2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
44 #define LEGACY_REQUEST_SIZE 200
46 static unsigned int __intel_ring_space(unsigned int head,
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
76 if (mode & EMIT_INVALIDATE)
79 cs = intel_ring_begin(rq, 2);
85 intel_ring_advance(rq, cs);
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
98 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
100 * also flushed at 2d versus 3d pipeline switches.
104 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105 * MI_READ_FLUSH is set, and is always flushed on 965.
107 * I915_GEM_DOMAIN_COMMAND may not exist?
109 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110 * invalidated when MI_EXE_FLUSH is set.
112 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113 * invalidated with every MI_FLUSH.
117 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120 * are flushed at any MI_FLUSH.
124 if (mode & EMIT_INVALIDATE) {
126 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127 cmd |= MI_INVALIDATE_ISP;
130 cs = intel_ring_begin(rq, 2);
136 intel_ring_advance(rq, cs);
142 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143 * implementing two workarounds on gen6. From section 1.4.7.1
144 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
146 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147 * produced by non-pipelined state commands), software needs to first
148 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
151 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
154 * And the workaround for these two requires this workaround first:
156 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157 * BEFORE the pipe-control with a post-sync op and no write-cache
160 * And this last workaround is tricky because of the requirements on
161 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
164 * "1 of the following must also be set:
165 * - Render Target Cache Flush Enable ([12] of DW1)
166 * - Depth Cache Flush Enable ([0] of DW1)
167 * - Stall at Pixel Scoreboard ([1] of DW1)
168 * - Depth Stall ([13] of DW1)
169 * - Post-Sync Operation ([13] of DW1)
170 * - Notify Enable ([8] of DW1)"
172 * The cache flushes require the workaround flush that triggered this
173 * one, so we can't use it. Depth stall would trigger the same.
174 * Post-sync nonzero is what triggered this second workaround, so we
175 * can't use that one either. Notify enable is IRQs, which aren't
176 * really our business. That leaves only stall at scoreboard.
179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
182 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
185 cs = intel_ring_begin(rq, 6);
189 *cs++ = GFX_OP_PIPE_CONTROL(5);
190 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192 *cs++ = 0; /* low dword */
193 *cs++ = 0; /* high dword */
195 intel_ring_advance(rq, cs);
197 cs = intel_ring_begin(rq, 6);
201 *cs++ = GFX_OP_PIPE_CONTROL(5);
202 *cs++ = PIPE_CONTROL_QW_WRITE;
203 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
207 intel_ring_advance(rq, cs);
213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(rq);
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
229 if (mode & EMIT_FLUSH) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
236 flags |= PIPE_CONTROL_CS_STALL;
238 if (mode & EMIT_INVALIDATE) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
246 * TLB invalidate requires a post-sync write.
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
251 cs = intel_ring_begin(rq, 4);
255 *cs++ = GFX_OP_PIPE_CONTROL(4);
257 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
259 intel_ring_advance(rq, cs);
265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
269 cs = intel_ring_begin(rq, 4);
273 *cs++ = GFX_OP_PIPE_CONTROL(4);
274 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
277 intel_ring_advance(rq, cs);
283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
286 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
290 * Ensure that any following seqno writes only happen when the render
291 * cache is indeed flushed.
293 * Workaround: 4th PIPE_CONTROL command (except the ones with only
294 * read-cache invalidate bits set) must have the CS_STALL bit set. We
295 * don't try to be clever and just set it unconditionally.
297 flags |= PIPE_CONTROL_CS_STALL;
299 /* Just flush everything. Experiments have shown that reducing the
300 * number of bits based on the write domains has little performance
303 if (mode & EMIT_FLUSH) {
304 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307 flags |= PIPE_CONTROL_FLUSH_ENABLE;
309 if (mode & EMIT_INVALIDATE) {
310 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
318 * TLB invalidate requires a post-sync write.
320 flags |= PIPE_CONTROL_QW_WRITE;
321 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
323 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
325 /* Workaround: we must issue a pipe_control with CS-stall bit
326 * set before a pipe_control command that has the state cache
327 * invalidate bit set. */
328 gen7_render_ring_cs_stall_wa(rq);
331 cs = intel_ring_begin(rq, 4);
335 *cs++ = GFX_OP_PIPE_CONTROL(4);
337 *cs++ = scratch_addr;
339 intel_ring_advance(rq, cs);
344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
346 struct drm_i915_private *dev_priv = engine->i915;
349 addr = dev_priv->status_page_dmah->busaddr;
350 if (INTEL_GEN(dev_priv) >= 4)
351 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
352 I915_WRITE(HWS_PGA, addr);
355 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
357 struct drm_i915_private *dev_priv = engine->i915;
360 /* The ring status page addresses are no longer next to the rest of
361 * the ring registers as of gen7.
363 if (IS_GEN7(dev_priv)) {
364 switch (engine->id) {
366 * No more rings exist on Gen7. Default case is only to shut up
367 * gcc switch check warning.
