2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 #include "i915_oa_icl.h"
214 /* HW requires this to be a power of two, between 128k and 16M, though driver
215 * is currently generally designed assuming the largest 16M size is used such
216 * that the overflow cases are unlikely in normal operation.
218 #define OA_BUFFER_SIZE SZ_16M
220 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
223 * DOC: OA Tail Pointer Race
225 * There's a HW race condition between OA unit tail pointer register updates and
226 * writes to memory whereby the tail pointer can sometimes get ahead of what's
227 * been written out to the OA buffer so far (in terms of what's visible to the
230 * Although this can be observed explicitly while copying reports to userspace
231 * by checking for a zeroed report-id field in tail reports, we want to account
232 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
235 * In effect we define a tail pointer for reading that lags the real tail
236 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
237 * time for the corresponding reports to become visible to the CPU.
239 * To manage this we actually track two tail pointers:
240 * 1) An 'aging' tail with an associated timestamp that is tracked until we
241 * can trust the corresponding data is visible to the CPU; at which point
242 * it is considered 'aged'.
243 * 2) An 'aged' tail that can be used for read()ing.
245 * The two separate pointers let us decouple read()s from tail pointer aging.
247 * The tail pointers are checked and updated at a limited rate within a hrtimer
248 * callback (the same callback that is used for delivering EPOLLIN events)
250 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
251 * indicates that an updated tail pointer is needed.
253 * Most of the implementation details for this workaround are in
254 * oa_buffer_check_unlocked() and _append_oa_reports()
256 * Note for posterity: previously the driver used to define an effective tail
257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259 * This was flawed considering that the OA unit may also automatically generate
260 * non-periodic reports (such as on context switch) or the OA unit may be
261 * enabled without any periodic sampling.
263 #define OA_TAIL_MARGIN_NSEC 100000ULL
264 #define INVALID_TAIL_PTR 0xffffffff
266 /* frequency for checking whether the OA unit has written new reports to the
267 * circular OA buffer...
269 #define POLL_FREQUENCY 200
270 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
275 static u32 i915_perf_stream_paranoid = true;
277 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
278 * of the 64bit timestamp bits to trigger reports from) but there's currently
279 * no known use case for sampling as infrequently as once per 47 thousand years.
281 * Since the timestamps included in OA reports are only 32bits it seems
282 * reasonable to limit the OA exponent where it's still possible to account for
283 * overflow in OA report timestamps.
285 #define OA_EXPONENT_MAX 31
287 #define INVALID_CTX_ID 0xffffffff
289 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
290 #define OAREPORT_REASON_MASK 0x3f
291 #define OAREPORT_REASON_SHIFT 19
292 #define OAREPORT_REASON_TIMER (1<<0)
293 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
294 #define OAREPORT_REASON_CLK_RATIO (1<<5)
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
299 * The highest sampling frequency we can theoretically program the OA unit
300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
302 * Initialized just before we register the sysctl parameter.
304 static int oa_sample_rate_hard_limit;
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307 * allow that by default unless root...
309 * The default threshold of 100000Hz is based on perf's similar
310 * kernel.perf_event_max_sample_rate sysctl parameter.
312 static u32 i915_oa_max_sample_rate = 100000;
314 /* XXX: beware if future OA HW adds new report formats that the current
315 * code assumes all reports have a power-of-two size and ~(size - 1) can
316 * be used as a mask to align the OA tail pointer.
318 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
319 [I915_OA_FORMAT_A13] = { 0, 64 },
320 [I915_OA_FORMAT_A29] = { 1, 128 },
321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
326 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
329 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
330 [I915_OA_FORMAT_A12] = { 0, 64 },
331 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
332 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
333 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
336 #define SAMPLE_OA_REPORT (1<<0)
339 * struct perf_open_properties - for validated properties given to open a stream
340 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
341 * @single_context: Whether a single or all gpu contexts should be monitored
342 * @ctx_handle: A gem ctx handle for use with @single_context
343 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
344 * @oa_format: An OA unit HW report format
345 * @oa_periodic: Whether to enable periodic OA unit sampling
346 * @oa_period_exponent: The OA unit sampling period is derived from this
348 * As read_properties_unlocked() enumerates and validates the properties given
349 * to open a stream of metrics the configuration is built up in the structure
350 * which starts out zero initialized.
352 struct perf_open_properties {
355 u64 single_context:1;
358 /* OA sampling state */
362 int oa_period_exponent;
365 static void free_oa_config(struct drm_i915_private *dev_priv,
366 struct i915_oa_config *oa_config)
368 if (!PTR_ERR(oa_config->flex_regs))
369 kfree(oa_config->flex_regs);
370 if (!PTR_ERR(oa_config->b_counter_regs))
371 kfree(oa_config->b_counter_regs);
372 if (!PTR_ERR(oa_config->mux_regs))
373 kfree(oa_config->mux_regs);
377 static void put_oa_config(struct drm_i915_private *dev_priv,
378 struct i915_oa_config *oa_config)
380 if (!atomic_dec_and_test(&oa_config->ref_count))
383 free_oa_config(dev_priv, oa_config);
386 static int get_oa_config(struct drm_i915_private *dev_priv,
388 struct i915_oa_config **out_config)
392 if (metrics_set == 1) {
393 *out_config = &dev_priv->perf.oa.test_config;
394 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
398 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
402 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
406 atomic_inc(&(*out_config)->ref_count);
408 mutex_unlock(&dev_priv->perf.metrics_lock);
413 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
415 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
418 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
420 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
422 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
426 * oa_buffer_check_unlocked - check for data and update tail ptr state
427 * @dev_priv: i915 device instance
429 * This is either called via fops (for blocking reads in user ctx) or the poll
430 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
431 * if there is data available for userspace to read.
433 * This function is central to providing a workaround for the OA unit tail
434 * pointer having a race with respect to what data is visible to the CPU.
435 * It is responsible for reading tail pointers from the hardware and giving
436 * the pointers time to 'age' before they are made available for reading.
437 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
439 * Besides returning true when there is data available to read() this function
440 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
441 * and .aged_tail_idx state used for reading.
443 * Note: It's safe to read OA config state here unlocked, assuming that this is
444 * only called while the stream is enabled, while the global OA configuration
447 * Returns: %true if the OA buffer contains data, else %false
449 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
451 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
453 unsigned int aged_idx;
454 u32 head, hw_tail, aged_tail, aging_tail;
457 /* We have to consider the (unlikely) possibility that read() errors
458 * could result in an OA buffer reset which might reset the head,
459 * tails[] and aged_tail state.
461 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
463 /* NB: The head we observe here might effectively be a little out of
464 * date (between head and tails[aged_idx].offset if there is currently
465 * a read() in progress.
467 head = dev_priv->perf.oa.oa_buffer.head;
469 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
470 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
471 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
473 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
475 /* The tail pointer increases in 64 byte increments,
476 * not in report_size steps...
478 hw_tail &= ~(report_size - 1);
480 now = ktime_get_mono_fast_ns();
482 /* Update the aged tail
484 * Flip the tail pointer available for read()s once the aging tail is
485 * old enough to trust that the corresponding data will be visible to
488 * Do this before updating the aging pointer in case we may be able to
489 * immediately start aging a new pointer too (if new data has become
490 * available) without needing to wait for a later hrtimer callback.
492 if (aging_tail != INVALID_TAIL_PTR &&
493 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
494 OA_TAIL_MARGIN_NSEC)) {
497 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
499 aged_tail = aging_tail;
501 /* Mark that we need a new pointer to start aging... */
502 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
503 aging_tail = INVALID_TAIL_PTR;
506 /* Update the aging tail
508 * We throttle aging tail updates until we have a new tail that
509 * represents >= one report more data than is already available for
510 * reading. This ensures there will be enough data for a successful
511 * read once this new pointer has aged and ensures we will give the new
512 * pointer time to age.
514 if (aging_tail == INVALID_TAIL_PTR &&
515 (aged_tail == INVALID_TAIL_PTR ||
516 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
517 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
518 u32 gtt_offset = i915_ggtt_offset(vma);
520 /* Be paranoid and do a bounds check on the pointer read back
521 * from hardware, just in case some spurious hardware condition
522 * could put the tail out of bounds...
524 if (hw_tail >= gtt_offset &&
525 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
526 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
527 aging_tail = hw_tail;
528 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
530 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
535 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
537 return aged_tail == INVALID_TAIL_PTR ?
538 false : OA_TAKEN(aged_tail, head) >= report_size;
542 * append_oa_status - Appends a status record to a userspace read() buffer.
543 * @stream: An i915-perf stream opened for OA metrics
544 * @buf: destination buffer given by userspace
545 * @count: the number of bytes userspace wants to read
546 * @offset: (inout): the current position for writing into @buf
547 * @type: The kind of status to report to userspace
549 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
550 * into the userspace read() buffer.
552 * The @buf @offset will only be updated on success.
554 * Returns: 0 on success, negative error code on failure.
556 static int append_oa_status(struct i915_perf_stream *stream,
560 enum drm_i915_perf_record_type type)
562 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
564 if ((count - *offset) < header.size)
567 if (copy_to_user(buf + *offset, &header, sizeof(header)))
570 (*offset) += header.size;
576 * append_oa_sample - Copies single OA report into userspace read() buffer.
577 * @stream: An i915-perf stream opened for OA metrics
578 * @buf: destination buffer given by userspace
579 * @count: the number of bytes userspace wants to read
580 * @offset: (inout): the current position for writing into @buf
581 * @report: A single OA report to (optionally) include as part of the sample
583 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
584 * properties when opening a stream, tracked as `stream->sample_flags`. This
585 * function copies the requested components of a single sample to the given
588 * The @buf @offset will only be updated on success.
590 * Returns: 0 on success, negative error code on failure.
