1 // SPDX-License-Identifier: GPL-2.0-only
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct address_space *mapping)
110 if (vma_is_shared_maywrite(vma))
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, mapping);
130 i_mmap_unlock_write(mapping);
134 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
139 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
141 struct address_space *mapping;
144 mapping = vb->vmas[0]->vm_file->f_mapping;
145 i_mmap_lock_write(mapping);
146 for (i = 0; i < vb->count; i++) {
147 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
148 __remove_shared_vm_struct(vb->vmas[i], mapping);
150 i_mmap_unlock_write(mapping);
152 unlink_file_vma_batch_init(vb);
155 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
156 struct vm_area_struct *vma)
158 if (vma->vm_file == NULL)
161 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
162 vb->count == ARRAY_SIZE(vb->vmas))
163 unlink_file_vma_batch_process(vb);
165 vb->vmas[vb->count] = vma;
169 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
172 unlink_file_vma_batch_process(vb);
176 * Close a vm structure and free it.
178 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
181 if (vma->vm_ops && vma->vm_ops->close)
182 vma->vm_ops->close(vma);
185 mpol_put(vma_policy(vma));
192 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
195 return mas_prev(&vmi->mas, min);
199 * check_brk_limits() - Use platform specific check of range & verify mlock
201 * @addr: The address to check
202 * @len: The size of increase.
204 * Return: 0 on success.
206 static int check_brk_limits(unsigned long addr, unsigned long len)
208 unsigned long mapped_addr;
210 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
211 if (IS_ERR_VALUE(mapped_addr))
214 return mlock_future_ok(current->mm, current->mm->def_flags, len)
217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
218 unsigned long addr, unsigned long request, unsigned long flags);
219 SYSCALL_DEFINE1(brk, unsigned long, brk)
221 unsigned long newbrk, oldbrk, origbrk;
222 struct mm_struct *mm = current->mm;
223 struct vm_area_struct *brkvma, *next = NULL;
224 unsigned long min_brk;
225 bool populate = false;
227 struct vma_iterator vmi;
229 if (mmap_write_lock_killable(mm))
234 #ifdef CONFIG_COMPAT_BRK
236 * CONFIG_COMPAT_BRK can still be overridden by setting
237 * randomize_va_space to 2, which will still cause mm->start_brk
238 * to be arbitrarily shifted
240 if (current->brk_randomized)
241 min_brk = mm->start_brk;
243 min_brk = mm->end_data;
245 min_brk = mm->start_brk;
251 * Check against rlimit here. If this check is done later after the test
252 * of oldbrk with newbrk then it can escape the test and let the data
253 * segment grow beyond its set limit the in case where the limit is
254 * not page aligned -Ram Gupta
256 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
257 mm->end_data, mm->start_data))
260 newbrk = PAGE_ALIGN(brk);
261 oldbrk = PAGE_ALIGN(mm->brk);
262 if (oldbrk == newbrk) {
267 /* Always allow shrinking brk. */
268 if (brk <= mm->brk) {
269 /* Search one past newbrk */
270 vma_iter_init(&vmi, mm, newbrk);
271 brkvma = vma_find(&vmi, oldbrk);
272 if (!brkvma || brkvma->vm_start >= oldbrk)
273 goto out; /* mapping intersects with an existing non-brk vma. */
275 * mm->brk must be protected by write mmap_lock.
276 * do_vma_munmap() will drop the lock on success, so update it
277 * before calling do_vma_munmap().
280 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
283 goto success_unlocked;
286 if (check_brk_limits(oldbrk, newbrk - oldbrk))
290 * Only check if the next VMA is within the stack_guard_gap of the
293 vma_iter_init(&vmi, mm, oldbrk);
294 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
295 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
298 brkvma = vma_prev_limit(&vmi, mm->start_brk);
299 /* Ok, looks good - let it rip. */
300 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
304 if (mm->def_flags & VM_LOCKED)
308 mmap_write_unlock(mm);
310 userfaultfd_unmap_complete(mm, &uf);
312 mm_populate(oldbrk, newbrk - oldbrk);
317 mmap_write_unlock(mm);
321 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
322 static void validate_mm(struct mm_struct *mm)
326 struct vm_area_struct *vma;
327 VMA_ITERATOR(vmi, mm, 0);
329 mt_validate(&mm->mm_mt);
330 for_each_vma(vmi, vma) {
331 #ifdef CONFIG_DEBUG_VM_RB
332 struct anon_vma *anon_vma = vma->anon_vma;
333 struct anon_vma_chain *avc;
335 unsigned long vmi_start, vmi_end;
338 vmi_start = vma_iter_addr(&vmi);
339 vmi_end = vma_iter_end(&vmi);
340 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
343 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
347 pr_emerg("issue in %s\n", current->comm);
350 pr_emerg("tree range: %px start %lx end %lx\n", vma,
351 vmi_start, vmi_end - 1);
352 vma_iter_dump_tree(&vmi);
355 #ifdef CONFIG_DEBUG_VM_RB
357 anon_vma_lock_read(anon_vma);
358 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
359 anon_vma_interval_tree_verify(avc);
360 anon_vma_unlock_read(anon_vma);
365 if (i != mm->map_count) {
366 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
369 VM_BUG_ON_MM(bug, mm);
372 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
373 #define validate_mm(mm) do { } while (0)
374 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
377 * vma has some anon_vma assigned, and is already inserted on that
378 * anon_vma's interval trees.
380 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
381 * vma must be removed from the anon_vma's interval trees using
382 * anon_vma_interval_tree_pre_update_vma().
384 * After the update, the vma will be reinserted using
385 * anon_vma_interval_tree_post_update_vma().
387 * The entire update must be protected by exclusive mmap_lock and by
388 * the root anon_vma's mutex.
