2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2021 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
140 return rcu_dereference_rtnl(cfg80211_regdomain);
144 * Returns the regulatory domain associated with the wiphy.
146 * Requires any of RTNL, wiphy mutex or RCU protection.
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
154 EXPORT_SYMBOL(get_wiphy_regdom);
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
161 case NL80211_DFS_FCC:
163 case NL80211_DFS_ETSI:
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
184 wiphy_regd = get_wiphy_regdom(wiphy);
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
193 if (wiphy_regd->dfs_region == regd->dfs_region)
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 static struct regulatory_request *get_last_request(void)
216 return rcu_dereference_rtnl(last_request);
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
231 struct list_head list;
232 struct ieee80211_channel chan;
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
259 NL80211_RRF_AUTO_BW),
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
264 NL80211_RRF_AUTO_BW |
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
292 static void reg_free_request(struct regulatory_request *request)
294 if (request == &core_request_world)
297 if (request != get_last_request())
301 static void reg_free_last_request(void)
303 struct regulatory_request *lr = get_last_request();
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
309 static void reg_update_last_request(struct regulatory_request *request)
311 struct regulatory_request *lr;
313 lr = get_last_request();
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
324 const struct ieee80211_regdomain *r;
328 r = get_cfg80211_regdom();
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
339 rcu_free_regdom(cfg80211_world_regdom);
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
347 reg_update_last_request(&core_request_world);
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
356 struct regulatory_request *lr;
358 lr = get_last_request();
362 reset_regdomains(false, rd);
364 cfg80211_world_regdom = rd;
367 bool is_world_regdom(const char *alpha2)
371 return alpha2[0] == '0' && alpha2[1] == '0';
374 static bool is_alpha2_set(const char *alpha2)
378 return alpha2[0] && alpha2[1];
381 static bool is_unknown_alpha2(const char *alpha2)
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
389 return alpha2[0] == '9' && alpha2[1] == '9';
392 static bool is_intersected_alpha2(const char *alpha2)
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
401 return alpha2[0] == '9' && alpha2[1] == '8';
404 static bool is_an_alpha2(const char *alpha2)
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
413 if (!alpha2_x || !alpha2_y)
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 static bool regdom_changes(const char *alpha2)
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424 return !alpha2_equal(r->alpha2, alpha2);
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
432 static bool is_user_regdom_saved(void)
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
449 struct ieee80211_regdomain *regd;
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 return ERR_PTR(-ENOMEM);
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
483 static void reg_regdb_apply(struct work_struct *work)
485 struct reg_regdb_apply_request *request;
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
494 list_del(&request->list);
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499 mutex_unlock(®_regdb_apply_mutex);
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
508 struct reg_regdb_apply_request *request;
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
516 request->regdom = regdom;
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
522 schedule_work(®_regdb_work);
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
530 static u32 reg_crda_timeouts;
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535 static void crda_timeout_work(struct work_struct *work)
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 restore_regulatory_settings(true, false);
544 static void cancel_crda_timeout(void)
546 cancel_delayed_work(&crda_timeout);
549 static void cancel_crda_timeout_sync(void)
551 cancel_delayed_work_sync(&crda_timeout);
554 static void reset_crda_timeouts(void)
556 reg_crda_timeouts = 0;
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
563 static int call_crda(const char *alpha2)
566 char *env[] = { country, NULL };
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
581 pr_debug("Calling CRDA to update world regulatory domain\n");
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
604 struct fwdb_country {
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
610 struct fwdb_collection {
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
641 __be32 start, end, max_bw;
642 /* start of optional data */
645 } __packed __aligned(4);
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
653 struct fwdb_country country[];
654 } __packed __aligned(4);
656 static int ecw2cw(int ecw)
658 return (1 << ecw) - 1;
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
671 if (cw_min >= cw_max)
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 wmm = (void *)(data + wmm_ptr);
706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
732 if (!valid_rule(data, size, rule_ptr))
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
744 const u8 *end = p + buflen;
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
757 plen = (p[2] << 8) | p[3];
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
768 KEY_ALLOC_BYPASS_RESTRICTION);
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
786 static int __init load_builtin_regdb_keys(void)
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 const struct firmware *sig;
815 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
820 VERIFYING_UNSPECIFIED_SIGNATURE,
823 release_firmware(sig);
828 static void free_regdb_keyring(void)
830 key_put(builtin_regdb_keys);
833 static int load_builtin_regdb_keys(void)
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
843 static void free_regdb_keyring(void)
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
848 static bool valid_regdb(const u8 *data, unsigned int size)
850 const struct fwdb_header *hdr = (void *)data;
851 const struct fwdb_country *country;
853 if (size < sizeof(*hdr))
856 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 if (!regdb_has_valid_signature(data, size))
865 country = &hdr->country[0];
866 while ((u8 *)(country + 1) <= data + size) {
867 if (!country->coll_ptr)
869 if (!valid_country(data, size, country))
877 static void set_wmm_rule(const struct fwdb_header *db,
878 const struct fwdb_country *country,
879 const struct fwdb_rule *rule,
880 struct ieee80211_reg_rule *rrule)
882 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883 struct fwdb_wmm_rule *wmm;
884 unsigned int i, wmm_ptr;
886 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887 wmm = (void *)((u8 *)db + wmm_ptr);
889 if (!valid_wmm(wmm)) {
890 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892 country->alpha2[0], country->alpha2[1]);
896 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897 wmm_rule->client[i].cw_min =
898 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
901 wmm_rule->client[i].cot =
902 1000 * be16_to_cpu(wmm->client[i].cot);
903 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 rrule->has_wmm = true;
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913 const struct fwdb_country *country, int freq,
914 struct ieee80211_reg_rule *rrule)
916 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 for (i = 0; i < coll->n_rules; i++) {
921 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
925 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930 set_wmm_rule(db, country, rule, rrule);
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
940 const struct fwdb_header *hdr = regdb;
941 const struct fwdb_country *country;
947 return PTR_ERR(regdb);
949 country = &hdr->country[0];
950 while (country->coll_ptr) {
951 if (alpha2_equal(alpha2, country->alpha2))
952 return __regdb_query_wmm(regdb, country, freq, rule);
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
961 static int regdb_query_country(const struct fwdb_header *db,
962 const struct fwdb_country *country)
964 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966 struct ieee80211_regdomain *regdom;
969 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
974 regdom->n_reg_rules = coll->n_rules;
975 regdom->alpha2[0] = country->alpha2[0];
976 regdom->alpha2[1] = country->alpha2[1];
977 regdom->dfs_region = coll->dfs_region;
979 for (i = 0; i < regdom->n_reg_rules; i++) {
980 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
985 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
989 rrule->power_rule.max_antenna_gain = 0;
990 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993 if (rule->flags & FWDB_FLAG_NO_OFDM)
994 rrule->flags |= NL80211_RRF_NO_OFDM;
995 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997 if (rule->flags & FWDB_FLAG_DFS)
998 rrule->flags |= NL80211_RRF_DFS;
999 if (rule->flags & FWDB_FLAG_NO_IR)
1000 rrule->flags |= NL80211_RRF_NO_IR;
1001 if (rule->flags & FWDB_FLAG_AUTO_BW)
1002 rrule->flags |= NL80211_RRF_AUTO_BW;
1004 rrule->dfs_cac_ms = 0;
1006 /* handle optional data */
1007 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009 1000 * be16_to_cpu(rule->cac_timeout);
1010 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011 set_wmm_rule(db, country, rule, rrule);
1014 return reg_schedule_apply(regdom);
1017 static int query_regdb(const char *alpha2)
1019 const struct fwdb_header *hdr = regdb;
1020 const struct fwdb_country *country;
1025 return PTR_ERR(regdb);
1027 country = &hdr->country[0];
1028 while (country->coll_ptr) {
1029 if (alpha2_equal(alpha2, country->alpha2))
1030 return regdb_query_country(regdb, country);
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 bool restore = true;
1044 pr_info("failed to load regulatory.db\n");
1045 set_error = -ENODATA;
1046 } else if (!valid_regdb(fw->data, fw->size)) {
1047 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048 set_error = -EINVAL;
1052 if (regdb && !IS_ERR(regdb)) {
1053 /* negative case - a bug
1054 * positive case - can happen due to race in case of multiple cb's in
1055 * queue, due to usage of asynchronous callback
1057 * Either case, just restore and free new db.
1059 } else if (set_error) {
1060 regdb = ERR_PTR(set_error);
1062 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 restore = context && query_regdb(context);
1072 restore_regulatory_settings(true, false);
1078 release_firmware(fw);
1081 static int query_regdb_file(const char *alpha2)
1086 return query_regdb(alpha2);
1088 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1092 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093 ®_pdev->dev, GFP_KERNEL,
1094 (void *)alpha2, regdb_fw_cb);
1097 int reg_reload_regdb(void)
1099 const struct firmware *fw;
1102 const struct ieee80211_regdomain *current_regdomain;
1103 struct regulatory_request *request;
1105 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1109 if (!valid_regdb(fw->data, fw->size)) {
1114 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1121 if (!IS_ERR_OR_NULL(regdb))
1125 /* reset regulatory domain */
1126 current_regdomain = get_cfg80211_regdom();
1128 request = kzalloc(sizeof(*request), GFP_KERNEL);
1134 request->wiphy_idx = WIPHY_IDX_INVALID;
1135 request->alpha2[0] = current_regdomain->alpha2[0];
1136 request->alpha2[1] = current_regdomain->alpha2[1];
1137 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1140 reg_process_hint(request);
1145 release_firmware(fw);
1149 static bool reg_query_database(struct regulatory_request *request)
1151 if (query_regdb_file(request->alpha2) == 0)
1154 if (call_crda(request->alpha2) == 0)
1160 bool reg_is_valid_request(const char *alpha2)
1162 struct regulatory_request *lr = get_last_request();
1164 if (!lr || lr->processed)
1167 return alpha2_equal(lr->alpha2, alpha2);
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1172 struct regulatory_request *lr = get_last_request();
1175 * Follow the driver's regulatory domain, if present, unless a country
1176 * IE has been processed or a user wants to help complaince further
1178 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1181 return get_wiphy_regdom(wiphy);
1183 return get_cfg80211_regdom();
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188 const struct ieee80211_reg_rule *rule)
1190 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191 const struct ieee80211_freq_range *freq_range_tmp;
1192 const struct ieee80211_reg_rule *tmp;
1193 u32 start_freq, end_freq, idx, no;
1195 for (idx = 0; idx < rd->n_reg_rules; idx++)
1196 if (rule == &rd->reg_rules[idx])
1199 if (idx == rd->n_reg_rules)
1202 /* get start_freq */
1206 tmp = &rd->reg_rules[--no];
1207 freq_range_tmp = &tmp->freq_range;
1209 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1212 freq_range = freq_range_tmp;
1215 start_freq = freq_range->start_freq_khz;
1218 freq_range = &rule->freq_range;
1221 while (no < rd->n_reg_rules - 1) {
1222 tmp = &rd->reg_rules[++no];
1223 freq_range_tmp = &tmp->freq_range;
1225 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1228 freq_range = freq_range_tmp;
1231 end_freq = freq_range->end_freq_khz;
1233 return end_freq - start_freq;
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237 const struct ieee80211_reg_rule *rule)
1239 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1241 if (rule->flags & NL80211_RRF_NO_160MHZ)
1242 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1243 if (rule->flags & NL80211_RRF_NO_80MHZ)
1244 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1247 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1250 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1251 rule->flags & NL80211_RRF_NO_HT40PLUS)
1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1257 /* Sanity check on a regulatory rule */
1258 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1260 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1263 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1266 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1269 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1271 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1272 freq_range->max_bandwidth_khz > freq_diff)
1278 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1280 const struct ieee80211_reg_rule *reg_rule = NULL;
1283 if (!rd->n_reg_rules)
1286 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1289 for (i = 0; i < rd->n_reg_rules; i++) {
1290 reg_rule = &rd->reg_rules[i];
1291 if (!is_valid_reg_rule(reg_rule))
1299 * freq_in_rule_band - tells us if a frequency is in a frequency band
1300 * @freq_range: frequency rule we want to query
1301 * @freq_khz: frequency we are inquiring about
1303 * This lets us know if a specific frequency rule is or is not relevant to
1304 * a specific frequency's band. Bands are device specific and artificial
1305 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1306 * however it is safe for now to assume that a frequency rule should not be
1307 * part of a frequency's band if the start freq or end freq are off by more
1308 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1310 * This resolution can be lowered and should be considered as we add
1311 * regulatory rule support for other "bands".