592 static int append_oa_sample(struct i915_perf_stream *stream,
598 struct drm_i915_private *dev_priv = stream->dev_priv;
599 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
600 struct drm_i915_perf_record_header header;
601 u32 sample_flags = stream->sample_flags;
603 header.type = DRM_I915_PERF_RECORD_SAMPLE;
605 header.size = stream->sample_size;
607 if ((count - *offset) < header.size)
611 if (copy_to_user(buf, &header, sizeof(header)))
613 buf += sizeof(header);
615 if (sample_flags & SAMPLE_OA_REPORT) {
616 if (copy_to_user(buf, report, report_size))
620 (*offset) += header.size;
626 * Copies all buffered OA reports into userspace read() buffer.
627 * @stream: An i915-perf stream opened for OA metrics
628 * @buf: destination buffer given by userspace
629 * @count: the number of bytes userspace wants to read
630 * @offset: (inout): the current position for writing into @buf
632 * Notably any error condition resulting in a short read (-%ENOSPC or
633 * -%EFAULT) will be returned even though one or more records may
634 * have been successfully copied. In this case it's up to the caller
635 * to decide if the error should be squashed before returning to
638 * Note: reports are consumed from the head, and appended to the
639 * tail, so the tail chases the head?... If you think that's mad
640 * and back-to-front you're not alone, but this follows the
641 * Gen PRM naming convention.
643 * Returns: 0 on success, negative error code on failure.
645 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
650 struct drm_i915_private *dev_priv = stream->dev_priv;
651 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
652 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
653 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
654 u32 mask = (OA_BUFFER_SIZE - 1);
655 size_t start_offset = *offset;
657 unsigned int aged_tail_idx;
662 if (WARN_ON(!stream->enabled))
665 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
667 head = dev_priv->perf.oa.oa_buffer.head;
668 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
669 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
671 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
674 * An invalid tail pointer here means we're still waiting for the poll
675 * hrtimer callback to give us a pointer
677 if (tail == INVALID_TAIL_PTR)
681 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
682 * while indexing relative to oa_buf_base.
688 * An out of bounds or misaligned head or tail pointer implies a driver
689 * bug since we validate + align the tail pointers we read from the
690 * hardware and we are in full control of the head pointer which should
691 * only be incremented by multiples of the report size (notably also
692 * all a power of two).
694 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
695 tail > OA_BUFFER_SIZE || tail % report_size,
696 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
702 (taken = OA_TAKEN(tail, head));
703 head = (head + report_size) & mask) {
704 u8 *report = oa_buf_base + head;
705 u32 *report32 = (void *)report;
710 * All the report sizes factor neatly into the buffer
711 * size so we never expect to see a report split
712 * between the beginning and end of the buffer.
714 * Given the initial alignment check a misalignment
715 * here would imply a driver bug that would result
718 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
719 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
724 * The reason field includes flags identifying what
725 * triggered this specific report (mostly timer
726 * triggered or e.g. due to a context switch).
728 * This field is never expected to be zero so we can
729 * check that the report isn't invalid before copying
732 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
733 OAREPORT_REASON_MASK);
735 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
736 DRM_NOTE("Skipping spurious, invalid OA report\n");
741 * XXX: Just keep the lower 21 bits for now since I'm not
742 * entirely sure if the HW touches any of the higher bits in
745 ctx_id = report32[2] & 0x1fffff;
748 * Squash whatever is in the CTX_ID field if it's marked as
749 * invalid to be sure we avoid false-positive, single-context
752 * Note: that we don't clear the valid_ctx_bit so userspace can
753 * understand that the ID has been squashed by the kernel.
755 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
756 ctx_id = report32[2] = INVALID_CTX_ID;
759 * NB: For Gen 8 the OA unit no longer supports clock gating
760 * off for a specific context and the kernel can't securely
761 * stop the counters from updating as system-wide / global
764 * Automatic reports now include a context ID so reports can be
765 * filtered on the cpu but it's not worth trying to
766 * automatically subtract/hide counter progress for other
767 * contexts while filtering since we can't stop userspace
768 * issuing MI_REPORT_PERF_COUNT commands which would still
769 * provide a side-band view of the real values.
771 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
772 * to normalize counters for a single filtered context then it
773 * needs be forwarded bookend context-switch reports so that it
774 * can track switches in between MI_REPORT_PERF_COUNT commands
775 * and can itself subtract/ignore the progress of counters
776 * associated with other contexts. Note that the hardware
777 * automatically triggers reports when switching to a new
778 * context which are tagged with the ID of the newly active
779 * context. To avoid the complexity (and likely fragility) of
780 * reading ahead while parsing reports to try and minimize
781 * forwarding redundant context switch reports (i.e. between
782 * other, unrelated contexts) we simply elect to forward them
785 * We don't rely solely on the reason field to identify context
786 * switches since it's not-uncommon for periodic samples to
787 * identify a switch before any 'context switch' report.
789 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
790 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
791 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
792 dev_priv->perf.oa.specific_ctx_id) ||
793 reason & OAREPORT_REASON_CTX_SWITCH) {
796 * While filtering for a single context we avoid
797 * leaking the IDs of other contexts.
799 if (dev_priv->perf.oa.exclusive_stream->ctx &&
800 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
801 report32[2] = INVALID_CTX_ID;
804 ret = append_oa_sample(stream, buf, count, offset,
809 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
813 * The above reason field sanity check is based on
814 * the assumption that the OA buffer is initially
815 * zeroed and we reset the field after copying so the
816 * check is still meaningful once old reports start
822 if (start_offset != *offset) {
823 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
826 * We removed the gtt_offset for the copy loop above, indexing
827 * relative to oa_buf_base so put back here...
831 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
832 dev_priv->perf.oa.oa_buffer.head = head;
834 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
841 * gen8_oa_read - copy status records then buffered OA reports
842 * @stream: An i915-perf stream opened for OA metrics
843 * @buf: destination buffer given by userspace
844 * @count: the number of bytes userspace wants to read
845 * @offset: (inout): the current position for writing into @buf
847 * Checks OA unit status registers and if necessary appends corresponding
848 * status records for userspace (such as for a buffer full condition) and then
849 * initiate appending any buffered OA reports.
851 * Updates @offset according to the number of bytes successfully copied into
852 * the userspace buffer.
854 * NB: some data may be successfully copied to the userspace buffer
855 * even if an error is returned, and this is reflected in the
858 * Returns: zero on success or a negative error code
860 static int gen8_oa_read(struct i915_perf_stream *stream,
865 struct drm_i915_private *dev_priv = stream->dev_priv;
869 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
872 oastatus = I915_READ(GEN8_OASTATUS);
875 * We treat OABUFFER_OVERFLOW as a significant error:
877 * Although theoretically we could handle this more gracefully
878 * sometimes, some Gens don't correctly suppress certain
879 * automatically triggered reports in this condition and so we
880 * have to assume that old reports are now being trampled
883 * Considering how we don't currently give userspace control
884 * over the OA buffer size and always configure a large 16MB
885 * buffer, then a buffer overflow does anyway likely indicate
886 * that something has gone quite badly wrong.
888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 ret = append_oa_status(stream, buf, count, offset,
890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 dev_priv->perf.oa.period_exponent);
897 dev_priv->perf.oa.ops.oa_disable(dev_priv);
898 dev_priv->perf.oa.ops.oa_enable(dev_priv);
901 * Note: .oa_enable() is expected to re-init the oabuffer and
902 * reset GEN8_OASTATUS for us
904 oastatus = I915_READ(GEN8_OASTATUS);
907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 ret = append_oa_status(stream, buf, count, offset,
909 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
912 I915_WRITE(GEN8_OASTATUS,
913 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916 return gen8_append_oa_reports(stream, buf, count, offset);
920 * Copies all buffered OA reports into userspace read() buffer.
921 * @stream: An i915-perf stream opened for OA metrics
922 * @buf: destination buffer given by userspace
923 * @count: the number of bytes userspace wants to read
924 * @offset: (inout): the current position for writing into @buf
926 * Notably any error condition resulting in a short read (-%ENOSPC or
927 * -%EFAULT) will be returned even though one or more records may
928 * have been successfully copied. In this case it's up to the caller
929 * to decide if the error should be squashed before returning to
932 * Note: reports are consumed from the head, and appended to the
933 * tail, so the tail chases the head?... If you think that's mad
934 * and back-to-front you're not alone, but this follows the
935 * Gen PRM naming convention.
937 * Returns: 0 on success, negative error code on failure.
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
944 struct drm_i915_private *dev_priv = stream->dev_priv;
945 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
946 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
947 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
948 u32 mask = (OA_BUFFER_SIZE - 1);
949 size_t start_offset = *offset;
951 unsigned int aged_tail_idx;
956 if (WARN_ON(!stream->enabled))
959 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
961 head = dev_priv->perf.oa.oa_buffer.head;
962 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
963 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
965 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
967 /* An invalid tail pointer here means we're still waiting for the poll
968 * hrtimer callback to give us a pointer
970 if (tail == INVALID_TAIL_PTR)
973 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
974 * while indexing relative to oa_buf_base.
979 /* An out of bounds or misaligned head or tail pointer implies a driver
980 * bug since we validate + align the tail pointers we read from the
981 * hardware and we are in full control of the head pointer which should
982 * only be incremented by multiples of the report size (notably also
983 * all a power of two).
985 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
986 tail > OA_BUFFER_SIZE || tail % report_size,
987 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
993 (taken = OA_TAKEN(tail, head));
994 head = (head + report_size) & mask) {
995 u8 *report = oa_buf_base + head;
996 u32 *report32 = (void *)report;
998 /* All the report sizes factor neatly into the buffer
999 * size so we never expect to see a report split
1000 * between the beginning and end of the buffer.