370 GEM_BUG_ON(engine->id);
372 mmio = RENDER_HWS_PGA_GEN7;
375 mmio = BLT_HWS_PGA_GEN7;
378 mmio = BSD_HWS_PGA_GEN7;
381 mmio = VEBOX_HWS_PGA_GEN7;
384 } else if (IS_GEN6(dev_priv)) {
385 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
387 mmio = RING_HWS_PGA(engine->mmio_base);
390 if (INTEL_GEN(dev_priv) >= 6)
391 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
393 I915_WRITE(mmio, engine->status_page.ggtt_offset);
396 /* Flush the TLB for this page */
397 if (IS_GEN(dev_priv, 6, 7)) {
398 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
400 /* ring should be idle before issuing a sync flush*/
401 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
404 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
406 if (intel_wait_for_register(dev_priv,
407 reg, INSTPM_SYNC_FLUSH, 0,
409 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
414 static bool stop_ring(struct intel_engine_cs *engine)
416 struct drm_i915_private *dev_priv = engine->i915;
418 if (INTEL_GEN(dev_priv) > 2) {
419 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
420 if (intel_wait_for_register(dev_priv,
421 RING_MI_MODE(engine->mmio_base),
425 DRM_ERROR("%s : timed out trying to stop ring\n",
427 /* Sometimes we observe that the idle flag is not
428 * set even though the ring is empty. So double
429 * check before giving up.
431 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
436 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
438 I915_WRITE_HEAD(engine, 0);
439 I915_WRITE_TAIL(engine, 0);
441 /* The ring must be empty before it is disabled */
442 I915_WRITE_CTL(engine, 0);
444 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
447 static int init_ring_common(struct intel_engine_cs *engine)
449 struct drm_i915_private *dev_priv = engine->i915;
450 struct intel_ring *ring = engine->buffer;
453 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
455 if (!stop_ring(engine)) {
456 /* G45 ring initialization often fails to reset head to zero */
457 DRM_DEBUG_DRIVER("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
460 I915_READ_CTL(engine),
461 I915_READ_HEAD(engine),
462 I915_READ_TAIL(engine),
463 I915_READ_START(engine));
465 if (!stop_ring(engine)) {
466 DRM_ERROR("failed to set %s head to zero "
467 "ctl %08x head %08x tail %08x start %08x\n",
469 I915_READ_CTL(engine),
470 I915_READ_HEAD(engine),
471 I915_READ_TAIL(engine),
472 I915_READ_START(engine));
478 if (HWS_NEEDS_PHYSICAL(dev_priv))
479 ring_setup_phys_status_page(engine);
481 intel_ring_setup_status_page(engine);
483 intel_engine_reset_breadcrumbs(engine);
485 /* Enforce ordering by reading HEAD register back */
486 I915_READ_HEAD(engine);
488 /* Initialize the ring. This must happen _after_ we've cleared the ring
489 * registers with the above sequence (the readback of the HEAD registers
490 * also enforces ordering), otherwise the hw might lose the new ring
491 * register values. */
492 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
494 /* WaClearRingBufHeadRegAtInit:ctg,elk */
495 if (I915_READ_HEAD(engine))
496 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
497 engine->name, I915_READ_HEAD(engine));
499 intel_ring_update_space(ring);
500 I915_WRITE_HEAD(engine, ring->head);
501 I915_WRITE_TAIL(engine, ring->tail);
502 (void)I915_READ_TAIL(engine);
504 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
506 /* If the head is still not zero, the ring is dead */
507 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
508 RING_VALID, RING_VALID,
510 DRM_ERROR("%s initialization failed "
511 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
513 I915_READ_CTL(engine),
514 I915_READ_CTL(engine) & RING_VALID,
515 I915_READ_HEAD(engine), ring->head,
516 I915_READ_TAIL(engine), ring->tail,
517 I915_READ_START(engine),
518 i915_ggtt_offset(ring->vma));
523 intel_engine_init_hangcheck(engine);
525 if (INTEL_GEN(dev_priv) > 2)
526 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
529 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
534 static void reset_ring_common(struct intel_engine_cs *engine,
535 struct i915_request *request)
538 * RC6 must be prevented until the reset is complete and the engine
539 * reinitialised. If it occurs in the middle of this sequence, the
540 * state written to/loaded from the power context is ill-defined (e.g.
541 * the PP_BASE_DIR may be lost).
543 assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
546 * Try to restore the logical GPU state to match the continuation
547 * of the request queue. If we skip the context/PD restore, then
548 * the next request may try to execute assuming that its context
549 * is valid and loaded on the GPU and so may try to access invalid
550 * memory, prompting repeated GPU hangs.
552 * If the request was guilty, we still restore the logical state
553 * in case the next request requires it (e.g. the aliasing ppgtt),
554 * but skip over the hung batch.
556 * If the request was innocent, we try to replay the request with
557 * the restored context.
560 struct drm_i915_private *dev_priv = request->i915;
561 struct intel_context *ce = to_intel_context(request->ctx,
563 struct i915_hw_ppgtt *ppgtt;
567 i915_ggtt_offset(ce->state) |
568 BIT(8) /* must be set! */ |
569 CCID_EXTENDED_STATE_SAVE |
570 CCID_EXTENDED_STATE_RESTORE |
574 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
576 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
578 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
579 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
581 /* Wait for the PD reload to complete */
582 if (intel_wait_for_register(dev_priv,
583 RING_PP_DIR_BASE(engine),
586 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
588 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
591 /* If the rq hung, jump to its breadcrumb and skip the batch */
592 if (request->fence.error == -EIO)
593 request->ring->head = request->postfix;
595 engine->legacy_active_context = NULL;
596 engine->legacy_active_ppgtt = NULL;
600 static int intel_rcs_ctx_init(struct i915_request *rq)
604 ret = intel_ctx_workarounds_emit(rq);
608 ret = i915_gem_render_state_emit(rq);
615 static int init_render_ring(struct intel_engine_cs *engine)
617 struct drm_i915_private *dev_priv = engine->i915;
618 int ret = init_ring_common(engine);
622 intel_whitelist_workarounds_apply(engine);
624 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
625 if (IS_GEN(dev_priv, 4, 6))
626 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
628 /* We need to disable the AsyncFlip performance optimisations in order
629 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
630 * programmed to '1' on all products.
