_freq, idx, no;
1194
1195         for (idx = 0; idx < rd->n_reg_rules; idx++)
1196                 if (rule == &rd->reg_rules[idx])
1197                         break;
1198
1199         if (idx == rd->n_reg_rules)
1200                 return 0;
1201
1202         /* get start_freq */
1203         no = idx;
1204
1205         while (no) {
1206                 tmp = &rd->reg_rules[--no];
1207                 freq_range_tmp = &tmp->freq_range;
1208
1209                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210                         break;
1211
1212                 freq_range = freq_range_tmp;
1213         }
1214
1215         start_freq = freq_range->start_freq_khz;
1216
1217         /* get end_freq */
1218         freq_range = &rule->freq_range;
1219         no = idx;
1220
1221         while (no < rd->n_reg_rules - 1) {
1222                 tmp = &rd->reg_rules[++no];
1223                 freq_range_tmp = &tmp->freq_range;
1224
1225                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226                         break;
1227
1228                 freq_range = freq_range_tmp;
1229         }
1230
1231         end_freq = freq_range->end_freq_khz;
1232
1233         return end_freq - start_freq;
1234 }
1235
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237                                    const struct ieee80211_reg_rule *rule)
1238 {
1239         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240
1241         if (rule->flags & NL80211_RRF_NO_160MHZ)
1242                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1243         if (rule->flags & NL80211_RRF_NO_80MHZ)
1244                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1245
1246         /*
1247          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1248          * are not allowed.
1249          */
1250         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1251             rule->flags & NL80211_RRF_NO_HT40PLUS)
1252                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1253
1254         return bw;
1255 }
1256
1257 /* Sanity check on a regulatory rule */
1258 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1259 {
1260         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1261         u32 freq_diff;
1262
1263         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1264                 return false;
1265
1266         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1267                 return false;
1268
1269         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1270
1271         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1272             freq_range->max_bandwidth_khz > freq_diff)
1273                 return false;
1274
1275         return true;
1276 }
1277
1278 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1279 {
1280         const struct ieee80211_reg_rule *reg_rule = NULL;
1281         unsigned int i;
1282
1283         if (!rd->n_reg_rules)
1284                 return false;
1285
1286         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1287                 return false;
1288
1289         for (i = 0; i < rd->n_reg_rules; i++) {
1290                 reg_rule = &rd->reg_rules[i];
1291                 if (!is_valid_reg_rule(reg_rule))
1292                         return false;
1293         }
1294
1295         return true;
1296 }
1297
1298 /**
1299  * freq_in_rule_band - tells us if a frequency is in a frequency band
1300  * @freq_range: frequency rule we want to query
1301  * @freq_khz: frequency we are inquiring about
1302  *
1303  * This lets us know if a specific frequency rule is or is not relevant to
1304  * a specific frequency's band. Bands are device specific and artificial
1305  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1306  * however it is safe for now to assume that a frequency rule should not be
1307  * part of a frequency's band if the start freq or end freq are off by more
1308  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1309  * 60 GHz band.
1310  * This resolution can be lowered and should be considered as we add
1311  * regulatory rule support for other "bands".
1312  **/
1313 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1314                               u32 freq_khz)
1315 {
1316 #define ONE_GHZ_IN_KHZ  1000000
1317         /*
1318          * From 802.11ad: directional multi-gigabit (DMG):
1319          * Pertaining to operation in a frequency band containing a channel
1320          * with the Channel starting frequency above 45 GHz.
1321          */
1322         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1323                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1324         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1325                 return true;
1326         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1327                 return true;
1328         return false;
1329 #undef ONE_GHZ_IN_KHZ
1330 }
1331
1332 /*
1333  * Later on we can perhaps use the more restrictive DFS
1334  * region but we don't have information for that yet so
1335  * for now simply disallow conflicts.
1336  */
1337 static enum nl80211_dfs_regions
1338 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1339                          const enum nl80211_dfs_regions dfs_region2)
1340 {
1341         if (dfs_region1 != dfs_region2)
1342                 return NL80211_DFS_UNSET;
1343         return dfs_region1;
1344 }
1345
1346 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1347                                     const struct ieee80211_wmm_ac *wmm_ac2,
1348                                     struct ieee80211_wmm_ac *intersect)
1349 {
1350         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1351         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1352         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1353         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1354 }
1355
1356 /*
1357  * Helper for regdom_intersect(), this does the real
1358  * mathematical intersection fun
1359  */
1360 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1361                                const struct ieee80211_regdomain *rd2,
1362                                const struct ieee80211_reg_rule *rule1,
1363                                const struct ieee80211_reg_rule *rule2,
1364                                struct ieee80211_reg_rule *intersected_rule)
1365 {
1366         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1367         struct ieee80211_freq_range *freq_range;
1368         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1369         struct ieee80211_power_rule *power_rule;
1370         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1371         struct ieee80211_wmm_rule *wmm_rule;
1372         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1373
1374         freq_range1 = &rule1->freq_range;
1375         freq_range2 = &rule2->freq_range;
1376         freq_range = &intersected_rule->freq_range;
1377
1378         power_rule1 = &rule1->power_rule;
1379         power_rule2 = &rule2->power_rule;
1380         power_rule = &intersected_rule->power_rule;
1381
1382         wmm_rule1 = &rule1->wmm_rule;
1383         wmm_rule2 = &rule2->wmm_rule;
1384         wmm_rule = &intersected_rule->wmm_rule;
1385
1386         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1387                                          freq_range2->start_freq_khz);
1388         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1389                                        freq_range2->end_freq_khz);
1390
1391         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1392         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1393
1394         if (rule1->flags & NL80211_RRF_AUTO_BW)
1395                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1396         if (rule2->flags & NL80211_RRF_AUTO_BW)
1397                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1398
1399         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1400
1401         intersected_rule->flags = rule1->flags | rule2->flags;
1402
1403         /*
1404          * In case NL80211_RRF_AUTO_BW requested for both rules
1405          * set AUTO_BW in intersected rule also. Next we will
1406          * calculate BW correctly in handle_channel function.
1407          * In other case remove AUTO_BW flag while we calculate
1408          * maximum bandwidth correctly and auto calculation is
1409          * not required.
1410          */
1411         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1412             (rule2->flags & NL80211_RRF_AUTO_BW))
1413                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1414         else
1415                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1416
1417         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1418         if (freq_range->max_bandwidth_khz > freq_diff)
1419                 freq_range->max_bandwidth_khz = freq_diff;
1420
1421         power_rule->max_eirp = min(power_rule1->max_eirp,
1422                 power_rule2->max_eirp);
1423         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1424                 power_rule2->max_antenna_gain);
1425
1426         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1427                                            rule2->dfs_cac_ms);
1428
1429         if (rule1->has_wmm && rule2->has_wmm) {
1430                 u8 ac;
1431
1432                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1433                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1434                                                 &wmm_rule2->client[ac],
1435                                                 &wmm_rule->client[ac]);
1436                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1437                                                 &wmm_rule2->ap[ac],
1438                                                 &wmm_rule->ap[ac]);
1439                 }
1440
1441                 intersected_rule->has_wmm = true;
1442         } else if (rule1->has_wmm) {
1443                 *wmm_rule = *wmm_rule1;
1444                 intersected_rule->has_wmm = true;
1445         } else if (rule2->has_wmm) {
1446                 *wmm_rule = *wmm_rule2;
1447                 intersected_rule->has_wmm = true;
1448         } else {
1449                 intersected_rule->has_wmm = false;
1450         }
1451
1452         if (!is_valid_reg_rule(intersected_rule))
1453                 return -EINVAL;
1454
1455         return 0;
1456 }
1457
1458 /* check whether old rule contains new rule */
1459 static bool rule_contains(struct ieee80211_reg_rule *r1,
1460                           struct ieee80211_reg_rule *r2)
1461 {
1462         /* for simplicity, currently consider only same flags */
1463         if (r1->flags != r2->flags)
1464                 return false;
1465
1466         /* verify r1 is more restrictive */
1467         if ((r1->power_rule.max_antenna_gain >
1468              r2->power_rule.max_antenna_gain) ||
1469             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1470                 return false;
1471
1472         /* make sure r2's range is contained within r1 */
1473         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1474             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1475                 return false;
1476
1477         /* and finally verify that r1.max_bw >= r2.max_bw */
1478         if (r1->freq_range.max_bandwidth_khz <
1479             r2->freq_range.max_bandwidth_khz)
1480                 return false;
1481
1482         return true;
1483 }
1484
1485 /* add or extend current rules. do nothing if rule is already contained */
1486 static void add_rule(struct ieee80211_reg_rule *rule,
1487                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1488 {
1489         struct ieee80211_reg_rule *tmp_rule;
1490         int i;
1491
1492         for (i = 0; i < *n_rules; i++) {
1493                 tmp_rule = &reg_rules[i];
1494                 /* rule is already contained - do nothing */
1495                 if (rule_contains(tmp_rule, rule))
1496                         return;
1497
1498                 /* extend rule if possible */
1499                 if (rule_contains(rule, tmp_rule)) {
1500                         memcpy(tmp_rule, rule, sizeof(*rule));
1501                         return;
1502                 }
1503         }
1504
1505         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1506         (*n_rules)++;
1507 }
1508
1509 /**
1510  * regdom_intersect - do the intersection between two regulatory domains
1511  * @rd1: first regulatory domain
1512  * @rd2: second regulatory domain
1513  *
1514  * Use this function to get the intersection between two regulatory domains.
1515  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1516  * as no one single alpha2 can represent this regulatory domain.
1517  *
1518  * Returns a pointer to the regulatory domain structure which will hold the
1519  * resulting intersection of rules between rd1 and rd2. We will
1520  * kzalloc() this structure for you.
1521  */
1522 static struct ieee80211_regdomain *
1523 regdom_intersect(const struct ieee80211_regdomain *rd1,
1524                  const struct ieee80211_regdomain *rd2)
1525 {
1526         int r;
1527         unsigned int x, y;
1528         unsigned int num_rules = 0;
1529         const struct ieee80211_reg_rule *rule1, *rule2;
1530         struct ieee80211_reg_rule intersected_rule;
1531         struct ieee80211_regdomain *rd;
1532
1533         if (!rd1 || !rd2)
1534                 return NULL;
1535
1536         /*
1537          * First we get a count of the rules we'll need, then we actually
1538          * build them. This is to so we can malloc() and free() a
1539          * regdomain once. The reason we use reg_rules_intersect() here
1540          * is it will return -EINVAL if the rule computed makes no sense.
1541          * All rules that do check out OK are valid.