1313 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1316 #define ONE_GHZ_IN_KHZ 1000000
1318 * From 802.11ad: directional multi-gigabit (DMG):
1319 * Pertaining to operation in a frequency band containing a channel
1320 * with the Channel starting frequency above 45 GHz.
1322 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1323 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1324 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1326 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1329 #undef ONE_GHZ_IN_KHZ
1333 * Later on we can perhaps use the more restrictive DFS
1334 * region but we don't have information for that yet so
1335 * for now simply disallow conflicts.
1337 static enum nl80211_dfs_regions
1338 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1339 const enum nl80211_dfs_regions dfs_region2)
1341 if (dfs_region1 != dfs_region2)
1342 return NL80211_DFS_UNSET;
1346 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1347 const struct ieee80211_wmm_ac *wmm_ac2,
1348 struct ieee80211_wmm_ac *intersect)
1350 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1351 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1352 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1353 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1357 * Helper for regdom_intersect(), this does the real
1358 * mathematical intersection fun
1360 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1361 const struct ieee80211_regdomain *rd2,
1362 const struct ieee80211_reg_rule *rule1,
1363 const struct ieee80211_reg_rule *rule2,
1364 struct ieee80211_reg_rule *intersected_rule)
1366 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1367 struct ieee80211_freq_range *freq_range;
1368 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1369 struct ieee80211_power_rule *power_rule;
1370 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1371 struct ieee80211_wmm_rule *wmm_rule;
1372 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1374 freq_range1 = &rule1->freq_range;
1375 freq_range2 = &rule2->freq_range;
1376 freq_range = &intersected_rule->freq_range;
1378 power_rule1 = &rule1->power_rule;
1379 power_rule2 = &rule2->power_rule;
1380 power_rule = &intersected_rule->power_rule;
1382 wmm_rule1 = &rule1->wmm_rule;
1383 wmm_rule2 = &rule2->wmm_rule;
1384 wmm_rule = &intersected_rule->wmm_rule;
1386 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1387 freq_range2->start_freq_khz);
1388 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1389 freq_range2->end_freq_khz);
1391 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1392 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1394 if (rule1->flags & NL80211_RRF_AUTO_BW)
1395 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1396 if (rule2->flags & NL80211_RRF_AUTO_BW)
1397 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1399 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1401 intersected_rule->flags = rule1->flags | rule2->flags;
1404 * In case NL80211_RRF_AUTO_BW requested for both rules
1405 * set AUTO_BW in intersected rule also. Next we will
1406 * calculate BW correctly in handle_channel function.
1407 * In other case remove AUTO_BW flag while we calculate
1408 * maximum bandwidth correctly and auto calculation is
1411 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1412 (rule2->flags & NL80211_RRF_AUTO_BW))
1413 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1415 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1417 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1418 if (freq_range->max_bandwidth_khz > freq_diff)
1419 freq_range->max_bandwidth_khz = freq_diff;
1421 power_rule->max_eirp = min(power_rule1->max_eirp,
1422 power_rule2->max_eirp);
1423 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1424 power_rule2->max_antenna_gain);
1426 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1429 if (rule1->has_wmm && rule2->has_wmm) {
1432 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1433 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1434 &wmm_rule2->client[ac],
1435 &wmm_rule->client[ac]);
1436 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1441 intersected_rule->has_wmm = true;
1442 } else if (rule1->has_wmm) {
1443 *wmm_rule = *wmm_rule1;
1444 intersected_rule->has_wmm = true;
1445 } else if (rule2->has_wmm) {
1446 *wmm_rule = *wmm_rule2;
1447 intersected_rule->has_wmm = true;
1449 intersected_rule->has_wmm = false;
1452 if (!is_valid_reg_rule(intersected_rule))
1458 /* check whether old rule contains new rule */
1459 static bool rule_contains(struct ieee80211_reg_rule *r1,
1460 struct ieee80211_reg_rule *r2)
1462 /* for simplicity, currently consider only same flags */
1463 if (r1->flags != r2->flags)
1466 /* verify r1 is more restrictive */
1467 if ((r1->power_rule.max_antenna_gain >
1468 r2->power_rule.max_antenna_gain) ||
1469 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1472 /* make sure r2's range is contained within r1 */
1473 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1474 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1477 /* and finally verify that r1.max_bw >= r2.max_bw */
1478 if (r1->freq_range.max_bandwidth_khz <
1479 r2->freq_range.max_bandwidth_khz)
1485 /* add or extend current rules. do nothing if rule is already contained */
1486 static void add_rule(struct ieee80211_reg_rule *rule,
1487 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1489 struct ieee80211_reg_rule *tmp_rule;
1492 for (i = 0; i < *n_rules; i++) {
1493 tmp_rule = ®_rules[i];
1494 /* rule is already contained - do nothing */
1495 if (rule_contains(tmp_rule, rule))
1498 /* extend rule if possible */
1499 if (rule_contains(rule, tmp_rule)) {
1500 memcpy(tmp_rule, rule, sizeof(*rule));
1505 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1510 * regdom_intersect - do the intersection between two regulatory domains
1511 * @rd1: first regulatory domain
1512 * @rd2: second regulatory domain
1514 * Use this function to get the intersection between two regulatory domains.
1515 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1516 * as no one single alpha2 can represent this regulatory domain.
1518 * Returns a pointer to the regulatory domain structure which will hold the
1519 * resulting intersection of rules between rd1 and rd2. We will
1520 * kzalloc() this structure for you.
1522 static struct ieee80211_regdomain *
1523 regdom_intersect(const struct ieee80211_regdomain *rd1,
1524 const struct ieee80211_regdomain *rd2)
1528 unsigned int num_rules = 0;
1529 const struct ieee80211_reg_rule *rule1, *rule2;
1530 struct ieee80211_reg_rule intersected_rule;
1531 struct ieee80211_regdomain *rd;
1537 * First we get a count of the rules we'll need, then we actually
1538 * build them. This is to so we can malloc() and free() a
1539 * regdomain once. The reason we use reg_rules_intersect() here
1540 * is it will return -EINVAL if the rule computed makes no sense.
1541 * All rules that do check out OK are valid.
1544 for (x = 0; x < rd1->n_reg_rules; x++) {
1545 rule1 = &rd1->reg_rules[x];
1546 for (y = 0; y < rd2->n_reg_rules; y++) {
1547 rule2 = &rd2->reg_rules[y];
1548 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1557 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1561 for (x = 0; x < rd1->n_reg_rules; x++) {
1562 rule1 = &rd1->reg_rules[x];
1563 for (y = 0; y < rd2->n_reg_rules; y++) {
1564 rule2 = &rd2->reg_rules[y];
1565 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1568 * No need to memset here the intersected rule here as
1569 * we're not using the stack anymore
1574 add_rule(&intersected_rule, rd->reg_rules,
1579 rd->alpha2[0] = '9';
1580 rd->alpha2[1] = '8';
1581 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1589 * want to just have the channel structure use these
1591 static u32 map_regdom_flags(u32 rd_flags)
1593 u32 channel_flags = 0;
1594 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1595 channel_flags |= IEEE80211_CHAN_NO_IR;
1596 if (rd_flags & NL80211_RRF_DFS)
1597 channel_flags |= IEEE80211_CHAN_RADAR;
1598 if (rd_flags & NL80211_RRF_NO_OFDM)
1599 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1600 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1601 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1602 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1603 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1604 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1605 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1606 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1607 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1608 if (rd_flags & NL80211_RRF_NO_80MHZ)
1609 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1610 if (rd_flags & NL80211_RRF_NO_160MHZ)
1611 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1612 if (rd_flags & NL80211_RRF_NO_HE)
1613 channel_flags |= IEEE80211_CHAN_NO_HE;
1614 return channel_flags;
1617 static const struct ieee80211_reg_rule *
1618 freq_reg_info_regd(u32 center_freq,
1619 const struct ieee80211_regdomain *regd, u32 bw)
1622 bool band_rule_found = false;
1623 bool bw_fits = false;
1626 return ERR_PTR(-EINVAL);
1628 for (i = 0; i < regd->n_reg_rules; i++) {
1629 const struct ieee80211_reg_rule *rr;
1630 const struct ieee80211_freq_range *fr = NULL;
1632 rr = ®d->reg_rules[i];
1633 fr = &rr->freq_range;
1636 * We only need to know if one frequency rule was
1637 * in center_freq's band, that's enough, so let's
1638 * not overwrite it once found
1640 if (!band_rule_found)
1641 band_rule_found = freq_in_rule_band(fr, center_freq);
1643 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1645 if (band_rule_found && bw_fits)
1649 if (!band_rule_found)
1650 return ERR_PTR(-ERANGE);
1652 return ERR_PTR(-EINVAL);
1655 static const struct ieee80211_reg_rule *
1656 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1658 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1659 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1660 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1661 int i = ARRAY_SIZE(bws) - 1;
1664 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1665 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1666 if (!IS_ERR(reg_rule))
1673 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1676 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1678 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1680 EXPORT_SYMBOL(freq_reg_info);
1682 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1684 switch (initiator) {
1685 case NL80211_REGDOM_SET_BY_CORE:
1687 case NL80211_REGDOM_SET_BY_USER:
1689 case NL80211_REGDOM_SET_BY_DRIVER:
1691 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1692 return "country element";
1698 EXPORT_SYMBOL(reg_initiator_name);
1700 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1701 const struct ieee80211_reg_rule *reg_rule,
1702 const struct ieee80211_channel *chan)
1704 const struct ieee80211_freq_range *freq_range = NULL;
1705 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1706 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1708 freq_range = ®_rule->freq_range;
1710 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1711 center_freq_khz = ieee80211_channel_to_khz(chan);
1712 /* Check if auto calculation requested */
1713 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1714 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1716 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1717 if (!cfg80211_does_bw_fit_range(freq_range,
1720 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1721 if (!cfg80211_does_bw_fit_range(freq_range,
1724 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1727 /* S1G is strict about non overlapping channels. We can
1728 * calculate which bandwidth is allowed per channel by finding
1729 * the largest bandwidth which cleanly divides the freq_range.
