2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
38 struct intel_wait *wait;
39 unsigned int result = 0;
41 lockdep_assert_held(&b->irq_lock);
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
55 bool was_asleep = task_asleep(wait->tsk);
57 result = ENGINE_WAKEUP_WAITER;
58 if (wake_up_process(wait->tsk) && was_asleep)
59 result |= ENGINE_WAKEUP_ASLEEP;
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
67 struct intel_breadcrumbs *b = &engine->breadcrumbs;
71 spin_lock_irqsave(&b->irq_lock, flags);
72 result = __intel_breadcrumbs_wakeup(b);
73 spin_unlock_irqrestore(&b->irq_lock, flags);
78 static unsigned long wait_timeout(void)
80 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
85 if (GEM_SHOW_DEBUG()) {
86 struct drm_printer p = drm_debug_printer(__func__);
88 intel_engine_dump(engine, &p,
89 "%s missed breadcrumb at %pS\n",
90 engine->name, __builtin_return_address(0));
93 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
98 struct intel_engine_cs *engine =
99 from_timer(engine, t, breadcrumbs.hangcheck);
100 struct intel_breadcrumbs *b = &engine->breadcrumbs;
105 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107 mod_timer(&b->hangcheck, wait_timeout());
111 /* We keep the hangcheck timer alive until we disarm the irq, even
112 * if there are no waiters at present.
114 * If the waiter was currently running, assume it hasn't had a chance
115 * to process the pending interrupt (e.g, low priority task on a loaded
116 * system) and wait until it sleeps before declaring a missed interrupt.
118 * If the waiter was asleep (and not even pending a wakeup), then we
119 * must have missed an interrupt as the GPU has stopped advancing
120 * but we still have a waiter. Assuming all batches complete within
121 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
123 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124 missed_breadcrumb(engine);
125 mod_timer(&b->fake_irq, jiffies + 1);
127 mod_timer(&b->hangcheck, wait_timeout());
131 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
133 struct intel_engine_cs *engine =
134 from_timer(engine, t, breadcrumbs.fake_irq);
135 struct intel_breadcrumbs *b = &engine->breadcrumbs;
138 * The timer persists in case we cannot enable interrupts,
139 * or if we have previously seen seqno/interrupt incoherency
140 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
141 * Here the worker will wake up every jiffie in order to kick the
142 * oldest waiter to do the coherent seqno check.
145 spin_lock_irq(&b->irq_lock);
146 if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
147 __intel_engine_disarm_breadcrumbs(engine);
148 spin_unlock_irq(&b->irq_lock);
152 /* If the user has disabled the fake-irq, restore the hangchecking */
153 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) {
154 mod_timer(&b->hangcheck, wait_timeout());
158 mod_timer(&b->fake_irq, jiffies + 1);
161 static void irq_enable(struct intel_engine_cs *engine)
164 * FIXME: Ideally we want this on the API boundary, but for the
165 * sake of testing with mock breadcrumbs (no HW so unable to
166 * enable irqs) we place it deep within the bowels, at the point
169 GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
171 /* Enabling the IRQ may miss the generation of the interrupt, but
172 * we still need to force the barrier before reading the seqno,
175 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
177 /* Caller disables interrupts */
178 if (engine->irq_enable) {
179 spin_lock(&engine->i915->irq_lock);
180 engine->irq_enable(engine);
181 spin_unlock(&engine->i915->irq_lock);
185 static void irq_disable(struct intel_engine_cs *engine)
187 /* Caller disables interrupts */
188 if (engine->irq_disable) {
189 spin_lock(&engine->i915->irq_lock);
190 engine->irq_disable(engine);
191 spin_unlock(&engine->i915->irq_lock);
195 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
197 struct intel_breadcrumbs *b = &engine->breadcrumbs;
199 lockdep_assert_held(&b->irq_lock);
200 GEM_BUG_ON(b->irq_wait);
201 GEM_BUG_ON(!b->irq_armed);
203 GEM_BUG_ON(!b->irq_enabled);
204 if (!--b->irq_enabled)
207 b->irq_armed = false;
210 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
212 struct intel_breadcrumbs *b = &engine->breadcrumbs;
214 spin_lock_irq(&b->irq_lock);
215 if (!b->irq_enabled++)
217 GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
218 spin_unlock_irq(&b->irq_lock);
221 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
223 struct intel_breadcrumbs *b = &engine->breadcrumbs;
225 spin_lock_irq(&b->irq_lock);
226 GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
227 if (!--b->irq_enabled)
229 spin_unlock_irq(&b->irq_lock);
232 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
234 struct intel_breadcrumbs *b = &engine->breadcrumbs;
235 struct intel_wait *wait, *n;
241 * We only disarm the irq when we are idle (all requests completed),
242 * so if the bottom-half remains asleep, it missed the request
245 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
246 missed_breadcrumb(engine);
248 spin_lock_irq(&b->rb_lock);
250 spin_lock(&b->irq_lock);
253 __intel_engine_disarm_breadcrumbs(engine);
254 spin_unlock(&b->irq_lock);
256 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
257 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
259 RB_CLEAR_NODE(&wait->node);
260 wake_up_process(wait->tsk);
262 b->waiters = RB_ROOT;
264 spin_unlock_irq(&b->rb_lock);
267 static bool use_fake_irq(const struct intel_breadcrumbs *b)
269 const struct intel_engine_cs *engine =
270 container_of(b, struct intel_engine_cs, breadcrumbs);
272 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
275 /* Only start with the heavy weight fake irq timer if we have not
276 * seen any interrupts since enabling it the first time. If the
277 * interrupts are still arriving, it means we made a mistake in our
278 * engine->seqno_barrier(), a timing error that should be transient
279 * and unlikely to reoccur.