1542          */
1543
1544         for (x = 0; x < rd1->n_reg_rules; x++) {
1545                 rule1 = &rd1->reg_rules[x];
1546                 for (y = 0; y < rd2->n_reg_rules; y++) {
1547                         rule2 = &rd2->reg_rules[y];
1548                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1549                                                  &intersected_rule))
1550                                 num_rules++;
1551                 }
1552         }
1553
1554         if (!num_rules)
1555                 return NULL;
1556
1557         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1558         if (!rd)
1559                 return NULL;
1560
1561         for (x = 0; x < rd1->n_reg_rules; x++) {
1562                 rule1 = &rd1->reg_rules[x];
1563                 for (y = 0; y < rd2->n_reg_rules; y++) {
1564                         rule2 = &rd2->reg_rules[y];
1565                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1566                                                 &intersected_rule);
1567                         /*
1568                          * No need to memset here the intersected rule here as
1569                          * we're not using the stack anymore
1570                          */
1571                         if (r)
1572                                 continue;
1573
1574                         add_rule(&intersected_rule, rd->reg_rules,
1575                                  &rd->n_reg_rules);
1576                 }
1577         }
1578
1579         rd->alpha2[0] = '9';
1580         rd->alpha2[1] = '8';
1581         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1582                                                   rd2->dfs_region);
1583
1584         return rd;
1585 }
1586
1587 /*
1588  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1589  * want to just have the channel structure use these
1590  */
1591 static u32 map_regdom_flags(u32 rd_flags)
1592 {
1593         u32 channel_flags = 0;
1594         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1595                 channel_flags |= IEEE80211_CHAN_NO_IR;
1596         if (rd_flags & NL80211_RRF_DFS)
1597                 channel_flags |= IEEE80211_CHAN_RADAR;
1598         if (rd_flags & NL80211_RRF_NO_OFDM)
1599                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1600         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1601                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1602         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1603                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1604         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1605                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1606         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1607                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1608         if (rd_flags & NL80211_RRF_NO_80MHZ)
1609                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1610         if (rd_flags & NL80211_RRF_NO_160MHZ)
1611                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1612         if (rd_flags & NL80211_RRF_NO_HE)
1613                 channel_flags |= IEEE80211_CHAN_NO_HE;
1614         return channel_flags;
1615 }
1616
1617 static const struct ieee80211_reg_rule *
1618 freq_reg_info_regd(u32 center_freq,
1619                    const struct ieee80211_regdomain *regd, u32 bw)
1620 {
1621         int i;
1622         bool band_rule_found = false;
1623         bool bw_fits = false;
1624
1625         if (!regd)
1626                 return ERR_PTR(-EINVAL);
1627
1628         for (i = 0; i < regd->n_reg_rules; i++) {
1629                 const struct ieee80211_reg_rule *rr;
1630                 const struct ieee80211_freq_range *fr = NULL;
1631
1632                 rr = &regd->reg_rules[i];
1633                 fr = &rr->freq_range;
1634
1635                 /*
1636                  * We only need to know if one frequency rule was
1637                  * in center_freq's band, that's enough, so let's
1638                  * not overwrite it once found
1639                  */
1640                 if (!band_rule_found)
1641                         band_rule_found = freq_in_rule_band(fr, center_freq);
1642
1643                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1644
1645                 if (band_rule_found && bw_fits)
1646                         return rr;
1647         }
1648
1649         if (!band_rule_found)
1650                 return ERR_PTR(-ERANGE);
1651
1652         return ERR_PTR(-EINVAL);
1653 }
1654
1655 static const struct ieee80211_reg_rule *
1656 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1657 {
1658         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1659         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1660         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1661         int i = ARRAY_SIZE(bws) - 1;
1662         u32 bw;
1663
1664         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1665                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1666                 if (!IS_ERR(reg_rule))
1667                         return reg_rule;
1668         }
1669
1670         return reg_rule;
1671 }
1672
1673 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1674                                                u32 center_freq)
1675 {
1676         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1677
1678         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1679 }
1680 EXPORT_SYMBOL(freq_reg_info);
1681
1682 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1683 {
1684         switch (initiator) {
1685         case NL80211_REGDOM_SET_BY_CORE:
1686                 return "core";
1687         case NL80211_REGDOM_SET_BY_USER:
1688                 return "user";
1689         case NL80211_REGDOM_SET_BY_DRIVER:
1690                 return "driver";
1691         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1692                 return "country element";
1693         default:
1694                 WARN_ON(1);
1695                 return "bug";
1696         }
1697 }
1698 EXPORT_SYMBOL(reg_initiator_name);
1699
1700 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1701                                           const struct ieee80211_reg_rule *reg_rule,
1702                                           const struct ieee80211_channel *chan)
1703 {
1704         const struct ieee80211_freq_range *freq_range = NULL;
1705         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1706         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1707
1708         freq_range = &reg_rule->freq_range;
1709
1710         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1711         center_freq_khz = ieee80211_channel_to_khz(chan);
1712         /* Check if auto calculation requested */
1713         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1714                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1715
1716         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1717         if (!cfg80211_does_bw_fit_range(freq_range,
1718                                         center_freq_khz,
1719                                         MHZ_TO_KHZ(10)))
1720                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1721         if (!cfg80211_does_bw_fit_range(freq_range,
1722                                         center_freq_khz,
1723                                         MHZ_TO_KHZ(20)))
1724                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1725
1726         if (is_s1g) {
1727                 /* S1G is strict about non overlapping channels. We can
1728                  * calculate which bandwidth is allowed per channel by finding
1729                  * the largest bandwidth which cleanly divides the freq_range.
1730                  */
1731                 int edge_offset;
1732                 int ch_bw = max_bandwidth_khz;
1733
1734                 while (ch_bw) {
1735                         edge_offset = (center_freq_khz - ch_bw / 2) -
1736                                       freq_range->start_freq_khz;
1737                         if (edge_offset % ch_bw == 0) {
1738                                 switch (KHZ_TO_MHZ(ch_bw)) {
1739                                 case 1:
1740                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1741                                         break;
1742                                 case 2:
1743                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1744                                         break;
1745                                 case 4:
1746                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1747                                         break;
1748                                 case 8:
1749                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1750                                         break;
1751                                 case 16:
1752                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1753                                         break;
1754                                 default:
1755                                         /* If we got here, no bandwidths fit on
1756                                          * this frequency, ie. band edge.
1757                                          */
1758                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1759                                         break;
1760                                 }
1761                                 break;
1762                         }
1763                         ch_bw /= 2;
1764                 }
1765         } else {
1766                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1767                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1769                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1770                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1771                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1772                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1773                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1774                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1775                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1776         }
1777         return bw_flags;
1778 }
1779
1780 static void handle_channel_single_rule(struct wiphy *wiphy,
1781                                        enum nl80211_reg_initiator initiator,
1782                                        struct ieee80211_channel *chan,
1783                                        u32 flags,
1784                                        struct regulatory_request *lr,
1785                                        struct wiphy *request_wiphy,
1786                                        const struct ieee80211_reg_rule *reg_rule)
1787 {
1788         u32 bw_flags = 0;
1789         const struct ieee80211_power_rule *power_rule = NULL;
1790         const struct ieee80211_regdomain *regd;
1791
1792         regd = reg_get_regdomain(wiphy);
1793
1794         power_rule = &reg_rule->power_rule;
1795         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1796
1797         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1798             request_wiphy && request_wiphy == wiphy &&
1799             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1800                 /*
1801                  * This guarantees the driver's requested regulatory domain
1802                  * will always be used as a base for further regulatory
1803                  * settings
1804                  */
1805                 chan->flags = chan->orig_flags =
1806                         map_regdom_flags(reg_rule->flags) | bw_flags;
1807                 chan->max_antenna_gain = chan->orig_mag =
1808                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1809                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1810                         (int) MBM_TO_DBM(power_rule->max_eirp);
1811
1812                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1813                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814                         if (reg_rule->dfs_cac_ms)
1815                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816                 }
1817
1818                 return;
1819         }
1820
1821         chan->dfs_state = NL80211_DFS_USABLE;
1822         chan->dfs_state_entered = jiffies;
1823
1824         chan->beacon_found = false;
1825         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1826         chan->max_antenna_gain =
1827                 min_t(int, chan->orig_mag,
1828                       MBI_TO_DBI(power_rule->max_antenna_gain));
1829         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1830
1831         if (chan->flags & IEEE80211_CHAN_RADAR) {
1832                 if (reg_rule->dfs_cac_ms)
1833                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834                 else
1835                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836         }
1837
1838         if (chan->orig_mpwr) {
1839                 /*
1840                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1841                  * will always follow the passed country IE power settings.
1842                  */
1843                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1844                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1845                         chan->max_power = chan->max_reg_power;
1846                 else
1847                         chan->max_power = min(chan->orig_mpwr,
1848                                               chan->max_reg_power);
1849         } else
1850                 chan->max_power = chan->max_reg_power;
1851 }
1852
1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1854                                           enum nl80211_reg_initiator initiator,
1855                                           struct ieee80211_channel *chan,
1856                                           u32 flags,
1857                                           struct regulatory_request *lr,
1858                                           struct wiphy *request_wiphy,
1859                                           const struct ieee80211_reg_rule *rrule1,
1860                                           const struct ieee80211_reg_rule *rrule2,
1861                                           struct ieee80211_freq_range *comb_range)
1862 {
1863         u32 bw_flags1 = 0;
1864         u32 bw_flags2 = 0;
1865         const struct ieee80211_power_rule *power_rule1 = NULL;
1866         const struct ieee80211_power_rule *power_rule2 = NULL;
1867         const struct ieee80211_regdomain *regd;
1868
1869         regd = reg_get_regdomain(wiphy);
1870
1871         power_rule1 = &rrule1->power_rule;
1872         power_rule2 = &rrule2->power_rule;
1873         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1874         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1875
1876         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1877             request_wiphy && request_wiphy == wiphy &&
1878             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1879                 /* This guarantees the driver's requested regulatory domain
1880                  * will always be used as a base for further regulatory
1881                  * settings
1882                  */
1883                 chan->flags =
1884                         map_regdom_flags(rrule1->flags) |
1885                         map_regdom_flags(rrule2->flags) |
1886                         bw_flags1 |
1887                         bw_flags2;
1888                 chan->orig_flags = chan->flags;
1889                 chan->max_antenna_gain =
1890                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1891                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1892                 chan->orig_mag = chan->max_antenna_gain;
1893                 chan->max_reg_power =
1894                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1895                               MBM_TO_DBM(power_rule2->max_eirp));
1896                 chan->max_power = chan->max_reg_power;
1897                 chan->orig_mpwr = chan->max_reg_power;
1898
1899                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1901                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1902                                 chan->dfs_cac_ms = max_t(unsigned int,
1903                                                          rrule1->dfs_cac_ms,
1904                                                          rrule2->dfs_cac_ms);
1905                 }
1906
1907                 return;
1908         }
1909
1910         chan->dfs_state = NL80211_DFS_USABLE;
1911         chan->dfs_state_entered = jiffies;
1912
1913         chan->beacon_found = false;
1914         chan->flags = flags | bw_flags1 | bw_flags2 |
1915                       map_regdom_flags(rrule1->flags) |
1916                       map_regdom_flags(rrule2->flags);
1917
1918         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919          * (otherwise no adj. rule case), recheck therefore
1920          */
1921         if (cfg80211_does_bw_fit_range(comb_range,
1922                                        ieee80211_channel_to_khz(chan),
1923                                        MHZ_TO_KHZ(10)))
1924                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925         if (cfg80211_does_bw_fit_range(comb_range,
1926                                        ieee80211_channel_to_khz(chan),
1927                                        MHZ_TO_KHZ(20)))
1928                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1929
1930         chan->max_antenna_gain =
1931                 min_t(int, chan->orig_mag,
1932                       min_t(int,
1933                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1934                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935         chan->max_reg_power = min_t(int,
1936                                     MBM_TO_DBM(power_rule1->max_eirp),
1937                                     MBM_TO_DBM(power_rule2->max_eirp));
1938
1939         if (chan->flags & IEEE80211_CHAN_RADAR) {
1940                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941                         chan->dfs_cac_ms = max_t(unsigned int,
1942                                                  rrule1->dfs_cac_ms,
1943                                                  rrule2->dfs_cac_ms);
1944                 else
1945                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1946         }
1947
1948         if (chan->orig_mpwr) {
1949                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950                  * will always follow the passed country IE power settings.
1951                  */
1952                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954                         chan->max_power = chan->max_reg_power;
1955                 else
1956                         chan->max_power = min(chan->orig_mpwr,
1957                                               chan->max_reg_power);
1958         } else {
1959                 chan->max_power = chan->max_reg_power;
1960         }
1961 }
1962
1963 /* Note that right now we assume the desired channel bandwidth
1964  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965  * per channel, the primary and the extension channel).