632 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
634 if (IS_GEN(dev_priv, 6, 7))
635 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
637 /* Required for the hardware to program scanline values for waiting */
638 /* WaEnableFlushTlbInvalidationMode:snb */
639 if (IS_GEN6(dev_priv))
641 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
643 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
644 if (IS_GEN7(dev_priv))
645 I915_WRITE(GFX_MODE_GEN7,
646 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
647 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
649 if (IS_GEN6(dev_priv)) {
650 /* From the Sandybridge PRM, volume 1 part 3, page 24:
651 * "If this bit is set, STCunit will have LRA as replacement
652 * policy. [...] This bit must be reset. LRA replacement
653 * policy is not supported."
655 I915_WRITE(CACHE_MODE_0,
656 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
659 if (IS_GEN(dev_priv, 6, 7))
660 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
662 if (INTEL_GEN(dev_priv) >= 6)
663 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
668 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
670 struct drm_i915_private *dev_priv = rq->i915;
671 struct intel_engine_cs *engine;
672 enum intel_engine_id id;
675 for_each_engine(engine, dev_priv, id) {
678 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
681 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
682 if (i915_mmio_reg_valid(mbox_reg)) {
683 *cs++ = MI_LOAD_REGISTER_IMM(1);
684 *cs++ = i915_mmio_reg_offset(mbox_reg);
685 *cs++ = rq->global_seqno;
695 static void cancel_requests(struct intel_engine_cs *engine)
697 struct i915_request *request;
700 spin_lock_irqsave(&engine->timeline.lock, flags);
702 /* Mark all submitted requests as skipped. */
703 list_for_each_entry(request, &engine->timeline.requests, link) {
704 GEM_BUG_ON(!request->global_seqno);
705 if (!i915_request_completed(request))
706 dma_fence_set_error(&request->fence, -EIO);
708 /* Remaining _unready_ requests will be nop'ed when submitted */
710 spin_unlock_irqrestore(&engine->timeline.lock, flags);
713 static void i9xx_submit_request(struct i915_request *request)
715 struct drm_i915_private *dev_priv = request->i915;
717 i915_request_submit(request);
719 I915_WRITE_TAIL(request->engine,
720 intel_ring_set_tail(request->ring, request->tail));
723 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
725 *cs++ = MI_STORE_DWORD_INDEX;
726 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
727 *cs++ = rq->global_seqno;
728 *cs++ = MI_USER_INTERRUPT;
730 rq->tail = intel_ring_offset(rq, cs);
731 assert_ring_tail_valid(rq->ring, rq->tail);
734 static const int i9xx_emit_breadcrumb_sz = 4;
736 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
738 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
742 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
744 u32 dw1 = MI_SEMAPHORE_MBOX |
745 MI_SEMAPHORE_COMPARE |
746 MI_SEMAPHORE_REGISTER;
747 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
750 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
752 cs = intel_ring_begin(rq, 4);
756 *cs++ = dw1 | wait_mbox;
757 /* Throughout all of the GEM code, seqno passed implies our current
758 * seqno is >= the last seqno executed. However for hardware the
759 * comparison is strictly greater than.
761 *cs++ = signal->global_seqno - 1;
764 intel_ring_advance(rq, cs);
770 gen5_seqno_barrier(struct intel_engine_cs *engine)
772 /* MI_STORE are internally buffered by the GPU and not flushed
773 * either by MI_FLUSH or SyncFlush or any other combination of
776 * "Only the submission of the store operation is guaranteed.
777 * The write result will be complete (coherent) some time later
778 * (this is practically a finite period but there is no guaranteed
781 * Empirically, we observe that we need a delay of at least 75us to
782 * be sure that the seqno write is visible by the CPU.
784 usleep_range(125, 250);
788 gen6_seqno_barrier(struct intel_engine_cs *engine)
790 struct drm_i915_private *dev_priv = engine->i915;
792 /* Workaround to force correct ordering between irq and seqno writes on
793 * ivb (and maybe also on snb) by reading from a CS register (like
794 * ACTHD) before reading the status page.
796 * Note that this effectively stalls the read by the time it takes to
797 * do a memory transaction, which more or less ensures that the write
798 * from the GPU has sufficient time to invalidate the CPU cacheline.
799 * Alternatively we could delay the interrupt from the CS ring to give
800 * the write time to land, but that would incur a delay after every
801 * batch i.e. much more frequent than a delay when waiting for the
802 * interrupt (with the same net latency).
804 * Also note that to prevent whole machine hangs on gen7, we have to
805 * take the spinlock to guard against concurrent cacheline access.