391 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
393 struct anon_vma_chain *avc;
395 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
396 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
400 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
402 struct anon_vma_chain *avc;
404 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
405 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
408 static unsigned long count_vma_pages_range(struct mm_struct *mm,
409 unsigned long addr, unsigned long end)
411 VMA_ITERATOR(vmi, mm, addr);
412 struct vm_area_struct *vma;
413 unsigned long nr_pages = 0;
415 for_each_vma_range(vmi, vma, end) {
416 unsigned long vm_start = max(addr, vma->vm_start);
417 unsigned long vm_end = min(end, vma->vm_end);
419 nr_pages += PHYS_PFN(vm_end - vm_start);
425 static void __vma_link_file(struct vm_area_struct *vma,
426 struct address_space *mapping)
428 if (vma_is_shared_maywrite(vma))
429 mapping_allow_writable(mapping);
431 flush_dcache_mmap_lock(mapping);
432 vma_interval_tree_insert(vma, &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
436 static void vma_link_file(struct vm_area_struct *vma)
438 struct file *file = vma->vm_file;
439 struct address_space *mapping;
442 mapping = file->f_mapping;
443 i_mmap_lock_write(mapping);
444 __vma_link_file(vma, mapping);
445 i_mmap_unlock_write(mapping);
449 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
451 VMA_ITERATOR(vmi, mm, 0);
453 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
454 if (vma_iter_prealloc(&vmi, vma))
457 vma_start_write(vma);
458 vma_iter_store(&vmi, vma);
466 * init_multi_vma_prep() - Initializer for struct vma_prepare
467 * @vp: The vma_prepare struct
468 * @vma: The vma that will be altered once locked
469 * @next: The next vma if it is to be adjusted
470 * @remove: The first vma to be removed
471 * @remove2: The second vma to be removed
473 static inline void init_multi_vma_prep(struct vma_prepare *vp,
474 struct vm_area_struct *vma, struct vm_area_struct *next,
475 struct vm_area_struct *remove, struct vm_area_struct *remove2)
477 memset(vp, 0, sizeof(struct vma_prepare));
479 vp->anon_vma = vma->anon_vma;
481 vp->remove2 = remove2;
483 if (!vp->anon_vma && next)
484 vp->anon_vma = next->anon_vma;
486 vp->file = vma->vm_file;
488 vp->mapping = vma->vm_file->f_mapping;
493 * init_vma_prep() - Initializer wrapper for vma_prepare struct
494 * @vp: The vma_prepare struct
495 * @vma: The vma that will be altered once locked
497 static inline void init_vma_prep(struct vma_prepare *vp,
498 struct vm_area_struct *vma)
500 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
505 * vma_prepare() - Helper function for handling locking VMAs prior to altering
506 * @vp: The initialized vma_prepare struct
508 static inline void vma_prepare(struct vma_prepare *vp)
511 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
514 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
515 vp->adj_next->vm_end);
517 i_mmap_lock_write(vp->mapping);
518 if (vp->insert && vp->insert->vm_file) {
520 * Put into interval tree now, so instantiated pages
521 * are visible to arm/parisc __flush_dcache_page
522 * throughout; but we cannot insert into address
523 * space until vma start or end is updated.
525 __vma_link_file(vp->insert,
526 vp->insert->vm_file->f_mapping);
531 anon_vma_lock_write(vp->anon_vma);
532 anon_vma_interval_tree_pre_update_vma(vp->vma);
534 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
538 flush_dcache_mmap_lock(vp->mapping);
539 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
541 vma_interval_tree_remove(vp->adj_next,
542 &vp->mapping->i_mmap);
548 * vma_complete- Helper function for handling the unlocking after altering VMAs,
549 * or for inserting a VMA.
551 * @vp: The vma_prepare struct
552 * @vmi: The vma iterator
555 static inline void vma_complete(struct vma_prepare *vp,
556 struct vma_iterator *vmi, struct mm_struct *mm)
560 vma_interval_tree_insert(vp->adj_next,
561 &vp->mapping->i_mmap);
562 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
563 flush_dcache_mmap_unlock(vp->mapping);
566 if (vp->remove && vp->file) {
567 __remove_shared_vm_struct(vp->remove, vp->mapping);
569 __remove_shared_vm_struct(vp->remove2, vp->mapping);
570 } else if (vp->insert) {
572 * split_vma has split insert from vma, and needs
573 * us to insert it before dropping the locks
574 * (it may either follow vma or precede it).
576 vma_iter_store(vmi, vp->insert);
581 anon_vma_interval_tree_post_update_vma(vp->vma);
583 anon_vma_interval_tree_post_update_vma(vp->adj_next);
584 anon_vma_unlock_write(vp->anon_vma);
588 i_mmap_unlock_write(vp->mapping);
589 uprobe_mmap(vp->vma);
592 uprobe_mmap(vp->adj_next);
597 vma_mark_detached(vp->remove, true);
599 uprobe_munmap(vp->remove, vp->remove->vm_start,
603 if (vp->remove->anon_vma)
604 anon_vma_merge(vp->vma, vp->remove);
606 mpol_put(vma_policy(vp->remove));
608 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
609 vm_area_free(vp->remove);
612 * In mprotect's case 6 (see comments on vma_merge),
613 * we are removing both mid and next vmas
616 vp->remove = vp->remove2;
621 if (vp->insert && vp->file)
622 uprobe_mmap(vp->insert);
627 * dup_anon_vma() - Helper function to duplicate anon_vma
628 * @dst: The destination VMA
629 * @src: The source VMA
630 * @dup: Pointer to the destination VMA when successful.
632 * Returns: 0 on success.
634 static inline int dup_anon_vma(struct vm_area_struct *dst,
635 struct vm_area_struct *src, struct vm_area_struct **dup)
638 * Easily overlooked: when mprotect shifts the boundary, make sure the
639 * expanding vma has anon_vma set if the shrinking vma had, to cover any
640 * anon pages imported.
642 if (src->anon_vma && !dst->anon_vma) {
645 vma_assert_write_locked(dst);
646 dst->anon_vma = src->anon_vma;
647 ret = anon_vma_clone(dst, src);
658 * vma_expand - Expand an existing VMA
660 * @vmi: The vma iterator
661 * @vma: The vma to expand
662 * @start: The start of the vma
663 * @end: The exclusive end of the vma
664 * @pgoff: The page offset of vma
665 * @next: The current of next vma.
667 * Expand @vma to @start and @end. Can expand off the start and end. Will
668 * expand over @next if it's different from @vma and @end == @next->vm_end.
669 * Checking if the @vma can expand and merge with @next needs to be handled by
672 * Returns: 0 on success
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675 unsigned long start, unsigned long end, pgoff_t pgoff,
676 struct vm_area_struct *next)
678 struct vm_area_struct *anon_dup = NULL;
679 bool remove_next = false;
680 struct vma_prepare vp;
682 vma_start_write(vma);
683 if (next && (vma != next) && (end == next->vm_end)) {
687 vma_start_write(next);
688 ret = dup_anon_vma(vma, next, &anon_dup);
693 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
694 /* Not merging but overwriting any part of next is not handled. */
695 VM_WARN_ON(next && !vp.remove &&
696 next != vma && end > next->vm_start);
697 /* Only handles expanding */
698 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
700 /* Note: vma iterator must be pointing to 'start' */
701 vma_iter_config(vmi, start, end);
702 if (vma_iter_prealloc(vmi, vma))
706 vma_adjust_trans_huge(vma, start, end, 0);
707 vma_set_range(vma, start, end, pgoff);
708 vma_iter_store(vmi, vma);
710 vma_complete(&vp, vmi, vma->vm_mm);
715 unlink_anon_vmas(anon_dup);
720 * vma_shrink() - Reduce an existing VMAs memory area
721 * @vmi: The vma iterator
722 * @vma: The VMA to modify
723 * @start: The new start
726 * Returns: 0 on success, -ENOMEM otherwise
728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
729 unsigned long start, unsigned long end, pgoff_t pgoff)
731 struct vma_prepare vp;
733 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
735 if (vma->vm_start < start)
736 vma_iter_config(vmi, vma->vm_start, start);
738 vma_iter_config(vmi, end, vma->vm_end);
740 if (vma_iter_prealloc(vmi, NULL))
743 vma_start_write(vma);
745 init_vma_prep(&vp, vma);
747 vma_adjust_trans_huge(vma, start, end, 0);
750 vma_set_range(vma, start, end, pgoff);
751 vma_complete(&vp, vmi, vma->vm_mm);
756 * If the vma has a ->close operation then the driver probably needs to release
757 * per-vma resources, so we don't attempt to merge those if the caller indicates
758 * the current vma may be removed as part of the merge.