1732 int ch_bw = max_bandwidth_khz;
1735 edge_offset = (center_freq_khz - ch_bw / 2) -
1736 freq_range->start_freq_khz;
1737 if (edge_offset % ch_bw == 0) {
1738 switch (KHZ_TO_MHZ(ch_bw)) {
1740 bw_flags |= IEEE80211_CHAN_1MHZ;
1743 bw_flags |= IEEE80211_CHAN_2MHZ;
1746 bw_flags |= IEEE80211_CHAN_4MHZ;
1749 bw_flags |= IEEE80211_CHAN_8MHZ;
1752 bw_flags |= IEEE80211_CHAN_16MHZ;
1755 /* If we got here, no bandwidths fit on
1756 * this frequency, ie. band edge.
1758 bw_flags |= IEEE80211_CHAN_DISABLED;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1767 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1769 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1771 bw_flags |= IEEE80211_CHAN_NO_HT40;
1772 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1773 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1775 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1780 static void handle_channel_single_rule(struct wiphy *wiphy,
1781 enum nl80211_reg_initiator initiator,
1782 struct ieee80211_channel *chan,
1784 struct regulatory_request *lr,
1785 struct wiphy *request_wiphy,
1786 const struct ieee80211_reg_rule *reg_rule)
1789 const struct ieee80211_power_rule *power_rule = NULL;
1790 const struct ieee80211_regdomain *regd;
1792 regd = reg_get_regdomain(wiphy);
1794 power_rule = ®_rule->power_rule;
1795 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1797 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1798 request_wiphy && request_wiphy == wiphy &&
1799 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1801 * This guarantees the driver's requested regulatory domain
1802 * will always be used as a base for further regulatory
1805 chan->flags = chan->orig_flags =
1806 map_regdom_flags(reg_rule->flags) | bw_flags;
1807 chan->max_antenna_gain = chan->orig_mag =
1808 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1809 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1810 (int) MBM_TO_DBM(power_rule->max_eirp);
1812 if (chan->flags & IEEE80211_CHAN_RADAR) {
1813 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814 if (reg_rule->dfs_cac_ms)
1815 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1821 chan->dfs_state = NL80211_DFS_USABLE;
1822 chan->dfs_state_entered = jiffies;
1824 chan->beacon_found = false;
1825 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1826 chan->max_antenna_gain =
1827 min_t(int, chan->orig_mag,
1828 MBI_TO_DBI(power_rule->max_antenna_gain));
1829 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1831 if (chan->flags & IEEE80211_CHAN_RADAR) {
1832 if (reg_rule->dfs_cac_ms)
1833 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1835 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1838 if (chan->orig_mpwr) {
1840 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1841 * will always follow the passed country IE power settings.
1843 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1844 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1845 chan->max_power = chan->max_reg_power;
1847 chan->max_power = min(chan->orig_mpwr,
1848 chan->max_reg_power);
1850 chan->max_power = chan->max_reg_power;
1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1854 enum nl80211_reg_initiator initiator,
1855 struct ieee80211_channel *chan,
1857 struct regulatory_request *lr,
1858 struct wiphy *request_wiphy,
1859 const struct ieee80211_reg_rule *rrule1,
1860 const struct ieee80211_reg_rule *rrule2,
1861 struct ieee80211_freq_range *comb_range)
1865 const struct ieee80211_power_rule *power_rule1 = NULL;
1866 const struct ieee80211_power_rule *power_rule2 = NULL;
1867 const struct ieee80211_regdomain *regd;
1869 regd = reg_get_regdomain(wiphy);
1871 power_rule1 = &rrule1->power_rule;
1872 power_rule2 = &rrule2->power_rule;
1873 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1874 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1876 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1877 request_wiphy && request_wiphy == wiphy &&
1878 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1879 /* This guarantees the driver's requested regulatory domain
1880 * will always be used as a base for further regulatory
1884 map_regdom_flags(rrule1->flags) |
1885 map_regdom_flags(rrule2->flags) |
1888 chan->orig_flags = chan->flags;
1889 chan->max_antenna_gain =
1890 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1891 MBI_TO_DBI(power_rule2->max_antenna_gain));
1892 chan->orig_mag = chan->max_antenna_gain;
1893 chan->max_reg_power =
1894 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1895 MBM_TO_DBM(power_rule2->max_eirp));
1896 chan->max_power = chan->max_reg_power;
1897 chan->orig_mpwr = chan->max_reg_power;
1899 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1901 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1902 chan->dfs_cac_ms = max_t(unsigned int,
1904 rrule2->dfs_cac_ms);
1910 chan->dfs_state = NL80211_DFS_USABLE;
1911 chan->dfs_state_entered = jiffies;
1913 chan->beacon_found = false;
1914 chan->flags = flags | bw_flags1 | bw_flags2 |
1915 map_regdom_flags(rrule1->flags) |
1916 map_regdom_flags(rrule2->flags);
1918 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919 * (otherwise no adj. rule case), recheck therefore
1921 if (cfg80211_does_bw_fit_range(comb_range,
1922 ieee80211_channel_to_khz(chan),
1924 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925 if (cfg80211_does_bw_fit_range(comb_range,
1926 ieee80211_channel_to_khz(chan),
1928 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1930 chan->max_antenna_gain =
1931 min_t(int, chan->orig_mag,
1933 MBI_TO_DBI(power_rule1->max_antenna_gain),
1934 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935 chan->max_reg_power = min_t(int,
1936 MBM_TO_DBM(power_rule1->max_eirp),
1937 MBM_TO_DBM(power_rule2->max_eirp));
1939 if (chan->flags & IEEE80211_CHAN_RADAR) {
1940 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941 chan->dfs_cac_ms = max_t(unsigned int,
1943 rrule2->dfs_cac_ms);
1945 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1948 if (chan->orig_mpwr) {
1949 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950 * will always follow the passed country IE power settings.
1952 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954 chan->max_power = chan->max_reg_power;
1956 chan->max_power = min(chan->orig_mpwr,
1957 chan->max_reg_power);
1959 chan->max_power = chan->max_reg_power;
1963 /* Note that right now we assume the desired channel bandwidth
1964 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965 * per channel, the primary and the extension channel).
1967 static void handle_channel(struct wiphy *wiphy,
1968 enum nl80211_reg_initiator initiator,
1969 struct ieee80211_channel *chan)
1971 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972 struct regulatory_request *lr = get_last_request();
1973 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974 const struct ieee80211_reg_rule *rrule = NULL;
1975 const struct ieee80211_reg_rule *rrule1 = NULL;
1976 const struct ieee80211_reg_rule *rrule2 = NULL;
1978 u32 flags = chan->orig_flags;
1980 rrule = freq_reg_info(wiphy, orig_chan_freq);
1981 if (IS_ERR(rrule)) {
1982 /* check for adjacent match, therefore get rules for
1983 * chan - 20 MHz and chan + 20 MHz and test
1984 * if reg rules are adjacent
1986 rrule1 = freq_reg_info(wiphy,
1987 orig_chan_freq - MHZ_TO_KHZ(20));
1988 rrule2 = freq_reg_info(wiphy,
1989 orig_chan_freq + MHZ_TO_KHZ(20));
1990 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991 struct ieee80211_freq_range comb_range;
1993 if (rrule1->freq_range.end_freq_khz !=
1994 rrule2->freq_range.start_freq_khz)
1997 comb_range.start_freq_khz =
1998 rrule1->freq_range.start_freq_khz;
1999 comb_range.end_freq_khz =
2000 rrule2->freq_range.end_freq_khz;
2001 comb_range.max_bandwidth_khz =
2003 rrule1->freq_range.max_bandwidth_khz,
2004 rrule2->freq_range.max_bandwidth_khz);
2006 if (!cfg80211_does_bw_fit_range(&comb_range,
2011 handle_channel_adjacent_rules(wiphy, initiator, chan,
2012 flags, lr, request_wiphy,
2019 /* We will disable all channels that do not match our
2020 * received regulatory rule unless the hint is coming
2021 * from a Country IE and the Country IE had no information
2022 * about a band. The IEEE 802.11 spec allows for an AP
2023 * to send only a subset of the regulatory rules allowed,
2024 * so an AP in the US that only supports 2.4 GHz may only send
2025 * a country IE with information for the 2.4 GHz band
2026 * while 5 GHz is still supported.