1002 * Given the initial alignment check a misalignment
1003 * here would imply a driver bug that would result
1006 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1007 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1011 /* The report-ID field for periodic samples includes
1012 * some undocumented flags related to what triggered
1013 * the report and is never expected to be zero so we
1014 * can check that the report isn't invalid before
1015 * copying it to userspace...
1017 if (report32[0] == 0) {
1018 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1019 DRM_NOTE("Skipping spurious, invalid OA report\n");
1023 ret = append_oa_sample(stream, buf, count, offset, report);
1027 /* The above report-id field sanity check is based on
1028 * the assumption that the OA buffer is initially
1029 * zeroed and we reset the field after copying so the
1030 * check is still meaningful once old reports start
1031 * being overwritten.
1036 if (start_offset != *offset) {
1037 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1039 /* We removed the gtt_offset for the copy loop above, indexing
1040 * relative to oa_buf_base so put back here...
1044 I915_WRITE(GEN7_OASTATUS2,
1045 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1046 GEN7_OASTATUS2_MEM_SELECT_GGTT));
1047 dev_priv->perf.oa.oa_buffer.head = head;
1049 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1056 * gen7_oa_read - copy status records then buffered OA reports
1057 * @stream: An i915-perf stream opened for OA metrics
1058 * @buf: destination buffer given by userspace
1059 * @count: the number of bytes userspace wants to read
1060 * @offset: (inout): the current position for writing into @buf
1062 * Checks Gen 7 specific OA unit status registers and if necessary appends
1063 * corresponding status records for userspace (such as for a buffer full
1064 * condition) and then initiate appending any buffered OA reports.
1066 * Updates @offset according to the number of bytes successfully copied into
1067 * the userspace buffer.
1069 * Returns: zero on success or a negative error code
1071 static int gen7_oa_read(struct i915_perf_stream *stream,
1076 struct drm_i915_private *dev_priv = stream->dev_priv;
1080 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1083 oastatus1 = I915_READ(GEN7_OASTATUS1);
1085 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 * bits while the OA unit is enabled (while the tail pointer
1087 * may be updated asynchronously) so we ignore status bits
1088 * that have already been reported to userspace.
1090 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1092 /* We treat OABUFFER_OVERFLOW as a significant error:
1094 * - The status can be interpreted to mean that the buffer is
1095 * currently full (with a higher precedence than OA_TAKEN()
1096 * which will start to report a near-empty buffer after an
1097 * overflow) but it's awkward that we can't clear the status
1098 * on Haswell, so without a reset we won't be able to catch
1101 * - Since it also implies the HW has started overwriting old
1102 * reports it may also affect our sanity checks for invalid
1103 * reports when copying to userspace that assume new reports
1104 * are being written to cleared memory.
1106 * - In the future we may want to introduce a flight recorder
1107 * mode where the driver will automatically maintain a safe
1108 * guard band between head/tail, avoiding this overflow
1109 * condition, but we avoid the added driver complexity for
1112 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113 ret = append_oa_status(stream, buf, count, offset,
1114 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1118 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 dev_priv->perf.oa.period_exponent);
1121 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1122 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1124 oastatus1 = I915_READ(GEN7_OASTATUS1);
1127 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 ret = append_oa_status(stream, buf, count, offset,
1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1132 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1133 GEN7_OASTATUS1_REPORT_LOST;
1136 return gen7_append_oa_reports(stream, buf, count, offset);
1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141 * @stream: An i915-perf stream opened for OA metrics
1143 * Called when userspace tries to read() from a blocking stream FD opened
1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145 * OA buffer and wakes us.
1147 * Note: it's acceptable to have this return with some false positives
1148 * since any subsequent read handling will return -EAGAIN if there isn't
1149 * really data ready for userspace yet.
1151 * Returns: zero on success or a negative error code
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1155 struct drm_i915_private *dev_priv = stream->dev_priv;
1157 /* We would wait indefinitely if periodic sampling is not enabled */
1158 if (!dev_priv->perf.oa.periodic)
1161 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1162 oa_buffer_check_unlocked(dev_priv));
1166 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167 * @stream: An i915-perf stream opened for OA metrics
1168 * @file: An i915 perf stream file
1169 * @wait: poll() state table
1171 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173 * when it sees data ready to read in the circular OA buffer.
1175 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1179 struct drm_i915_private *dev_priv = stream->dev_priv;
1181 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1185 * i915_oa_read - just calls through to &i915_oa_ops->read
1186 * @stream: An i915-perf stream opened for OA metrics
1187 * @buf: destination buffer given by userspace
1188 * @count: the number of bytes userspace wants to read
1189 * @offset: (inout): the current position for writing into @buf
1191 * Updates @offset according to the number of bytes successfully copied into
1192 * the userspace buffer.
1194 * Returns: zero on success or a negative error code
1196 static int i915_oa_read(struct i915_perf_stream *stream,
1201 struct drm_i915_private *dev_priv = stream->dev_priv;
1203 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1207 * oa_get_render_ctx_id - determine and hold ctx hw id
1208 * @stream: An i915-perf stream opened for OA metrics
1210 * Determine the render context hw id, and ensure it remains fixed for the
1211 * lifetime of the stream. This ensures that we don't have to worry about
1212 * updating the context ID in OACONTROL on the fly.
1214 * Returns: zero on success or a negative error code
1216 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1218 struct drm_i915_private *dev_priv = stream->dev_priv;
1220 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1221 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1223 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1224 struct intel_ring *ring;
1227 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1232 * As the ID is the gtt offset of the context's vma we
1233 * pin the vma to ensure the ID remains fixed.
1235 * NB: implied RCS engine...
1237 ring = intel_context_pin(stream->ctx, engine);
1238 mutex_unlock(&dev_priv->drm.struct_mutex);
1240 return PTR_ERR(ring);
1244 * Explicitly track the ID (instead of calling
1245 * i915_ggtt_offset() on the fly) considering the difference
1246 * with gen8+ and execlists
1248 dev_priv->perf.oa.specific_ctx_id =
1249 i915_ggtt_offset(to_intel_context(stream->ctx, engine)->state);
1256 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1257 * @stream: An i915-perf stream opened for OA metrics
1259 * In case anything needed doing to ensure the context HW ID would remain valid
1260 * for the lifetime of the stream, then that can be undone here.
1262 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1264 struct drm_i915_private *dev_priv = stream->dev_priv;
1266 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1267 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1269 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1271 mutex_lock(&dev_priv->drm.struct_mutex);
1273 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1274 intel_context_unpin(stream->ctx, engine);
1276 mutex_unlock(&dev_priv->drm.struct_mutex);
1281 free_oa_buffer(struct drm_i915_private *i915)
1283 mutex_lock(&i915->drm.struct_mutex);
1285 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1286 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1287 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1289 i915->perf.oa.oa_buffer.vma = NULL;
1290 i915->perf.oa.oa_buffer.vaddr = NULL;
1292 mutex_unlock(&i915->drm.struct_mutex);
1295 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1297 struct drm_i915_private *dev_priv = stream->dev_priv;
1299 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1302 * Unset exclusive_stream first, it will be checked while disabling
1303 * the metric set on gen8+.
1305 mutex_lock(&dev_priv->drm.struct_mutex);
1306 dev_priv->perf.oa.exclusive_stream = NULL;
1307 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1308 mutex_unlock(&dev_priv->drm.struct_mutex);
1310 free_oa_buffer(dev_priv);
1312 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1313 intel_runtime_pm_put(dev_priv);
1316 oa_put_render_ctx_id(stream);
1318 put_oa_config(dev_priv, stream->oa_config);
1320 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1321 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 dev_priv->perf.oa.spurious_report_rs.missed);
1326 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1328 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1329 unsigned long flags;
1331 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1333 /* Pre-DevBDW: OABUFFER must be set with counters off,
1334 * before OASTATUS1, but after OASTATUS2
1336 I915_WRITE(GEN7_OASTATUS2,
1337 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1338 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1340 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1342 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1344 /* Mark that we need updated tail pointers to read from... */
1345 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1346 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1348 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1350 /* On Haswell we have to track which OASTATUS1 flags we've
1351 * already seen since they can't be cleared while periodic
1352 * sampling is enabled.
1354 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1356 /* NB: although the OA buffer will initially be allocated
1357 * zeroed via shmfs (and so this memset is redundant when
1358 * first allocating), we may re-init the OA buffer, either
1359 * when re-enabling a stream or in error/reset paths.
1361 * The reason we clear the buffer for each re-init is for the
1362 * sanity check in gen7_append_oa_reports() that looks at the
1363 * report-id field to make sure it's non-zero which relies on
1364 * the assumption that new reports are being written to zeroed
1367 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1369 /* Maybe make ->pollin per-stream state if we support multiple
1370 * concurrent streams in the future.
1372 dev_priv->perf.oa.pollin = false;
1375 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1377 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1378 unsigned long flags;
1380 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1382 I915_WRITE(GEN8_OASTATUS, 0);
1383 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1384 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1386 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1391 * "This MMIO must be set before the OATAILPTR
1392 * register and after the OAHEADPTR register. This is
1393 * to enable proper functionality of the overflow
1396 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1397 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1398 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1400 /* Mark that we need updated tail pointers to read from... */
1401 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1402 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1405 * Reset state used to recognise context switches, affecting which
1406 * reports we will forward to userspace while filtering for a single
1409 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1411 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1414 * NB: although the OA buffer will initially be allocated
1415 * zeroed via shmfs (and so this memset is redundant when
1416 * first allocating), we may re-init the OA buffer, either
1417 * when re-enabling a stream or in error/reset paths.
1419 * The reason we clear the buffer for each re-init is for the
1420 * sanity check in gen8_append_oa_reports() that looks at the
1421 * reason field to make sure it's non-zero which relies on
1422 * the assumption that new reports are being written to zeroed
1425 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1428 * Maybe make ->pollin per-stream state if we support multiple
1429 * concurrent streams in the future.