760 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
761 struct file *file, unsigned long vm_flags,
762 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
763 struct anon_vma_name *anon_name, bool may_remove_vma)
766 * VM_SOFTDIRTY should not prevent from VMA merging, if we
767 * match the flags but dirty bit -- the caller should mark
768 * merged VMA as dirty. If dirty bit won't be excluded from
769 * comparison, we increase pressure on the memory system forcing
770 * the kernel to generate new VMAs when old one could be
773 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
775 if (vma->vm_file != file)
777 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
779 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
781 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
786 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
787 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
790 * The list_is_singular() test is to avoid merging VMA cloned from
791 * parents. This can improve scalability caused by anon_vma lock.
793 if ((!anon_vma1 || !anon_vma2) && (!vma ||
794 list_is_singular(&vma->anon_vma_chain)))
796 return anon_vma1 == anon_vma2;
800 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
801 * in front of (at a lower virtual address and file offset than) the vma.
803 * We cannot merge two vmas if they have differently assigned (non-NULL)
804 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
806 * We don't check here for the merged mmap wrapping around the end of pagecache
807 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
808 * wrap, nor mmaps which cover the final page at index -1UL.
810 * We assume the vma may be removed as part of the merge.
813 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
814 struct anon_vma *anon_vma, struct file *file,
815 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
816 struct anon_vma_name *anon_name)
818 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
819 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
820 if (vma->vm_pgoff == vm_pgoff)
827 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
828 * beyond (at a higher virtual address and file offset than) the vma.
830 * We cannot merge two vmas if they have differently assigned (non-NULL)
831 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
833 * We assume that vma is not removed as part of the merge.
836 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
837 struct anon_vma *anon_vma, struct file *file,
838 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
839 struct anon_vma_name *anon_name)
841 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
842 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
844 vm_pglen = vma_pages(vma);
845 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
852 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
853 * figure out whether that can be merged with its predecessor or its
854 * successor. Or both (it neatly fills a hole).
856 * In most cases - when called for mmap, brk or mremap - [addr,end) is
857 * certain not to be mapped by the time vma_merge is called; but when
858 * called for mprotect, it is certain to be already mapped (either at
859 * an offset within prev, or at the start of next), and the flags of
860 * this area are about to be changed to vm_flags - and the no-change
861 * case has already been eliminated.
863 * The following mprotect cases have to be considered, where **** is
864 * the area passed down from mprotect_fixup, never extending beyond one
865 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
866 * at the same address as **** and is of the same or larger span, and
867 * NNNN the next vma after ****:
870 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
871 * cannot merge might become might become
872 * PPNNNNNNNNNN PPPPPPPPPPCC
873 * mmap, brk or case 4 below case 5 below
876 * PPPP NNNN PPPPCCCCNNNN
877 * might become might become
878 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
879 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
880 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
882 * It is important for case 8 that the vma CCCC overlapping the
883 * region **** is never going to extended over NNNN. Instead NNNN must
884 * be extended in region **** and CCCC must be removed. This way in
885 * all cases where vma_merge succeeds, the moment vma_merge drops the
886 * rmap_locks, the properties of the merged vma will be already
887 * correct for the whole merged range. Some of those properties like
888 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
889 * be correct for the whole merged range immediately after the
890 * rmap_locks are released. Otherwise if NNNN would be removed and
891 * CCCC would be extended over the NNNN range, remove_migration_ptes
892 * or other rmap walkers (if working on addresses beyond the "end"
893 * parameter) may establish ptes with the wrong permissions of CCCC
894 * instead of the right permissions of NNNN.
897 * PPPP is represented by *prev
898 * CCCC is represented by *curr or not represented at all (NULL)
899 * NNNN is represented by *next or not represented at all (NULL)
900 * **** is not represented - it will be merged and the vma containing the
901 * area is returned, or the function will return NULL
903 static struct vm_area_struct
904 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
905 struct vm_area_struct *src, unsigned long addr, unsigned long end,
906 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
907 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
908 struct anon_vma_name *anon_name)
910 struct mm_struct *mm = src->vm_mm;
911 struct anon_vma *anon_vma = src->anon_vma;
912 struct file *file = src->vm_file;
913 struct vm_area_struct *curr, *next, *res;
914 struct vm_area_struct *vma, *adjust, *remove, *remove2;
915 struct vm_area_struct *anon_dup = NULL;
916 struct vma_prepare vp;
919 bool merge_prev = false;
920 bool merge_next = false;
921 bool vma_expanded = false;
922 unsigned long vma_start = addr;
923 unsigned long vma_end = end;
924 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
928 * We later require that vma->vm_flags == vm_flags,
929 * so this tests vma->vm_flags & VM_SPECIAL, too.
931 if (vm_flags & VM_SPECIAL)
934 /* Does the input range span an existing VMA? (cases 5 - 8) */
935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
937 if (!curr || /* cases 1 - 4 */
938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
939 next = vma_lookup(mm, end);
941 next = NULL; /* case 5 */
944 vma_start = prev->vm_start;
945 vma_pgoff = prev->vm_pgoff;
947 /* Can we merge the predecessor? */
948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950 pgoff, vm_userfaultfd_ctx, anon_name)) {
956 /* Can we merge the successor? */
957 if (next && mpol_equal(policy, vma_policy(next)) &&
958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959 vm_userfaultfd_ctx, anon_name)) {
963 /* Verify some invariant that must be enforced by the caller. */
964 VM_WARN_ON(prev && addr <= prev->vm_start);
965 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966 VM_WARN_ON(addr >= end);
968 if (!merge_prev && !merge_next)
969 return NULL; /* Not mergeable. */
972 vma_start_write(prev);
975 remove = remove2 = adjust = NULL;
977 /* Can we merge both the predecessor and the successor? */
978 if (merge_prev && merge_next &&
979 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
980 vma_start_write(next);
981 remove = next; /* case 1 */
982 vma_end = next->vm_end;
983 err = dup_anon_vma(prev, next, &anon_dup);
984 if (curr) { /* case 6 */
985 vma_start_write(curr);
989 * Note that the dup_anon_vma below cannot overwrite err
990 * since the first caller would do nothing unless next
994 err = dup_anon_vma(prev, curr, &anon_dup);
996 } else if (merge_prev) { /* case 2 */
998 vma_start_write(curr);
999 if (end == curr->vm_end) { /* case 7 */
1001 * can_vma_merge_after() assumed we would not be
1002 * removing prev vma, so it skipped the check
1003 * for vm_ops->close, but we are removing curr
1005 if (curr->vm_ops && curr->vm_ops->close)
1008 } else { /* case 5 */
1010 adj_start = (end - curr->vm_start);
1013 err = dup_anon_vma(prev, curr, &anon_dup);
1015 } else { /* merge_next */
1016 vma_start_write(next);
1018 if (prev && addr < prev->vm_end) { /* case 4 */
1019 vma_start_write(prev);
1022 adj_start = -(prev->vm_end - addr);
1023 err = dup_anon_vma(next, prev, &anon_dup);
1026 * Note that cases 3 and 8 are the ONLY ones where prev
1027 * is permitted to be (but is not necessarily) NULL.