281 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
284 static void enable_fake_irq(struct intel_breadcrumbs *b)
286 /* Ensure we never sleep indefinitely */
287 if (!b->irq_enabled || use_fake_irq(b))
288 mod_timer(&b->fake_irq, jiffies + 1);
290 mod_timer(&b->hangcheck, wait_timeout());
293 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
295 struct intel_engine_cs *engine =
296 container_of(b, struct intel_engine_cs, breadcrumbs);
297 struct drm_i915_private *i915 = engine->i915;
300 lockdep_assert_held(&b->irq_lock);
304 /* The breadcrumb irq will be disarmed on the interrupt after the
305 * waiters are signaled. This gives us a single interrupt window in
306 * which we can add a new waiter and avoid the cost of re-enabling
311 if (I915_SELFTEST_ONLY(b->mock)) {
312 /* For our mock objects we want to avoid interaction
313 * with the real hardware (which is not set up). So
314 * we simply pretend we have enabled the powerwell
315 * and the irq, and leave it up to the mock
316 * implementation to call intel_engine_wakeup()
317 * itself when it wants to simulate a user interrupt,
322 /* Since we are waiting on a request, the GPU should be busy
323 * and should have its own rpm reference. This is tracked
324 * by i915->gt.awake, we can forgo holding our own wakref
325 * for the interrupt as before i915->gt.awake is released (when
326 * the driver is idle) we disarm the breadcrumbs.
329 /* No interrupts? Kick the waiter every jiffie! */
331 if (!b->irq_enabled++ &&
332 !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
341 static inline struct intel_wait *to_wait(struct rb_node *node)
343 return rb_entry(node, struct intel_wait, node);
346 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
347 struct intel_wait *wait)
349 lockdep_assert_held(&b->rb_lock);
350 GEM_BUG_ON(b->irq_wait == wait);
353 * This request is completed, so remove it from the tree, mark it as
354 * complete, and *then* wake up the associated task. N.B. when the
355 * task wakes up, it will find the empty rb_node, discern that it
356 * has already been removed from the tree and skip the serialisation
357 * of the b->rb_lock and b->irq_lock. This means that the destruction
358 * of the intel_wait is not serialised with the interrupt handler
359 * by the waiter - it must instead be serialised by the caller.
361 rb_erase(&wait->node, &b->waiters);
362 RB_CLEAR_NODE(&wait->node);
364 if (wait->tsk->state != TASK_RUNNING)
365 wake_up_process(wait->tsk); /* implicit smp_wmb() */
368 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
369 struct rb_node *next)
371 struct intel_breadcrumbs *b = &engine->breadcrumbs;
373 spin_lock(&b->irq_lock);
374 GEM_BUG_ON(!b->irq_armed);
375 GEM_BUG_ON(!b->irq_wait);
376 b->irq_wait = to_wait(next);
377 spin_unlock(&b->irq_lock);
379 /* We always wake up the next waiter that takes over as the bottom-half
380 * as we may delegate not only the irq-seqno barrier to the next waiter
381 * but also the task of waking up concurrent waiters.
384 wake_up_process(to_wait(next)->tsk);
387 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
388 struct intel_wait *wait)
390 struct intel_breadcrumbs *b = &engine->breadcrumbs;
391 struct rb_node **p, *parent, *completed;
395 GEM_BUG_ON(!wait->seqno);
397 /* Insert the request into the retirement ordered list
398 * of waiters by walking the rbtree. If we are the oldest
399 * seqno in the tree (the first to be retired), then
400 * set ourselves as the bottom-half.