1966  */
1967 static void handle_channel(struct wiphy *wiphy,
1968                            enum nl80211_reg_initiator initiator,
1969                            struct ieee80211_channel *chan)
1970 {
1971         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972         struct regulatory_request *lr = get_last_request();
1973         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974         const struct ieee80211_reg_rule *rrule = NULL;
1975         const struct ieee80211_reg_rule *rrule1 = NULL;
1976         const struct ieee80211_reg_rule *rrule2 = NULL;
1977
1978         u32 flags = chan->orig_flags;
1979
1980         rrule = freq_reg_info(wiphy, orig_chan_freq);
1981         if (IS_ERR(rrule)) {
1982                 /* check for adjacent match, therefore get rules for
1983                  * chan - 20 MHz and chan + 20 MHz and test
1984                  * if reg rules are adjacent
1985                  */
1986                 rrule1 = freq_reg_info(wiphy,
1987                                        orig_chan_freq - MHZ_TO_KHZ(20));
1988                 rrule2 = freq_reg_info(wiphy,
1989                                        orig_chan_freq + MHZ_TO_KHZ(20));
1990                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991                         struct ieee80211_freq_range comb_range;
1992
1993                         if (rrule1->freq_range.end_freq_khz !=
1994                             rrule2->freq_range.start_freq_khz)
1995                                 goto disable_chan;
1996
1997                         comb_range.start_freq_khz =
1998                                 rrule1->freq_range.start_freq_khz;
1999                         comb_range.end_freq_khz =
2000                                 rrule2->freq_range.end_freq_khz;
2001                         comb_range.max_bandwidth_khz =
2002                                 min_t(u32,
2003                                       rrule1->freq_range.max_bandwidth_khz,
2004                                       rrule2->freq_range.max_bandwidth_khz);
2005
2006                         if (!cfg80211_does_bw_fit_range(&comb_range,
2007                                                         orig_chan_freq,
2008                                                         MHZ_TO_KHZ(20)))
2009                                 goto disable_chan;
2010
2011                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2012                                                       flags, lr, request_wiphy,
2013                                                       rrule1, rrule2,
2014                                                       &comb_range);
2015                         return;
2016                 }
2017
2018 disable_chan:
2019                 /* We will disable all channels that do not match our
2020                  * received regulatory rule unless the hint is coming
2021                  * from a Country IE and the Country IE had no information
2022                  * about a band. The IEEE 802.11 spec allows for an AP
2023                  * to send only a subset of the regulatory rules allowed,
2024                  * so an AP in the US that only supports 2.4 GHz may only send
2025                  * a country IE with information for the 2.4 GHz band
2026                  * while 5 GHz is still supported.
2027                  */
2028                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029                     PTR_ERR(rrule) == -ERANGE)
2030                         return;
2031
2032                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033                     request_wiphy && request_wiphy == wiphy &&
2034                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2036                                  chan->center_freq, chan->freq_offset);
2037                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038                         chan->flags = chan->orig_flags;
2039                 } else {
2040                         pr_debug("Disabling freq %d.%03d MHz\n",
2041                                  chan->center_freq, chan->freq_offset);
2042                         chan->flags |= IEEE80211_CHAN_DISABLED;
2043                 }
2044                 return;
2045         }
2046
2047         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048                                    request_wiphy, rrule);
2049 }
2050
2051 static void handle_band(struct wiphy *wiphy,
2052                         enum nl80211_reg_initiator initiator,
2053                         struct ieee80211_supported_band *sband)
2054 {
2055         unsigned int i;
2056
2057         if (!sband)
2058                 return;
2059
2060         for (i = 0; i < sband->n_channels; i++)
2061                 handle_channel(wiphy, initiator, &sband->channels[i]);
2062 }
2063
2064 static bool reg_request_cell_base(struct regulatory_request *request)
2065 {
2066         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2067                 return false;
2068         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2069 }
2070
2071 bool reg_last_request_cell_base(void)
2072 {
2073         return reg_request_cell_base(get_last_request());
2074 }
2075
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081         struct regulatory_request *lr = get_last_request();
2082
2083         if (!reg_num_devs_support_basehint)
2084                 return REG_REQ_IGNORE;
2085
2086         if (reg_request_cell_base(lr) &&
2087             !regdom_changes(pending_request->alpha2))
2088                 return REG_REQ_ALREADY_SET;
2089
2090         return REG_REQ_OK;
2091 }
2092
2093 /* Device specific check */
2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2095 {
2096         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2097 }
2098 #else
2099 static enum reg_request_treatment
2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2101 {
2102         return REG_REQ_IGNORE;
2103 }
2104
2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2106 {
2107         return true;
2108 }
2109 #endif
2110
2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2112 {
2113         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2115                 return true;
2116         return false;
2117 }
2118
2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120                               enum nl80211_reg_initiator initiator)
2121 {
2122         struct regulatory_request *lr = get_last_request();
2123
2124         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2125                 return true;
2126
2127         if (!lr) {
2128                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129                          reg_initiator_name(initiator));
2130                 return true;
2131         }
2132
2133         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136                          reg_initiator_name(initiator));
2137                 return true;
2138         }
2139
2140         /*
2141          * wiphy->regd will be set once the device has its own
2142          * desired regulatory domain set
2143          */
2144         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146             !is_world_regdom(lr->alpha2)) {
2147                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148                          reg_initiator_name(initiator));
2149                 return true;
2150         }
2151
2152         if (reg_request_cell_base(lr))
2153                 return reg_dev_ignore_cell_hint(wiphy);
2154
2155         return false;
2156 }
2157
2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2159 {
2160         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162         struct regulatory_request *lr = get_last_request();
2163
2164         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2165                 return true;
2166
2167         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2169                 return true;
2170
2171         return false;
2172 }
2173
2174 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2175                               struct reg_beacon *reg_beacon)
2176 {
2177         struct ieee80211_supported_band *sband;
2178         struct ieee80211_channel *chan;
2179         bool channel_changed = false;
2180         struct ieee80211_channel chan_before;
2181
2182         sband = wiphy->bands[reg_beacon->chan.band];
2183         chan = &sband->channels[chan_idx];
2184
2185         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2186                 return;
2187
2188         if (chan->beacon_found)
2189                 return;
2190
2191         chan->beacon_found = true;
2192
2193         if (!reg_is_world_roaming(wiphy))
2194                 return;
2195
2196         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2197                 return;
2198
2199         chan_before = *chan;
2200
2201         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2202                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2203                 channel_changed = true;
2204         }
2205
2206         if (channel_changed)
2207                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2208 }
2209
2210 /*
2211  * Called when a scan on a wiphy finds a beacon on
2212  * new channel
2213  */
2214 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2215                                     struct reg_beacon *reg_beacon)
2216 {
2217         unsigned int i;
2218         struct ieee80211_supported_band *sband;
2219
2220         if (!wiphy->bands[reg_beacon->chan.band])
2221                 return;
2222
2223         sband = wiphy->bands[reg_beacon->chan.band];
2224
2225         for (i = 0; i < sband->n_channels; i++)
2226                 handle_reg_beacon(wiphy, i, reg_beacon);
2227 }
2228
2229 /*
2230  * Called upon reg changes or a new wiphy is added
2231  */
2232 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2233 {
2234         unsigned int i;
2235         struct ieee80211_supported_band *sband;
2236         struct reg_beacon *reg_beacon;
2237
2238         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2239                 if (!wiphy->bands[reg_beacon->chan.band])
2240                         continue;
2241                 sband = wiphy->bands[reg_beacon->chan.band];
2242                 for (i = 0; i < sband->n_channels; i++)
2243                         handle_reg_beacon(wiphy, i, reg_beacon);
2244         }
2245 }
2246
2247 /* Reap the advantages of previously found beacons */
2248 static void reg_process_beacons(struct wiphy *wiphy)
2249 {
2250         /*
2251          * Means we are just firing up cfg80211, so no beacons would
2252          * have been processed yet.
2253          */
2254         if (!last_request)
2255                 return;
2256         wiphy_update_beacon_reg(wiphy);
2257 }
2258
2259 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2260 {
2261         if (!chan)
2262                 return false;
2263         if (chan->flags & IEEE80211_CHAN_DISABLED)
2264                 return false;
2265         /* This would happen when regulatory rules disallow HT40 completely */
2266         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2267                 return false;
2268         return true;
2269 }
2270
2271 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2272                                          struct ieee80211_channel *channel)
2273 {
2274         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2275         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2276         const struct ieee80211_regdomain *regd;
2277         unsigned int i;
2278         u32 flags;
2279
2280         if (!is_ht40_allowed(channel)) {
2281                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2282                 return;
2283         }
2284
2285         /*
2286          * We need to ensure the extension channels exist to
2287          * be able to use HT40- or HT40+, this finds them (or not)
2288          */
2289         for (i = 0; i < sband->n_channels; i++) {
2290                 struct ieee80211_channel *c = &sband->channels[i];
2291
2292                 if (c->center_freq == (channel->center_freq - 20))
2293                         channel_before = c;
2294                 if (c->center_freq == (channel->center_freq + 20))
2295                         channel_after = c;
2296         }
2297
2298         flags = 0;
2299         regd = get_wiphy_regdom(wiphy);
2300         if (regd) {
2301                 const struct ieee80211_reg_rule *reg_rule =
2302                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2303                                            regd, MHZ_TO_KHZ(20));
2304
2305                 if (!IS_ERR(reg_rule))
2306                         flags = reg_rule->flags;
2307         }
2308
2309         /*
2310          * Please note that this assumes target bandwidth is 20 MHz,
2311          * if that ever changes we also need to change the below logic
2312          * to include that as well.
2313          */
2314         if (!is_ht40_allowed(channel_before) ||
2315             flags & NL80211_RRF_NO_HT40MINUS)
2316                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2317         else
2318                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2319
2320         if (!is_ht40_allowed(channel_after) ||
2321             flags & NL80211_RRF_NO_HT40PLUS)
2322                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2323         else
2324                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2325 }
2326
2327 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2328                                       struct ieee80211_supported_band *sband)
2329 {
2330         unsigned int i;
2331
2332         if (!sband)
2333                 return;
2334
2335         for (i = 0; i < sband->n_channels; i++)
2336                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2337 }
2338
2339 static void reg_process_ht_flags(struct wiphy *wiphy)
2340 {
2341         enum nl80211_band band;
2342
2343         if (!wiphy)
2344                 return;
2345
2346         for (band = 0; band < NUM_NL80211_BANDS; band++)
2347                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2348 }
2349
2350 static void reg_call_notifier(struct wiphy *wiphy,
2351                               struct regulatory_request *request)
2352 {
2353         if (wiphy->reg_notifier)
2354                 wiphy->reg_notifier(wiphy, request);
2355 }
2356
2357 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2358 {
2359         struct cfg80211_chan_def chandef = {};
2360         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2361         enum nl80211_iftype iftype;
2362         bool ret;
2363
2364         wdev_lock(wdev);
2365         iftype = wdev->iftype;
2366
2367         /* make sure the interface is active */
2368         if (!wdev->netdev || !netif_running(wdev->netdev))
2369                 goto wdev_inactive_unlock;
2370
2371         switch (iftype) {
2372         case NL80211_IFTYPE_AP:
2373         case NL80211_IFTYPE_P2P_GO:
2374         case NL80211_IFTYPE_MESH_POINT:
2375                 if (!wdev->beacon_interval)
2376                         goto wdev_inactive_unlock;
2377                 chandef = wdev->chandef;
2378                 break;
2379         case NL80211_IFTYPE_ADHOC:
2380                 if (!wdev->ssid_len)
2381                         goto wdev_inactive_unlock;
2382                 chandef = wdev->chandef;
2383                 break;
2384         case NL80211_IFTYPE_STATION:
2385         case NL80211_IFTYPE_P2P_CLIENT:
2386                 if (!wdev->current_bss ||
2387                     !wdev->current_bss->pub.channel)
2388                         goto wdev_inactive_unlock;
2389
2390                 if (!rdev->ops->get_channel ||
2391                     rdev_get_channel(rdev, wdev, &chandef))
2392                         cfg80211_chandef_create(&chandef,
2393                                                 wdev->current_bss->pub.channel,
2394                                                 NL80211_CHAN_NO_HT);
2395                 break;
2396         case NL80211_IFTYPE_MONITOR:
2397         case NL80211_IFTYPE_AP_VLAN:
2398         case NL80211_IFTYPE_P2P_DEVICE:
2399                 /* no enforcement required */
2400                 break;
2401         default:
2402                 /* others not implemented for now */
2403                 WARN_ON(1);
2404                 break;
2405         }
2406
2407         wdev_unlock(wdev);
2408
2409         switch (iftype) {
2410         case NL80211_IFTYPE_AP:
2411         case NL80211_IFTYPE_P2P_GO:
2412         case NL80211_IFTYPE_ADHOC:
2413         case NL80211_IFTYPE_MESH_POINT:
2414                 wiphy_lock(wiphy);
2415                 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2416                 wiphy_unlock(wiphy);
2417
2418                 return ret;
2419         case NL80211_IFTYPE_STATION:
2420         case NL80211_IFTYPE_P2P_CLIENT:
2421                 return cfg80211_chandef_usable(wiphy, &chandef,
2422                                                IEEE80211_CHAN_DISABLED);
2423         default:
2424                 break;
2425         }
2426
2427         return true;
2428
2429 wdev_inactive_unlock:
2430         wdev_unlock(wdev);
2431         return true;
2432 }
2433
2434 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2435 {
2436         struct wireless_dev *wdev;
2437         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2438
2439         ASSERT_RTNL();
2440
2441         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2442                 if (!reg_wdev_chan_valid(wiphy, wdev))
2443                         cfg80211_leave(rdev, wdev);
2444 }
2445
2446 static void reg_check_chans_work(struct work_struct *work)
2447 {
2448         struct cfg80211_registered_device *rdev;
2449
2450         pr_debug("Verifying active interfaces after reg change\n");
2451         rtnl_lock();
2452
2453         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2454                 if (!(rdev->wiphy.regulatory_flags &
2455                       REGULATORY_IGNORE_STALE_KICKOFF))
2456                         reg_leave_invalid_chans(&rdev->wiphy);
2457
2458         rtnl_unlock();
2459 }
2460
2461 static void reg_check_channels(void)
2462 {
2463         /*
2464          * Give usermode a chance to do something nicer (move to another
2465          * channel, orderly disconnection), before forcing a disconnection.