1029 vma = next; /* case 3 */
1031 vma_end = next->vm_end;
1032 vma_pgoff = next->vm_pgoff - pglen;
1033 if (curr) { /* case 8 */
1034 vma_pgoff = curr->vm_pgoff;
1035 vma_start_write(curr);
1037 err = dup_anon_vma(next, curr, &anon_dup);
1042 /* Error in anon_vma clone. */
1046 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1047 vma_expanded = true;
1050 vma_iter_config(vmi, vma_start, vma_end);
1052 vma_iter_config(vmi, adjust->vm_start + adj_start,
1056 if (vma_iter_prealloc(vmi, vma))
1059 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1060 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1061 vp.anon_vma != adjust->anon_vma);
1064 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1065 vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1068 vma_iter_store(vmi, vma);
1071 adjust->vm_start += adj_start;
1072 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1073 if (adj_start < 0) {
1074 WARN_ON(vma_expanded);
1075 vma_iter_store(vmi, next);
1079 vma_complete(&vp, vmi, mm);
1080 khugepaged_enter_vma(res, vm_flags);
1085 unlink_anon_vmas(anon_dup);
1088 vma_iter_set(vmi, addr);
1094 * Rough compatibility check to quickly see if it's even worth looking
1095 * at sharing an anon_vma.
1097 * They need to have the same vm_file, and the flags can only differ
1098 * in things that mprotect may change.
1100 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1101 * we can merge the two vma's. For example, we refuse to merge a vma if
1102 * there is a vm_ops->close() function, because that indicates that the
1103 * driver is doing some kind of reference counting. But that doesn't
1104 * really matter for the anon_vma sharing case.
1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1108 return a->vm_end == b->vm_start &&
1109 mpol_equal(vma_policy(a), vma_policy(b)) &&
1110 a->vm_file == b->vm_file &&
1111 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1112 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1116 * Do some basic sanity checking to see if we can re-use the anon_vma
1117 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1118 * the same as 'old', the other will be the new one that is trying
1119 * to share the anon_vma.
1121 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1122 * the anon_vma of 'old' is concurrently in the process of being set up
1123 * by another page fault trying to merge _that_. But that's ok: if it
1124 * is being set up, that automatically means that it will be a singleton
1125 * acceptable for merging, so we can do all of this optimistically. But
1126 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1128 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1129 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1130 * is to return an anon_vma that is "complex" due to having gone through
1133 * We also make sure that the two vma's are compatible (adjacent,
1134 * and with the same memory policies). That's all stable, even with just
1135 * a read lock on the mmap_lock.
1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1139 if (anon_vma_compatible(a, b)) {
1140 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1142 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1149 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1150 * neighbouring vmas for a suitable anon_vma, before it goes off
1151 * to allocate a new anon_vma. It checks because a repetitive
1152 * sequence of mprotects and faults may otherwise lead to distinct
1153 * anon_vmas being allocated, preventing vma merge in subsequent
1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1158 struct anon_vma *anon_vma = NULL;
1159 struct vm_area_struct *prev, *next;
1160 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1162 /* Try next first. */
1163 next = vma_iter_load(&vmi);
1165 anon_vma = reusable_anon_vma(next, vma, next);
1170 prev = vma_prev(&vmi);
1171 VM_BUG_ON_VMA(prev != vma, vma);
1172 prev = vma_prev(&vmi);
1173 /* Try prev next. */
1175 anon_vma = reusable_anon_vma(prev, prev, vma);
1178 * We might reach here with anon_vma == NULL if we can't find
1179 * any reusable anon_vma.
1180 * There's no absolute need to look only at touching neighbours:
1181 * we could search further afield for "compatible" anon_vmas.
1182 * But it would probably just be a waste of time searching,
1183 * or lead to too many vmas hanging off the same anon_vma.
1184 * We're trying to allow mprotect remerging later on,
1185 * not trying to minimize memory used for anon_vmas.
1191 * If a hint addr is less than mmap_min_addr change hint to be as
1192 * low as possible but still greater than mmap_min_addr
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1197 if (((void *)hint != NULL) &&
1198 (hint < mmap_min_addr))
1199 return PAGE_ALIGN(mmap_min_addr);
1203 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1204 unsigned long bytes)
1206 unsigned long locked_pages, limit_pages;
1208 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1211 locked_pages = bytes >> PAGE_SHIFT;
1212 locked_pages += mm->locked_vm;
1214 limit_pages = rlimit(RLIMIT_MEMLOCK);
1215 limit_pages >>= PAGE_SHIFT;
1217 return locked_pages <= limit_pages;
1220 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1222 if (S_ISREG(inode->i_mode))
1223 return MAX_LFS_FILESIZE;
1225 if (S_ISBLK(inode->i_mode))
1226 return MAX_LFS_FILESIZE;
1228 if (S_ISSOCK(inode->i_mode))
1229 return MAX_LFS_FILESIZE;
1231 /* Special "we do even unsigned file positions" case */
1232 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1235 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1239 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1240 unsigned long pgoff, unsigned long len)
1242 u64 maxsize = file_mmap_size_max(file, inode);
1244 if (maxsize && len > maxsize)
1247 if (pgoff > maxsize >> PAGE_SHIFT)
1253 * The caller must write-lock current->mm->mmap_lock.
1255 unsigned long do_mmap(struct file *file, unsigned long addr,
1256 unsigned long len, unsigned long prot,
1257 unsigned long flags, vm_flags_t vm_flags,
1258 unsigned long pgoff, unsigned long *populate,
1259 struct list_head *uf)
1261 struct mm_struct *mm = current->mm;
1270 * Does the application expect PROT_READ to imply PROT_EXEC?
1272 * (the exception is when the underlying filesystem is noexec
1273 * mounted, in which case we don't add PROT_EXEC.)
1275 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276 if (!(file && path_noexec(&file->f_path)))
1279 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1280 if (flags & MAP_FIXED_NOREPLACE)
1283 if (!(flags & MAP_FIXED))
1284 addr = round_hint_to_min(addr);
1286 /* Careful about overflows.. */
1287 len = PAGE_ALIGN(len);
1291 /* offset overflow? */
1292 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1295 /* Too many mappings? */
1296 if (mm->map_count > sysctl_max_map_count)
1300 * addr is returned from get_unmapped_area,
1301 * There are two cases:
1302 * 1> MAP_FIXED == false
1303 * unallocated memory, no need to check sealing.
1304 * 1> MAP_FIXED == true
1305 * sealing is checked inside mmap_region when
1306 * do_vmi_munmap is called.
1309 if (prot == PROT_EXEC) {
1310 pkey = execute_only_pkey(mm);
1315 /* Do simple checking here so the lower-level routines won't have
1316 * to. we assume access permissions have been handled by the open
1317 * of the memory object, so we don't do any here.