402 * As we descend the tree, prune completed branches since we hold the
403 * spinlock we know that the first_waiter must be delayed and can
404 * reduce some of the sequential wake up latency if we take action
405 * ourselves and wake up the completed tasks in parallel. Also, by
406 * removing stale elements in the tree, we may be able to reduce the
407 * ping-pong between the old bottom-half and ourselves as first-waiter.
413 seqno = intel_engine_get_seqno(engine);
415 /* If the request completed before we managed to grab the spinlock,
416 * return now before adding ourselves to the rbtree. We let the
417 * current bottom-half handle any pending wakeups and instead
418 * try and get out of the way quickly.
420 if (i915_seqno_passed(seqno, wait->seqno)) {
421 RB_CLEAR_NODE(&wait->node);
425 p = &b->waiters.rb_node;
428 if (wait->seqno == to_wait(parent)->seqno) {
429 /* We have multiple waiters on the same seqno, select
430 * the highest priority task (that with the smallest
431 * task->prio) to serve as the bottom-half for this
434 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
435 p = &parent->rb_right;
438 p = &parent->rb_left;
440 } else if (i915_seqno_passed(wait->seqno,
441 to_wait(parent)->seqno)) {
442 p = &parent->rb_right;
443 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
448 p = &parent->rb_left;
451 rb_link_node(&wait->node, parent, p);
452 rb_insert_color(&wait->node, &b->waiters);
455 spin_lock(&b->irq_lock);
457 /* After assigning ourselves as the new bottom-half, we must
458 * perform a cursory check to prevent a missed interrupt.
459 * Either we miss the interrupt whilst programming the hardware,
460 * or if there was a previous waiter (for a later seqno) they
461 * may be woken instead of us (due to the inherent race
462 * in the unlocked read of b->irq_seqno_bh in the irq handler)
463 * and so we miss the wake up.
465 armed = __intel_breadcrumbs_enable_irq(b);
466 spin_unlock(&b->irq_lock);
470 /* Advance the bottom-half (b->irq_wait) before we wake up
471 * the waiters who may scribble over their intel_wait
472 * just as the interrupt handler is dereferencing it via
476 struct rb_node *next = rb_next(completed);
477 GEM_BUG_ON(next == &wait->node);
478 __intel_breadcrumbs_next(engine, next);
482 struct intel_wait *crumb = to_wait(completed);
483 completed = rb_prev(completed);
484 __intel_breadcrumbs_finish(b, crumb);
488 GEM_BUG_ON(!b->irq_wait);
489 GEM_BUG_ON(!b->irq_armed);
490 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
495 bool intel_engine_add_wait(struct intel_engine_cs *engine,
496 struct intel_wait *wait)
498 struct intel_breadcrumbs *b = &engine->breadcrumbs;
501 spin_lock_irq(&b->rb_lock);
502 armed = __intel_engine_add_wait(engine, wait);
503 spin_unlock_irq(&b->rb_lock);
507 /* Make the caller recheck if its request has already started. */
508 return i915_seqno_passed(intel_engine_get_seqno(engine),
512 static inline bool chain_wakeup(struct rb_node *rb, int priority)
514 return rb && to_wait(rb)->tsk->prio <= priority;
517 static inline int wakeup_priority(struct intel_breadcrumbs *b,
518 struct task_struct *tsk)
520 if (tsk == b->signaler)
526 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
527 struct intel_wait *wait)
529 struct intel_breadcrumbs *b = &engine->breadcrumbs;
531 lockdep_assert_held(&b->rb_lock);
533 if (RB_EMPTY_NODE(&wait->node))
536 if (b->irq_wait == wait) {
537 const int priority = wakeup_priority(b, wait->tsk);
538 struct rb_node *next;
540 /* We are the current bottom-half. Find the next candidate,
541 * the first waiter in the queue on the remaining oldest
542 * request. As multiple seqnos may complete in the time it
543 * takes us to wake up and find the next waiter, we have to
544 * wake up that waiter for it to perform its own coherent
547 next = rb_next(&wait->node);
548 if (chain_wakeup(next, priority)) {
549 /* If the next waiter is already complete,
550 * wake it up and continue onto the next waiter. So
551 * if have a small herd, they will wake up in parallel
552 * rather than sequentially, which should reduce
553 * the overall latency in waking all the completed
556 * However, waking up a chain adds extra latency to
557 * the first_waiter. This is undesirable if that
558 * waiter is a high priority task.