1431 dev_priv->perf.oa.pollin = false;
1434 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1436 struct drm_i915_gem_object *bo;
1437 struct i915_vma *vma;
1440 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1443 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1447 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1448 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1450 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1452 DRM_ERROR("Failed to allocate OA buffer\n");
1457 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1461 /* PreHSW required 512K alignment, HSW requires 16M */
1462 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1467 dev_priv->perf.oa.oa_buffer.vma = vma;
1469 dev_priv->perf.oa.oa_buffer.vaddr =
1470 i915_gem_object_pin_map(bo, I915_MAP_WB);
1471 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1472 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1476 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1478 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1479 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1480 dev_priv->perf.oa.oa_buffer.vaddr);
1485 __i915_vma_unpin(vma);
1488 i915_gem_object_put(bo);
1490 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1491 dev_priv->perf.oa.oa_buffer.vma = NULL;
1494 mutex_unlock(&dev_priv->drm.struct_mutex);
1498 static void config_oa_regs(struct drm_i915_private *dev_priv,
1499 const struct i915_oa_reg *regs,
1504 for (i = 0; i < n_regs; i++) {
1505 const struct i915_oa_reg *reg = regs + i;
1507 I915_WRITE(reg->addr, reg->value);
1511 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1512 const struct i915_oa_config *oa_config)
1516 * OA unit is using “crclk” for its functionality. When trunk
1517 * level clock gating takes place, OA clock would be gated,
1518 * unable to count the events from non-render clock domain.
1519 * Render clock gating must be disabled when OA is enabled to
1520 * count the events from non-render domain. Unit level clock
1521 * gating for RCS should also be disabled.
1523 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1524 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1525 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1526 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1528 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1530 /* It apparently takes a fairly long time for a new MUX
1531 * configuration to be be applied after these register writes.
1532 * This delay duration was derived empirically based on the
1533 * render_basic config but hopefully it covers the maximum
1534 * configuration latency.
1536 * As a fallback, the checks in _append_oa_reports() to skip
1537 * invalid OA reports do also seem to work to discard reports
1538 * generated before this config has completed - albeit not
1541 * Unfortunately this is essentially a magic number, since we
1542 * don't currently know of a reliable mechanism for predicting
1543 * how long the MUX config will take to apply and besides
1544 * seeing invalid reports we don't know of a reliable way to
1545 * explicitly check that the MUX config has landed.
1547 * It's even possible we've miss characterized the underlying
1548 * problem - it just seems like the simplest explanation why
1549 * a delay at this location would mitigate any invalid reports.
1551 usleep_range(15000, 20000);
1553 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1554 oa_config->b_counter_regs_len);
1559 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1561 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1562 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1563 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1564 GEN7_DOP_CLOCK_GATE_ENABLE));
1566 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1571 * NB: It must always remain pointer safe to run this even if the OA unit
1572 * has been disabled.
1574 * It's fine to put out-of-date values into these per-context registers
1575 * in the case that the OA unit has been disabled.
1577 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1579 const struct i915_oa_config *oa_config)
1581 struct drm_i915_private *dev_priv = ctx->i915;
1582 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1583 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1584 /* The MMIO offsets for Flex EU registers aren't contiguous */
1586 i915_mmio_reg_offset(EU_PERF_CNTL0),
1587 i915_mmio_reg_offset(EU_PERF_CNTL1),
1588 i915_mmio_reg_offset(EU_PERF_CNTL2),
1589 i915_mmio_reg_offset(EU_PERF_CNTL3),
1590 i915_mmio_reg_offset(EU_PERF_CNTL4),
1591 i915_mmio_reg_offset(EU_PERF_CNTL5),
1592 i915_mmio_reg_offset(EU_PERF_CNTL6),
1596 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1597 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1598 GEN8_OA_TIMER_PERIOD_SHIFT) |
1599 (dev_priv->perf.oa.periodic ?
1600 GEN8_OA_TIMER_ENABLE : 0) |
1601 GEN8_OA_COUNTER_RESUME;
1603 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1604 u32 state_offset = ctx_flexeu0 + i * 2;
1605 u32 mmio = flex_mmio[i];
1608 * This arbitrary default will select the 'EU FPU0 Pipeline
1609 * Active' event. In the future it's anticipated that there
1610 * will be an explicit 'No Event' we can select, but not yet...
1617 for (j = 0; j < oa_config->flex_regs_len; j++) {
1618 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1619 value = oa_config->flex_regs[j].value;
1625 reg_state[state_offset] = mmio;
1626 reg_state[state_offset+1] = value;
1631 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1632 * is only used by the kernel context.
1634 static int gen8_emit_oa_config(struct i915_request *rq,
1635 const struct i915_oa_config *oa_config)
1637 struct drm_i915_private *dev_priv = rq->i915;
1638 /* The MMIO offsets for Flex EU registers aren't contiguous */
1640 i915_mmio_reg_offset(EU_PERF_CNTL0),
1641 i915_mmio_reg_offset(EU_PERF_CNTL1),
1642 i915_mmio_reg_offset(EU_PERF_CNTL2),
1643 i915_mmio_reg_offset(EU_PERF_CNTL3),
1644 i915_mmio_reg_offset(EU_PERF_CNTL4),
1645 i915_mmio_reg_offset(EU_PERF_CNTL5),
1646 i915_mmio_reg_offset(EU_PERF_CNTL6),
1651 cs = intel_ring_begin(rq, ARRAY_SIZE(flex_mmio) * 2 + 4);
1655 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1657 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1658 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1659 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1660 GEN8_OA_COUNTER_RESUME;
1662 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1663 u32 mmio = flex_mmio[i];
1666 * This arbitrary default will select the 'EU FPU0 Pipeline
1667 * Active' event. In the future it's anticipated that there
1668 * will be an explicit 'No Event' we can select, but not
1676 for (j = 0; j < oa_config->flex_regs_len; j++) {
1677 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1678 value = oa_config->flex_regs[j].value;
1689 intel_ring_advance(rq, cs);
1694 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1695 const struct i915_oa_config *oa_config)
1697 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1698 struct i915_timeline *timeline;
1699 struct i915_request *rq;
1702 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1704 i915_retire_requests(dev_priv);
1706 rq = i915_request_alloc(engine, dev_priv->kernel_context);
1710 ret = gen8_emit_oa_config(rq, oa_config);
1712 i915_request_add(rq);
1716 /* Queue this switch after all other activity */
1717 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1718 struct i915_request *prev;
1720 prev = i915_gem_active_raw(&timeline->last_request,
1721 &dev_priv->drm.struct_mutex);
1723 i915_request_await_dma_fence(rq, &prev->fence);
1726 i915_request_add(rq);
1732 * Manages updating the per-context aspects of the OA stream
1733 * configuration across all contexts.
1735 * The awkward consideration here is that OACTXCONTROL controls the
1736 * exponent for periodic sampling which is primarily used for system
1737 * wide profiling where we'd like a consistent sampling period even in
1738 * the face of context switches.
1740 * Our approach of updating the register state context (as opposed to
1741 * say using a workaround batch buffer) ensures that the hardware
1742 * won't automatically reload an out-of-date timer exponent even
1743 * transiently before a WA BB could be parsed.
1745 * This function needs to:
1746 * - Ensure the currently running context's per-context OA state is
1748 * - Ensure that all existing contexts will have the correct per-context
1749 * OA state if they are scheduled for use.
1750 * - Ensure any new contexts will be initialized with the correct
1751 * per-context OA state.
1753 * Note: it's only the RCS/Render context that has any OA state.
1755 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1756 const struct i915_oa_config *oa_config)
1758 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1759 struct i915_gem_context *ctx;
1761 unsigned int wait_flags = I915_WAIT_LOCKED;
1763 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1765 /* Switch away from any user context. */
1766 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1771 * The OA register config is setup through the context image. This image
1772 * might be written to by the GPU on context switch (in particular on
1773 * lite-restore). This means we can't safely update a context's image,
1774 * if this context is scheduled/submitted to run on the GPU.
1776 * We could emit the OA register config through the batch buffer but
1777 * this might leave small interval of time where the OA unit is
1778 * configured at an invalid sampling period.
1780 * So far the best way to work around this issue seems to be draining
1781 * the GPU from any submitted work.
1783 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1787 /* Update all contexts now that we've stalled the submission. */
1788 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1789 struct intel_context *ce = to_intel_context(ctx, engine);
1792 /* OA settings will be set upon first use */
1796 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1798 ret = PTR_ERR(regs);
1802 ce->state->obj->mm.dirty = true;
1803 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1805 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1807 i915_gem_object_unpin_map(ce->state->obj);
1814 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1815 const struct i915_oa_config *oa_config)
1820 * We disable slice/unslice clock ratio change reports on SKL since
1821 * they are too noisy. The HW generates a lot of redundant reports
1822 * where the ratio hasn't really changed causing a lot of redundant
1823 * work to processes and increasing the chances we'll hit buffer
1826 * Although we don't currently use the 'disable overrun' OABUFFER
1827 * feature it's worth noting that clock ratio reports have to be
1828 * disabled before considering to use that feature since the HW doesn't
1829 * correctly block these reports.
1831 * Currently none of the high-level metrics we have depend on knowing
1832 * this ratio to normalize.
1834 * Note: This register is not power context saved and restored, but
1835 * that's OK considering that we disable RC6 while the OA unit is
1838 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1839 * be read back from automatically triggered reports, as part of the
1842 if (IS_GEN(dev_priv, 9, 11)) {
1843 I915_WRITE(GEN8_OA_DEBUG,
1844 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1845 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1849 * Update all contexts prior writing the mux configurations as we need
1850 * to make sure all slices/subslices are ON before writing to NOA
1853 ret = gen8_configure_all_contexts(dev_priv, oa_config);
1857 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1859 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1860 oa_config->b_counter_regs_len);
1865 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1867 /* Reset all contexts' slices/subslices configurations. */
1868 gen8_configure_all_contexts(dev_priv, NULL);
1870 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1874 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1876 /* Reset all contexts' slices/subslices configurations. */
1877 gen8_configure_all_contexts(dev_priv, NULL);
1879 /* Make sure we disable noa to save power. */
1880 I915_WRITE(RPM_CONFIG1,
1881 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1884 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1886 struct i915_gem_context *ctx =
1887 dev_priv->perf.oa.exclusive_stream->ctx;
1888 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1889 bool periodic = dev_priv->perf.oa.periodic;
1890 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1891 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1894 * Reset buf pointers so we don't forward reports from before now.