1319 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1320 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1322 /* Obtain the address to map to. we verify (or select) it and ensure
1323 * that it represents a valid section of the address space.
1325 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1326 if (IS_ERR_VALUE(addr))
1329 if (flags & MAP_FIXED_NOREPLACE) {
1330 if (find_vma_intersection(mm, addr, addr + len))
1334 if (flags & MAP_LOCKED)
1335 if (!can_do_mlock())
1338 if (!mlock_future_ok(mm, vm_flags, len))
1342 struct inode *inode = file_inode(file);
1343 unsigned long flags_mask;
1345 if (!file_mmap_ok(file, inode, pgoff, len))
1348 flags_mask = LEGACY_MAP_MASK;
1349 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1350 flags_mask |= MAP_SYNC;
1352 switch (flags & MAP_TYPE) {
1355 * Force use of MAP_SHARED_VALIDATE with non-legacy
1356 * flags. E.g. MAP_SYNC is dangerous to use with
1357 * MAP_SHARED as you don't know which consistency model
1358 * you will get. We silently ignore unsupported flags
1359 * with MAP_SHARED to preserve backward compatibility.
1361 flags &= LEGACY_MAP_MASK;
1363 case MAP_SHARED_VALIDATE:
1364 if (flags & ~flags_mask)
1366 if (prot & PROT_WRITE) {
1367 if (!(file->f_mode & FMODE_WRITE))
1369 if (IS_SWAPFILE(file->f_mapping->host))
1374 * Make sure we don't allow writing to an append-only
1377 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1380 vm_flags |= VM_SHARED | VM_MAYSHARE;
1381 if (!(file->f_mode & FMODE_WRITE))
1382 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1385 if (!(file->f_mode & FMODE_READ))
1387 if (path_noexec(&file->f_path)) {
1388 if (vm_flags & VM_EXEC)
1390 vm_flags &= ~VM_MAYEXEC;
1393 if (!file->f_op->mmap)
1395 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1403 switch (flags & MAP_TYPE) {
1405 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1411 vm_flags |= VM_SHARED | VM_MAYSHARE;
1414 if (VM_DROPPABLE == VM_NONE)
1417 * A locked or stack area makes no sense to be droppable.
1419 * Also, since droppable pages can just go away at any time
1420 * it makes no sense to copy them on fork or dump them.
1422 * And don't attempt to combine with hugetlb for now.
1424 if (flags & (MAP_LOCKED | MAP_HUGETLB))
1426 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
1429 vm_flags |= VM_DROPPABLE;
1432 * If the pages can be dropped, then it doesn't make
1433 * sense to reserve them.
1435 vm_flags |= VM_NORESERVE;
1438 * Likewise, they're volatile enough that they
1439 * shouldn't survive forks or coredumps.
1441 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
1445 * Set pgoff according to addr for anon_vma.
1447 pgoff = addr >> PAGE_SHIFT;
1455 * Set 'VM_NORESERVE' if we should not account for the
1456 * memory use of this mapping.
1458 if (flags & MAP_NORESERVE) {
1459 /* We honor MAP_NORESERVE if allowed to overcommit */
1460 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1461 vm_flags |= VM_NORESERVE;
1463 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1464 if (file && is_file_hugepages(file))
1465 vm_flags |= VM_NORESERVE;
1468 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1469 if (!IS_ERR_VALUE(addr) &&
1470 ((vm_flags & VM_LOCKED) ||
1471 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1476 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1477 unsigned long prot, unsigned long flags,
1478 unsigned long fd, unsigned long pgoff)
1480 struct file *file = NULL;
1481 unsigned long retval;
1483 if (!(flags & MAP_ANONYMOUS)) {
1484 audit_mmap_fd(fd, flags);
1488 if (is_file_hugepages(file)) {
1489 len = ALIGN(len, huge_page_size(hstate_file(file)));
1490 } else if (unlikely(flags & MAP_HUGETLB)) {
1494 } else if (flags & MAP_HUGETLB) {
1497 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1501 len = ALIGN(len, huge_page_size(hs));
1503 * VM_NORESERVE is used because the reservations will be
1504 * taken when vm_ops->mmap() is called
1506 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1508 HUGETLB_ANONHUGE_INODE,
1509 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1511 return PTR_ERR(file);
1514 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1521 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1522 unsigned long, prot, unsigned long, flags,
1523 unsigned long, fd, unsigned long, pgoff)
1525 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1528 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1529 struct mmap_arg_struct {
1533 unsigned long flags;
1535 unsigned long offset;
1538 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1540 struct mmap_arg_struct a;
1542 if (copy_from_user(&a, arg, sizeof(a)))
1544 if (offset_in_page(a.offset))
1547 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1548 a.offset >> PAGE_SHIFT);
1550 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1552 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1554 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1557 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1559 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1560 (VM_WRITE | VM_SHARED);
1563 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1565 /* No managed pages to writeback. */
1566 if (vma->vm_flags & VM_PFNMAP)
1569 return vma->vm_file && vma->vm_file->f_mapping &&
1570 mapping_can_writeback(vma->vm_file->f_mapping);
1574 * Does this VMA require the underlying folios to have their dirty state
1577 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1579 /* Only shared, writable VMAs require dirty tracking. */
1580 if (!vma_is_shared_writable(vma))
1583 /* Does the filesystem need to be notified? */
1584 if (vm_ops_needs_writenotify(vma->vm_ops))
1588 * Even if the filesystem doesn't indicate a need for writenotify, if it
1589 * can writeback, dirty tracking is still required.
1591 return vma_fs_can_writeback(vma);
1595 * Some shared mappings will want the pages marked read-only
1596 * to track write events. If so, we'll downgrade vm_page_prot
1597 * to the private version (using protection_map[] without the
1600 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1602 /* If it was private or non-writable, the write bit is already clear */
1603 if (!vma_is_shared_writable(vma))
1606 /* The backer wishes to know when pages are first written to? */
1607 if (vm_ops_needs_writenotify(vma->vm_ops))
1610 /* The open routine did something to the protections that pgprot_modify
1611 * won't preserve? */
1612 if (pgprot_val(vm_page_prot) !=
1613 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1617 * Do we need to track softdirty? hugetlb does not support softdirty
1620 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1623 /* Do we need write faults for uffd-wp tracking? */
1624 if (userfaultfd_wp(vma))
1627 /* Can the mapping track the dirty pages? */
1628 return vma_fs_can_writeback(vma);
1632 * We account for memory if it's a private writeable mapping,
1633 * not hugepages and VM_NORESERVE wasn't set.
1635 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1638 * hugetlb has its own accounting separate from the core VM
1639 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1641 if (file && is_file_hugepages(file))
1644 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1648 * unmapped_area() - Find an area between the low_limit and the high_limit with
1649 * the correct alignment and offset, all from @info. Note: current->mm is used
1652 * @info: The unmapped area information including the range [low_limit -
1653 * high_limit), the alignment offset and mask.
1655 * Return: A memory address or -ENOMEM.