2028 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029 PTR_ERR(rrule) == -ERANGE)
2032 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033 request_wiphy && request_wiphy == wiphy &&
2034 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035 pr_debug("Disabling freq %d.%03d MHz for good\n",
2036 chan->center_freq, chan->freq_offset);
2037 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038 chan->flags = chan->orig_flags;
2040 pr_debug("Disabling freq %d.%03d MHz\n",
2041 chan->center_freq, chan->freq_offset);
2042 chan->flags |= IEEE80211_CHAN_DISABLED;
2047 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048 request_wiphy, rrule);
2051 static void handle_band(struct wiphy *wiphy,
2052 enum nl80211_reg_initiator initiator,
2053 struct ieee80211_supported_band *sband)
2060 for (i = 0; i < sband->n_channels; i++)
2061 handle_channel(wiphy, initiator, &sband->channels[i]);
2064 static bool reg_request_cell_base(struct regulatory_request *request)
2066 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2068 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2071 bool reg_last_request_cell_base(void)
2073 return reg_request_cell_base(get_last_request());
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081 struct regulatory_request *lr = get_last_request();
2083 if (!reg_num_devs_support_basehint)
2084 return REG_REQ_IGNORE;
2086 if (reg_request_cell_base(lr) &&
2087 !regdom_changes(pending_request->alpha2))
2088 return REG_REQ_ALREADY_SET;
2093 /* Device specific check */
2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2096 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2099 static enum reg_request_treatment
2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2102 return REG_REQ_IGNORE;
2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2113 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120 enum nl80211_reg_initiator initiator)
2122 struct regulatory_request *lr = get_last_request();
2124 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129 reg_initiator_name(initiator));
2133 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136 reg_initiator_name(initiator));
2141 * wiphy->regd will be set once the device has its own
2142 * desired regulatory domain set
2144 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 !is_world_regdom(lr->alpha2)) {
2147 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148 reg_initiator_name(initiator));
2152 if (reg_request_cell_base(lr))
2153 return reg_dev_ignore_cell_hint(wiphy);
2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2160 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162 struct regulatory_request *lr = get_last_request();
2164 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2167 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2174 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2175 struct reg_beacon *reg_beacon)
2177 struct ieee80211_supported_band *sband;
2178 struct ieee80211_channel *chan;
2179 bool channel_changed = false;
2180 struct ieee80211_channel chan_before;
2182 sband = wiphy->bands[reg_beacon->chan.band];
2183 chan = &sband->channels[chan_idx];
2185 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2188 if (chan->beacon_found)
2191 chan->beacon_found = true;
2193 if (!reg_is_world_roaming(wiphy))
2196 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2199 chan_before = *chan;
2201 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2202 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2203 channel_changed = true;
2206 if (channel_changed)
2207 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2211 * Called when a scan on a wiphy finds a beacon on
2214 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2215 struct reg_beacon *reg_beacon)
2218 struct ieee80211_supported_band *sband;
2220 if (!wiphy->bands[reg_beacon->chan.band])
2223 sband = wiphy->bands[reg_beacon->chan.band];
2225 for (i = 0; i < sband->n_channels; i++)
2226 handle_reg_beacon(wiphy, i, reg_beacon);
2230 * Called upon reg changes or a new wiphy is added
2232 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2235 struct ieee80211_supported_band *sband;
2236 struct reg_beacon *reg_beacon;
2238 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2239 if (!wiphy->bands[reg_beacon->chan.band])
2241 sband = wiphy->bands[reg_beacon->chan.band];
2242 for (i = 0; i < sband->n_channels; i++)
2243 handle_reg_beacon(wiphy, i, reg_beacon);
2247 /* Reap the advantages of previously found beacons */
2248 static void reg_process_beacons(struct wiphy *wiphy)
2251 * Means we are just firing up cfg80211, so no beacons would
2252 * have been processed yet.
2256 wiphy_update_beacon_reg(wiphy);
2259 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2263 if (chan->flags & IEEE80211_CHAN_DISABLED)
2265 /* This would happen when regulatory rules disallow HT40 completely */
2266 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2271 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2272 struct ieee80211_channel *channel)
2274 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2275 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2276 const struct ieee80211_regdomain *regd;
2280 if (!is_ht40_allowed(channel)) {
2281 channel->flags |= IEEE80211_CHAN_NO_HT40;
2286 * We need to ensure the extension channels exist to
2287 * be able to use HT40- or HT40+, this finds them (or not)
2289 for (i = 0; i < sband->n_channels; i++) {
2290 struct ieee80211_channel *c = &sband->channels[i];
2292 if (c->center_freq == (channel->center_freq - 20))
2294 if (c->center_freq == (channel->center_freq + 20))
2299 regd = get_wiphy_regdom(wiphy);
2301 const struct ieee80211_reg_rule *reg_rule =
2302 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2303 regd, MHZ_TO_KHZ(20));
2305 if (!IS_ERR(reg_rule))
2306 flags = reg_rule->flags;
2310 * Please note that this assumes target bandwidth is 20 MHz,
2311 * if that ever changes we also need to change the below logic
2312 * to include that as well.
2314 if (!is_ht40_allowed(channel_before) ||
2315 flags & NL80211_RRF_NO_HT40MINUS)
2316 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2318 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2320 if (!is_ht40_allowed(channel_after) ||
2321 flags & NL80211_RRF_NO_HT40PLUS)
2322 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2324 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2327 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2328 struct ieee80211_supported_band *sband)
2335 for (i = 0; i < sband->n_channels; i++)
2336 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2339 static void reg_process_ht_flags(struct wiphy *wiphy)
2341 enum nl80211_band band;
2346 for (band = 0; band < NUM_NL80211_BANDS; band++)
2347 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2350 static void reg_call_notifier(struct wiphy *wiphy,
2351 struct regulatory_request *request)
2353 if (wiphy->reg_notifier)
2354 wiphy->reg_notifier(wiphy, request);
2357 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2359 struct cfg80211_chan_def chandef = {};
2360 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2361 enum nl80211_iftype iftype;
2365 iftype = wdev->iftype;
2367 /* make sure the interface is active */
2368 if (!wdev->netdev || !netif_running(wdev->netdev))
2369 goto wdev_inactive_unlock;
2372 case NL80211_IFTYPE_AP:
2373 case NL80211_IFTYPE_P2P_GO:
2374 case NL80211_IFTYPE_MESH_POINT:
2375 if (!wdev->beacon_interval)
2376 goto wdev_inactive_unlock;
2377 chandef = wdev->chandef;
2379 case NL80211_IFTYPE_ADHOC:
2380 if (!wdev->ssid_len)
2381 goto wdev_inactive_unlock;
2382 chandef = wdev->chandef;
2384 case NL80211_IFTYPE_STATION:
2385 case NL80211_IFTYPE_P2P_CLIENT:
2386 if (!wdev->current_bss ||
2387 !wdev->current_bss->pub.channel)
2388 goto wdev_inactive_unlock;
2390 if (!rdev->ops->get_channel ||
2391 rdev_get_channel(rdev, wdev, &chandef))
2392 cfg80211_chandef_create(&chandef,
2393 wdev->current_bss->pub.channel,
2394 NL80211_CHAN_NO_HT);
2396 case NL80211_IFTYPE_MONITOR:
2397 case NL80211_IFTYPE_AP_VLAN:
2398 case NL80211_IFTYPE_P2P_DEVICE:
2399 /* no enforcement required */
2402 /* others not implemented for now */
2410 case NL80211_IFTYPE_AP:
2411 case NL80211_IFTYPE_P2P_GO:
2412 case NL80211_IFTYPE_ADHOC:
2413 case NL80211_IFTYPE_MESH_POINT:
2415 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2416 wiphy_unlock(wiphy);
2419 case NL80211_IFTYPE_STATION:
2420 case NL80211_IFTYPE_P2P_CLIENT:
2421 return cfg80211_chandef_usable(wiphy, &chandef,
2422 IEEE80211_CHAN_DISABLED);
2429 wdev_inactive_unlock:
2434 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2436 struct wireless_dev *wdev;
2437 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2441 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2442 if (!reg_wdev_chan_valid(wiphy, wdev))
2443 cfg80211_leave(rdev, wdev);
2446 static void reg_check_chans_work(struct work_struct *work)
2448 struct cfg80211_registered_device *rdev;
2450 pr_debug("Verifying active interfaces after reg change\n");
2453 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2454 if (!(rdev->wiphy.regulatory_flags &
2455 REGULATORY_IGNORE_STALE_KICKOFF))
2456 reg_leave_invalid_chans(&rdev->wiphy);
2461 static void reg_check_channels(void)
2464 * Give usermode a chance to do something nicer (move to another
2465 * channel, orderly disconnection), before forcing a disconnection.
2467 mod_delayed_work(system_power_efficient_wq,
2469 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2472 static void wiphy_update_regulatory(struct wiphy *wiphy,
2473 enum nl80211_reg_initiator initiator)
2475 enum nl80211_band band;
2476 struct regulatory_request *lr = get_last_request();
2478 if (ignore_reg_update(wiphy, initiator)) {
2480 * Regulatory updates set by CORE are ignored for custom
2481 * regulatory cards. Let us notify the changes to the driver,
2482 * as some drivers used this to restore its orig_* reg domain.
2484 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2485 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2486 !(wiphy->regulatory_flags &
2487 REGULATORY_WIPHY_SELF_MANAGED))
2488 reg_call_notifier(wiphy, lr);
2492 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2494 for (band = 0; band < NUM_NL80211_BANDS; band++)
2495 handle_band(wiphy, initiator, wiphy->bands[band]);
2497 reg_process_beacons(wiphy);
2498 reg_process_ht_flags(wiphy);
2499 reg_call_notifier(wiphy, lr);
2502 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2504 struct cfg80211_registered_device *rdev;
2505 struct wiphy *wiphy;
2509 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2510 wiphy = &rdev->wiphy;
2511 wiphy_update_regulatory(wiphy, initiator);
2514 reg_check_channels();
2517 static void handle_channel_custom(struct wiphy *wiphy,
2518 struct ieee80211_channel *chan,
2519 const struct ieee80211_regdomain *regd,
2523 const struct ieee80211_reg_rule *reg_rule = NULL;
2524 const struct ieee80211_power_rule *power_rule = NULL;
2525 u32 bw, center_freq_khz;
2527 center_freq_khz = ieee80211_channel_to_khz(chan);
2528 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2529 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2530 if (!IS_ERR(reg_rule))
2534 if (IS_ERR_OR_NULL(reg_rule)) {
2535 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2536 chan->center_freq, chan->freq_offset);
2537 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2538 chan->flags |= IEEE80211_CHAN_DISABLED;
2540 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2541 chan->flags = chan->orig_flags;
2546 power_rule = ®_rule->power_rule;
2547 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2549 chan->dfs_state_entered = jiffies;
2550 chan->dfs_state = NL80211_DFS_USABLE;
2552 chan->beacon_found = false;
2554 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2555 chan->flags = chan->orig_flags | bw_flags |
2556 map_regdom_flags(reg_rule->flags);
2558 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2560 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2561 chan->max_reg_power = chan->max_power =
2562 (int) MBM_TO_DBM(power_rule->max_eirp);
2564 if (chan->flags & IEEE80211_CHAN_RADAR) {
2565 if (reg_rule->dfs_cac_ms)
2566 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2568 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2571 chan->max_power = chan->max_reg_power;
2574 static void handle_band_custom(struct wiphy *wiphy,
2575 struct ieee80211_supported_band *sband,
2576 const struct ieee80211_regdomain *regd)
2584 * We currently assume that you always want at least 20 MHz,
2585 * otherwise channel 12 might get enabled if this rule is
2586 * compatible to US, which permits 2402 - 2472 MHz.