807 spin_lock_irq(&dev_priv->uncore.lock);
808 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
809 spin_unlock_irq(&dev_priv->uncore.lock);
813 gen5_irq_enable(struct intel_engine_cs *engine)
815 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
819 gen5_irq_disable(struct intel_engine_cs *engine)
821 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
825 i9xx_irq_enable(struct intel_engine_cs *engine)
827 struct drm_i915_private *dev_priv = engine->i915;
829 dev_priv->irq_mask &= ~engine->irq_enable_mask;
830 I915_WRITE(IMR, dev_priv->irq_mask);
831 POSTING_READ_FW(RING_IMR(engine->mmio_base));
835 i9xx_irq_disable(struct intel_engine_cs *engine)
837 struct drm_i915_private *dev_priv = engine->i915;
839 dev_priv->irq_mask |= engine->irq_enable_mask;
840 I915_WRITE(IMR, dev_priv->irq_mask);
844 i8xx_irq_enable(struct intel_engine_cs *engine)
846 struct drm_i915_private *dev_priv = engine->i915;
848 dev_priv->irq_mask &= ~engine->irq_enable_mask;
849 I915_WRITE16(IMR, dev_priv->irq_mask);
850 POSTING_READ16(RING_IMR(engine->mmio_base));
854 i8xx_irq_disable(struct intel_engine_cs *engine)
856 struct drm_i915_private *dev_priv = engine->i915;
858 dev_priv->irq_mask |= engine->irq_enable_mask;
859 I915_WRITE16(IMR, dev_priv->irq_mask);
863 bsd_ring_flush(struct i915_request *rq, u32 mode)
867 cs = intel_ring_begin(rq, 2);
873 intel_ring_advance(rq, cs);
878 gen6_irq_enable(struct intel_engine_cs *engine)
880 struct drm_i915_private *dev_priv = engine->i915;
882 I915_WRITE_IMR(engine,
883 ~(engine->irq_enable_mask |
884 engine->irq_keep_mask));
885 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
889 gen6_irq_disable(struct intel_engine_cs *engine)
891 struct drm_i915_private *dev_priv = engine->i915;
893 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
894 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
898 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
900 struct drm_i915_private *dev_priv = engine->i915;
902 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
903 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
907 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
909 struct drm_i915_private *dev_priv = engine->i915;
911 I915_WRITE_IMR(engine, ~0);
912 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
916 i965_emit_bb_start(struct i915_request *rq,
917 u64 offset, u32 length,
918 unsigned int dispatch_flags)
922 cs = intel_ring_begin(rq, 2);
926 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
927 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
929 intel_ring_advance(rq, cs);
934 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
935 #define I830_BATCH_LIMIT (256*1024)
936 #define I830_TLB_ENTRIES (2)
937 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
939 i830_emit_bb_start(struct i915_request *rq,
941 unsigned int dispatch_flags)
943 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
945 cs = intel_ring_begin(rq, 6);
949 /* Evict the invalid PTE TLBs */
950 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
951 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
952 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
956 intel_ring_advance(rq, cs);
958 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
959 if (len > I830_BATCH_LIMIT)
962 cs = intel_ring_begin(rq, 6 + 2);
966 /* Blit the batch (which has now all relocs applied) to the
967 * stable batch scratch bo area (so that the CS never
968 * stumbles over its tlb invalidation bug) ...
970 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
971 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
972 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
979 intel_ring_advance(rq, cs);
981 /* ... and execute it. */
985 cs = intel_ring_begin(rq, 2);
989 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
990 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
991 MI_BATCH_NON_SECURE);
992 intel_ring_advance(rq, cs);
998 i915_emit_bb_start(struct i915_request *rq,
1000 unsigned int dispatch_flags)
1004 cs = intel_ring_begin(rq, 2);
1008 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1009 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1010 MI_BATCH_NON_SECURE);
1011 intel_ring_advance(rq, cs);
1018 int intel_ring_pin(struct intel_ring *ring,
1019 struct drm_i915_private *i915,
1020 unsigned int offset_bias)
1022 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1023 struct i915_vma *vma = ring->vma;
1028 GEM_BUG_ON(ring->vaddr);
1033 flags |= PIN_OFFSET_BIAS | offset_bias;
1034 if (vma->obj->stolen)
1035 flags |= PIN_MAPPABLE;
1037 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1038 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1039 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1041 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1046 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1050 if (i915_vma_is_map_and_fenceable(vma))
1051 addr = (void __force *)i915_vma_pin_iomap(vma);
1053 addr = i915_gem_object_pin_map(vma->obj, map);
1057 vma->obj->pin_global++;
1063 i915_vma_unpin(vma);
1064 return PTR_ERR(addr);
1067 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1072 intel_ring_update_space(ring);
1075 void intel_ring_unpin(struct intel_ring *ring)
1077 GEM_BUG_ON(!ring->vma);
1078 GEM_BUG_ON(!ring->vaddr);
1080 /* Discard any unused bytes beyond that submitted to hw. */
1081 intel_ring_reset(ring, ring->tail);
1083 if (i915_vma_is_map_and_fenceable(ring->vma))
1084 i915_vma_unpin_iomap(ring->vma);
1086 i915_gem_object_unpin_map(ring->vma->obj);
1089 ring->vma->obj->pin_global--;
1090 i915_vma_unpin(ring->vma);
1093 static struct i915_vma *
1094 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1096 struct drm_i915_gem_object *obj;
1097 struct i915_vma *vma;
1099 obj = i915_gem_object_create_stolen(dev_priv, size);
1101 obj = i915_gem_object_create_internal(dev_priv, size);
1103 return ERR_CAST(obj);
1105 /* mark ring buffers as read-only from GPU side by default */
1108 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1115 i915_gem_object_put(obj);
1120 intel_engine_create_ring(struct intel_engine_cs *engine,
1121 struct i915_timeline *timeline,
1124 struct intel_ring *ring;
1125 struct i915_vma *vma;
1127 GEM_BUG_ON(!is_power_of_2(size));
1128 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1129 GEM_BUG_ON(timeline == &engine->timeline);
1130 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1132 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1134 return ERR_PTR(-ENOMEM);
1136 INIT_LIST_HEAD(&ring->request_list);
1137 ring->timeline = i915_timeline_get(timeline);
1140 /* Workaround an erratum on the i830 which causes a hang if
1141 * the TAIL pointer points to within the last 2 cachelines
1144 ring->effective_size = size;
1145 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1146 ring->effective_size -= 2 * CACHELINE_BYTES;
1148 intel_ring_update_space(ring);
1150 vma = intel_ring_create_vma(engine->i915, size);
1153 return ERR_CAST(vma);
1161 intel_ring_free(struct intel_ring *ring)
1163 struct drm_i915_gem_object *obj = ring->vma->obj;
1165 i915_vma_close(ring->vma);
1166 __i915_gem_object_release_unless_active(obj);
1168 i915_timeline_put(ring->timeline);
1172 static int context_pin(struct intel_context *ce)
1174 struct i915_vma *vma = ce->state;
1178 * Clear this page out of any CPU caches for coherent swap-in/out.