1657 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659 unsigned long length, gap;
1660 unsigned long low_limit, high_limit;
1661 struct vm_area_struct *tmp;
1662 VMA_ITERATOR(vmi, current->mm, 0);
1664 /* Adjust search length to account for worst case alignment overhead */
1665 length = info->length + info->align_mask + info->start_gap;
1666 if (length < info->length)
1669 low_limit = info->low_limit;
1670 if (low_limit < mmap_min_addr)
1671 low_limit = mmap_min_addr;
1672 high_limit = info->high_limit;
1674 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1678 * Adjust for the gap first so it doesn't interfere with the
1679 * later alignment. The first step is the minimum needed to
1680 * fulill the start gap, the next steps is the minimum to align
1681 * that. It is the minimum needed to fulill both.
1683 gap = vma_iter_addr(&vmi) + info->start_gap;
1684 gap += (info->align_offset - gap) & info->align_mask;
1685 tmp = vma_next(&vmi);
1686 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1687 if (vm_start_gap(tmp) < gap + length - 1) {
1688 low_limit = tmp->vm_end;
1689 vma_iter_reset(&vmi);
1693 tmp = vma_prev(&vmi);
1694 if (tmp && vm_end_gap(tmp) > gap) {
1695 low_limit = vm_end_gap(tmp);
1696 vma_iter_reset(&vmi);
1705 * unmapped_area_topdown() - Find an area between the low_limit and the
1706 * high_limit with the correct alignment and offset at the highest available
1707 * address, all from @info. Note: current->mm is used for the search.
1709 * @info: The unmapped area information including the range [low_limit -
1710 * high_limit), the alignment offset and mask.
1712 * Return: A memory address or -ENOMEM.
1714 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1716 unsigned long length, gap, gap_end;
1717 unsigned long low_limit, high_limit;
1718 struct vm_area_struct *tmp;
1719 VMA_ITERATOR(vmi, current->mm, 0);
1721 /* Adjust search length to account for worst case alignment overhead */
1722 length = info->length + info->align_mask + info->start_gap;
1723 if (length < info->length)
1726 low_limit = info->low_limit;
1727 if (low_limit < mmap_min_addr)
1728 low_limit = mmap_min_addr;
1729 high_limit = info->high_limit;
1731 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1734 gap = vma_iter_end(&vmi) - info->length;
1735 gap -= (gap - info->align_offset) & info->align_mask;
1736 gap_end = vma_iter_end(&vmi);
1737 tmp = vma_next(&vmi);
1738 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1739 if (vm_start_gap(tmp) < gap_end) {
1740 high_limit = vm_start_gap(tmp);
1741 vma_iter_reset(&vmi);
1745 tmp = vma_prev(&vmi);
1746 if (tmp && vm_end_gap(tmp) > gap) {
1747 high_limit = tmp->vm_start;
1748 vma_iter_reset(&vmi);
1757 * Search for an unmapped address range.
1759 * We are looking for a range that:
1760 * - does not intersect with any VMA;
1761 * - is contained within the [low_limit, high_limit) interval;
1762 * - is at least the desired size.
1763 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1765 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1769 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1770 addr = unmapped_area_topdown(info);
1772 addr = unmapped_area(info);
1774 trace_vm_unmapped_area(addr, info);
1778 /* Get an address range which is currently unmapped.
1779 * For shmat() with addr=0.
1781 * Ugly calling convention alert:
1782 * Return value with the low bits set means error value,
1784 * if (ret & ~PAGE_MASK)
1787 * This function "knows" that -ENOMEM has the bits set.
1790 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1791 unsigned long len, unsigned long pgoff,
1792 unsigned long flags)
1794 struct mm_struct *mm = current->mm;
1795 struct vm_area_struct *vma, *prev;
1796 struct vm_unmapped_area_info info = {};
1797 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1799 if (len > mmap_end - mmap_min_addr)
1802 if (flags & MAP_FIXED)
1806 addr = PAGE_ALIGN(addr);
1807 vma = find_vma_prev(mm, addr, &prev);
1808 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1809 (!vma || addr + len <= vm_start_gap(vma)) &&
1810 (!prev || addr >= vm_end_gap(prev)))
1815 info.low_limit = mm->mmap_base;
1816 info.high_limit = mmap_end;
1817 return vm_unmapped_area(&info);
1820 #ifndef HAVE_ARCH_UNMAPPED_AREA
1822 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1823 unsigned long len, unsigned long pgoff,
1824 unsigned long flags)
1826 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1831 * This mmap-allocator allocates new areas top-down from below the
1832 * stack's low limit (the base):
1835 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1836 unsigned long len, unsigned long pgoff,
1837 unsigned long flags)
1839 struct vm_area_struct *vma, *prev;
1840 struct mm_struct *mm = current->mm;
1841 struct vm_unmapped_area_info info = {};
1842 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1844 /* requested length too big for entire address space */
1845 if (len > mmap_end - mmap_min_addr)
1848 if (flags & MAP_FIXED)
1851 /* requesting a specific address */
1853 addr = PAGE_ALIGN(addr);
1854 vma = find_vma_prev(mm, addr, &prev);
1855 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1856 (!vma || addr + len <= vm_start_gap(vma)) &&
1857 (!prev || addr >= vm_end_gap(prev)))
1861 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863 info.low_limit = PAGE_SIZE;
1864 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1865 addr = vm_unmapped_area(&info);
1868 * A failed mmap() very likely causes application failure,
1869 * so fall back to the bottom-up function here. This scenario
1870 * can happen with large stack limits and large mmap()
1873 if (offset_in_page(addr)) {
1874 VM_BUG_ON(addr != -ENOMEM);
1876 info.low_limit = TASK_UNMAPPED_BASE;
1877 info.high_limit = mmap_end;
1878 addr = vm_unmapped_area(&info);
1884 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1886 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1887 unsigned long len, unsigned long pgoff,
1888 unsigned long flags)
1890 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1894 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1896 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1897 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1899 return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1903 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1904 unsigned long len, unsigned long pgoff,
1905 unsigned long flags, vm_flags_t vm_flags)
1907 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1911 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1912 unsigned long addr, unsigned long len,
1913 unsigned long pgoff, unsigned long flags,
1914 vm_flags_t vm_flags)
1916 if (test_bit(MMF_TOPDOWN, &mm->flags))
1917 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1919 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1923 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1924 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1926 unsigned long (*get_area)(struct file *, unsigned long,
1927 unsigned long, unsigned long, unsigned long)
1930 unsigned long error = arch_mmap_check(addr, len, flags);
1934 /* Careful about overflows.. */
1935 if (len > TASK_SIZE)
1939 if (file->f_op->get_unmapped_area)
1940 get_area = file->f_op->get_unmapped_area;
1941 } else if (flags & MAP_SHARED) {
1943 * mmap_region() will call shmem_zero_setup() to create a file,
1944 * so use shmem's get_unmapped_area in case it can be huge.