2588 for (i = 0; i < sband->n_channels; i++)
2589 handle_channel_custom(wiphy, &sband->channels[i], regd,
2593 /* Used by drivers prior to wiphy registration */
2594 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2595 const struct ieee80211_regdomain *regd)
2597 const struct ieee80211_regdomain *new_regd, *tmp;
2598 enum nl80211_band band;
2599 unsigned int bands_set = 0;
2601 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2602 "wiphy should have REGULATORY_CUSTOM_REG\n");
2603 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2605 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2606 if (!wiphy->bands[band])
2608 handle_band_custom(wiphy, wiphy->bands[band], regd);
2613 * no point in calling this if it won't have any effect
2614 * on your device's supported bands.
2616 WARN_ON(!bands_set);
2617 new_regd = reg_copy_regd(regd);
2618 if (IS_ERR(new_regd))
2624 tmp = get_wiphy_regdom(wiphy);
2625 rcu_assign_pointer(wiphy->regd, new_regd);
2626 rcu_free_regdom(tmp);
2628 wiphy_unlock(wiphy);
2631 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2633 static void reg_set_request_processed(void)
2635 bool need_more_processing = false;
2636 struct regulatory_request *lr = get_last_request();
2638 lr->processed = true;
2640 spin_lock(®_requests_lock);
2641 if (!list_empty(®_requests_list))
2642 need_more_processing = true;
2643 spin_unlock(®_requests_lock);
2645 cancel_crda_timeout();
2647 if (need_more_processing)
2648 schedule_work(®_work);
2652 * reg_process_hint_core - process core regulatory requests
2653 * @core_request: a pending core regulatory request
2655 * The wireless subsystem can use this function to process
2656 * a regulatory request issued by the regulatory core.
2658 static enum reg_request_treatment
2659 reg_process_hint_core(struct regulatory_request *core_request)
2661 if (reg_query_database(core_request)) {
2662 core_request->intersect = false;
2663 core_request->processed = false;
2664 reg_update_last_request(core_request);
2668 return REG_REQ_IGNORE;
2671 static enum reg_request_treatment
2672 __reg_process_hint_user(struct regulatory_request *user_request)
2674 struct regulatory_request *lr = get_last_request();
2676 if (reg_request_cell_base(user_request))
2677 return reg_ignore_cell_hint(user_request);
2679 if (reg_request_cell_base(lr))
2680 return REG_REQ_IGNORE;
2682 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2683 return REG_REQ_INTERSECT;
2685 * If the user knows better the user should set the regdom
2686 * to their country before the IE is picked up
2688 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2690 return REG_REQ_IGNORE;
2692 * Process user requests only after previous user/driver/core
2693 * requests have been processed
2695 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2696 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2697 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2698 regdom_changes(lr->alpha2))
2699 return REG_REQ_IGNORE;
2701 if (!regdom_changes(user_request->alpha2))
2702 return REG_REQ_ALREADY_SET;
2708 * reg_process_hint_user - process user regulatory requests
2709 * @user_request: a pending user regulatory request
2711 * The wireless subsystem can use this function to process
2712 * a regulatory request initiated by userspace.
2714 static enum reg_request_treatment
2715 reg_process_hint_user(struct regulatory_request *user_request)
2717 enum reg_request_treatment treatment;
2719 treatment = __reg_process_hint_user(user_request);
2720 if (treatment == REG_REQ_IGNORE ||
2721 treatment == REG_REQ_ALREADY_SET)
2722 return REG_REQ_IGNORE;
2724 user_request->intersect = treatment == REG_REQ_INTERSECT;
2725 user_request->processed = false;
2727 if (reg_query_database(user_request)) {
2728 reg_update_last_request(user_request);
2729 user_alpha2[0] = user_request->alpha2[0];
2730 user_alpha2[1] = user_request->alpha2[1];
2734 return REG_REQ_IGNORE;
2737 static enum reg_request_treatment
2738 __reg_process_hint_driver(struct regulatory_request *driver_request)
2740 struct regulatory_request *lr = get_last_request();
2742 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2743 if (regdom_changes(driver_request->alpha2))
2745 return REG_REQ_ALREADY_SET;
2749 * This would happen if you unplug and plug your card
2750 * back in or if you add a new device for which the previously
2751 * loaded card also agrees on the regulatory domain.
2753 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2754 !regdom_changes(driver_request->alpha2))
2755 return REG_REQ_ALREADY_SET;
2757 return REG_REQ_INTERSECT;
2761 * reg_process_hint_driver - process driver regulatory requests
2762 * @wiphy: the wireless device for the regulatory request
2763 * @driver_request: a pending driver regulatory request
2765 * The wireless subsystem can use this function to process
2766 * a regulatory request issued by an 802.11 driver.
2768 * Returns one of the different reg request treatment values.
2770 static enum reg_request_treatment
2771 reg_process_hint_driver(struct wiphy *wiphy,
2772 struct regulatory_request *driver_request)
2774 const struct ieee80211_regdomain *regd, *tmp;
2775 enum reg_request_treatment treatment;
2777 treatment = __reg_process_hint_driver(driver_request);
2779 switch (treatment) {
2782 case REG_REQ_IGNORE:
2783 return REG_REQ_IGNORE;
2784 case REG_REQ_INTERSECT:
2785 case REG_REQ_ALREADY_SET:
2786 regd = reg_copy_regd(get_cfg80211_regdom());
2788 return REG_REQ_IGNORE;
2790 tmp = get_wiphy_regdom(wiphy);
2793 rcu_assign_pointer(wiphy->regd, regd);
2794 wiphy_unlock(wiphy);
2795 rcu_free_regdom(tmp);
2799 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2800 driver_request->processed = false;
2803 * Since CRDA will not be called in this case as we already
2804 * have applied the requested regulatory domain before we just
2805 * inform userspace we have processed the request
2807 if (treatment == REG_REQ_ALREADY_SET) {
2808 nl80211_send_reg_change_event(driver_request);
2809 reg_update_last_request(driver_request);
2810 reg_set_request_processed();
2811 return REG_REQ_ALREADY_SET;
2814 if (reg_query_database(driver_request)) {
2815 reg_update_last_request(driver_request);
2819 return REG_REQ_IGNORE;
2822 static enum reg_request_treatment
2823 __reg_process_hint_country_ie(struct wiphy *wiphy,
2824 struct regulatory_request *country_ie_request)
2826 struct wiphy *last_wiphy = NULL;
2827 struct regulatory_request *lr = get_last_request();
2829 if (reg_request_cell_base(lr)) {
2830 /* Trust a Cell base station over the AP's country IE */
2831 if (regdom_changes(country_ie_request->alpha2))
2832 return REG_REQ_IGNORE;
2833 return REG_REQ_ALREADY_SET;
2835 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2836 return REG_REQ_IGNORE;
2839 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2842 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2845 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2847 if (last_wiphy != wiphy) {
2849 * Two cards with two APs claiming different
2850 * Country IE alpha2s. We could
2851 * intersect them, but that seems unlikely
2852 * to be correct. Reject second one for now.
2854 if (regdom_changes(country_ie_request->alpha2))
2855 return REG_REQ_IGNORE;
2856 return REG_REQ_ALREADY_SET;
2859 if (regdom_changes(country_ie_request->alpha2))
2861 return REG_REQ_ALREADY_SET;
2865 * reg_process_hint_country_ie - process regulatory requests from country IEs
2866 * @wiphy: the wireless device for the regulatory request
2867 * @country_ie_request: a regulatory request from a country IE
2869 * The wireless subsystem can use this function to process
2870 * a regulatory request issued by a country Information Element.
2872 * Returns one of the different reg request treatment values.
2874 static enum reg_request_treatment
2875 reg_process_hint_country_ie(struct wiphy *wiphy,
2876 struct regulatory_request *country_ie_request)
2878 enum reg_request_treatment treatment;
2880 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2882 switch (treatment) {
2885 case REG_REQ_IGNORE:
2886 return REG_REQ_IGNORE;
2887 case REG_REQ_ALREADY_SET:
2888 reg_free_request(country_ie_request);
2889 return REG_REQ_ALREADY_SET;
2890 case REG_REQ_INTERSECT:
2892 * This doesn't happen yet, not sure we
2893 * ever want to support it for this case.
2895 WARN_ONCE(1, "Unexpected intersection for country elements");
2896 return REG_REQ_IGNORE;
2899 country_ie_request->intersect = false;
2900 country_ie_request->processed = false;
2902 if (reg_query_database(country_ie_request)) {
2903 reg_update_last_request(country_ie_request);
2907 return REG_REQ_IGNORE;
2910 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2912 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2913 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2914 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2915 bool dfs_domain_same;
2919 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2920 wiphy1_regd = rcu_dereference(wiphy1->regd);
2922 wiphy1_regd = cfg80211_regd;
2924 wiphy2_regd = rcu_dereference(wiphy2->regd);
2926 wiphy2_regd = cfg80211_regd;
2928 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2932 return dfs_domain_same;
2935 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2936 struct ieee80211_channel *src_chan)
2938 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2939 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2942 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2943 src_chan->flags & IEEE80211_CHAN_DISABLED)
2946 if (src_chan->center_freq == dst_chan->center_freq &&
2947 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2948 dst_chan->dfs_state = src_chan->dfs_state;
2949 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2953 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2954 struct wiphy *src_wiphy)
2956 struct ieee80211_supported_band *src_sband, *dst_sband;
2957 struct ieee80211_channel *src_chan, *dst_chan;
2960 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2963 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2964 dst_sband = dst_wiphy->bands[band];
2965 src_sband = src_wiphy->bands[band];
2966 if (!dst_sband || !src_sband)
2969 for (i = 0; i < dst_sband->n_channels; i++) {
2970 dst_chan = &dst_sband->channels[i];
2971 for (j = 0; j < src_sband->n_channels; j++) {
2972 src_chan = &src_sband->channels[j];
2973 reg_copy_dfs_chan_state(dst_chan, src_chan);
2979 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2981 struct cfg80211_registered_device *rdev;
2985 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2986 if (wiphy == &rdev->wiphy)
2988 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2992 /* This processes *all* regulatory hints */
2993 static void reg_process_hint(struct regulatory_request *reg_request)
2995 struct wiphy *wiphy = NULL;
2996 enum reg_request_treatment treatment;
2997 enum nl80211_reg_initiator initiator = reg_request->initiator;
2999 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3000 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3002 switch (initiator) {
3003 case NL80211_REGDOM_SET_BY_CORE:
3004 treatment = reg_process_hint_core(reg_request);
3006 case NL80211_REGDOM_SET_BY_USER:
3007 treatment = reg_process_hint_user(reg_request);
3009 case NL80211_REGDOM_SET_BY_DRIVER:
3012 treatment = reg_process_hint_driver(wiphy, reg_request);
3014 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3017 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3020 WARN(1, "invalid initiator %d\n", initiator);
3024 if (treatment == REG_REQ_IGNORE)
3027 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3028 "unexpected treatment value %d\n", treatment);
3030 /* This is required so that the orig_* parameters are saved.