1896 * Think carefully if considering trying to avoid this, since it
1897 * also ensures status flags and the buffer itself are cleared
1898 * in error paths, and we have checks for invalid reports based
1899 * on the assumption that certain fields are written to zeroed
1900 * memory which this helps maintains.
1902 gen7_init_oa_buffer(dev_priv);
1904 I915_WRITE(GEN7_OACONTROL,
1905 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1907 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1908 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1909 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1910 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1911 GEN7_OACONTROL_ENABLE);
1914 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1916 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1919 * Reset buf pointers so we don't forward reports from before now.
1921 * Think carefully if considering trying to avoid this, since it
1922 * also ensures status flags and the buffer itself are cleared
1923 * in error paths, and we have checks for invalid reports based
1924 * on the assumption that certain fields are written to zeroed
1925 * memory which this helps maintains.
1927 gen8_init_oa_buffer(dev_priv);
1930 * Note: we don't rely on the hardware to perform single context
1931 * filtering and instead filter on the cpu based on the context-id
1934 I915_WRITE(GEN8_OACONTROL, (report_format <<
1935 GEN8_OA_REPORT_FORMAT_SHIFT) |
1936 GEN8_OA_COUNTER_ENABLE);
1940 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1941 * @stream: An i915 perf stream opened for OA metrics
1943 * [Re]enables hardware periodic sampling according to the period configured
1944 * when opening the stream. This also starts a hrtimer that will periodically
1945 * check for data in the circular OA buffer for notifying userspace (e.g.
1946 * during a read() or poll()).
1948 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1950 struct drm_i915_private *dev_priv = stream->dev_priv;
1952 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1954 if (dev_priv->perf.oa.periodic)
1955 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1956 ns_to_ktime(POLL_PERIOD),
1957 HRTIMER_MODE_REL_PINNED);
1960 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1962 I915_WRITE(GEN7_OACONTROL, 0);
1963 if (intel_wait_for_register(dev_priv,
1964 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1966 DRM_ERROR("wait for OA to be disabled timed out\n");
1969 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1971 I915_WRITE(GEN8_OACONTROL, 0);
1972 if (intel_wait_for_register(dev_priv,
1973 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1975 DRM_ERROR("wait for OA to be disabled timed out\n");
1979 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1980 * @stream: An i915 perf stream opened for OA metrics
1982 * Stops the OA unit from periodically writing counter reports into the
1983 * circular OA buffer. This also stops the hrtimer that periodically checks for
1984 * data in the circular OA buffer, for notifying userspace.
1986 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1988 struct drm_i915_private *dev_priv = stream->dev_priv;
1990 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1992 if (dev_priv->perf.oa.periodic)
1993 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1996 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1997 .destroy = i915_oa_stream_destroy,
1998 .enable = i915_oa_stream_enable,
1999 .disable = i915_oa_stream_disable,
2000 .wait_unlocked = i915_oa_wait_unlocked,
2001 .poll_wait = i915_oa_poll_wait,
2002 .read = i915_oa_read,
2006 * i915_oa_stream_init - validate combined props for OA stream and init
2007 * @stream: An i915 perf stream
2008 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2009 * @props: The property state that configures stream (individually validated)
2011 * While read_properties_unlocked() validates properties in isolation it
2012 * doesn't ensure that the combination necessarily makes sense.
2014 * At this point it has been determined that userspace wants a stream of
2015 * OA metrics, but still we need to further validate the combined
2016 * properties are OK.
2018 * If the configuration makes sense then we can allocate memory for
2019 * a circular OA buffer and apply the requested metric set configuration.
2021 * Returns: zero on success or a negative error code.
2023 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2024 struct drm_i915_perf_open_param *param,
2025 struct perf_open_properties *props)
2027 struct drm_i915_private *dev_priv = stream->dev_priv;
2031 /* If the sysfs metrics/ directory wasn't registered for some
2032 * reason then don't let userspace try their luck with config
2035 if (!dev_priv->perf.metrics_kobj) {
2036 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2040 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2041 DRM_DEBUG("Only OA report sampling supported\n");
2045 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2046 DRM_DEBUG("OA unit not supported\n");
2050 /* To avoid the complexity of having to accurately filter
2051 * counter reports and marshal to the appropriate client
2052 * we currently only allow exclusive access
2054 if (dev_priv->perf.oa.exclusive_stream) {
2055 DRM_DEBUG("OA unit already in use\n");
2059 if (!props->oa_format) {
2060 DRM_DEBUG("OA report format not specified\n");
2064 /* We set up some ratelimit state to potentially throttle any _NOTES
2065 * about spurious, invalid OA reports which we don't forward to
2068 * The initialization is associated with opening the stream (not driver
2069 * init) considering we print a _NOTE about any throttling when closing
2070 * the stream instead of waiting until driver _fini which no one would
2073 * Using the same limiting factors as printk_ratelimit()
2075 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2077 /* Since we use a DRM_NOTE for spurious reports it would be
2078 * inconsistent to let __ratelimit() automatically print a warning for
2081 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2082 RATELIMIT_MSG_ON_RELEASE);
2084 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2086 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2088 stream->sample_flags |= SAMPLE_OA_REPORT;
2089 stream->sample_size += format_size;
2091 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2092 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2095 dev_priv->perf.oa.oa_buffer.format =
2096 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2098 dev_priv->perf.oa.periodic = props->oa_periodic;
2099 if (dev_priv->perf.oa.periodic)
2100 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2103 ret = oa_get_render_ctx_id(stream);
2105 DRM_DEBUG("Invalid context id to filter with\n");
2110 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2112 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2116 /* PRM - observability performance counters:
2118 * OACONTROL, performance counter enable, note:
2120 * "When this bit is set, in order to have coherent counts,
2121 * RC6 power state and trunk clock gating must be disabled.
2122 * This can be achieved by programming MMIO registers as
2123 * 0xA094=0 and 0xA090[31]=1"
2125 * In our case we are expecting that taking pm + FORCEWAKE
2126 * references will effectively disable RC6.
2128 intel_runtime_pm_get(dev_priv);
2129 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2131 ret = alloc_oa_buffer(dev_priv);
2133 goto err_oa_buf_alloc;
2135 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2139 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2142 DRM_DEBUG("Unable to enable metric set\n");
2146 stream->ops = &i915_oa_stream_ops;
2148 dev_priv->perf.oa.exclusive_stream = stream;
2150 mutex_unlock(&dev_priv->drm.struct_mutex);
2155 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2156 mutex_unlock(&dev_priv->drm.struct_mutex);
2159 free_oa_buffer(dev_priv);
2162 put_oa_config(dev_priv, stream->oa_config);
2164 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2165 intel_runtime_pm_put(dev_priv);
2169 oa_put_render_ctx_id(stream);
2174 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2175 struct i915_gem_context *ctx,
2178 struct i915_perf_stream *stream;
2180 if (engine->id != RCS)
2183 stream = engine->i915->perf.oa.exclusive_stream;
2185 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2189 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2190 * @stream: An i915 perf stream
2191 * @file: An i915 perf stream file
2192 * @buf: destination buffer given by userspace
2193 * @count: the number of bytes userspace wants to read
2194 * @ppos: (inout) file seek position (unused)
2196 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2197 * ensure that if we've successfully copied any data then reporting that takes
2198 * precedence over any internal error status, so the data isn't lost.
2200 * For example ret will be -ENOSPC whenever there is more buffered data than
2201 * can be copied to userspace, but that's only interesting if we weren't able
2202 * to copy some data because it implies the userspace buffer is too small to
2203 * receive a single record (and we never split records).
2205 * Another case with ret == -EFAULT is more of a grey area since it would seem
2206 * like bad form for userspace to ask us to overrun its buffer, but the user
2209 * http://yarchive.net/comp/linux/partial_reads_writes.html
2211 * Returns: The number of bytes copied or a negative error code on failure.
2213 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2219 /* Note we keep the offset (aka bytes read) separate from any
2220 * error status so that the final check for whether we return
2221 * the bytes read with a higher precedence than any error (see
2222 * comment below) doesn't need to be handled/duplicated in
2223 * stream->ops->read() implementations.
2226 int ret = stream->ops->read(stream, buf, count, &offset);
2228 return offset ?: (ret ?: -EAGAIN);
2232 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2233 * @file: An i915 perf stream file
2234 * @buf: destination buffer given by userspace
2235 * @count: the number of bytes userspace wants to read
2236 * @ppos: (inout) file seek position (unused)
2238 * The entry point for handling a read() on a stream file descriptor from
2239 * userspace. Most of the work is left to the i915_perf_read_locked() and
2240 * &i915_perf_stream_ops->read but to save having stream implementations (of
2241 * which we might have multiple later) we handle blocking read here.
2243 * We can also consistently treat trying to read from a disabled stream
2244 * as an IO error so implementations can assume the stream is enabled
2247 * Returns: The number of bytes copied or a negative error code on failure.
2249 static ssize_t i915_perf_read(struct file *file,
2254 struct i915_perf_stream *stream = file->private_data;
2255 struct drm_i915_private *dev_priv = stream->dev_priv;
2258 /* To ensure it's handled consistently we simply treat all reads of a
2259 * disabled stream as an error. In particular it might otherwise lead
2260 * to a deadlock for blocking file descriptors...