1946 get_area = shmem_get_unmapped_area;
1949 /* Always treat pgoff as zero for anonymous memory. */
1954 addr = get_area(file, addr, len, pgoff, flags);
1955 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1956 /* Ensures that larger anonymous mappings are THP aligned. */
1957 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1958 pgoff, flags, vm_flags);
1960 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1961 pgoff, flags, vm_flags);
1963 if (IS_ERR_VALUE(addr))
1966 if (addr > TASK_SIZE - len)
1968 if (offset_in_page(addr))
1971 error = security_mmap_addr(addr);
1972 return error ? error : addr;
1976 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1977 unsigned long addr, unsigned long len,
1978 unsigned long pgoff, unsigned long flags)
1980 if (test_bit(MMF_TOPDOWN, &mm->flags))
1981 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1982 return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1984 EXPORT_SYMBOL(mm_get_unmapped_area);
1987 * find_vma_intersection() - Look up the first VMA which intersects the interval
1988 * @mm: The process address space.
1989 * @start_addr: The inclusive start user address.
1990 * @end_addr: The exclusive end user address.
1992 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1993 * start_addr < end_addr.
1995 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1996 unsigned long start_addr,
1997 unsigned long end_addr)
1999 unsigned long index = start_addr;
2001 mmap_assert_locked(mm);
2002 return mt_find(&mm->mm_mt, &index, end_addr - 1);
2004 EXPORT_SYMBOL(find_vma_intersection);
2007 * find_vma() - Find the VMA for a given address, or the next VMA.
2008 * @mm: The mm_struct to check
2009 * @addr: The address
2011 * Returns: The VMA associated with addr, or the next VMA.
2012 * May return %NULL in the case of no VMA at addr or above.
2014 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2016 unsigned long index = addr;
2018 mmap_assert_locked(mm);
2019 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
2021 EXPORT_SYMBOL(find_vma);
2024 * find_vma_prev() - Find the VMA for a given address, or the next vma and
2025 * set %pprev to the previous VMA, if any.
2026 * @mm: The mm_struct to check
2027 * @addr: The address
2028 * @pprev: The pointer to set to the previous VMA
2030 * Note that RCU lock is missing here since the external mmap_lock() is used
2033 * Returns: The VMA associated with @addr, or the next vma.
2034 * May return %NULL in the case of no vma at addr or above.
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038 struct vm_area_struct **pprev)
2040 struct vm_area_struct *vma;
2041 VMA_ITERATOR(vmi, mm, addr);
2043 vma = vma_iter_load(&vmi);
2044 *pprev = vma_prev(&vmi);
2046 vma = vma_next(&vmi);
2051 * Verify that the stack growth is acceptable and
2052 * update accounting. This is shared with both the
2053 * grow-up and grow-down cases.
2055 static int acct_stack_growth(struct vm_area_struct *vma,
2056 unsigned long size, unsigned long grow)
2058 struct mm_struct *mm = vma->vm_mm;
2059 unsigned long new_start;
2061 /* address space limit tests */
2062 if (!may_expand_vm(mm, vma->vm_flags, grow))
2065 /* Stack limit test */
2066 if (size > rlimit(RLIMIT_STACK))
2069 /* mlock limit tests */
2070 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2073 /* Check to ensure the stack will not grow into a hugetlb-only region */
2074 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2076 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2080 * Overcommit.. This must be the final test, as it will
2081 * update security statistics.
2083 if (security_vm_enough_memory_mm(mm, grow))
2089 #if defined(CONFIG_STACK_GROWSUP)
2091 * PA-RISC uses this for its stack.
2092 * vma is the last one with address > vma->vm_end. Have to extend vma.
2094 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2096 struct mm_struct *mm = vma->vm_mm;
2097 struct vm_area_struct *next;
2098 unsigned long gap_addr;
2100 VMA_ITERATOR(vmi, mm, vma->vm_start);
2102 if (!(vma->vm_flags & VM_GROWSUP))
2105 /* Guard against exceeding limits of the address space. */
2106 address &= PAGE_MASK;
2107 if (address >= (TASK_SIZE & PAGE_MASK))
2109 address += PAGE_SIZE;
2111 /* Enforce stack_guard_gap */
2112 gap_addr = address + stack_guard_gap;
2114 /* Guard against overflow */
2115 if (gap_addr < address || gap_addr > TASK_SIZE)
2116 gap_addr = TASK_SIZE;
2118 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2119 if (next && vma_is_accessible(next)) {
2120 if (!(next->vm_flags & VM_GROWSUP))
2122 /* Check that both stack segments have the same anon_vma? */
2126 vma_iter_prev_range_limit(&vmi, address);
2128 vma_iter_config(&vmi, vma->vm_start, address);
2129 if (vma_iter_prealloc(&vmi, vma))
2132 /* We must make sure the anon_vma is allocated. */
2133 if (unlikely(anon_vma_prepare(vma))) {
2134 vma_iter_free(&vmi);
2138 /* Lock the VMA before expanding to prevent concurrent page faults */
2139 vma_start_write(vma);
2141 * vma->vm_start/vm_end cannot change under us because the caller
2142 * is required to hold the mmap_lock in read mode. We need the
2143 * anon_vma lock to serialize against concurrent expand_stacks.
2145 anon_vma_lock_write(vma->anon_vma);
2147 /* Somebody else might have raced and expanded it already */
2148 if (address > vma->vm_end) {
2149 unsigned long size, grow;
2151 size = address - vma->vm_start;
2152 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2155 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2156 error = acct_stack_growth(vma, size, grow);
2159 * We only hold a shared mmap_lock lock here, so
2160 * we need to protect against concurrent vma
2161 * expansions. anon_vma_lock_write() doesn't
2162 * help here, as we don't guarantee that all
2163 * growable vmas in a mm share the same root
2164 * anon vma. So, we reuse mm->page_table_lock
2165 * to guard against concurrent vma expansions.
2167 spin_lock(&mm->page_table_lock);
2168 if (vma->vm_flags & VM_LOCKED)
2169 mm->locked_vm += grow;
2170 vm_stat_account(mm, vma->vm_flags, grow);
2171 anon_vma_interval_tree_pre_update_vma(vma);
2172 vma->vm_end = address;
2173 /* Overwrite old entry in mtree. */
2174 vma_iter_store(&vmi, vma);
2175 anon_vma_interval_tree_post_update_vma(vma);
2176 spin_unlock(&mm->page_table_lock);
2178 perf_event_mmap(vma);
2182 anon_vma_unlock_write(vma->anon_vma);
2183 vma_iter_free(&vmi);
2187 #endif /* CONFIG_STACK_GROWSUP */
2190 * vma is the first one with address < vma->vm_start. Have to extend vma.
2191 * mmap_lock held for writing.