1179 * We only want to do this on the first bind so that we do not stall
1180 * on an active context (which by nature is already on the GPU).
1182 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1183 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1188 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1189 PIN_GLOBAL | PIN_HIGH);
1192 static struct i915_vma *
1193 alloc_context_vma(struct intel_engine_cs *engine)
1195 struct drm_i915_private *i915 = engine->i915;
1196 struct drm_i915_gem_object *obj;
1197 struct i915_vma *vma;
1200 obj = i915_gem_object_create(i915, engine->context_size);
1202 return ERR_CAST(obj);
1204 if (engine->default_state) {
1205 void *defaults, *vaddr;
1207 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1208 if (IS_ERR(vaddr)) {
1209 err = PTR_ERR(vaddr);
1213 defaults = i915_gem_object_pin_map(engine->default_state,
1215 if (IS_ERR(defaults)) {
1216 err = PTR_ERR(defaults);
1220 memcpy(vaddr, defaults, engine->context_size);
1222 i915_gem_object_unpin_map(engine->default_state);
1223 i915_gem_object_unpin_map(obj);
1227 * Try to make the context utilize L3 as well as LLC.
1229 * On VLV we don't have L3 controls in the PTEs so we
1230 * shouldn't touch the cache level, especially as that
1231 * would make the object snooped which might have a
1232 * negative performance impact.
1234 * Snooping is required on non-llc platforms in execlist
1235 * mode, but since all GGTT accesses use PAT entry 0 we
1236 * get snooping anyway regardless of cache_level.
1238 * This is only applicable for Ivy Bridge devices since
1239 * later platforms don't have L3 control bits in the PTE.
1241 if (IS_IVYBRIDGE(i915)) {
1242 /* Ignore any error, regard it as a simple optimisation */
1243 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1246 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1255 i915_gem_object_unpin_map(obj);
1257 i915_gem_object_put(obj);
1258 return ERR_PTR(err);
1261 static struct intel_ring *
1262 intel_ring_context_pin(struct intel_engine_cs *engine,
1263 struct i915_gem_context *ctx)
1265 struct intel_context *ce = to_intel_context(ctx, engine);
1268 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1270 if (likely(ce->pin_count++))
1272 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1274 if (!ce->state && engine->context_size) {
1275 struct i915_vma *vma;
1277 vma = alloc_context_vma(engine);
1287 ret = context_pin(ce);
1291 ce->state->obj->pin_global++;
1294 i915_gem_context_get(ctx);
1297 /* One ringbuffer to rule them all */
1298 return engine->buffer;
1302 return ERR_PTR(ret);
1305 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1306 struct i915_gem_context *ctx)
1308 struct intel_context *ce = to_intel_context(ctx, engine);
1310 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1311 GEM_BUG_ON(ce->pin_count == 0);
1313 if (--ce->pin_count)
1317 ce->state->obj->pin_global--;
1318 i915_vma_unpin(ce->state);
1321 i915_gem_context_put(ctx);
1324 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1326 struct intel_ring *ring;
1327 struct i915_timeline *timeline;
1330 intel_engine_setup_common(engine);
1332 err = intel_engine_init_common(engine);
1336 timeline = i915_timeline_create(engine->i915, engine->name);
1337 if (IS_ERR(timeline)) {
1338 err = PTR_ERR(timeline);
1342 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1343 i915_timeline_put(timeline);
1345 err = PTR_ERR(ring);
1349 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1350 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1354 GEM_BUG_ON(engine->buffer);
1355 engine->buffer = ring;
1360 intel_ring_free(ring);
1362 intel_engine_cleanup_common(engine);
1366 void intel_engine_cleanup(struct intel_engine_cs *engine)
1368 struct drm_i915_private *dev_priv = engine->i915;
1370 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1371 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1373 intel_ring_unpin(engine->buffer);
1374 intel_ring_free(engine->buffer);
1376 if (engine->cleanup)
1377 engine->cleanup(engine);
1379 intel_engine_cleanup_common(engine);
1381 dev_priv->engine[engine->id] = NULL;
1385 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1387 struct intel_engine_cs *engine;
1388 enum intel_engine_id id;
1390 /* Restart from the beginning of the rings for convenience */
1391 for_each_engine(engine, dev_priv, id)
1392 intel_ring_reset(engine->buffer, 0);
1395 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1397 struct drm_i915_private *i915 = rq->i915;
1398 struct intel_engine_cs *engine = rq->engine;
1399 enum intel_engine_id id;
1400 const int num_rings =
1401 /* Use an extended w/a on gen7 if signalling from other rings */
1402 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1403 INTEL_INFO(i915)->num_rings - 1 :
1408 flags |= MI_MM_SPACE_GTT;
1409 if (IS_HASWELL(i915))
1410 /* These flags are for resource streamer on HSW+ */
1411 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1413 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1417 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1419 cs = intel_ring_begin(rq, len);
1423 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1424 if (IS_GEN7(i915)) {
1425 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1427 struct intel_engine_cs *signaller;
1429 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1430 for_each_engine(signaller, i915, id) {
1431 if (signaller == engine)
1434 *cs++ = i915_mmio_reg_offset(
1435 RING_PSMI_CTL(signaller->mmio_base));
1436 *cs++ = _MASKED_BIT_ENABLE(
1437 GEN6_PSMI_SLEEP_MSG_DISABLE);
1443 *cs++ = MI_SET_CONTEXT;
1444 *cs++ = i915_ggtt_offset(to_intel_context(rq->ctx, engine)->state) | flags;
1446 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1447 * WaMiSetContext_Hang:snb,ivb,vlv
1451 if (IS_GEN7(i915)) {
1453 struct intel_engine_cs *signaller;
1454 i915_reg_t last_reg = {}; /* keep gcc quiet */
1456 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1457 for_each_engine(signaller, i915, id) {
1458 if (signaller == engine)
1461 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1462 *cs++ = i915_mmio_reg_offset(last_reg);
1463 *cs++ = _MASKED_BIT_DISABLE(
1464 GEN6_PSMI_SLEEP_MSG_DISABLE);
1467 /* Insert a delay before the next switch! */
1468 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1469 *cs++ = i915_mmio_reg_offset(last_reg);
1470 *cs++ = i915_ggtt_offset(engine->scratch);
1473 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1476 intel_ring_advance(rq, cs);
1481 static int remap_l3(struct i915_request *rq, int slice)
1483 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1489 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1494 * Note: We do not worry about the concurrent register cacheline hang
1495 * here because no other code should access these registers other than
1496 * at initialization time.