560 u32 seqno = intel_engine_get_seqno(engine);
562 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
563 struct rb_node *n = rb_next(next);
565 __intel_breadcrumbs_finish(b, to_wait(next));
567 if (!chain_wakeup(next, priority))
572 __intel_breadcrumbs_next(engine, next);
574 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
577 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
578 rb_erase(&wait->node, &b->waiters);
579 RB_CLEAR_NODE(&wait->node);
582 GEM_BUG_ON(b->irq_wait == wait);
583 GEM_BUG_ON(rb_first(&b->waiters) !=
584 (b->irq_wait ? &b->irq_wait->node : NULL));
587 void intel_engine_remove_wait(struct intel_engine_cs *engine,
588 struct intel_wait *wait)
590 struct intel_breadcrumbs *b = &engine->breadcrumbs;
592 /* Quick check to see if this waiter was already decoupled from
593 * the tree by the bottom-half to avoid contention on the spinlock
596 if (RB_EMPTY_NODE(&wait->node)) {
597 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
601 spin_lock_irq(&b->rb_lock);
602 __intel_engine_remove_wait(engine, wait);
603 spin_unlock_irq(&b->rb_lock);
606 static void signaler_set_rtpriority(void)
608 struct sched_param param = { .sched_priority = 1 };
610 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
613 static int intel_breadcrumbs_signaler(void *arg)
615 struct intel_engine_cs *engine = arg;
616 struct intel_breadcrumbs *b = &engine->breadcrumbs;
617 struct i915_request *rq, *n;
619 /* Install ourselves with high priority to reduce signalling latency */
620 signaler_set_rtpriority();
623 bool do_schedule = true;
627 set_current_state(TASK_INTERRUPTIBLE);
628 if (list_empty(&b->signals))
632 * We are either woken up by the interrupt bottom-half,
633 * or by a client adding a new signaller. In both cases,
634 * the GPU seqno may have advanced beyond our oldest signal.
635 * If it has, propagate the signal, remove the waiter and
636 * check again with the next oldest signal. Otherwise we
637 * need to wait for a new interrupt from the GPU or for
640 seqno = intel_engine_get_seqno(engine);
642 spin_lock_irq(&b->rb_lock);
643 list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
644 u32 this = rq->signaling.wait.seqno;
646 GEM_BUG_ON(!rq->signaling.wait.seqno);
648 if (!i915_seqno_passed(seqno, this))
651 if (likely(this == i915_request_global_seqno(rq))) {
652 __intel_engine_remove_wait(engine,
653 &rq->signaling.wait);
655 rq->signaling.wait.seqno = 0;
656 __list_del_entry(&rq->signaling.link);
658 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
660 list_add_tail(&rq->signaling.link,
662 i915_request_get(rq);
666 spin_unlock_irq(&b->rb_lock);
668 if (!list_empty(&list)) {
670 list_for_each_entry_safe(rq, n, &list, signaling.link) {
671 dma_fence_signal(&rq->fence);
672 GEM_BUG_ON(!i915_request_completed(rq));
673 i915_request_put(rq);
675 local_bh_enable(); /* kick start the tasklets */
678 * If the engine is saturated we may be continually
679 * processing completed requests. This angers the
680 * NMI watchdog if we never let anything else
681 * have access to the CPU. Let's pretend to be nice
682 * and relinquish the CPU if we burn through the
683 * entire RT timeslice!
685 do_schedule = need_resched();
688 if (unlikely(do_schedule)) {
689 /* Before we sleep, check for a missed seqno */
690 if (current->state & TASK_NORMAL &&
691 !list_empty(&b->signals) &&
692 engine->irq_seqno_barrier &&
693 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
694 &engine->irq_posted)) {
695 engine->irq_seqno_barrier(engine);
696 intel_engine_wakeup(engine);
700 if (kthread_should_park())
703 if (unlikely(kthread_should_stop()))
709 __set_current_state(TASK_RUNNING);
714 static void insert_signal(struct intel_breadcrumbs *b,
715 struct i915_request *request,
718 struct i915_request *iter;
720 lockdep_assert_held(&b->rb_lock);
723 * A reasonable assumption is that we are called to add signals
724 * in sequence, as the requests are submitted for execution and
725 * assigned a global_seqno. This will be the case for the majority
726 * of internally generated signals (inter-engine signaling).
728 * Out of order waiters triggering random signaling enabling will
729 * be more problematic, but hopefully rare enough and the list
730 * small enough that the O(N) insertion sort is not an issue.