2262 if (!stream->enabled)
2265 if (!(file->f_flags & O_NONBLOCK)) {
2266 /* There's the small chance of false positives from
2267 * stream->ops->wait_unlocked.
2269 * E.g. with single context filtering since we only wait until
2270 * oabuffer has >= 1 report we don't immediately know whether
2271 * any reports really belong to the current context
2274 ret = stream->ops->wait_unlocked(stream);
2278 mutex_lock(&dev_priv->perf.lock);
2279 ret = i915_perf_read_locked(stream, file,
2281 mutex_unlock(&dev_priv->perf.lock);
2282 } while (ret == -EAGAIN);
2284 mutex_lock(&dev_priv->perf.lock);
2285 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2286 mutex_unlock(&dev_priv->perf.lock);
2289 /* We allow the poll checking to sometimes report false positive EPOLLIN
2290 * events where we might actually report EAGAIN on read() if there's
2291 * not really any data available. In this situation though we don't
2292 * want to enter a busy loop between poll() reporting a EPOLLIN event
2293 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2294 * effectively ensures we back off until the next hrtimer callback
2295 * before reporting another EPOLLIN event.
2297 if (ret >= 0 || ret == -EAGAIN) {
2298 /* Maybe make ->pollin per-stream state if we support multiple
2299 * concurrent streams in the future.
2301 dev_priv->perf.oa.pollin = false;
2307 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2309 struct drm_i915_private *dev_priv =
2310 container_of(hrtimer, typeof(*dev_priv),
2311 perf.oa.poll_check_timer);
2313 if (oa_buffer_check_unlocked(dev_priv)) {
2314 dev_priv->perf.oa.pollin = true;
2315 wake_up(&dev_priv->perf.oa.poll_wq);
2318 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2320 return HRTIMER_RESTART;
2324 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2325 * @dev_priv: i915 device instance
2326 * @stream: An i915 perf stream
2327 * @file: An i915 perf stream file
2328 * @wait: poll() state table
2330 * For handling userspace polling on an i915 perf stream, this calls through to
2331 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2332 * will be woken for new stream data.
2334 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2335 * with any non-file-operation driver hooks.
2337 * Returns: any poll events that are ready without sleeping
2339 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2340 struct i915_perf_stream *stream,
2344 __poll_t events = 0;
2346 stream->ops->poll_wait(stream, file, wait);
2348 /* Note: we don't explicitly check whether there's something to read
2349 * here since this path may be very hot depending on what else
2350 * userspace is polling, or on the timeout in use. We rely solely on
2351 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2354 if (dev_priv->perf.oa.pollin)
2361 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2362 * @file: An i915 perf stream file
2363 * @wait: poll() state table
2365 * For handling userspace polling on an i915 perf stream, this ensures
2366 * poll_wait() gets called with a wait queue that will be woken for new stream
2369 * Note: Implementation deferred to i915_perf_poll_locked()
2371 * Returns: any poll events that are ready without sleeping
2373 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2375 struct i915_perf_stream *stream = file->private_data;
2376 struct drm_i915_private *dev_priv = stream->dev_priv;
2379 mutex_lock(&dev_priv->perf.lock);
2380 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2381 mutex_unlock(&dev_priv->perf.lock);
2387 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2388 * @stream: A disabled i915 perf stream
2390 * [Re]enables the associated capture of data for this stream.
2392 * If a stream was previously enabled then there's currently no intention
2393 * to provide userspace any guarantee about the preservation of previously
2396 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2398 if (stream->enabled)
2401 /* Allow stream->ops->enable() to refer to this */
2402 stream->enabled = true;
2404 if (stream->ops->enable)
2405 stream->ops->enable(stream);
2409 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2410 * @stream: An enabled i915 perf stream
2412 * Disables the associated capture of data for this stream.
2414 * The intention is that disabling an re-enabling a stream will ideally be
2415 * cheaper than destroying and re-opening a stream with the same configuration,
2416 * though there are no formal guarantees about what state or buffered data
2417 * must be retained between disabling and re-enabling a stream.
2419 * Note: while a stream is disabled it's considered an error for userspace
2420 * to attempt to read from the stream (-EIO).
2422 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2424 if (!stream->enabled)
2427 /* Allow stream->ops->disable() to refer to this */
2428 stream->enabled = false;
2430 if (stream->ops->disable)
2431 stream->ops->disable(stream);
2435 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2436 * @stream: An i915 perf stream
2437 * @cmd: the ioctl request
2438 * @arg: the ioctl data
2440 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2441 * with any non-file-operation driver hooks.
2443 * Returns: zero on success or a negative error code. Returns -EINVAL for
2444 * an unknown ioctl request.
2446 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2451 case I915_PERF_IOCTL_ENABLE:
2452 i915_perf_enable_locked(stream);
2454 case I915_PERF_IOCTL_DISABLE:
2455 i915_perf_disable_locked(stream);
2463 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2464 * @file: An i915 perf stream file
2465 * @cmd: the ioctl request
2466 * @arg: the ioctl data
2468 * Implementation deferred to i915_perf_ioctl_locked().
2470 * Returns: zero on success or a negative error code. Returns -EINVAL for
2471 * an unknown ioctl request.
2473 static long i915_perf_ioctl(struct file *file,
2477 struct i915_perf_stream *stream = file->private_data;
2478 struct drm_i915_private *dev_priv = stream->dev_priv;
2481 mutex_lock(&dev_priv->perf.lock);
2482 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2483 mutex_unlock(&dev_priv->perf.lock);
2489 * i915_perf_destroy_locked - destroy an i915 perf stream
2490 * @stream: An i915 perf stream
2492 * Frees all resources associated with the given i915 perf @stream, disabling
2493 * any associated data capture in the process.
2495 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2496 * with any non-file-operation driver hooks.
2498 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2500 if (stream->enabled)
2501 i915_perf_disable_locked(stream);
2503 if (stream->ops->destroy)
2504 stream->ops->destroy(stream);
2506 list_del(&stream->link);
2509 i915_gem_context_put(stream->ctx);
2515 * i915_perf_release - handles userspace close() of a stream file
2516 * @inode: anonymous inode associated with file
2517 * @file: An i915 perf stream file
2519 * Cleans up any resources associated with an open i915 perf stream file.
2521 * NB: close() can't really fail from the userspace point of view.
2523 * Returns: zero on success or a negative error code.
2525 static int i915_perf_release(struct inode *inode, struct file *file)
2527 struct i915_perf_stream *stream = file->private_data;
2528 struct drm_i915_private *dev_priv = stream->dev_priv;
2530 mutex_lock(&dev_priv->perf.lock);
2531 i915_perf_destroy_locked(stream);
2532 mutex_unlock(&dev_priv->perf.lock);
2538 static const struct file_operations fops = {
2539 .owner = THIS_MODULE,
2540 .llseek = no_llseek,
2541 .release = i915_perf_release,
2542 .poll = i915_perf_poll,
2543 .read = i915_perf_read,
2544 .unlocked_ioctl = i915_perf_ioctl,
2545 /* Our ioctl have no arguments, so it's safe to use the same function
2546 * to handle 32bits compatibility.
2548 .compat_ioctl = i915_perf_ioctl,
2553 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2554 * @dev_priv: i915 device instance
2555 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2556 * @props: individually validated u64 property value pairs
2559 * See i915_perf_ioctl_open() for interface details.
2561 * Implements further stream config validation and stream initialization on
2562 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2563 * taken to serialize with any non-file-operation driver hooks.
2565 * Note: at this point the @props have only been validated in isolation and
2566 * it's still necessary to validate that the combination of properties makes
2569 * In the case where userspace is interested in OA unit metrics then further
2570 * config validation and stream initialization details will be handled by
2571 * i915_oa_stream_init(). The code here should only validate config state that
2572 * will be relevant to all stream types / backends.
2574 * Returns: zero on success or a negative error code.
2577 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2578 struct drm_i915_perf_open_param *param,
2579 struct perf_open_properties *props,
2580 struct drm_file *file)
2582 struct i915_gem_context *specific_ctx = NULL;
2583 struct i915_perf_stream *stream = NULL;
2584 unsigned long f_flags = 0;
2585 bool privileged_op = true;
2589 if (props->single_context) {
2590 u32 ctx_handle = props->ctx_handle;
2591 struct drm_i915_file_private *file_priv = file->driver_priv;
2593 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2594 if (!specific_ctx) {
2595 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2603 * On Haswell the OA unit supports clock gating off for a specific
2604 * context and in this mode there's no visibility of metrics for the
2605 * rest of the system, which we consider acceptable for a
2606 * non-privileged client.
2608 * For Gen8+ the OA unit no longer supports clock gating off for a
2609 * specific context and the kernel can't securely stop the counters
2610 * from updating as system-wide / global values. Even though we can
2611 * filter reports based on the included context ID we can't block
2612 * clients from seeing the raw / global counter values via
2613 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2614 * enable the OA unit by default.
2616 if (IS_HASWELL(dev_priv) && specific_ctx)
2617 privileged_op = false;
2619 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2620 * we check a dev.i915.perf_stream_paranoid sysctl option
2621 * to determine if it's ok to access system wide OA counters
2622 * without CAP_SYS_ADMIN privileges.
2624 if (privileged_op &&
2625 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2626 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2631 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2637 stream->dev_priv = dev_priv;
2638 stream->ctx = specific_ctx;
2640 ret = i915_oa_stream_init(stream, param, props);
2644 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2645 * to have _stream_init check the combination of sample flags more
2646 * thoroughly, but still this is the expected result at this point.