3031 * NOTE: treatment must be set for any case that reaches here!
3033 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3034 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3035 wiphy_update_regulatory(wiphy, initiator);
3036 wiphy_all_share_dfs_chan_state(wiphy);
3037 reg_check_channels();
3043 reg_free_request(reg_request);
3046 static void notify_self_managed_wiphys(struct regulatory_request *request)
3048 struct cfg80211_registered_device *rdev;
3049 struct wiphy *wiphy;
3051 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3052 wiphy = &rdev->wiphy;
3053 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3054 request->initiator == NL80211_REGDOM_SET_BY_USER)
3055 reg_call_notifier(wiphy, request);
3060 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3061 * Regulatory hints come on a first come first serve basis and we
3062 * must process each one atomically.
3064 static void reg_process_pending_hints(void)
3066 struct regulatory_request *reg_request, *lr;
3068 lr = get_last_request();
3070 /* When last_request->processed becomes true this will be rescheduled */
3071 if (lr && !lr->processed) {
3072 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3076 spin_lock(®_requests_lock);
3078 if (list_empty(®_requests_list)) {
3079 spin_unlock(®_requests_lock);
3083 reg_request = list_first_entry(®_requests_list,
3084 struct regulatory_request,
3086 list_del_init(®_request->list);
3088 spin_unlock(®_requests_lock);
3090 notify_self_managed_wiphys(reg_request);
3092 reg_process_hint(reg_request);
3094 lr = get_last_request();
3096 spin_lock(®_requests_lock);
3097 if (!list_empty(®_requests_list) && lr && lr->processed)
3098 schedule_work(®_work);
3099 spin_unlock(®_requests_lock);
3102 /* Processes beacon hints -- this has nothing to do with country IEs */
3103 static void reg_process_pending_beacon_hints(void)
3105 struct cfg80211_registered_device *rdev;
3106 struct reg_beacon *pending_beacon, *tmp;
3108 /* This goes through the _pending_ beacon list */
3109 spin_lock_bh(®_pending_beacons_lock);
3111 list_for_each_entry_safe(pending_beacon, tmp,
3112 ®_pending_beacons, list) {
3113 list_del_init(&pending_beacon->list);
3115 /* Applies the beacon hint to current wiphys */
3116 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3117 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3119 /* Remembers the beacon hint for new wiphys or reg changes */
3120 list_add_tail(&pending_beacon->list, ®_beacon_list);
3123 spin_unlock_bh(®_pending_beacons_lock);
3126 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3128 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3129 const struct ieee80211_regdomain *tmp;
3130 const struct ieee80211_regdomain *regd;
3131 enum nl80211_band band;
3132 struct regulatory_request request = {};
3135 lockdep_assert_wiphy(wiphy);
3137 spin_lock(®_requests_lock);
3138 regd = rdev->requested_regd;
3139 rdev->requested_regd = NULL;
3140 spin_unlock(®_requests_lock);
3145 tmp = get_wiphy_regdom(wiphy);
3146 rcu_assign_pointer(wiphy->regd, regd);
3147 rcu_free_regdom(tmp);
3149 for (band = 0; band < NUM_NL80211_BANDS; band++)
3150 handle_band_custom(wiphy, wiphy->bands[band], regd);
3152 reg_process_ht_flags(wiphy);
3154 request.wiphy_idx = get_wiphy_idx(wiphy);
3155 request.alpha2[0] = regd->alpha2[0];
3156 request.alpha2[1] = regd->alpha2[1];
3157 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3159 nl80211_send_wiphy_reg_change_event(&request);
3162 static void reg_process_self_managed_hints(void)
3164 struct cfg80211_registered_device *rdev;
3168 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3169 wiphy_lock(&rdev->wiphy);
3170 reg_process_self_managed_hint(&rdev->wiphy);
3171 wiphy_unlock(&rdev->wiphy);
3174 reg_check_channels();
3177 static void reg_todo(struct work_struct *work)
3180 reg_process_pending_hints();
3181 reg_process_pending_beacon_hints();
3182 reg_process_self_managed_hints();
3186 static void queue_regulatory_request(struct regulatory_request *request)
3188 request->alpha2[0] = toupper(request->alpha2[0]);
3189 request->alpha2[1] = toupper(request->alpha2[1]);
3191 spin_lock(®_requests_lock);
3192 list_add_tail(&request->list, ®_requests_list);
3193 spin_unlock(®_requests_lock);
3195 schedule_work(®_work);
3199 * Core regulatory hint -- happens during cfg80211_init()
3200 * and when we restore regulatory settings.
3202 static int regulatory_hint_core(const char *alpha2)
3204 struct regulatory_request *request;
3206 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3210 request->alpha2[0] = alpha2[0];
3211 request->alpha2[1] = alpha2[1];
3212 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3213 request->wiphy_idx = WIPHY_IDX_INVALID;
3215 queue_regulatory_request(request);
3221 int regulatory_hint_user(const char *alpha2,
3222 enum nl80211_user_reg_hint_type user_reg_hint_type)
3224 struct regulatory_request *request;
3226 if (WARN_ON(!alpha2))
3229 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3232 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3236 request->wiphy_idx = WIPHY_IDX_INVALID;
3237 request->alpha2[0] = alpha2[0];
3238 request->alpha2[1] = alpha2[1];
3239 request->initiator = NL80211_REGDOM_SET_BY_USER;
3240 request->user_reg_hint_type = user_reg_hint_type;
3242 /* Allow calling CRDA again */
3243 reset_crda_timeouts();
3245 queue_regulatory_request(request);
3250 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3252 spin_lock(®_indoor_lock);
3254 /* It is possible that more than one user space process is trying to
3255 * configure the indoor setting. To handle such cases, clear the indoor
3256 * setting in case that some process does not think that the device
3257 * is operating in an indoor environment. In addition, if a user space
3258 * process indicates that it is controlling the indoor setting, save its
3259 * portid, i.e., make it the owner.
3261 reg_is_indoor = is_indoor;
3262 if (reg_is_indoor) {
3263 if (!reg_is_indoor_portid)
3264 reg_is_indoor_portid = portid;
3266 reg_is_indoor_portid = 0;
3269 spin_unlock(®_indoor_lock);
3272 reg_check_channels();
3277 void regulatory_netlink_notify(u32 portid)
3279 spin_lock(®_indoor_lock);
3281 if (reg_is_indoor_portid != portid) {
3282 spin_unlock(®_indoor_lock);
3286 reg_is_indoor = false;
3287 reg_is_indoor_portid = 0;
3289 spin_unlock(®_indoor_lock);
3291 reg_check_channels();
3295 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3297 struct regulatory_request *request;
3299 if (WARN_ON(!alpha2 || !wiphy))
3302 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3304 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3308 request->wiphy_idx = get_wiphy_idx(wiphy);
3310 request->alpha2[0] = alpha2[0];
3311 request->alpha2[1] = alpha2[1];
3312 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3314 /* Allow calling CRDA again */
3315 reset_crda_timeouts();
3317 queue_regulatory_request(request);
3321 EXPORT_SYMBOL(regulatory_hint);
3323 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3324 const u8 *country_ie, u8 country_ie_len)
3327 enum environment_cap env = ENVIRON_ANY;
3328 struct regulatory_request *request = NULL, *lr;
3330 /* IE len must be evenly divisible by 2 */
3331 if (country_ie_len & 0x01)
3334 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3337 request = kzalloc(sizeof(*request), GFP_KERNEL);
3341 alpha2[0] = country_ie[0];
3342 alpha2[1] = country_ie[1];
3344 if (country_ie[2] == 'I')
3345 env = ENVIRON_INDOOR;
3346 else if (country_ie[2] == 'O')
3347 env = ENVIRON_OUTDOOR;
3350 lr = get_last_request();
3356 * We will run this only upon a successful connection on cfg80211.
3357 * We leave conflict resolution to the workqueue, where can hold
3360 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3361 lr->wiphy_idx != WIPHY_IDX_INVALID)
3364 request->wiphy_idx = get_wiphy_idx(wiphy);
3365 request->alpha2[0] = alpha2[0];
3366 request->alpha2[1] = alpha2[1];
3367 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3368 request->country_ie_env = env;
3370 /* Allow calling CRDA again */
3371 reset_crda_timeouts();
3373 queue_regulatory_request(request);
3380 static void restore_alpha2(char *alpha2, bool reset_user)
3382 /* indicates there is no alpha2 to consider for restoration */
3386 /* The user setting has precedence over the module parameter */
3387 if (is_user_regdom_saved()) {
3388 /* Unless we're asked to ignore it and reset it */
3390 pr_debug("Restoring regulatory settings including user preference\n");
3391 user_alpha2[0] = '9';
3392 user_alpha2[1] = '7';
3395 * If we're ignoring user settings, we still need to
3396 * check the module parameter to ensure we put things
3397 * back as they were for a full restore.