2466          */
2467         mod_delayed_work(system_power_efficient_wq,
2468                          &reg_check_chans,
2469                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2470 }
2471
2472 static void wiphy_update_regulatory(struct wiphy *wiphy,
2473                                     enum nl80211_reg_initiator initiator)
2474 {
2475         enum nl80211_band band;
2476         struct regulatory_request *lr = get_last_request();
2477
2478         if (ignore_reg_update(wiphy, initiator)) {
2479                 /*
2480                  * Regulatory updates set by CORE are ignored for custom
2481                  * regulatory cards. Let us notify the changes to the driver,
2482                  * as some drivers used this to restore its orig_* reg domain.
2483                  */
2484                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2485                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2486                     !(wiphy->regulatory_flags &
2487                       REGULATORY_WIPHY_SELF_MANAGED))
2488                         reg_call_notifier(wiphy, lr);
2489                 return;
2490         }
2491
2492         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2493
2494         for (band = 0; band < NUM_NL80211_BANDS; band++)
2495                 handle_band(wiphy, initiator, wiphy->bands[band]);
2496
2497         reg_process_beacons(wiphy);
2498         reg_process_ht_flags(wiphy);
2499         reg_call_notifier(wiphy, lr);
2500 }
2501
2502 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2503 {
2504         struct cfg80211_registered_device *rdev;
2505         struct wiphy *wiphy;
2506
2507         ASSERT_RTNL();
2508
2509         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2510                 wiphy = &rdev->wiphy;
2511                 wiphy_update_regulatory(wiphy, initiator);
2512         }
2513
2514         reg_check_channels();
2515 }
2516
2517 static void handle_channel_custom(struct wiphy *wiphy,
2518                                   struct ieee80211_channel *chan,
2519                                   const struct ieee80211_regdomain *regd,
2520                                   u32 min_bw)
2521 {
2522         u32 bw_flags = 0;
2523         const struct ieee80211_reg_rule *reg_rule = NULL;
2524         const struct ieee80211_power_rule *power_rule = NULL;
2525         u32 bw, center_freq_khz;
2526
2527         center_freq_khz = ieee80211_channel_to_khz(chan);
2528         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2529                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2530                 if (!IS_ERR(reg_rule))
2531                         break;
2532         }
2533
2534         if (IS_ERR_OR_NULL(reg_rule)) {
2535                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2536                          chan->center_freq, chan->freq_offset);
2537                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2538                         chan->flags |= IEEE80211_CHAN_DISABLED;
2539                 } else {
2540                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2541                         chan->flags = chan->orig_flags;
2542                 }
2543                 return;
2544         }
2545
2546         power_rule = &reg_rule->power_rule;
2547         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2548
2549         chan->dfs_state_entered = jiffies;
2550         chan->dfs_state = NL80211_DFS_USABLE;
2551
2552         chan->beacon_found = false;
2553
2554         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2555                 chan->flags = chan->orig_flags | bw_flags |
2556                               map_regdom_flags(reg_rule->flags);
2557         else
2558                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2559
2560         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2561         chan->max_reg_power = chan->max_power =
2562                 (int) MBM_TO_DBM(power_rule->max_eirp);
2563
2564         if (chan->flags & IEEE80211_CHAN_RADAR) {
2565                 if (reg_rule->dfs_cac_ms)
2566                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2567                 else
2568                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2569         }
2570
2571         chan->max_power = chan->max_reg_power;
2572 }
2573
2574 static void handle_band_custom(struct wiphy *wiphy,
2575                                struct ieee80211_supported_band *sband,
2576                                const struct ieee80211_regdomain *regd)
2577 {
2578         unsigned int i;
2579
2580         if (!sband)
2581                 return;
2582
2583         /*
2584          * We currently assume that you always want at least 20 MHz,
2585          * otherwise channel 12 might get enabled if this rule is
2586          * compatible to US, which permits 2402 - 2472 MHz.
2587          */
2588         for (i = 0; i < sband->n_channels; i++)
2589                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2590                                       MHZ_TO_KHZ(20));
2591 }
2592
2593 /* Used by drivers prior to wiphy registration */
2594 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2595                                    const struct ieee80211_regdomain *regd)
2596 {
2597         const struct ieee80211_regdomain *new_regd, *tmp;
2598         enum nl80211_band band;
2599         unsigned int bands_set = 0;
2600
2601         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2602              "wiphy should have REGULATORY_CUSTOM_REG\n");
2603         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2604
2605         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2606                 if (!wiphy->bands[band])
2607                         continue;
2608                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2609                 bands_set++;
2610         }
2611
2612         /*
2613          * no point in calling this if it won't have any effect
2614          * on your device's supported bands.
2615          */
2616         WARN_ON(!bands_set);
2617         new_regd = reg_copy_regd(regd);
2618         if (IS_ERR(new_regd))
2619                 return;
2620
2621         rtnl_lock();
2622         wiphy_lock(wiphy);
2623
2624         tmp = get_wiphy_regdom(wiphy);
2625         rcu_assign_pointer(wiphy->regd, new_regd);
2626         rcu_free_regdom(tmp);
2627
2628         wiphy_unlock(wiphy);
2629         rtnl_unlock();
2630 }
2631 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2632
2633 static void reg_set_request_processed(void)
2634 {
2635         bool need_more_processing = false;
2636         struct regulatory_request *lr = get_last_request();
2637
2638         lr->processed = true;
2639
2640         spin_lock(&reg_requests_lock);
2641         if (!list_empty(&reg_requests_list))
2642                 need_more_processing = true;
2643         spin_unlock(&reg_requests_lock);
2644
2645         cancel_crda_timeout();
2646
2647         if (need_more_processing)
2648                 schedule_work(&reg_work);
2649 }
2650
2651 /**
2652  * reg_process_hint_core - process core regulatory requests
2653  * @core_request: a pending core regulatory request
2654  *
2655  * The wireless subsystem can use this function to process
2656  * a regulatory request issued by the regulatory core.
2657  */
2658 static enum reg_request_treatment
2659 reg_process_hint_core(struct regulatory_request *core_request)
2660 {
2661         if (reg_query_database(core_request)) {
2662                 core_request->intersect = false;
2663                 core_request->processed = false;
2664                 reg_update_last_request(core_request);
2665                 return REG_REQ_OK;
2666         }
2667
2668         return REG_REQ_IGNORE;
2669 }
2670
2671 static enum reg_request_treatment
2672 __reg_process_hint_user(struct regulatory_request *user_request)
2673 {
2674         struct regulatory_request *lr = get_last_request();
2675
2676         if (reg_request_cell_base(user_request))
2677                 return reg_ignore_cell_hint(user_request);
2678
2679         if (reg_request_cell_base(lr))
2680                 return REG_REQ_IGNORE;
2681
2682         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2683                 return REG_REQ_INTERSECT;
2684         /*
2685          * If the user knows better the user should set the regdom
2686          * to their country before the IE is picked up
2687          */
2688         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2689             lr->intersect)
2690                 return REG_REQ_IGNORE;
2691         /*
2692          * Process user requests only after previous user/driver/core
2693          * requests have been processed
2694          */
2695         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2696              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2697              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2698             regdom_changes(lr->alpha2))
2699                 return REG_REQ_IGNORE;
2700
2701         if (!regdom_changes(user_request->alpha2))
2702                 return REG_REQ_ALREADY_SET;
2703
2704         return REG_REQ_OK;
2705 }
2706
2707 /**
2708  * reg_process_hint_user - process user regulatory requests
2709  * @user_request: a pending user regulatory request
2710  *
2711  * The wireless subsystem can use this function to process
2712  * a regulatory request initiated by userspace.
2713  */
2714 static enum reg_request_treatment
2715 reg_process_hint_user(struct regulatory_request *user_request)
2716 {
2717         enum reg_request_treatment treatment;
2718
2719         treatment = __reg_process_hint_user(user_request);
2720         if (treatment == REG_REQ_IGNORE ||
2721             treatment == REG_REQ_ALREADY_SET)
2722                 return REG_REQ_IGNORE;
2723
2724         user_request->intersect = treatment == REG_REQ_INTERSECT;
2725         user_request->processed = false;
2726
2727         if (reg_query_database(user_request)) {
2728                 reg_update_last_request(user_request);
2729                 user_alpha2[0] = user_request->alpha2[0];
2730                 user_alpha2[1] = user_request->alpha2[1];
2731                 return REG_REQ_OK;
2732         }
2733
2734         return REG_REQ_IGNORE;
2735 }
2736
2737 static enum reg_request_treatment
2738 __reg_process_hint_driver(struct regulatory_request *driver_request)
2739 {
2740         struct regulatory_request *lr = get_last_request();
2741
2742         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2743                 if (regdom_changes(driver_request->alpha2))
2744                         return REG_REQ_OK;
2745                 return REG_REQ_ALREADY_SET;
2746         }
2747
2748         /*
2749          * This would happen if you unplug and plug your card
2750          * back in or if you add a new device for which the previously
2751          * loaded card also agrees on the regulatory domain.
2752          */
2753         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2754             !regdom_changes(driver_request->alpha2))
2755                 return REG_REQ_ALREADY_SET;
2756
2757         return REG_REQ_INTERSECT;
2758 }
2759
2760 /**
2761  * reg_process_hint_driver - process driver regulatory requests
2762  * @wiphy: the wireless device for the regulatory request
2763  * @driver_request: a pending driver regulatory request
2764  *
2765  * The wireless subsystem can use this function to process
2766  * a regulatory request issued by an 802.11 driver.
2767  *
2768  * Returns one of the different reg request treatment values.