1498 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1499 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1500 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1501 *cs++ = remap_info[i];
1504 intel_ring_advance(rq, cs);
1509 static int switch_context(struct i915_request *rq)
1511 struct intel_engine_cs *engine = rq->engine;
1512 struct i915_gem_context *to_ctx = rq->ctx;
1513 struct i915_hw_ppgtt *to_mm =
1514 to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1515 struct i915_gem_context *from_ctx = engine->legacy_active_context;
1516 struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1520 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1521 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1523 if (to_mm != from_mm ||
1524 (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1525 trace_switch_mm(engine, to_ctx);
1526 ret = to_mm->switch_mm(to_mm, rq);
1530 to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1531 engine->legacy_active_ppgtt = to_mm;
1532 hw_flags = MI_FORCE_RESTORE;
1535 if (to_intel_context(to_ctx, engine)->state &&
1536 (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1537 GEM_BUG_ON(engine->id != RCS);
1540 * The kernel context(s) is treated as pure scratch and is not
1541 * expected to retain any state (as we sacrifice it during
1542 * suspend and on resume it may be corrupted). This is ok,
1543 * as nothing actually executes using the kernel context; it
1544 * is purely used for flushing user contexts.
1546 if (i915_gem_context_is_kernel(to_ctx))
1547 hw_flags = MI_RESTORE_INHIBIT;
1549 ret = mi_set_context(rq, hw_flags);
1553 engine->legacy_active_context = to_ctx;
1556 if (to_ctx->remap_slice) {
1557 for (i = 0; i < MAX_L3_SLICES; i++) {
1558 if (!(to_ctx->remap_slice & BIT(i)))
1561 ret = remap_l3(rq, i);
1566 to_ctx->remap_slice = 0;
1572 engine->legacy_active_context = from_ctx;
1574 engine->legacy_active_ppgtt = from_mm;
1579 static int ring_request_alloc(struct i915_request *request)
1583 GEM_BUG_ON(!to_intel_context(request->ctx, request->engine)->pin_count);
1585 /* Flush enough space to reduce the likelihood of waiting after
1586 * we start building the request - in which case we will just
1587 * have to repeat work.
1589 request->reserved_space += LEGACY_REQUEST_SIZE;
1591 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1595 ret = switch_context(request);
1599 request->reserved_space -= LEGACY_REQUEST_SIZE;
1603 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1605 struct i915_request *target;
1608 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1610 if (intel_ring_update_space(ring) >= bytes)
1613 GEM_BUG_ON(list_empty(&ring->request_list));
1614 list_for_each_entry(target, &ring->request_list, ring_link) {
1615 /* Would completion of this request free enough space? */
1616 if (bytes <= __intel_ring_space(target->postfix,
1617 ring->emit, ring->size))
1621 if (WARN_ON(&target->ring_link == &ring->request_list))
1624 timeout = i915_request_wait(target,
1625 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1626 MAX_SCHEDULE_TIMEOUT);
1630 i915_request_retire_upto(target);
1632 intel_ring_update_space(ring);
1633 GEM_BUG_ON(ring->space < bytes);
1637 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1639 GEM_BUG_ON(bytes > ring->effective_size);
1640 if (unlikely(bytes > ring->effective_size - ring->emit))
1641 bytes += ring->size - ring->emit;
1643 if (unlikely(bytes > ring->space)) {
1644 int ret = wait_for_space(ring, bytes);
1649 GEM_BUG_ON(ring->space < bytes);
1653 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1655 struct intel_ring *ring = rq->ring;
1656 const unsigned int remain_usable = ring->effective_size - ring->emit;
1657 const unsigned int bytes = num_dwords * sizeof(u32);
1658 unsigned int need_wrap = 0;
1659 unsigned int total_bytes;
1662 /* Packets must be qword aligned. */
1663 GEM_BUG_ON(num_dwords & 1);
1665 total_bytes = bytes + rq->reserved_space;
1666 GEM_BUG_ON(total_bytes > ring->effective_size);
1668 if (unlikely(total_bytes > remain_usable)) {
1669 const int remain_actual = ring->size - ring->emit;
1671 if (bytes > remain_usable) {
1673 * Not enough space for the basic request. So need to
1674 * flush out the remainder and then wait for
1677 total_bytes += remain_actual;
1678 need_wrap = remain_actual | 1;
1681 * The base request will fit but the reserved space
1682 * falls off the end. So we don't need an immediate
1683 * wrap and only need to effectively wait for the
1684 * reserved size from the start of ringbuffer.