3399 if (!is_world_regdom(ieee80211_regdom)) {
3400 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3401 ieee80211_regdom[0], ieee80211_regdom[1]);
3402 alpha2[0] = ieee80211_regdom[0];
3403 alpha2[1] = ieee80211_regdom[1];
3406 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3407 user_alpha2[0], user_alpha2[1]);
3408 alpha2[0] = user_alpha2[0];
3409 alpha2[1] = user_alpha2[1];
3411 } else if (!is_world_regdom(ieee80211_regdom)) {
3412 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413 ieee80211_regdom[0], ieee80211_regdom[1]);
3414 alpha2[0] = ieee80211_regdom[0];
3415 alpha2[1] = ieee80211_regdom[1];
3417 pr_debug("Restoring regulatory settings\n");
3420 static void restore_custom_reg_settings(struct wiphy *wiphy)
3422 struct ieee80211_supported_band *sband;
3423 enum nl80211_band band;
3424 struct ieee80211_channel *chan;
3427 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3428 sband = wiphy->bands[band];
3431 for (i = 0; i < sband->n_channels; i++) {
3432 chan = &sband->channels[i];
3433 chan->flags = chan->orig_flags;
3434 chan->max_antenna_gain = chan->orig_mag;
3435 chan->max_power = chan->orig_mpwr;
3436 chan->beacon_found = false;
3442 * Restoring regulatory settings involves ignoring any
3443 * possibly stale country IE information and user regulatory
3444 * settings if so desired, this includes any beacon hints
3445 * learned as we could have traveled outside to another country
3446 * after disconnection. To restore regulatory settings we do
3447 * exactly what we did at bootup:
3449 * - send a core regulatory hint
3450 * - send a user regulatory hint if applicable
3452 * Device drivers that send a regulatory hint for a specific country
3453 * keep their own regulatory domain on wiphy->regd so that does
3454 * not need to be remembered.
3456 static void restore_regulatory_settings(bool reset_user, bool cached)
3459 char world_alpha2[2];
3460 struct reg_beacon *reg_beacon, *btmp;
3461 LIST_HEAD(tmp_reg_req_list);
3462 struct cfg80211_registered_device *rdev;
3467 * Clear the indoor setting in case that it is not controlled by user
3468 * space, as otherwise there is no guarantee that the device is still
3469 * operating in an indoor environment.
3471 spin_lock(®_indoor_lock);
3472 if (reg_is_indoor && !reg_is_indoor_portid) {
3473 reg_is_indoor = false;
3474 reg_check_channels();
3476 spin_unlock(®_indoor_lock);
3478 reset_regdomains(true, &world_regdom);
3479 restore_alpha2(alpha2, reset_user);
3482 * If there's any pending requests we simply
3483 * stash them to a temporary pending queue and
3484 * add then after we've restored regulatory
3487 spin_lock(®_requests_lock);
3488 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3489 spin_unlock(®_requests_lock);
3491 /* Clear beacon hints */
3492 spin_lock_bh(®_pending_beacons_lock);
3493 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3494 list_del(®_beacon->list);
3497 spin_unlock_bh(®_pending_beacons_lock);
3499 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3500 list_del(®_beacon->list);
3504 /* First restore to the basic regulatory settings */
3505 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3506 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3508 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3509 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3511 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3512 restore_custom_reg_settings(&rdev->wiphy);
3515 if (cached && (!is_an_alpha2(alpha2) ||
3516 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3517 reset_regdomains(false, cfg80211_world_regdom);
3518 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3519 print_regdomain(get_cfg80211_regdom());
3520 nl80211_send_reg_change_event(&core_request_world);
3521 reg_set_request_processed();
3523 if (is_an_alpha2(alpha2) &&
3524 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3525 struct regulatory_request *ureq;
3527 spin_lock(®_requests_lock);
3528 ureq = list_last_entry(®_requests_list,
3529 struct regulatory_request,
3531 list_del(&ureq->list);
3532 spin_unlock(®_requests_lock);
3534 notify_self_managed_wiphys(ureq);
3535 reg_update_last_request(ureq);
3536 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3537 REGD_SOURCE_CACHED);
3540 regulatory_hint_core(world_alpha2);
3543 * This restores the ieee80211_regdom module parameter
3544 * preference or the last user requested regulatory
3545 * settings, user regulatory settings takes precedence.
3547 if (is_an_alpha2(alpha2))
3548 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3551 spin_lock(®_requests_lock);
3552 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3553 spin_unlock(®_requests_lock);
3555 pr_debug("Kicking the queue\n");
3557 schedule_work(®_work);
3560 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3562 struct cfg80211_registered_device *rdev;
3563 struct wireless_dev *wdev;
3565 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3566 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3568 if (!(wdev->wiphy->regulatory_flags & flag)) {
3579 void regulatory_hint_disconnect(void)
3581 /* Restore of regulatory settings is not required when wiphy(s)
3582 * ignore IE from connected access point but clearance of beacon hints
3583 * is required when wiphy(s) supports beacon hints.
3585 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3586 struct reg_beacon *reg_beacon, *btmp;
3588 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3591 spin_lock_bh(®_pending_beacons_lock);
3592 list_for_each_entry_safe(reg_beacon, btmp,
3593 ®_pending_beacons, list) {
3594 list_del(®_beacon->list);
3597 spin_unlock_bh(®_pending_beacons_lock);
3599 list_for_each_entry_safe(reg_beacon, btmp,
3600 ®_beacon_list, list) {
3601 list_del(®_beacon->list);
3608 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3609 restore_regulatory_settings(false, true);
3612 static bool freq_is_chan_12_13_14(u32 freq)
3614 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3615 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3616 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3621 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3623 struct reg_beacon *pending_beacon;
3625 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3626 if (ieee80211_channel_equal(beacon_chan,
3627 &pending_beacon->chan))
3632 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3633 struct ieee80211_channel *beacon_chan,
3636 struct reg_beacon *reg_beacon;
3639 if (beacon_chan->beacon_found ||
3640 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3641 (beacon_chan->band == NL80211_BAND_2GHZ &&
3642 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3645 spin_lock_bh(®_pending_beacons_lock);
3646 processing = pending_reg_beacon(beacon_chan);
3647 spin_unlock_bh(®_pending_beacons_lock);
3652 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3656 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3657 beacon_chan->center_freq, beacon_chan->freq_offset,
3658 ieee80211_freq_khz_to_channel(
3659 ieee80211_channel_to_khz(beacon_chan)),
3662 memcpy(®_beacon->chan, beacon_chan,
3663 sizeof(struct ieee80211_channel));
3666 * Since we can be called from BH or and non-BH context
3667 * we must use spin_lock_bh()
3669 spin_lock_bh(®_pending_beacons_lock);
3670 list_add_tail(®_beacon->list, ®_pending_beacons);
3671 spin_unlock_bh(®_pending_beacons_lock);
3673 schedule_work(®_work);
3678 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3681 const struct ieee80211_reg_rule *reg_rule = NULL;
3682 const struct ieee80211_freq_range *freq_range = NULL;
3683 const struct ieee80211_power_rule *power_rule = NULL;
3684 char bw[32], cac_time[32];
3686 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3688 for (i = 0; i < rd->n_reg_rules; i++) {
3689 reg_rule = &rd->reg_rules[i];
3690 freq_range = ®_rule->freq_range;
3691 power_rule = ®_rule->power_rule;
3693 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3694 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3695 freq_range->max_bandwidth_khz,
3696 reg_get_max_bandwidth(rd, reg_rule));
3698 snprintf(bw, sizeof(bw), "%d KHz",
3699 freq_range->max_bandwidth_khz);
3701 if (reg_rule->flags & NL80211_RRF_DFS)
3702 scnprintf(cac_time, sizeof(cac_time), "%u s",
3703 reg_rule->dfs_cac_ms/1000);
3705 scnprintf(cac_time, sizeof(cac_time), "N/A");
3709 * There may not be documentation for max antenna gain
3710 * in certain regions
3712 if (power_rule->max_antenna_gain)
3713 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3714 freq_range->start_freq_khz,
3715 freq_range->end_freq_khz,
3717 power_rule->max_antenna_gain,
3718 power_rule->max_eirp,
3721 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3722 freq_range->start_freq_khz,
3723 freq_range->end_freq_khz,
3725 power_rule->max_eirp,
3730 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3732 switch (dfs_region) {
3733 case NL80211_DFS_UNSET:
3734 case NL80211_DFS_FCC:
3735 case NL80211_DFS_ETSI:
3736 case NL80211_DFS_JP:
3739 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3744 static void print_regdomain(const struct ieee80211_regdomain *rd)
3746 struct regulatory_request *lr = get_last_request();
3748 if (is_intersected_alpha2(rd->alpha2)) {
3749 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3750 struct cfg80211_registered_device *rdev;
3751 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3753 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3754 rdev->country_ie_alpha2[0],
3755 rdev->country_ie_alpha2[1]);
3757 pr_debug("Current regulatory domain intersected:\n");
3759 pr_debug("Current regulatory domain intersected:\n");
3760 } else if (is_world_regdom(rd->alpha2)) {
3761 pr_debug("World regulatory domain updated:\n");
3763 if (is_unknown_alpha2(rd->alpha2))
3764 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3766 if (reg_request_cell_base(lr))
3767 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3768 rd->alpha2[0], rd->alpha2[1]);
3770 pr_debug("Regulatory domain changed to country: %c%c\n",
3771 rd->alpha2[0], rd->alpha2[1]);
3775 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3779 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3781 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3785 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3787 if (!is_world_regdom(rd->alpha2))
3789 update_world_regdomain(rd);
3793 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3794 struct regulatory_request *user_request)
3796 const struct ieee80211_regdomain *intersected_rd = NULL;
3798 if (!regdom_changes(rd->alpha2))
3801 if (!is_valid_rd(rd)) {
3802 pr_err("Invalid regulatory domain detected: %c%c\n",
3803 rd->alpha2[0], rd->alpha2[1]);
3804 print_regdomain_info(rd);
3808 if (!user_request->intersect) {
3809 reset_regdomains(false, rd);
3813 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3814 if (!intersected_rd)
3819 reset_regdomains(false, intersected_rd);
3824 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3825 struct regulatory_request *driver_request)
3827 const struct ieee80211_regdomain *regd;
3828 const struct ieee80211_regdomain *intersected_rd = NULL;
3829 const struct ieee80211_regdomain *tmp;
3830 struct wiphy *request_wiphy;
3832 if (is_world_regdom(rd->alpha2))
3835 if (!regdom_changes(rd->alpha2))
3838 if (!is_valid_rd(rd)) {
3839 pr_err("Invalid regulatory domain detected: %c%c\n",
3840 rd->alpha2[0], rd->alpha2[1]);
3841 print_regdomain_info(rd);
3845 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3849 if (!driver_request->intersect) {
3851 wiphy_lock(request_wiphy);
3852 if (request_wiphy->regd) {
3853 wiphy_unlock(request_wiphy);
3857 regd = reg_copy_regd(rd);
3859 wiphy_unlock(request_wiphy);
3860 return PTR_ERR(regd);
3863 rcu_assign_pointer(request_wiphy->regd, regd);
3864 wiphy_unlock(request_wiphy);
3865 reset_regdomains(false, rd);
3869 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3870 if (!intersected_rd)
3874 * We can trash what CRDA provided now.