2769  */
2770 static enum reg_request_treatment
2771 reg_process_hint_driver(struct wiphy *wiphy,
2772                         struct regulatory_request *driver_request)
2773 {
2774         const struct ieee80211_regdomain *regd, *tmp;
2775         enum reg_request_treatment treatment;
2776
2777         treatment = __reg_process_hint_driver(driver_request);
2778
2779         switch (treatment) {
2780         case REG_REQ_OK:
2781                 break;
2782         case REG_REQ_IGNORE:
2783                 return REG_REQ_IGNORE;
2784         case REG_REQ_INTERSECT:
2785         case REG_REQ_ALREADY_SET:
2786                 regd = reg_copy_regd(get_cfg80211_regdom());
2787                 if (IS_ERR(regd))
2788                         return REG_REQ_IGNORE;
2789
2790                 tmp = get_wiphy_regdom(wiphy);
2791                 ASSERT_RTNL();
2792                 wiphy_lock(wiphy);
2793                 rcu_assign_pointer(wiphy->regd, regd);
2794                 wiphy_unlock(wiphy);
2795                 rcu_free_regdom(tmp);
2796         }
2797
2798
2799         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2800         driver_request->processed = false;
2801
2802         /*
2803          * Since CRDA will not be called in this case as we already
2804          * have applied the requested regulatory domain before we just
2805          * inform userspace we have processed the request
2806          */
2807         if (treatment == REG_REQ_ALREADY_SET) {
2808                 nl80211_send_reg_change_event(driver_request);
2809                 reg_update_last_request(driver_request);
2810                 reg_set_request_processed();
2811                 return REG_REQ_ALREADY_SET;
2812         }
2813
2814         if (reg_query_database(driver_request)) {
2815                 reg_update_last_request(driver_request);
2816                 return REG_REQ_OK;
2817         }
2818
2819         return REG_REQ_IGNORE;
2820 }
2821
2822 static enum reg_request_treatment
2823 __reg_process_hint_country_ie(struct wiphy *wiphy,
2824                               struct regulatory_request *country_ie_request)
2825 {
2826         struct wiphy *last_wiphy = NULL;
2827         struct regulatory_request *lr = get_last_request();
2828
2829         if (reg_request_cell_base(lr)) {
2830                 /* Trust a Cell base station over the AP's country IE */
2831                 if (regdom_changes(country_ie_request->alpha2))
2832                         return REG_REQ_IGNORE;
2833                 return REG_REQ_ALREADY_SET;
2834         } else {
2835                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2836                         return REG_REQ_IGNORE;
2837         }
2838
2839         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2840                 return -EINVAL;
2841
2842         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2843                 return REG_REQ_OK;
2844
2845         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2846
2847         if (last_wiphy != wiphy) {
2848                 /*
2849                  * Two cards with two APs claiming different
2850                  * Country IE alpha2s. We could
2851                  * intersect them, but that seems unlikely
2852                  * to be correct. Reject second one for now.
2853                  */
2854                 if (regdom_changes(country_ie_request->alpha2))
2855                         return REG_REQ_IGNORE;
2856                 return REG_REQ_ALREADY_SET;
2857         }
2858
2859         if (regdom_changes(country_ie_request->alpha2))
2860                 return REG_REQ_OK;
2861         return REG_REQ_ALREADY_SET;
2862 }
2863
2864 /**
2865  * reg_process_hint_country_ie - process regulatory requests from country IEs
2866  * @wiphy: the wireless device for the regulatory request
2867  * @country_ie_request: a regulatory request from a country IE
2868  *
2869  * The wireless subsystem can use this function to process
2870  * a regulatory request issued by a country Information Element.
2871  *
2872  * Returns one of the different reg request treatment values.
2873  */
2874 static enum reg_request_treatment
2875 reg_process_hint_country_ie(struct wiphy *wiphy,
2876                             struct regulatory_request *country_ie_request)
2877 {
2878         enum reg_request_treatment treatment;
2879
2880         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2881
2882         switch (treatment) {
2883         case REG_REQ_OK:
2884                 break;
2885         case REG_REQ_IGNORE:
2886                 return REG_REQ_IGNORE;
2887         case REG_REQ_ALREADY_SET:
2888                 reg_free_request(country_ie_request);
2889                 return REG_REQ_ALREADY_SET;
2890         case REG_REQ_INTERSECT:
2891                 /*
2892                  * This doesn't happen yet, not sure we
2893                  * ever want to support it for this case.
2894                  */
2895                 WARN_ONCE(1, "Unexpected intersection for country elements");
2896                 return REG_REQ_IGNORE;
2897         }
2898
2899         country_ie_request->intersect = false;
2900         country_ie_request->processed = false;
2901
2902         if (reg_query_database(country_ie_request)) {
2903                 reg_update_last_request(country_ie_request);
2904                 return REG_REQ_OK;
2905         }
2906
2907         return REG_REQ_IGNORE;
2908 }
2909
2910 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2911 {
2912         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2913         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2914         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2915         bool dfs_domain_same;
2916
2917         rcu_read_lock();
2918
2919         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2920         wiphy1_regd = rcu_dereference(wiphy1->regd);
2921         if (!wiphy1_regd)
2922                 wiphy1_regd = cfg80211_regd;
2923
2924         wiphy2_regd = rcu_dereference(wiphy2->regd);
2925         if (!wiphy2_regd)
2926                 wiphy2_regd = cfg80211_regd;
2927
2928         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2929
2930         rcu_read_unlock();
2931
2932         return dfs_domain_same;
2933 }
2934
2935 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2936                                     struct ieee80211_channel *src_chan)
2937 {
2938         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2939             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2940                 return;
2941
2942         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2943             src_chan->flags & IEEE80211_CHAN_DISABLED)
2944                 return;
2945
2946         if (src_chan->center_freq == dst_chan->center_freq &&
2947             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2948                 dst_chan->dfs_state = src_chan->dfs_state;
2949                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2950         }
2951 }
2952
2953 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2954                                        struct wiphy *src_wiphy)
2955 {
2956         struct ieee80211_supported_band *src_sband, *dst_sband;
2957         struct ieee80211_channel *src_chan, *dst_chan;
2958         int i, j, band;
2959
2960         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2961                 return;
2962
2963         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2964                 dst_sband = dst_wiphy->bands[band];
2965                 src_sband = src_wiphy->bands[band];
2966                 if (!dst_sband || !src_sband)
2967                         continue;
2968
2969                 for (i = 0; i < dst_sband->n_channels; i++) {
2970                         dst_chan = &dst_sband->channels[i];
2971                         for (j = 0; j < src_sband->n_channels; j++) {
2972                                 src_chan = &src_sband->channels[j];
2973                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2974                         }
2975                 }
2976         }
2977 }
2978
2979 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2980 {
2981         struct cfg80211_registered_device *rdev;
2982
2983         ASSERT_RTNL();
2984
2985         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2986                 if (wiphy == &rdev->wiphy)
2987                         continue;
2988                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2989         }
2990 }
2991
2992 /* This processes *all* regulatory hints */
2993 static void reg_process_hint(struct regulatory_request *reg_request)
2994 {
2995         struct wiphy *wiphy = NULL;
2996         enum reg_request_treatment treatment;
2997         enum nl80211_reg_initiator initiator = reg_request->initiator;
2998
2999         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3000                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3001
3002         switch (initiator) {
3003         case NL80211_REGDOM_SET_BY_CORE:
3004                 treatment = reg_process_hint_core(reg_request);
3005                 break;
3006         case NL80211_REGDOM_SET_BY_USER:
3007                 treatment = reg_process_hint_user(reg_request);
3008                 break;
3009         case NL80211_REGDOM_SET_BY_DRIVER:
3010                 if (!wiphy)
3011                         goto out_free;
3012                 treatment = reg_process_hint_driver(wiphy, reg_request);
3013                 break;
3014         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3015                 if (!wiphy)
3016                         goto out_free;
3017                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3018                 break;
3019         default:
3020                 WARN(1, "invalid initiator %d\n", initiator);
3021                 goto out_free;
3022         }
3023
3024         if (treatment == REG_REQ_IGNORE)
3025                 goto out_free;
3026
3027         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3028              "unexpected treatment value %d\n", treatment);
3029
3030         /* This is required so that the orig_* parameters are saved.
3031          * NOTE: treatment must be set for any case that reaches here!
3032          */
3033         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3034             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3035                 wiphy_update_regulatory(wiphy, initiator);
3036                 wiphy_all_share_dfs_chan_state(wiphy);
3037                 reg_check_channels();
3038         }
3039
3040         return;
3041
3042 out_free:
3043         reg_free_request(reg_request);
3044 }
3045
3046 static void notify_self_managed_wiphys(struct regulatory_request *request)
3047 {
3048         struct cfg80211_registered_device *rdev;
3049         struct wiphy *wiphy;
3050
3051         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3052                 wiphy = &rdev->wiphy;
3053                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3054                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3055                         reg_call_notifier(wiphy, request);
3056         }
3057 }
3058
3059 /*
3060  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3061  * Regulatory hints come on a first come first serve basis and we
3062  * must process each one atomically.
3063  */
3064 static void reg_process_pending_hints(void)
3065 {
3066         struct regulatory_request *reg_request, *lr;
3067
3068         lr = get_last_request();
3069
3070         /* When last_request->processed becomes true this will be rescheduled */
3071         if (lr && !lr->processed) {
3072                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3073                 return;
3074         }
3075
3076         spin_lock(&reg_requests_lock);
3077
3078         if (list_empty(&reg_requests_list)) {
3079                 spin_unlock(&reg_requests_lock);
3080                 return;
3081         }
3082
3083         reg_request = list_first_entry(&reg_requests_list,
3084                                        struct regulatory_request,
3085                                        list);
3086         list_del_init(&reg_request->list);
3087
3088         spin_unlock(&reg_requests_lock);
3089
3090         notify_self_managed_wiphys(reg_request);
3091
3092         reg_process_hint(reg_request);
3093
3094         lr = get_last_request();
3095
3096         spin_lock(&reg_requests_lock);
3097         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3098                 schedule_work(&reg_work);
3099         spin_unlock(&reg_requests_lock);
3100 }
3101
3102 /* Processes beacon hints -- this has nothing to do with country IEs */
3103 static void reg_process_pending_beacon_hints(void)
3104 {
3105         struct cfg80211_registered_device *rdev;
3106         struct reg_beacon *pending_beacon, *tmp;
3107
3108         /* This goes through the _pending_ beacon list */
3109         spin_lock_bh(&reg_pending_beacons_lock);
3110
3111         list_for_each_entry_safe(pending_beacon, tmp,
3112                                  &reg_pending_beacons, list) {
3113                 list_del_init(&pending_beacon->list);
3114
3115                 /* Applies the beacon hint to current wiphys */
3116                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3117                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3118
3119                 /* Remembers the beacon hint for new wiphys or reg changes */
3120                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3121         }
3122
3123         spin_unlock_bh(&reg_pending_beacons_lock);
3124 }
3125
3126 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3127 {
3128         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3129         const struct ieee80211_regdomain *tmp;
3130         const struct ieee80211_regdomain *regd;
3131         enum nl80211_band band;
3132         struct regulatory_request request = {};
3133
3134         ASSERT_RTNL();
3135         lockdep_assert_wiphy(wiphy);
3136
3137         spin_lock(&reg_requests_lock);
3138         regd = rdev->requested_regd;
3139         rdev->requested_regd = NULL;
3140         spin_unlock(&reg_requests_lock);
3141
3142         if (!regd)
3143                 return;
3144
3145         tmp = get_wiphy_regdom(wiphy);
3146         rcu_assign_pointer(wiphy->regd, regd);
3147         rcu_free_regdom(tmp);
3148
3149         for (band = 0; band < NUM_NL80211_BANDS; band++)
3150                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3151
3152         reg_process_ht_flags(wiphy);
3153
3154         request.wiphy_idx = get_wiphy_idx(wiphy);
3155         request.alpha2[0] = regd->alpha2[0];
3156         request.alpha2[1] = regd->alpha2[1];
3157         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3158
3159         nl80211_send_wiphy_reg_change_event(&request);
3160 }
3161
3162 static void reg_process_self_managed_hints(void)
3163 {
3164         struct cfg80211_registered_device *rdev;
3165
3166         ASSERT_RTNL();
3167
3168         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3169                 wiphy_lock(&rdev->wiphy);
3170                 reg_process_self_managed_hint(&rdev->wiphy);
3171                 wiphy_unlock(&rdev->wiphy);
3172         }
3173
3174         reg_check_channels();
3175 }
3176
3177 static void reg_todo(struct work_struct *work)
3178 {
3179         rtnl_lock();
3180         reg_process_pending_hints();
3181         reg_process_pending_beacon_hints();
3182         reg_process_self_managed_hints();
3183         rtnl_unlock();
3184 }
3185
3186 static void queue_regulatory_request(struct regulatory_request *request)
3187 {
3188         request->alpha2[0] = toupper(request->alpha2[0]);
3189         request->alpha2[1] = toupper(request->alpha2[1]);
3190
3191         spin_lock(&reg_requests_lock);
3192         list_add_tail(&request->list, &reg_requests_list);
3193         spin_unlock(&reg_requests_lock);
3194
3195         schedule_work(&reg_work);
3196 }
3197
3198 /*
3199  * Core regulatory hint -- happens during cfg80211_init()
3200  * and when we restore regulatory settings.