1686 total_bytes = rq->reserved_space + remain_actual;
1690 if (unlikely(total_bytes > ring->space)) {
1694 * Space is reserved in the ringbuffer for finalising the
1695 * request, as that cannot be allowed to fail. During request
1696 * finalisation, reserved_space is set to 0 to stop the
1697 * overallocation and the assumption is that then we never need
1698 * to wait (which has the risk of failing with EINTR).
1700 * See also i915_request_alloc() and i915_request_add().
1702 GEM_BUG_ON(!rq->reserved_space);
1704 ret = wait_for_space(ring, total_bytes);
1706 return ERR_PTR(ret);
1709 if (unlikely(need_wrap)) {
1711 GEM_BUG_ON(need_wrap > ring->space);
1712 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1713 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1715 /* Fill the tail with MI_NOOP */
1716 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1717 ring->space -= need_wrap;
1721 GEM_BUG_ON(ring->emit > ring->size - bytes);
1722 GEM_BUG_ON(ring->space < bytes);
1723 cs = ring->vaddr + ring->emit;
1724 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1725 ring->emit += bytes;
1726 ring->space -= bytes;
1731 /* Align the ring tail to a cacheline boundary */
1732 int intel_ring_cacheline_align(struct i915_request *rq)
1737 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1738 if (num_dwords == 0)
1741 num_dwords = CACHELINE_DWORDS - num_dwords;
1742 GEM_BUG_ON(num_dwords & 1);
1744 cs = intel_ring_begin(rq, num_dwords);
1748 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1749 intel_ring_advance(rq, cs);
1751 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1755 static void gen6_bsd_submit_request(struct i915_request *request)
1757 struct drm_i915_private *dev_priv = request->i915;
1759 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1761 /* Every tail move must follow the sequence below */
1763 /* Disable notification that the ring is IDLE. The GT
1764 * will then assume that it is busy and bring it out of rc6.
1766 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1767 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1769 /* Clear the context id. Here be magic! */
1770 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1772 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1773 if (__intel_wait_for_register_fw(dev_priv,
1774 GEN6_BSD_SLEEP_PSMI_CONTROL,
1775 GEN6_BSD_SLEEP_INDICATOR,
1778 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1780 /* Now that the ring is fully powered up, update the tail */
1781 i9xx_submit_request(request);
1783 /* Let the ring send IDLE messages to the GT again,
1784 * and so let it sleep to conserve power when idle.
1786 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1787 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1789 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1792 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1796 cs = intel_ring_begin(rq, 4);
1802 /* We always require a command barrier so that subsequent
1803 * commands, such as breadcrumb interrupts, are strictly ordered
1804 * wrt the contents of the write cache being flushed to memory
1805 * (and thus being coherent from the CPU).
1807 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1810 * Bspec vol 1c.5 - video engine command streamer:
1811 * "If ENABLED, all TLBs will be invalidated once the flush
1812 * operation is complete. This bit is only valid when the
1813 * Post-Sync Operation field is a value of 1h or 3h."
1815 if (mode & EMIT_INVALIDATE)
1816 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1819 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1822 intel_ring_advance(rq, cs);
1827 hsw_emit_bb_start(struct i915_request *rq,
1828 u64 offset, u32 len,
1829 unsigned int dispatch_flags)
1833 cs = intel_ring_begin(rq, 2);
1837 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1838 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1839 (dispatch_flags & I915_DISPATCH_RS ?
1840 MI_BATCH_RESOURCE_STREAMER : 0);
1841 /* bit0-7 is the length on GEN6+ */
1843 intel_ring_advance(rq, cs);
1849 gen6_emit_bb_start(struct i915_request *rq,
1850 u64 offset, u32 len,
1851 unsigned int dispatch_flags)
1855 cs = intel_ring_begin(rq, 2);
1859 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1860 0 : MI_BATCH_NON_SECURE_I965);
1861 /* bit0-7 is the length on GEN6+ */
1863 intel_ring_advance(rq, cs);
1868 /* Blitter support (SandyBridge+) */
1870 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1874 cs = intel_ring_begin(rq, 4);
1880 /* We always require a command barrier so that subsequent
1881 * commands, such as breadcrumb interrupts, are strictly ordered
1882 * wrt the contents of the write cache being flushed to memory
1883 * (and thus being coherent from the CPU).
1885 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1888 * Bspec vol 1c.3 - blitter engine command streamer:
1889 * "If ENABLED, all TLBs will be invalidated once the flush
1890 * operation is complete. This bit is only valid when the
1891 * Post-Sync Operation field is a value of 1h or 3h."
1893 if (mode & EMIT_INVALIDATE)
1894 cmd |= MI_INVALIDATE_TLB;
1896 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1899 intel_ring_advance(rq, cs);
1904 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1905 struct intel_engine_cs *engine)
1909 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1912 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1913 engine->semaphore.sync_to = gen6_ring_sync_to;
1914 engine->semaphore.signal = gen6_signal;
1917 * The current semaphore is only applied on pre-gen8
1918 * platform. And there is no VCS2 ring on the pre-gen8
1919 * platform. So the semaphore between RCS and VCS2 is
1920 * initialized as INVALID.