733 list_for_each_entry_reverse(iter, &b->signals, signaling.link)
734 if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
737 list_add(&request->signaling.link, &iter->signaling.link);
740 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
742 struct intel_engine_cs *engine = request->engine;
743 struct intel_breadcrumbs *b = &engine->breadcrumbs;
744 struct intel_wait *wait = &request->signaling.wait;
748 * Note that we may be called from an interrupt handler on another
749 * device (e.g. nouveau signaling a fence completion causing us
750 * to submit a request, and so enable signaling). As such,
751 * we need to make sure that all other users of b->rb_lock protect
752 * against interrupts, i.e. use spin_lock_irqsave.
755 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
756 GEM_BUG_ON(!irqs_disabled());
757 lockdep_assert_held(&request->lock);
759 seqno = i915_request_global_seqno(request);
760 if (!seqno) /* will be enabled later upon execution */
763 GEM_BUG_ON(wait->seqno);
764 wait->tsk = b->signaler;
765 wait->request = request;
769 * Add ourselves into the list of waiters, but registering our
770 * bottom-half as the signaller thread. As per usual, only the oldest
771 * waiter (not just signaller) is tasked as the bottom-half waking
772 * up all completed waiters after the user interrupt.
774 * If we are the oldest waiter, enable the irq (after which we
775 * must double check that the seqno did not complete).
777 spin_lock(&b->rb_lock);
778 insert_signal(b, request, seqno);
779 wakeup &= __intel_engine_add_wait(engine, wait);
780 spin_unlock(&b->rb_lock);
783 wake_up_process(b->signaler);
784 return !intel_wait_complete(wait);
790 void intel_engine_cancel_signaling(struct i915_request *request)
792 struct intel_engine_cs *engine = request->engine;
793 struct intel_breadcrumbs *b = &engine->breadcrumbs;
795 GEM_BUG_ON(!irqs_disabled());
796 lockdep_assert_held(&request->lock);
798 if (!READ_ONCE(request->signaling.wait.seqno))
801 spin_lock(&b->rb_lock);
802 __intel_engine_remove_wait(engine, &request->signaling.wait);
803 if (fetch_and_zero(&request->signaling.wait.seqno))
804 __list_del_entry(&request->signaling.link);
805 spin_unlock(&b->rb_lock);
808 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
810 struct intel_breadcrumbs *b = &engine->breadcrumbs;
811 struct task_struct *tsk;
813 spin_lock_init(&b->rb_lock);
814 spin_lock_init(&b->irq_lock);
816 timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
817 timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
819 INIT_LIST_HEAD(&b->signals);
821 /* Spawn a thread to provide a common bottom-half for all signals.
822 * As this is an asynchronous interface we cannot steal the current
823 * task for handling the bottom-half to the user interrupt, therefore
824 * we create a thread to do the coherent seqno dance after the
825 * interrupt and then signal the waitqueue (via the dma-buf/fence).
827 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
828 "i915/signal:%d", engine->id);
837 static void cancel_fake_irq(struct intel_engine_cs *engine)
839 struct intel_breadcrumbs *b = &engine->breadcrumbs;
841 del_timer_sync(&b->fake_irq); /* may queue b->hangcheck */
842 del_timer_sync(&b->hangcheck);
843 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
846 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
848 struct intel_breadcrumbs *b = &engine->breadcrumbs;
850 spin_lock_irq(&b->irq_lock);
853 * Leave the fake_irq timer enabled (if it is running), but clear the
854 * bit so that it turns itself off on its next wake up and goes back
855 * to the long hangcheck interval if still required.
857 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
865 * We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
866 * GPU is active and may have already executed the MI_USER_INTERRUPT
867 * before the CPU is ready to receive. However, the engine is currently
868 * idle (we haven't started it yet), there is no possibility for a
869 * missed interrupt as we enabled the irq and so we can clear the
870 * immediate wakeup (until a real interrupt arrives for the waiter).
872 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
874 spin_unlock_irq(&b->irq_lock);
877 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
879 struct intel_breadcrumbs *b = &engine->breadcrumbs;
881 /* The engines should be idle and all requests accounted for! */
882 WARN_ON(READ_ONCE(b->irq_wait));
883 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
884 WARN_ON(!list_empty(&b->signals));
886 if (!IS_ERR_OR_NULL(b->signaler))
887 kthread_stop(b->signaler);
889 cancel_fake_irq(engine);
892 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
893 #include "selftests/intel_breadcrumbs.c"