3201  */
3202 static int regulatory_hint_core(const char *alpha2)
3203 {
3204         struct regulatory_request *request;
3205
3206         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3207         if (!request)
3208                 return -ENOMEM;
3209
3210         request->alpha2[0] = alpha2[0];
3211         request->alpha2[1] = alpha2[1];
3212         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3213         request->wiphy_idx = WIPHY_IDX_INVALID;
3214
3215         queue_regulatory_request(request);
3216
3217         return 0;
3218 }
3219
3220 /* User hints */
3221 int regulatory_hint_user(const char *alpha2,
3222                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3223 {
3224         struct regulatory_request *request;
3225
3226         if (WARN_ON(!alpha2))
3227                 return -EINVAL;
3228
3229         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3230                 return -EINVAL;
3231
3232         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3233         if (!request)
3234                 return -ENOMEM;
3235
3236         request->wiphy_idx = WIPHY_IDX_INVALID;
3237         request->alpha2[0] = alpha2[0];
3238         request->alpha2[1] = alpha2[1];
3239         request->initiator = NL80211_REGDOM_SET_BY_USER;
3240         request->user_reg_hint_type = user_reg_hint_type;
3241
3242         /* Allow calling CRDA again */
3243         reset_crda_timeouts();
3244
3245         queue_regulatory_request(request);
3246
3247         return 0;
3248 }
3249
3250 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3251 {
3252         spin_lock(&reg_indoor_lock);
3253
3254         /* It is possible that more than one user space process is trying to
3255          * configure the indoor setting. To handle such cases, clear the indoor
3256          * setting in case that some process does not think that the device
3257          * is operating in an indoor environment. In addition, if a user space
3258          * process indicates that it is controlling the indoor setting, save its
3259          * portid, i.e., make it the owner.
3260          */
3261         reg_is_indoor = is_indoor;
3262         if (reg_is_indoor) {
3263                 if (!reg_is_indoor_portid)
3264                         reg_is_indoor_portid = portid;
3265         } else {
3266                 reg_is_indoor_portid = 0;
3267         }
3268
3269         spin_unlock(&reg_indoor_lock);
3270
3271         if (!is_indoor)
3272                 reg_check_channels();
3273
3274         return 0;
3275 }
3276
3277 void regulatory_netlink_notify(u32 portid)
3278 {
3279         spin_lock(&reg_indoor_lock);
3280
3281         if (reg_is_indoor_portid != portid) {
3282                 spin_unlock(&reg_indoor_lock);
3283                 return;
3284         }
3285
3286         reg_is_indoor = false;
3287         reg_is_indoor_portid = 0;
3288
3289         spin_unlock(&reg_indoor_lock);
3290
3291         reg_check_channels();
3292 }
3293
3294 /* Driver hints */
3295 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3296 {
3297         struct regulatory_request *request;
3298
3299         if (WARN_ON(!alpha2 || !wiphy))
3300                 return -EINVAL;
3301
3302         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3303
3304         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3305         if (!request)
3306                 return -ENOMEM;
3307
3308         request->wiphy_idx = get_wiphy_idx(wiphy);
3309
3310         request->alpha2[0] = alpha2[0];
3311         request->alpha2[1] = alpha2[1];
3312         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3313
3314         /* Allow calling CRDA again */
3315         reset_crda_timeouts();
3316
3317         queue_regulatory_request(request);
3318
3319         return 0;
3320 }
3321 EXPORT_SYMBOL(regulatory_hint);
3322
3323 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3324                                 const u8 *country_ie, u8 country_ie_len)
3325 {
3326         char alpha2[2];
3327         enum environment_cap env = ENVIRON_ANY;
3328         struct regulatory_request *request = NULL, *lr;
3329
3330         /* IE len must be evenly divisible by 2 */
3331         if (country_ie_len & 0x01)
3332                 return;
3333
3334         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3335                 return;
3336
3337         request = kzalloc(sizeof(*request), GFP_KERNEL);
3338         if (!request)
3339                 return;
3340
3341         alpha2[0] = country_ie[0];
3342         alpha2[1] = country_ie[1];
3343
3344         if (country_ie[2] == 'I')
3345                 env = ENVIRON_INDOOR;
3346         else if (country_ie[2] == 'O')
3347                 env = ENVIRON_OUTDOOR;
3348
3349         rcu_read_lock();
3350         lr = get_last_request();
3351
3352         if (unlikely(!lr))
3353                 goto out;
3354
3355         /*
3356          * We will run this only upon a successful connection on cfg80211.
3357          * We leave conflict resolution to the workqueue, where can hold
3358          * the RTNL.
3359          */
3360         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3361             lr->wiphy_idx != WIPHY_IDX_INVALID)
3362                 goto out;
3363
3364         request->wiphy_idx = get_wiphy_idx(wiphy);
3365         request->alpha2[0] = alpha2[0];
3366         request->alpha2[1] = alpha2[1];
3367         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3368         request->country_ie_env = env;
3369
3370         /* Allow calling CRDA again */
3371         reset_crda_timeouts();
3372
3373         queue_regulatory_request(request);
3374         request = NULL;
3375 out:
3376         kfree(request);
3377         rcu_read_unlock();
3378 }
3379
3380 static void restore_alpha2(char *alpha2, bool reset_user)
3381 {
3382         /* indicates there is no alpha2 to consider for restoration */
3383         alpha2[0] = '9';
3384         alpha2[1] = '7';
3385
3386         /* The user setting has precedence over the module parameter */
3387         if (is_user_regdom_saved()) {
3388                 /* Unless we're asked to ignore it and reset it */
3389                 if (reset_user) {
3390                         pr_debug("Restoring regulatory settings including user preference\n");
3391                         user_alpha2[0] = '9';
3392                         user_alpha2[1] = '7';
3393
3394                         /*
3395                          * If we're ignoring user settings, we still need to
3396                          * check the module parameter to ensure we put things
3397                          * back as they were for a full restore.
3398                          */
3399                         if (!is_world_regdom(ieee80211_regdom)) {
3400                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3401                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3402                                 alpha2[0] = ieee80211_regdom[0];
3403                                 alpha2[1] = ieee80211_regdom[1];
3404                         }
3405                 } else {
3406                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3407                                  user_alpha2[0], user_alpha2[1]);
3408                         alpha2[0] = user_alpha2[0];
3409                         alpha2[1] = user_alpha2[1];
3410                 }
3411         } else if (!is_world_regdom(ieee80211_regdom)) {
3412                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413                          ieee80211_regdom[0], ieee80211_regdom[1]);
3414                 alpha2[0] = ieee80211_regdom[0];
3415                 alpha2[1] = ieee80211_regdom[1];
3416         } else
3417                 pr_debug("Restoring regulatory settings\n");
3418 }
3419
3420 static void restore_custom_reg_settings(struct wiphy *wiphy)
3421 {
3422         struct ieee80211_supported_band *sband;
3423         enum nl80211_band band;
3424         struct ieee80211_channel *chan;
3425         int i;
3426
3427         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3428                 sband = wiphy->bands[band];
3429                 if (!sband)
3430                         continue;
3431                 for (i = 0; i < sband->n_channels; i++) {
3432                         chan = &sband->channels[i];
3433                         chan->flags = chan->orig_flags;
3434                         chan->max_antenna_gain = chan->orig_mag;
3435                         chan->max_power = chan->orig_mpwr;
3436                         chan->beacon_found = false;
3437                 }
3438         }
3439 }
3440
3441 /*
3442  * Restoring regulatory settings involves ignoring any
3443  * possibly stale country IE information and user regulatory
3444  * settings if so desired, this includes any beacon hints
3445  * learned as we could have traveled outside to another country
3446  * after disconnection. To restore regulatory settings we do
3447  * exactly what we did at bootup:
3448  *
3449  *   - send a core regulatory hint
3450  *   - send a user regulatory hint if applicable
3451  *
3452  * Device drivers that send a regulatory hint for a specific country
3453  * keep their own regulatory domain on wiphy->regd so that does
3454  * not need to be remembered.
3455  */
3456 static void restore_regulatory_settings(bool reset_user, bool cached)
3457 {
3458         char alpha2[2];
3459         char world_alpha2[2];
3460         struct reg_beacon *reg_beacon, *btmp;
3461         LIST_HEAD(tmp_reg_req_list);
3462         struct cfg80211_registered_device *rdev;
3463
3464         ASSERT_RTNL();
3465
3466         /*
3467          * Clear the indoor setting in case that it is not controlled by user
3468          * space, as otherwise there is no guarantee that the device is still
3469          * operating in an indoor environment.
3470          */
3471         spin_lock(&reg_indoor_lock);
3472         if (reg_is_indoor && !reg_is_indoor_portid) {
3473                 reg_is_indoor = false;
3474                 reg_check_channels();
3475         }
3476         spin_unlock(&reg_indoor_lock);
3477
3478         reset_regdomains(true, &world_regdom);
3479         restore_alpha2(alpha2, reset_user);
3480
3481         /*
3482          * If there's any pending requests we simply
3483          * stash them to a temporary pending queue and
3484          * add then after we've restored regulatory
3485          * settings.
3486          */
3487         spin_lock(&reg_requests_lock);
3488         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3489         spin_unlock(&reg_requests_lock);
3490
3491         /* Clear beacon hints */
3492         spin_lock_bh(&reg_pending_beacons_lock);
3493         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3494                 list_del(&reg_beacon->list);
3495                 kfree(reg_beacon);
3496         }
3497         spin_unlock_bh(&reg_pending_beacons_lock);
3498
3499         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3500                 list_del(&reg_beacon->list);
3501                 kfree(reg_beacon);
3502         }
3503
3504         /* First restore to the basic regulatory settings */
3505         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3506         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3507
3508         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3509                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3510                         continue;
3511                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3512                         restore_custom_reg_settings(&rdev->wiphy);
3513         }
3514
3515         if (cached && (!is_an_alpha2(alpha2) ||
3516                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3517                 reset_regdomains(false, cfg80211_world_regdom);
3518                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3519                 print_regdomain(get_cfg80211_regdom());
3520                 nl80211_send_reg_change_event(&core_request_world);
3521                 reg_set_request_processed();
3522
3523                 if (is_an_alpha2(alpha2) &&
3524                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3525                         struct regulatory_request *ureq;
3526
3527                         spin_lock(&reg_requests_lock);
3528                         ureq = list_last_entry(&reg_requests_list,
3529                                                struct regulatory_request,
3530                                                list);
3531                         list_del(&ureq->list);
3532                         spin_unlock(&reg_requests_lock);
3533
3534                         notify_self_managed_wiphys(ureq);
3535                         reg_update_last_request(ureq);
3536                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3537                                    REGD_SOURCE_CACHED);
3538                 }
3539         } else {
3540                 regulatory_hint_core(world_alpha2);
3541
3542                 /*
3543                  * This restores the ieee80211_regdom module parameter
3544                  * preference or the last user requested regulatory
3545                  * settings, user regulatory settings takes precedence.