2648 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2653 list_add(&stream->link, &dev_priv->perf.streams);
2655 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2656 f_flags |= O_CLOEXEC;
2657 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2658 f_flags |= O_NONBLOCK;
2660 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2661 if (stream_fd < 0) {
2666 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2667 i915_perf_enable_locked(stream);
2672 list_del(&stream->link);
2674 if (stream->ops->destroy)
2675 stream->ops->destroy(stream);
2680 i915_gem_context_put(specific_ctx);
2685 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2687 return div64_u64(1000000000ULL * (2ULL << exponent),
2688 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2692 * read_properties_unlocked - validate + copy userspace stream open properties
2693 * @dev_priv: i915 device instance
2694 * @uprops: The array of u64 key value pairs given by userspace
2695 * @n_props: The number of key value pairs expected in @uprops
2696 * @props: The stream configuration built up while validating properties
2698 * Note this function only validates properties in isolation it doesn't
2699 * validate that the combination of properties makes sense or that all
2700 * properties necessary for a particular kind of stream have been set.
2702 * Note that there currently aren't any ordering requirements for properties so
2703 * we shouldn't validate or assume anything about ordering here. This doesn't
2704 * rule out defining new properties with ordering requirements in the future.
2706 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2709 struct perf_open_properties *props)
2711 u64 __user *uprop = uprops;
2714 memset(props, 0, sizeof(struct perf_open_properties));
2717 DRM_DEBUG("No i915 perf properties given\n");
2721 /* Considering that ID = 0 is reserved and assuming that we don't
2722 * (currently) expect any configurations to ever specify duplicate
2723 * values for a particular property ID then the last _PROP_MAX value is
2724 * one greater than the maximum number of properties we expect to get
2727 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2728 DRM_DEBUG("More i915 perf properties specified than exist\n");
2732 for (i = 0; i < n_props; i++) {
2733 u64 oa_period, oa_freq_hz;
2737 ret = get_user(id, uprop);
2741 ret = get_user(value, uprop + 1);
2745 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2746 DRM_DEBUG("Unknown i915 perf property ID\n");
2750 switch ((enum drm_i915_perf_property_id)id) {
2751 case DRM_I915_PERF_PROP_CTX_HANDLE:
2752 props->single_context = 1;
2753 props->ctx_handle = value;
2755 case DRM_I915_PERF_PROP_SAMPLE_OA:
2757 props->sample_flags |= SAMPLE_OA_REPORT;
2759 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2761 DRM_DEBUG("Unknown OA metric set ID\n");
2764 props->metrics_set = value;
2766 case DRM_I915_PERF_PROP_OA_FORMAT:
2767 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2768 DRM_DEBUG("Out-of-range OA report format %llu\n",
2772 if (!dev_priv->perf.oa.oa_formats[value].size) {
2773 DRM_DEBUG("Unsupported OA report format %llu\n",
2777 props->oa_format = value;
2779 case DRM_I915_PERF_PROP_OA_EXPONENT:
2780 if (value > OA_EXPONENT_MAX) {
2781 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2786 /* Theoretically we can program the OA unit to sample
2787 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2788 * for BXT. We don't allow such high sampling
2789 * frequencies by default unless root.
2792 BUILD_BUG_ON(sizeof(oa_period) != 8);
2793 oa_period = oa_exponent_to_ns(dev_priv, value);
2795 /* This check is primarily to ensure that oa_period <=
2796 * UINT32_MAX (before passing to do_div which only
2797 * accepts a u32 denominator), but we can also skip
2798 * checking anything < 1Hz which implicitly can't be
2799 * limited via an integer oa_max_sample_rate.
2801 if (oa_period <= NSEC_PER_SEC) {
2802 u64 tmp = NSEC_PER_SEC;
2803 do_div(tmp, oa_period);
2808 if (oa_freq_hz > i915_oa_max_sample_rate &&
2809 !capable(CAP_SYS_ADMIN)) {
2810 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2811 i915_oa_max_sample_rate);
2815 props->oa_periodic = true;
2816 props->oa_period_exponent = value;
2818 case DRM_I915_PERF_PROP_MAX:
2830 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2832 * @data: ioctl data copied from userspace (unvalidated)
2835 * Validates the stream open parameters given by userspace including flags
2836 * and an array of u64 key, value pair properties.
2838 * Very little is assumed up front about the nature of the stream being
2839 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2840 * i915-perf stream is expected to be a suitable interface for other forms of
2841 * buffered data written by the GPU besides periodic OA metrics.
2843 * Note we copy the properties from userspace outside of the i915 perf
2844 * mutex to avoid an awkward lockdep with mmap_sem.
2846 * Most of the implementation details are handled by
2847 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2848 * mutex for serializing with any non-file-operation driver hooks.
2850 * Return: A newly opened i915 Perf stream file descriptor or negative
2851 * error code on failure.
2853 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2854 struct drm_file *file)
2856 struct drm_i915_private *dev_priv = dev->dev_private;
2857 struct drm_i915_perf_open_param *param = data;
2858 struct perf_open_properties props;
2859 u32 known_open_flags;
2862 if (!dev_priv->perf.initialized) {
2863 DRM_DEBUG("i915 perf interface not available for this system\n");
2867 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2868 I915_PERF_FLAG_FD_NONBLOCK |
2869 I915_PERF_FLAG_DISABLED;
2870 if (param->flags & ~known_open_flags) {
2871 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2875 ret = read_properties_unlocked(dev_priv,
2876 u64_to_user_ptr(param->properties_ptr),
2877 param->num_properties,
2882 mutex_lock(&dev_priv->perf.lock);
2883 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2884 mutex_unlock(&dev_priv->perf.lock);
2890 * i915_perf_register - exposes i915-perf to userspace
2891 * @dev_priv: i915 device instance
2893 * In particular OA metric sets are advertised under a sysfs metrics/
2894 * directory allowing userspace to enumerate valid IDs that can be
2895 * used to open an i915-perf stream.
2897 void i915_perf_register(struct drm_i915_private *dev_priv)
2901 if (!dev_priv->perf.initialized)
2904 /* To be sure we're synchronized with an attempted
2905 * i915_perf_open_ioctl(); considering that we register after
2906 * being exposed to userspace.
2908 mutex_lock(&dev_priv->perf.lock);
2910 dev_priv->perf.metrics_kobj =
2911 kobject_create_and_add("metrics",
2912 &dev_priv->drm.primary->kdev->kobj);
2913 if (!dev_priv->perf.metrics_kobj)
2916 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2918 if (IS_HASWELL(dev_priv)) {
2919 i915_perf_load_test_config_hsw(dev_priv);
2920 } else if (IS_BROADWELL(dev_priv)) {
2921 i915_perf_load_test_config_bdw(dev_priv);
2922 } else if (IS_CHERRYVIEW(dev_priv)) {
2923 i915_perf_load_test_config_chv(dev_priv);
2924 } else if (IS_SKYLAKE(dev_priv)) {
2925 if (IS_SKL_GT2(dev_priv))
2926 i915_perf_load_test_config_sklgt2(dev_priv);
2927 else if (IS_SKL_GT3(dev_priv))
2928 i915_perf_load_test_config_sklgt3(dev_priv);
2929 else if (IS_SKL_GT4(dev_priv))
2930 i915_perf_load_test_config_sklgt4(dev_priv);
2931 } else if (IS_BROXTON(dev_priv)) {
2932 i915_perf_load_test_config_bxt(dev_priv);
2933 } else if (IS_KABYLAKE(dev_priv)) {
2934 if (IS_KBL_GT2(dev_priv))
2935 i915_perf_load_test_config_kblgt2(dev_priv);
2936 else if (IS_KBL_GT3(dev_priv))
2937 i915_perf_load_test_config_kblgt3(dev_priv);
2938 } else if (IS_GEMINILAKE(dev_priv)) {
2939 i915_perf_load_test_config_glk(dev_priv);
2940 } else if (IS_COFFEELAKE(dev_priv)) {
2941 if (IS_CFL_GT2(dev_priv))
2942 i915_perf_load_test_config_cflgt2(dev_priv);
2943 if (IS_CFL_GT3(dev_priv))
2944 i915_perf_load_test_config_cflgt3(dev_priv);
2945 } else if (IS_CANNONLAKE(dev_priv)) {
2946 i915_perf_load_test_config_cnl(dev_priv);
2947 } else if (IS_ICELAKE(dev_priv)) {
2948 i915_perf_load_test_config_icl(dev_priv);
2951 if (dev_priv->perf.oa.test_config.id == 0)
2954 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2955 &dev_priv->perf.oa.test_config.sysfs_metric);
2959 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2964 kobject_put(dev_priv->perf.metrics_kobj);
2965 dev_priv->perf.metrics_kobj = NULL;
2968 mutex_unlock(&dev_priv->perf.lock);
2972 * i915_perf_unregister - hide i915-perf from userspace
2973 * @dev_priv: i915 device instance
2975 * i915-perf state cleanup is split up into an 'unregister' and
2976 * 'deinit' phase where the interface is first hidden from
2977 * userspace by i915_perf_unregister() before cleaning up
2978 * remaining state in i915_perf_fini().
2980 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2982 if (!dev_priv->perf.metrics_kobj)
2985 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2986 &dev_priv->perf.oa.test_config.sysfs_metric);
2988 kobject_put(dev_priv->perf.metrics_kobj);
2989 dev_priv->perf.metrics_kobj = NULL;
2992 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2994 static const i915_reg_t flex_eu_regs[] = {
3005 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3006 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3012 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3014 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3015 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3016 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3017 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3018 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3019 addr <= i915_mmio_reg_offset(OACEC7_1));
3022 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3024 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3025 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3026 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3027 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3028 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3029 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3030 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3033 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3035 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3036 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3037 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3038 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3041 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3043 return gen8_is_valid_mux_addr(dev_priv, addr) ||
3044 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3045 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3048 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3050 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3051 (addr >= 0x25100 && addr <= 0x2FF90) ||
3052 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3053 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3054 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3057 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3059 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3060 (addr >= 0x182300 && addr <= 0x1823A4);
3063 static uint32_t mask_reg_value(u32 reg, u32 val)
3065 /* HALF_SLICE_CHICKEN2 is programmed with a the
3066 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3067 * programmed by userspace doesn't change this.