3875 * However if a driver requested this specific regulatory
3876 * domain we keep it for its private use
3878 tmp = get_wiphy_regdom(request_wiphy);
3879 rcu_assign_pointer(request_wiphy->regd, rd);
3880 rcu_free_regdom(tmp);
3884 reset_regdomains(false, intersected_rd);
3889 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3890 struct regulatory_request *country_ie_request)
3892 struct wiphy *request_wiphy;
3894 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3895 !is_unknown_alpha2(rd->alpha2))
3899 * Lets only bother proceeding on the same alpha2 if the current
3900 * rd is non static (it means CRDA was present and was used last)
3901 * and the pending request came in from a country IE
3904 if (!is_valid_rd(rd)) {
3905 pr_err("Invalid regulatory domain detected: %c%c\n",
3906 rd->alpha2[0], rd->alpha2[1]);
3907 print_regdomain_info(rd);
3911 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3915 if (country_ie_request->intersect)
3918 reset_regdomains(false, rd);
3923 * Use this call to set the current regulatory domain. Conflicts with
3924 * multiple drivers can be ironed out later. Caller must've already
3925 * kmalloc'd the rd structure.
3927 int set_regdom(const struct ieee80211_regdomain *rd,
3928 enum ieee80211_regd_source regd_src)
3930 struct regulatory_request *lr;
3931 bool user_reset = false;
3934 if (IS_ERR_OR_NULL(rd))
3937 if (!reg_is_valid_request(rd->alpha2)) {
3942 if (regd_src == REGD_SOURCE_CRDA)
3943 reset_crda_timeouts();
3945 lr = get_last_request();
3947 /* Note that this doesn't update the wiphys, this is done below */
3948 switch (lr->initiator) {
3949 case NL80211_REGDOM_SET_BY_CORE:
3950 r = reg_set_rd_core(rd);
3952 case NL80211_REGDOM_SET_BY_USER:
3953 cfg80211_save_user_regdom(rd);
3954 r = reg_set_rd_user(rd, lr);
3957 case NL80211_REGDOM_SET_BY_DRIVER:
3958 r = reg_set_rd_driver(rd, lr);
3960 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3961 r = reg_set_rd_country_ie(rd, lr);
3964 WARN(1, "invalid initiator %d\n", lr->initiator);
3972 reg_set_request_processed();
3975 /* Back to world regulatory in case of errors */
3976 restore_regulatory_settings(user_reset, false);
3983 /* This would make this whole thing pointless */
3984 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3987 /* update all wiphys now with the new established regulatory domain */
3988 update_all_wiphy_regulatory(lr->initiator);
3990 print_regdomain(get_cfg80211_regdom());
3992 nl80211_send_reg_change_event(lr);
3994 reg_set_request_processed();
3999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4000 struct ieee80211_regdomain *rd)
4002 const struct ieee80211_regdomain *regd;
4003 const struct ieee80211_regdomain *prev_regd;
4004 struct cfg80211_registered_device *rdev;
4006 if (WARN_ON(!wiphy || !rd))
4009 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4013 if (WARN(!is_valid_rd(rd),
4014 "Invalid regulatory domain detected: %c%c\n",
4015 rd->alpha2[0], rd->alpha2[1])) {
4016 print_regdomain_info(rd);
4020 regd = reg_copy_regd(rd);
4022 return PTR_ERR(regd);
4024 rdev = wiphy_to_rdev(wiphy);
4026 spin_lock(®_requests_lock);
4027 prev_regd = rdev->requested_regd;
4028 rdev->requested_regd = regd;
4029 spin_unlock(®_requests_lock);
4035 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036 struct ieee80211_regdomain *rd)
4038 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4043 schedule_work(®_work);
4046 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4048 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4049 struct ieee80211_regdomain *rd)
4055 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4059 /* process the request immediately */
4060 reg_process_self_managed_hint(wiphy);
4061 reg_check_channels();
4064 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4066 void wiphy_regulatory_register(struct wiphy *wiphy)
4068 struct regulatory_request *lr = get_last_request();
4070 /* self-managed devices ignore beacon hints and country IE */
4071 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4072 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4073 REGULATORY_COUNTRY_IE_IGNORE;
4076 * The last request may have been received before this
4077 * registration call. Call the driver notifier if
4078 * initiator is USER.
4080 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4081 reg_call_notifier(wiphy, lr);
4084 if (!reg_dev_ignore_cell_hint(wiphy))
4085 reg_num_devs_support_basehint++;
4087 wiphy_update_regulatory(wiphy, lr->initiator);
4088 wiphy_all_share_dfs_chan_state(wiphy);
4089 reg_process_self_managed_hints();
4092 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4094 struct wiphy *request_wiphy = NULL;
4095 struct regulatory_request *lr;
4097 lr = get_last_request();
4099 if (!reg_dev_ignore_cell_hint(wiphy))
4100 reg_num_devs_support_basehint--;
4102 rcu_free_regdom(get_wiphy_regdom(wiphy));
4103 RCU_INIT_POINTER(wiphy->regd, NULL);
4106 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4108 if (!request_wiphy || request_wiphy != wiphy)
4111 lr->wiphy_idx = WIPHY_IDX_INVALID;
4112 lr->country_ie_env = ENVIRON_ANY;
4116 * See FCC notices for UNII band definitions
4117 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4118 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4120 int cfg80211_get_unii(int freq)
4123 if (freq >= 5150 && freq <= 5250)
4127 if (freq > 5250 && freq <= 5350)
4131 if (freq > 5350 && freq <= 5470)
4135 if (freq > 5470 && freq <= 5725)
4139 if (freq > 5725 && freq <= 5825)
4143 if (freq > 5925 && freq <= 6425)
4147 if (freq > 6425 && freq <= 6525)
4151 if (freq > 6525 && freq <= 6875)
4155 if (freq > 6875 && freq <= 7125)
4161 bool regulatory_indoor_allowed(void)
4163 return reg_is_indoor;
4166 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4168 const struct ieee80211_regdomain *regd = NULL;
4169 const struct ieee80211_regdomain *wiphy_regd = NULL;
4170 bool pre_cac_allowed = false;
4174 regd = rcu_dereference(cfg80211_regdomain);
4175 wiphy_regd = rcu_dereference(wiphy->regd);
4177 if (regd->dfs_region == NL80211_DFS_ETSI)
4178 pre_cac_allowed = true;
4182 return pre_cac_allowed;
4185 if (regd->dfs_region == wiphy_regd->dfs_region &&
4186 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4187 pre_cac_allowed = true;
4191 return pre_cac_allowed;
4193 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4195 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4197 struct wireless_dev *wdev;
4198 /* If we finished CAC or received radar, we should end any
4199 * CAC running on the same channels.
4200 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4201 * either all channels are available - those the CAC_FINISHED
4202 * event has effected another wdev state, or there is a channel
4203 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4204 * event has effected another wdev state.
4205 * In both cases we should end the CAC on the wdev.
4207 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4208 if (wdev->cac_started &&
4209 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4210 rdev_end_cac(rdev, wdev->netdev);
4214 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4215 struct cfg80211_chan_def *chandef,
4216 enum nl80211_dfs_state dfs_state,
4217 enum nl80211_radar_event event)
4219 struct cfg80211_registered_device *rdev;
4223 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4226 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4227 if (wiphy == &rdev->wiphy)
4230 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4233 if (!ieee80211_get_channel(&rdev->wiphy,
4234 chandef->chan->center_freq))
4237 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4239 if (event == NL80211_RADAR_DETECTED ||
4240 event == NL80211_RADAR_CAC_FINISHED) {
4241 cfg80211_sched_dfs_chan_update(rdev);
4242 cfg80211_check_and_end_cac(rdev);
4245 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4249 static int __init regulatory_init_db(void)
4254 * It's possible that - due to other bugs/issues - cfg80211
4255 * never called regulatory_init() below, or that it failed;
4256 * in that case, don't try to do any further work here as
4257 * it's doomed to lead to crashes.
4259 if (IS_ERR_OR_NULL(reg_pdev))
4262 err = load_builtin_regdb_keys();
4266 /* We always try to get an update for the static regdomain */
4267 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4269 if (err == -ENOMEM) {
4270 platform_device_unregister(reg_pdev);
4274 * N.B. kobject_uevent_env() can fail mainly for when we're out
4275 * memory which is handled and propagated appropriately above
4276 * but it can also fail during a netlink_broadcast() or during
4277 * early boot for call_usermodehelper(). For now treat these
4278 * errors as non-fatal.
4280 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4284 * Finally, if the user set the module parameter treat it
4287 if (!is_world_regdom(ieee80211_regdom))
4288 regulatory_hint_user(ieee80211_regdom,
4289 NL80211_USER_REG_HINT_USER);
4294 late_initcall(regulatory_init_db);
4297 int __init regulatory_init(void)
4299 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4300 if (IS_ERR(reg_pdev))
4301 return PTR_ERR(reg_pdev);
4303 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4305 user_alpha2[0] = '9';
4306 user_alpha2[1] = '7';
4309 return regulatory_init_db();
4315 void regulatory_exit(void)
4317 struct regulatory_request *reg_request, *tmp;
4318 struct reg_beacon *reg_beacon, *btmp;
4320 cancel_work_sync(®_work);
4321 cancel_crda_timeout_sync();
4322 cancel_delayed_work_sync(®_check_chans);
4324 /* Lock to suppress warnings */
4326 reset_regdomains(true, NULL);
4329 dev_set_uevent_suppress(®_pdev->dev, true);
4331 platform_device_unregister(reg_pdev);
4333 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4334 list_del(®_beacon->list);
4338 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4339 list_del(®_beacon->list);
4343 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4344 list_del(®_request->list);
4348 if (!IS_ERR_OR_NULL(regdb))
4350 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4351 kfree(cfg80211_user_regdom);
4353 free_regdb_keyring();