3546                  */
3547                 if (is_an_alpha2(alpha2))
3548                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3549         }
3550
3551         spin_lock(&reg_requests_lock);
3552         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3553         spin_unlock(&reg_requests_lock);
3554
3555         pr_debug("Kicking the queue\n");
3556
3557         schedule_work(&reg_work);
3558 }
3559
3560 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3561 {
3562         struct cfg80211_registered_device *rdev;
3563         struct wireless_dev *wdev;
3564
3565         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3566                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3567                         wdev_lock(wdev);
3568                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3569                                 wdev_unlock(wdev);
3570                                 return false;
3571                         }
3572                         wdev_unlock(wdev);
3573                 }
3574         }
3575
3576         return true;
3577 }
3578
3579 void regulatory_hint_disconnect(void)
3580 {
3581         /* Restore of regulatory settings is not required when wiphy(s)
3582          * ignore IE from connected access point but clearance of beacon hints
3583          * is required when wiphy(s) supports beacon hints.
3584          */
3585         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3586                 struct reg_beacon *reg_beacon, *btmp;
3587
3588                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3589                         return;
3590
3591                 spin_lock_bh(&reg_pending_beacons_lock);
3592                 list_for_each_entry_safe(reg_beacon, btmp,
3593                                          &reg_pending_beacons, list) {
3594                         list_del(&reg_beacon->list);
3595                         kfree(reg_beacon);
3596                 }
3597                 spin_unlock_bh(&reg_pending_beacons_lock);
3598
3599                 list_for_each_entry_safe(reg_beacon, btmp,
3600                                          &reg_beacon_list, list) {
3601                         list_del(&reg_beacon->list);
3602                         kfree(reg_beacon);
3603                 }
3604
3605                 return;
3606         }
3607
3608         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3609         restore_regulatory_settings(false, true);
3610 }
3611
3612 static bool freq_is_chan_12_13_14(u32 freq)
3613 {
3614         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3615             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3616             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3617                 return true;
3618         return false;
3619 }
3620
3621 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3622 {
3623         struct reg_beacon *pending_beacon;
3624
3625         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3626                 if (ieee80211_channel_equal(beacon_chan,
3627                                             &pending_beacon->chan))
3628                         return true;
3629         return false;
3630 }
3631
3632 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3633                                  struct ieee80211_channel *beacon_chan,
3634                                  gfp_t gfp)
3635 {
3636         struct reg_beacon *reg_beacon;
3637         bool processing;
3638
3639         if (beacon_chan->beacon_found ||
3640             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3641             (beacon_chan->band == NL80211_BAND_2GHZ &&
3642              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3643                 return 0;
3644
3645         spin_lock_bh(&reg_pending_beacons_lock);
3646         processing = pending_reg_beacon(beacon_chan);
3647         spin_unlock_bh(&reg_pending_beacons_lock);
3648
3649         if (processing)
3650                 return 0;
3651
3652         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3653         if (!reg_beacon)
3654                 return -ENOMEM;
3655
3656         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3657                  beacon_chan->center_freq, beacon_chan->freq_offset,
3658                  ieee80211_freq_khz_to_channel(
3659                          ieee80211_channel_to_khz(beacon_chan)),
3660                  wiphy_name(wiphy));
3661
3662         memcpy(&reg_beacon->chan, beacon_chan,
3663                sizeof(struct ieee80211_channel));
3664
3665         /*
3666          * Since we can be called from BH or and non-BH context
3667          * we must use spin_lock_bh()
3668          */
3669         spin_lock_bh(&reg_pending_beacons_lock);
3670         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3671         spin_unlock_bh(&reg_pending_beacons_lock);
3672
3673         schedule_work(&reg_work);
3674
3675         return 0;
3676 }
3677
3678 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3679 {
3680         unsigned int i;
3681         const struct ieee80211_reg_rule *reg_rule = NULL;
3682         const struct ieee80211_freq_range *freq_range = NULL;
3683         const struct ieee80211_power_rule *power_rule = NULL;
3684         char bw[32], cac_time[32];
3685
3686         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3687
3688         for (i = 0; i < rd->n_reg_rules; i++) {
3689                 reg_rule = &rd->reg_rules[i];
3690                 freq_range = &reg_rule->freq_range;
3691                 power_rule = &reg_rule->power_rule;
3692
3693                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3694                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3695                                  freq_range->max_bandwidth_khz,
3696                                  reg_get_max_bandwidth(rd, reg_rule));
3697                 else
3698                         snprintf(bw, sizeof(bw), "%d KHz",
3699                                  freq_range->max_bandwidth_khz);
3700
3701                 if (reg_rule->flags & NL80211_RRF_DFS)
3702                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3703                                   reg_rule->dfs_cac_ms/1000);
3704                 else
3705                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3706
3707
3708                 /*
3709                  * There may not be documentation for max antenna gain
3710                  * in certain regions
3711                  */
3712                 if (power_rule->max_antenna_gain)
3713                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3714                                 freq_range->start_freq_khz,
3715                                 freq_range->end_freq_khz,
3716                                 bw,
3717                                 power_rule->max_antenna_gain,
3718                                 power_rule->max_eirp,
3719                                 cac_time);
3720                 else
3721                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3722                                 freq_range->start_freq_khz,
3723                                 freq_range->end_freq_khz,
3724                                 bw,
3725                                 power_rule->max_eirp,
3726                                 cac_time);
3727         }
3728 }
3729
3730 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3731 {
3732         switch (dfs_region) {
3733         case NL80211_DFS_UNSET:
3734         case NL80211_DFS_FCC:
3735         case NL80211_DFS_ETSI:
3736         case NL80211_DFS_JP:
3737                 return true;
3738         default:
3739                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3740                 return false;
3741         }
3742 }
3743
3744 static void print_regdomain(const struct ieee80211_regdomain *rd)
3745 {
3746         struct regulatory_request *lr = get_last_request();
3747
3748         if (is_intersected_alpha2(rd->alpha2)) {
3749                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3750                         struct cfg80211_registered_device *rdev;
3751                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3752                         if (rdev) {
3753                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3754                                         rdev->country_ie_alpha2[0],
3755                                         rdev->country_ie_alpha2[1]);
3756                         } else
3757                                 pr_debug("Current regulatory domain intersected:\n");
3758                 } else
3759                         pr_debug("Current regulatory domain intersected:\n");
3760         } else if (is_world_regdom(rd->alpha2)) {
3761                 pr_debug("World regulatory domain updated:\n");
3762         } else {
3763                 if (is_unknown_alpha2(rd->alpha2))
3764                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3765                 else {
3766                         if (reg_request_cell_base(lr))
3767                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3768                                         rd->alpha2[0], rd->alpha2[1]);
3769                         else
3770                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3771                                         rd->alpha2[0], rd->alpha2[1]);
3772                 }
3773         }
3774
3775         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3776         print_rd_rules(rd);
3777 }
3778
3779 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3780 {
3781         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3782         print_rd_rules(rd);
3783 }
3784
3785 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3786 {
3787         if (!is_world_regdom(rd->alpha2))
3788                 return -EINVAL;
3789         update_world_regdomain(rd);
3790         return 0;
3791 }
3792
3793 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3794                            struct regulatory_request *user_request)
3795 {
3796         const struct ieee80211_regdomain *intersected_rd = NULL;
3797
3798         if (!regdom_changes(rd->alpha2))
3799                 return -EALREADY;
3800
3801         if (!is_valid_rd(rd)) {
3802                 pr_err("Invalid regulatory domain detected: %c%c\n",
3803                        rd->alpha2[0], rd->alpha2[1]);
3804                 print_regdomain_info(rd);
3805                 return -EINVAL;
3806         }
3807
3808         if (!user_request->intersect) {
3809                 reset_regdomains(false, rd);
3810                 return 0;
3811         }
3812
3813         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3814         if (!intersected_rd)
3815                 return -EINVAL;
3816
3817         kfree(rd);
3818         rd = NULL;
3819         reset_regdomains(false, intersected_rd);
3820
3821         return 0;
3822 }
3823
3824 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3825                              struct regulatory_request *driver_request)
3826 {
3827         const struct ieee80211_regdomain *regd;
3828         const struct ieee80211_regdomain *intersected_rd = NULL;
3829         const struct ieee80211_regdomain *tmp;
3830         struct wiphy *request_wiphy;
3831
3832         if (is_world_regdom(rd->alpha2))
3833                 return -EINVAL;
3834
3835         if (!regdom_changes(rd->alpha2))
3836                 return -EALREADY;
3837
3838         if (!is_valid_rd(rd)) {
3839                 pr_err("Invalid regulatory domain detected: %c%c\n",
3840                        rd->alpha2[0], rd->alpha2[1]);
3841                 print_regdomain_info(rd);
3842                 return -EINVAL;
3843         }
3844
3845         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3846         if (!request_wiphy)
3847                 return -ENODEV;
3848
3849         if (!driver_request->intersect) {
3850                 ASSERT_RTNL();
3851                 wiphy_lock(request_wiphy);
3852                 if (request_wiphy->regd) {
3853                         wiphy_unlock(request_wiphy);
3854                         return -EALREADY;
3855                 }
3856
3857                 regd = reg_copy_regd(rd);
3858                 if (IS_ERR(regd)) {
3859                         wiphy_unlock(request_wiphy);
3860                         return PTR_ERR(regd);
3861                 }
3862
3863                 rcu_assign_pointer(request_wiphy->regd, regd);
3864                 wiphy_unlock(request_wiphy);
3865                 reset_regdomains(false, rd);
3866                 return 0;
3867         }
3868
3869         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3870         if (!intersected_rd)
3871                 return -EINVAL;
3872
3873         /*
3874          * We can trash what CRDA provided now.
3875          * However if a driver requested this specific regulatory
3876          * domain we keep it for its private use
3877          */
3878         tmp = get_wiphy_regdom(request_wiphy);
3879         rcu_assign_pointer(request_wiphy->regd, rd);
3880         rcu_free_regdom(tmp);
3881
3882         rd = NULL;
3883
3884         reset_regdomains(false, intersected_rd);
3885
3886         return 0;
3887 }
3888
3889 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3890                                  struct regulatory_request *country_ie_request)
3891 {
3892         struct wiphy *request_wiphy;
3893
3894         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3895             !is_unknown_alpha2(rd->alpha2))
3896                 return -EINVAL;
3897
3898         /*
3899          * Lets only bother proceeding on the same alpha2 if the current
3900          * rd is non static (it means CRDA was present and was used last)
3901          * and the pending request came in from a country IE
3902          */
3903
3904         if (!is_valid_rd(rd)) {
3905                 pr_err("Invalid regulatory domain detected: %c%c\n",
3906                        rd->alpha2[0], rd->alpha2[1]);
3907                 print_regdomain_info(rd);
3908                 return -EINVAL;
3909         }
3910
3911         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3912         if (!request_wiphy)
3913                 return -ENODEV;
3914
3915         if (country_ie_request->intersect)
3916                 return -EINVAL;
3917
3918         reset_regdomains(false, rd);
3919         return 0;
3920 }
3921
3922 /*
3923  * Use this call to set the current regulatory domain. Conflicts with
3924  * multiple drivers can be ironed out later. Caller must've already
3925  * kmalloc'd the rd structure.