3069 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3070 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3072 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3073 * indicated by its name and a bunch of selection fields used by OA
3076 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3077 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3082 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3083 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3087 struct i915_oa_reg *oa_regs;
3094 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3095 return ERR_PTR(-EFAULT);
3097 /* No is_valid function means we're not allowing any register to be programmed. */
3098 GEM_BUG_ON(!is_valid);
3100 return ERR_PTR(-EINVAL);
3102 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3104 return ERR_PTR(-ENOMEM);
3106 for (i = 0; i < n_regs; i++) {
3109 err = get_user(addr, regs);
3113 if (!is_valid(dev_priv, addr)) {
3114 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3119 err = get_user(value, regs + 1);
3123 oa_regs[i].addr = _MMIO(addr);
3124 oa_regs[i].value = mask_reg_value(addr, value);
3133 return ERR_PTR(err);
3136 static ssize_t show_dynamic_id(struct device *dev,
3137 struct device_attribute *attr,
3140 struct i915_oa_config *oa_config =
3141 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3143 return sprintf(buf, "%d\n", oa_config->id);
3146 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3147 struct i915_oa_config *oa_config)
3149 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3150 oa_config->sysfs_metric_id.attr.name = "id";
3151 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3152 oa_config->sysfs_metric_id.show = show_dynamic_id;
3153 oa_config->sysfs_metric_id.store = NULL;
3155 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3156 oa_config->attrs[1] = NULL;
3158 oa_config->sysfs_metric.name = oa_config->uuid;
3159 oa_config->sysfs_metric.attrs = oa_config->attrs;
3161 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3162 &oa_config->sysfs_metric);
3166 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3168 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3169 * userspace (unvalidated)
3172 * Validates the submitted OA register to be saved into a new OA config that
3173 * can then be used for programming the OA unit and its NOA network.
3175 * Returns: A new allocated config number to be used with the perf open ioctl
3176 * or a negative error code on failure.
3178 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3179 struct drm_file *file)
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct drm_i915_perf_oa_config *args = data;
3183 struct i915_oa_config *oa_config, *tmp;
3186 if (!dev_priv->perf.initialized) {
3187 DRM_DEBUG("i915 perf interface not available for this system\n");
3191 if (!dev_priv->perf.metrics_kobj) {
3192 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3196 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3197 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3201 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3202 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3203 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3204 DRM_DEBUG("No OA registers given\n");
3208 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3210 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3214 atomic_set(&oa_config->ref_count, 1);
3216 if (!uuid_is_valid(args->uuid)) {
3217 DRM_DEBUG("Invalid uuid format for OA config\n");
3222 /* Last character in oa_config->uuid will be 0 because oa_config is
3225 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3227 oa_config->mux_regs_len = args->n_mux_regs;
3228 oa_config->mux_regs =
3229 alloc_oa_regs(dev_priv,
3230 dev_priv->perf.oa.ops.is_valid_mux_reg,
3231 u64_to_user_ptr(args->mux_regs_ptr),
3234 if (IS_ERR(oa_config->mux_regs)) {
3235 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3236 err = PTR_ERR(oa_config->mux_regs);
3240 oa_config->b_counter_regs_len = args->n_boolean_regs;
3241 oa_config->b_counter_regs =
3242 alloc_oa_regs(dev_priv,
3243 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3244 u64_to_user_ptr(args->boolean_regs_ptr),
3245 args->n_boolean_regs);
3247 if (IS_ERR(oa_config->b_counter_regs)) {
3248 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3249 err = PTR_ERR(oa_config->b_counter_regs);
3253 if (INTEL_GEN(dev_priv) < 8) {
3254 if (args->n_flex_regs != 0) {
3259 oa_config->flex_regs_len = args->n_flex_regs;
3260 oa_config->flex_regs =
3261 alloc_oa_regs(dev_priv,
3262 dev_priv->perf.oa.ops.is_valid_flex_reg,
3263 u64_to_user_ptr(args->flex_regs_ptr),
3266 if (IS_ERR(oa_config->flex_regs)) {
3267 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3268 err = PTR_ERR(oa_config->flex_regs);
3273 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3277 /* We shouldn't have too many configs, so this iteration shouldn't be
3280 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3281 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3282 DRM_DEBUG("OA config already exists with this uuid\n");
3288 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3290 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3294 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3295 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3298 if (oa_config->id < 0) {
3299 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3300 err = oa_config->id;
3304 mutex_unlock(&dev_priv->perf.metrics_lock);
3306 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3308 return oa_config->id;
3311 mutex_unlock(&dev_priv->perf.metrics_lock);
3313 put_oa_config(dev_priv, oa_config);
3314 DRM_DEBUG("Failed to add new OA config\n");
3319 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3321 * @data: ioctl data (pointer to u64 integer) copied from userspace
3324 * Configs can be removed while being used, the will stop appearing in sysfs
3325 * and their content will be freed when the stream using the config is closed.
3327 * Returns: 0 on success or a negative error code on failure.
3329 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file)
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3334 struct i915_oa_config *oa_config;
3337 if (!dev_priv->perf.initialized) {
3338 DRM_DEBUG("i915 perf interface not available for this system\n");
3342 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3343 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3347 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3351 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3353 DRM_DEBUG("Failed to remove unknown OA config\n");
3358 GEM_BUG_ON(*arg != oa_config->id);
3360 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3361 &oa_config->sysfs_metric);
3363 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3365 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3367 put_oa_config(dev_priv, oa_config);
3370 mutex_unlock(&dev_priv->perf.metrics_lock);
3375 static struct ctl_table oa_table[] = {
3377 .procname = "perf_stream_paranoid",
3378 .data = &i915_perf_stream_paranoid,
3379 .maxlen = sizeof(i915_perf_stream_paranoid),
3381 .proc_handler = proc_dointvec_minmax,
3386 .procname = "oa_max_sample_rate",
3387 .data = &i915_oa_max_sample_rate,
3388 .maxlen = sizeof(i915_oa_max_sample_rate),
3390 .proc_handler = proc_dointvec_minmax,
3392 .extra2 = &oa_sample_rate_hard_limit,
3397 static struct ctl_table i915_root[] = {
3407 static struct ctl_table dev_root[] = {
3418 * i915_perf_init - initialize i915-perf state on module load
3419 * @dev_priv: i915 device instance
3421 * Initializes i915-perf state without exposing anything to userspace.
3423 * Note: i915-perf initialization is split into an 'init' and 'register'
3424 * phase with the i915_perf_register() exposing state to userspace.
3426 void i915_perf_init(struct drm_i915_private *dev_priv)
3428 if (IS_HASWELL(dev_priv)) {
3429 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3430 gen7_is_valid_b_counter_addr;
3431 dev_priv->perf.oa.ops.is_valid_mux_reg =
3432 hsw_is_valid_mux_addr;
3433 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3434 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3435 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3436 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3437 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3438 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3439 dev_priv->perf.oa.ops.read = gen7_oa_read;
3440 dev_priv->perf.oa.ops.oa_hw_tail_read =
3441 gen7_oa_hw_tail_read;
3443 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3444 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3445 /* Note: that although we could theoretically also support the
3446 * legacy ringbuffer mode on BDW (and earlier iterations of
3447 * this driver, before upstreaming did this) it didn't seem
3448 * worth the complexity to maintain now that BDW+ enable
3449 * execlist mode by default.
3451 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3453 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3454 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3455 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3456 dev_priv->perf.oa.ops.read = gen8_oa_read;
3457 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3459 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3460 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3461 gen7_is_valid_b_counter_addr;
3462 dev_priv->perf.oa.ops.is_valid_mux_reg =
3463 gen8_is_valid_mux_addr;
3464 dev_priv->perf.oa.ops.is_valid_flex_reg =
3465 gen8_is_valid_flex_addr;
3467 if (IS_CHERRYVIEW(dev_priv)) {
3468 dev_priv->perf.oa.ops.is_valid_mux_reg =
3469 chv_is_valid_mux_addr;
3472 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3473 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3475 if (IS_GEN8(dev_priv)) {
3476 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3477 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3479 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3481 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3482 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3484 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3486 } else if (IS_GEN(dev_priv, 10, 11)) {
3487 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3488 gen7_is_valid_b_counter_addr;
3489 dev_priv->perf.oa.ops.is_valid_mux_reg =
3490 gen10_is_valid_mux_addr;
3491 dev_priv->perf.oa.ops.is_valid_flex_reg =
3492 gen8_is_valid_flex_addr;
3494 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3495 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3497 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3498 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3500 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3504 if (dev_priv->perf.oa.ops.enable_metric_set) {
3505 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3506 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3507 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3508 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3510 INIT_LIST_HEAD(&dev_priv->perf.streams);
3511 mutex_init(&dev_priv->perf.lock);
3512 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3514 oa_sample_rate_hard_limit = 1000 *
3515 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3516 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3518 mutex_init(&dev_priv->perf.metrics_lock);
3519 idr_init(&dev_priv->perf.metrics_idr);
3521 dev_priv->perf.initialized = true;
3525 static int destroy_config(int id, void *p, void *data)
3527 struct drm_i915_private *dev_priv = data;
3528 struct i915_oa_config *oa_config = p;
3530 put_oa_config(dev_priv, oa_config);
3536 * i915_perf_fini - Counter part to i915_perf_init()
3537 * @dev_priv: i915 device instance
3539 void i915_perf_fini(struct drm_i915_private *dev_priv)
3541 if (!dev_priv->perf.initialized)
3544 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3545 idr_destroy(&dev_priv->perf.metrics_idr);
3547 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3549 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3551 dev_priv->perf.initialized = false;