1922 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1923 static const struct {
1925 i915_reg_t mbox_reg;
1926 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1928 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
1929 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
1930 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1933 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
1934 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
1935 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1938 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
1939 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
1940 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1943 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1944 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1945 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1949 i915_reg_t mbox_reg;
1951 if (i == engine->hw_id) {
1952 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1953 mbox_reg = GEN6_NOSYNC;
1955 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1956 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1959 engine->semaphore.mbox.wait[i] = wait_mbox;
1960 engine->semaphore.mbox.signal[i] = mbox_reg;
1964 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1965 struct intel_engine_cs *engine)
1967 if (INTEL_GEN(dev_priv) >= 6) {
1968 engine->irq_enable = gen6_irq_enable;
1969 engine->irq_disable = gen6_irq_disable;
1970 engine->irq_seqno_barrier = gen6_seqno_barrier;
1971 } else if (INTEL_GEN(dev_priv) >= 5) {
1972 engine->irq_enable = gen5_irq_enable;
1973 engine->irq_disable = gen5_irq_disable;
1974 engine->irq_seqno_barrier = gen5_seqno_barrier;
1975 } else if (INTEL_GEN(dev_priv) >= 3) {
1976 engine->irq_enable = i9xx_irq_enable;
1977 engine->irq_disable = i9xx_irq_disable;
1979 engine->irq_enable = i8xx_irq_enable;
1980 engine->irq_disable = i8xx_irq_disable;
1984 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1986 engine->submit_request = i9xx_submit_request;
1987 engine->cancel_requests = cancel_requests;
1989 engine->park = NULL;
1990 engine->unpark = NULL;
1993 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1995 i9xx_set_default_submission(engine);
1996 engine->submit_request = gen6_bsd_submit_request;
1999 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2000 struct intel_engine_cs *engine)
2002 /* gen8+ are only supported with execlists */
2003 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2005 intel_ring_init_irq(dev_priv, engine);
2006 intel_ring_init_semaphores(dev_priv, engine);
2008 engine->init_hw = init_ring_common;
2009 engine->reset_hw = reset_ring_common;
2011 engine->context_pin = intel_ring_context_pin;
2012 engine->context_unpin = intel_ring_context_unpin;
2014 engine->request_alloc = ring_request_alloc;
2016 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2017 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2018 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2021 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2023 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2024 engine->emit_breadcrumb_sz += num_rings * 3;
2026 engine->emit_breadcrumb_sz++;
2029 engine->set_default_submission = i9xx_set_default_submission;
2031 if (INTEL_GEN(dev_priv) >= 6)
2032 engine->emit_bb_start = gen6_emit_bb_start;
2033 else if (INTEL_GEN(dev_priv) >= 4)
2034 engine->emit_bb_start = i965_emit_bb_start;
2035 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2036 engine->emit_bb_start = i830_emit_bb_start;
2038 engine->emit_bb_start = i915_emit_bb_start;
2041 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2043 struct drm_i915_private *dev_priv = engine->i915;
2046 intel_ring_default_vfuncs(dev_priv, engine);
2048 if (HAS_L3_DPF(dev_priv))
2049 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2051 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2053 if (INTEL_GEN(dev_priv) >= 6) {
2054 engine->init_context = intel_rcs_ctx_init;
2055 engine->emit_flush = gen7_render_ring_flush;
2056 if (IS_GEN6(dev_priv))
2057 engine->emit_flush = gen6_render_ring_flush;
2058 } else if (IS_GEN5(dev_priv)) {
2059 engine->emit_flush = gen4_render_ring_flush;
2061 if (INTEL_GEN(dev_priv) < 4)
2062 engine->emit_flush = gen2_render_ring_flush;
2064 engine->emit_flush = gen4_render_ring_flush;
2065 engine->irq_enable_mask = I915_USER_INTERRUPT;
2068 if (IS_HASWELL(dev_priv))
2069 engine->emit_bb_start = hsw_emit_bb_start;
2071 engine->init_hw = init_render_ring;
2073 ret = intel_init_ring_buffer(engine);
2077 if (INTEL_GEN(dev_priv) >= 6) {
2078 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2081 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2082 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2090 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2092 struct drm_i915_private *dev_priv = engine->i915;
2094 intel_ring_default_vfuncs(dev_priv, engine);
2096 if (INTEL_GEN(dev_priv) >= 6) {
2097 /* gen6 bsd needs a special wa for tail updates */
2098 if (IS_GEN6(dev_priv))
2099 engine->set_default_submission = gen6_bsd_set_default_submission;
2100 engine->emit_flush = gen6_bsd_ring_flush;
2101 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2103 engine->emit_flush = bsd_ring_flush;
2104 if (IS_GEN5(dev_priv))
2105 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2107 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2110 return intel_init_ring_buffer(engine);
2113 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2115 struct drm_i915_private *dev_priv = engine->i915;
2117 intel_ring_default_vfuncs(dev_priv, engine);
2119 engine->emit_flush = gen6_ring_flush;
2120 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2122 return intel_init_ring_buffer(engine);
2125 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2127 struct drm_i915_private *dev_priv = engine->i915;
2129 intel_ring_default_vfuncs(dev_priv, engine);
2131 engine->emit_flush = gen6_ring_flush;
2132 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2133 engine->irq_enable = hsw_vebox_irq_enable;
2134 engine->irq_disable = hsw_vebox_irq_disable;
2136 return intel_init_ring_buffer(engine);