3926  */
3927 int set_regdom(const struct ieee80211_regdomain *rd,
3928                enum ieee80211_regd_source regd_src)
3929 {
3930         struct regulatory_request *lr;
3931         bool user_reset = false;
3932         int r;
3933
3934         if (IS_ERR_OR_NULL(rd))
3935                 return -ENODATA;
3936
3937         if (!reg_is_valid_request(rd->alpha2)) {
3938                 kfree(rd);
3939                 return -EINVAL;
3940         }
3941
3942         if (regd_src == REGD_SOURCE_CRDA)
3943                 reset_crda_timeouts();
3944
3945         lr = get_last_request();
3946
3947         /* Note that this doesn't update the wiphys, this is done below */
3948         switch (lr->initiator) {
3949         case NL80211_REGDOM_SET_BY_CORE:
3950                 r = reg_set_rd_core(rd);
3951                 break;
3952         case NL80211_REGDOM_SET_BY_USER:
3953                 cfg80211_save_user_regdom(rd);
3954                 r = reg_set_rd_user(rd, lr);
3955                 user_reset = true;
3956                 break;
3957         case NL80211_REGDOM_SET_BY_DRIVER:
3958                 r = reg_set_rd_driver(rd, lr);
3959                 break;
3960         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3961                 r = reg_set_rd_country_ie(rd, lr);
3962                 break;
3963         default:
3964                 WARN(1, "invalid initiator %d\n", lr->initiator);
3965                 kfree(rd);
3966                 return -EINVAL;
3967         }
3968
3969         if (r) {
3970                 switch (r) {
3971                 case -EALREADY:
3972                         reg_set_request_processed();
3973                         break;
3974                 default:
3975                         /* Back to world regulatory in case of errors */
3976                         restore_regulatory_settings(user_reset, false);
3977                 }
3978
3979                 kfree(rd);
3980                 return r;
3981         }
3982
3983         /* This would make this whole thing pointless */
3984         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3985                 return -EINVAL;
3986
3987         /* update all wiphys now with the new established regulatory domain */
3988         update_all_wiphy_regulatory(lr->initiator);
3989
3990         print_regdomain(get_cfg80211_regdom());
3991
3992         nl80211_send_reg_change_event(lr);
3993
3994         reg_set_request_processed();
3995
3996         return 0;
3997 }
3998
3999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4000                                        struct ieee80211_regdomain *rd)
4001 {
4002         const struct ieee80211_regdomain *regd;
4003         const struct ieee80211_regdomain *prev_regd;
4004         struct cfg80211_registered_device *rdev;
4005
4006         if (WARN_ON(!wiphy || !rd))
4007                 return -EINVAL;
4008
4009         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4010                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4011                 return -EPERM;
4012
4013         if (WARN(!is_valid_rd(rd),
4014                  "Invalid regulatory domain detected: %c%c\n",
4015                  rd->alpha2[0], rd->alpha2[1])) {
4016                 print_regdomain_info(rd);
4017                 return -EINVAL;
4018         }
4019
4020         regd = reg_copy_regd(rd);
4021         if (IS_ERR(regd))
4022                 return PTR_ERR(regd);
4023
4024         rdev = wiphy_to_rdev(wiphy);
4025
4026         spin_lock(&reg_requests_lock);
4027         prev_regd = rdev->requested_regd;
4028         rdev->requested_regd = regd;
4029         spin_unlock(&reg_requests_lock);
4030
4031         kfree(prev_regd);
4032         return 0;
4033 }
4034
4035 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036                               struct ieee80211_regdomain *rd)
4037 {
4038         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4039
4040         if (ret)
4041                 return ret;
4042
4043         schedule_work(&reg_work);
4044         return 0;
4045 }
4046 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4047
4048 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4049                                    struct ieee80211_regdomain *rd)
4050 {
4051         int ret;
4052
4053         ASSERT_RTNL();
4054
4055         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4056         if (ret)
4057                 return ret;
4058
4059         /* process the request immediately */
4060         reg_process_self_managed_hint(wiphy);
4061         reg_check_channels();
4062         return 0;
4063 }
4064 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4065
4066 void wiphy_regulatory_register(struct wiphy *wiphy)
4067 {
4068         struct regulatory_request *lr = get_last_request();
4069
4070         /* self-managed devices ignore beacon hints and country IE */
4071         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4072                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4073                                            REGULATORY_COUNTRY_IE_IGNORE;
4074
4075                 /*
4076                  * The last request may have been received before this
4077                  * registration call. Call the driver notifier if
4078                  * initiator is USER.
4079                  */
4080                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4081                         reg_call_notifier(wiphy, lr);
4082         }
4083
4084         if (!reg_dev_ignore_cell_hint(wiphy))
4085                 reg_num_devs_support_basehint++;
4086
4087         wiphy_update_regulatory(wiphy, lr->initiator);
4088         wiphy_all_share_dfs_chan_state(wiphy);
4089         reg_process_self_managed_hints();
4090 }
4091
4092 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4093 {
4094         struct wiphy *request_wiphy = NULL;
4095         struct regulatory_request *lr;
4096
4097         lr = get_last_request();
4098
4099         if (!reg_dev_ignore_cell_hint(wiphy))
4100                 reg_num_devs_support_basehint--;
4101
4102         rcu_free_regdom(get_wiphy_regdom(wiphy));
4103         RCU_INIT_POINTER(wiphy->regd, NULL);
4104
4105         if (lr)
4106                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4107
4108         if (!request_wiphy || request_wiphy != wiphy)
4109                 return;
4110
4111         lr->wiphy_idx = WIPHY_IDX_INVALID;
4112         lr->country_ie_env = ENVIRON_ANY;
4113 }
4114
4115 /*
4116  * See FCC notices for UNII band definitions
4117  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4118  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4119  */
4120 int cfg80211_get_unii(int freq)
4121 {
4122         /* UNII-1 */
4123         if (freq >= 5150 && freq <= 5250)
4124                 return 0;
4125
4126         /* UNII-2A */
4127         if (freq > 5250 && freq <= 5350)
4128                 return 1;
4129
4130         /* UNII-2B */
4131         if (freq > 5350 && freq <= 5470)
4132                 return 2;
4133
4134         /* UNII-2C */
4135         if (freq > 5470 && freq <= 5725)
4136                 return 3;
4137
4138         /* UNII-3 */
4139         if (freq > 5725 && freq <= 5825)
4140                 return 4;
4141
4142         /* UNII-5 */
4143         if (freq > 5925 && freq <= 6425)
4144                 return 5;
4145
4146         /* UNII-6 */
4147         if (freq > 6425 && freq <= 6525)
4148                 return 6;
4149
4150         /* UNII-7 */
4151         if (freq > 6525 && freq <= 6875)
4152                 return 7;
4153
4154         /* UNII-8 */
4155         if (freq > 6875 && freq <= 7125)
4156                 return 8;
4157
4158         return -EINVAL;
4159 }
4160
4161 bool regulatory_indoor_allowed(void)
4162 {
4163         return reg_is_indoor;
4164 }
4165
4166 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4167 {
4168         const struct ieee80211_regdomain *regd = NULL;
4169         const struct ieee80211_regdomain *wiphy_regd = NULL;
4170         bool pre_cac_allowed = false;
4171
4172         rcu_read_lock();
4173
4174         regd = rcu_dereference(cfg80211_regdomain);
4175         wiphy_regd = rcu_dereference(wiphy->regd);
4176         if (!wiphy_regd) {
4177                 if (regd->dfs_region == NL80211_DFS_ETSI)
4178                         pre_cac_allowed = true;
4179
4180                 rcu_read_unlock();
4181
4182                 return pre_cac_allowed;
4183         }
4184
4185         if (regd->dfs_region == wiphy_regd->dfs_region &&
4186             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4187                 pre_cac_allowed = true;
4188
4189         rcu_read_unlock();
4190
4191         return pre_cac_allowed;
4192 }
4193 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4194
4195 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4196 {
4197         struct wireless_dev *wdev;
4198         /* If we finished CAC or received radar, we should end any
4199          * CAC running on the same channels.
4200          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4201          * either all channels are available - those the CAC_FINISHED
4202          * event has effected another wdev state, or there is a channel
4203          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4204          * event has effected another wdev state.
4205          * In both cases we should end the CAC on the wdev.
4206          */
4207         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4208                 if (wdev->cac_started &&
4209                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4210                         rdev_end_cac(rdev, wdev->netdev);
4211         }
4212 }
4213
4214 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4215                                     struct cfg80211_chan_def *chandef,
4216                                     enum nl80211_dfs_state dfs_state,
4217                                     enum nl80211_radar_event event)
4218 {
4219         struct cfg80211_registered_device *rdev;
4220
4221         ASSERT_RTNL();
4222
4223         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4224                 return;
4225
4226         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4227                 if (wiphy == &rdev->wiphy)
4228                         continue;
4229
4230                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4231                         continue;
4232
4233                 if (!ieee80211_get_channel(&rdev->wiphy,
4234                                            chandef->chan->center_freq))
4235                         continue;
4236
4237                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4238
4239                 if (event == NL80211_RADAR_DETECTED ||
4240                     event == NL80211_RADAR_CAC_FINISHED) {
4241                         cfg80211_sched_dfs_chan_update(rdev);
4242                         cfg80211_check_and_end_cac(rdev);
4243                 }
4244
4245                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4246         }
4247 }
4248
4249 static int __init regulatory_init_db(void)
4250 {
4251         int err;
4252
4253         /*
4254          * It's possible that - due to other bugs/issues - cfg80211
4255          * never called regulatory_init() below, or that it failed;
4256          * in that case, don't try to do any further work here as
4257          * it's doomed to lead to crashes.
4258          */
4259         if (IS_ERR_OR_NULL(reg_pdev))
4260                 return -EINVAL;
4261
4262         err = load_builtin_regdb_keys();
4263         if (err)
4264                 return err;
4265
4266         /* We always try to get an update for the static regdomain */
4267         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4268         if (err) {
4269                 if (err == -ENOMEM) {
4270                         platform_device_unregister(reg_pdev);
4271                         return err;
4272                 }
4273                 /*
4274                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4275                  * memory which is handled and propagated appropriately above
4276                  * but it can also fail during a netlink_broadcast() or during
4277                  * early boot for call_usermodehelper(). For now treat these
4278                  * errors as non-fatal.
4279                  */
4280                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4281         }
4282
4283         /*
4284          * Finally, if the user set the module parameter treat it
4285          * as a user hint.
4286          */
4287         if (!is_world_regdom(ieee80211_regdom))
4288                 regulatory_hint_user(ieee80211_regdom,
4289                                      NL80211_USER_REG_HINT_USER);
4290
4291         return 0;
4292 }
4293 #ifndef MODULE
4294 late_initcall(regulatory_init_db);
4295 #endif
4296
4297 int __init regulatory_init(void)
4298 {
4299         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4300         if (IS_ERR(reg_pdev))
4301                 return PTR_ERR(reg_pdev);
4302
4303         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4304
4305         user_alpha2[0] = '9';
4306         user_alpha2[1] = '7';
4307
4308 #ifdef MODULE
4309         return regulatory_init_db();
4310 #else
4311         return 0;
4312 #endif
4313 }
4314
4315 void regulatory_exit(void)
4316 {
4317         struct regulatory_request *reg_request, *tmp;
4318         struct reg_beacon *reg_beacon, *btmp;
4319
4320         cancel_work_sync(&reg_work);
4321         cancel_crda_timeout_sync();
4322         cancel_delayed_work_sync(&reg_check_chans);
4323
4324         /* Lock to suppress warnings */
4325         rtnl_lock();
4326         reset_regdomains(true, NULL);
4327         rtnl_unlock();
4328
4329         dev_set_uevent_suppress(&reg_pdev->dev, true);
4330
4331         platform_device_unregister(reg_pdev);
4332
4333         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4334                 list_del(&reg_beacon->list);
4335                 kfree(reg_beacon);
4336         }
4337
4338         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4339                 list_del(&reg_beacon->list);
4340                 kfree(reg_beacon);
4341         }
4342
4343         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4344                 list_del(&reg_request->list);
4345                 kfree(reg_request);
4346         }
4347
4348         if (!IS_ERR_OR_NULL(regdb))
4349                 kfree(regdb);
4350         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4351                 kfree(cfg80211_user_regdom);
4352
4353         free_regdb_keyring();
4354 }
This page took 0.271086 seconds and 4 git commands to generate.