2193 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2195 struct mm_struct *mm = vma->vm_mm;
2196 struct vm_area_struct *prev;
2198 VMA_ITERATOR(vmi, mm, vma->vm_start);
2200 if (!(vma->vm_flags & VM_GROWSDOWN))
2203 address &= PAGE_MASK;
2204 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2207 /* Enforce stack_guard_gap */
2208 prev = vma_prev(&vmi);
2209 /* Check that both stack segments have the same anon_vma? */
2211 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2212 vma_is_accessible(prev) &&
2213 (address - prev->vm_end < stack_guard_gap))
2218 vma_iter_next_range_limit(&vmi, vma->vm_start);
2220 vma_iter_config(&vmi, address, vma->vm_end);
2221 if (vma_iter_prealloc(&vmi, vma))
2224 /* We must make sure the anon_vma is allocated. */
2225 if (unlikely(anon_vma_prepare(vma))) {
2226 vma_iter_free(&vmi);
2230 /* Lock the VMA before expanding to prevent concurrent page faults */
2231 vma_start_write(vma);
2233 * vma->vm_start/vm_end cannot change under us because the caller
2234 * is required to hold the mmap_lock in read mode. We need the
2235 * anon_vma lock to serialize against concurrent expand_stacks.
2237 anon_vma_lock_write(vma->anon_vma);
2239 /* Somebody else might have raced and expanded it already */
2240 if (address < vma->vm_start) {
2241 unsigned long size, grow;
2243 size = vma->vm_end - address;
2244 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2247 if (grow <= vma->vm_pgoff) {
2248 error = acct_stack_growth(vma, size, grow);
2251 * We only hold a shared mmap_lock lock here, so
2252 * we need to protect against concurrent vma
2253 * expansions. anon_vma_lock_write() doesn't
2254 * help here, as we don't guarantee that all
2255 * growable vmas in a mm share the same root
2256 * anon vma. So, we reuse mm->page_table_lock
2257 * to guard against concurrent vma expansions.
2259 spin_lock(&mm->page_table_lock);
2260 if (vma->vm_flags & VM_LOCKED)
2261 mm->locked_vm += grow;
2262 vm_stat_account(mm, vma->vm_flags, grow);
2263 anon_vma_interval_tree_pre_update_vma(vma);
2264 vma->vm_start = address;
2265 vma->vm_pgoff -= grow;
2266 /* Overwrite old entry in mtree. */
2267 vma_iter_store(&vmi, vma);
2268 anon_vma_interval_tree_post_update_vma(vma);
2269 spin_unlock(&mm->page_table_lock);
2271 perf_event_mmap(vma);
2275 anon_vma_unlock_write(vma->anon_vma);
2276 vma_iter_free(&vmi);
2281 /* enforced gap between the expanding stack and other mappings. */
2282 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2284 static int __init cmdline_parse_stack_guard_gap(char *p)
2289 val = simple_strtoul(p, &endptr, 10);
2291 stack_guard_gap = val << PAGE_SHIFT;
2295 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2297 #ifdef CONFIG_STACK_GROWSUP
2298 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2300 return expand_upwards(vma, address);
2303 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2305 struct vm_area_struct *vma, *prev;
2308 vma = find_vma_prev(mm, addr, &prev);
2309 if (vma && (vma->vm_start <= addr))
2313 if (expand_stack_locked(prev, addr))
2315 if (prev->vm_flags & VM_LOCKED)
2316 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2320 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2322 return expand_downwards(vma, address);
2325 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2327 struct vm_area_struct *vma;
2328 unsigned long start;
2331 vma = find_vma(mm, addr);
2334 if (vma->vm_start <= addr)
2336 start = vma->vm_start;
2337 if (expand_stack_locked(vma, addr))
2339 if (vma->vm_flags & VM_LOCKED)
2340 populate_vma_page_range(vma, addr, start, NULL);
2345 #if defined(CONFIG_STACK_GROWSUP)
2347 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2348 #define vma_expand_down(vma, addr) (-EFAULT)
2352 #define vma_expand_up(vma,addr) (-EFAULT)
2353 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2358 * expand_stack(): legacy interface for page faulting. Don't use unless
2361 * This is called with the mm locked for reading, drops the lock, takes
2362 * the lock for writing, tries to look up a vma again, expands it if
2363 * necessary, and downgrades the lock to reading again.
2365 * If no vma is found or it can't be expanded, it returns NULL and has
2368 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2370 struct vm_area_struct *vma, *prev;
2372 mmap_read_unlock(mm);
2373 if (mmap_write_lock_killable(mm))
2376 vma = find_vma_prev(mm, addr, &prev);
2377 if (vma && vma->vm_start <= addr)
2380 if (prev && !vma_expand_up(prev, addr)) {
2385 if (vma && !vma_expand_down(vma, addr))
2388 mmap_write_unlock(mm);
2392 mmap_write_downgrade(mm);
2397 * Ok - we have the memory areas we should free on a maple tree so release them,
2398 * and do the vma updates.
2400 * Called with the mm semaphore held.
2402 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2404 unsigned long nr_accounted = 0;
2405 struct vm_area_struct *vma;
2407 /* Update high watermark before we lower total_vm */
2408 update_hiwater_vm(mm);
2409 mas_for_each(mas, vma, ULONG_MAX) {
2410 long nrpages = vma_pages(vma);
2412 if (vma->vm_flags & VM_ACCOUNT)
2413 nr_accounted += nrpages;
2414 vm_stat_account(mm, vma->vm_flags, -nrpages);
2415 remove_vma(vma, false);
2417 vm_unacct_memory(nr_accounted);
2421 * Get rid of page table information in the indicated region.
2423 * Called with the mm semaphore held.
2425 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2426 struct vm_area_struct *vma, struct vm_area_struct *prev,
2427 struct vm_area_struct *next, unsigned long start,
2428 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2430 struct mmu_gather tlb;
2431 unsigned long mt_start = mas->index;
2434 tlb_gather_mmu(&tlb, mm);
2435 update_hiwater_rss(mm);
2436 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2437 mas_set(mas, mt_start);
2438 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2439 next ? next->vm_start : USER_PGTABLES_CEILING,
2441 tlb_finish_mmu(&tlb);
2445 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2446 * has already been checked or doesn't make sense to fail.
2447 * VMA Iterator will point to the end VMA.
2449 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2450 unsigned long addr, int new_below)
2452 struct vma_prepare vp;
2453 struct vm_area_struct *new;
2456 WARN_ON(vma->vm_start >= addr);
2457 WARN_ON(vma->vm_end <= addr);
2459 if (vma->vm_ops && vma->vm_ops->may_split) {
2460 err = vma->vm_ops->may_split(vma, addr);
2465 new = vm_area_dup(vma);
2472 new->vm_start = addr;
2473 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2477 vma_iter_config(vmi, new->vm_start, new->vm_end);
2478 if (vma_iter_prealloc(vmi, new))
2481 err = vma_dup_policy(vma, new);
2485 err = anon_vma_clone(new, vma);
2490 get_file(new->vm_file);
2492 if (new->vm_ops && new->vm_ops->open)
2493 new->vm_ops->open(new);
2495 vma_start_write(vma);
2496 vma_start_write(new);
2498 init_vma_prep(&vp, vma);
2501 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2504 vma->vm_start = addr;
2505 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2510 /* vma_complete stores the new vma */
2511 vma_complete(&vp, vmi, vma->vm_mm);
2519 mpol_put(vma_policy(new));
2528 * Split a vma into two pieces at address 'addr', a new vma is allocated
2529 * either for the first part or the tail.
2531 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2532 unsigned long addr, int new_below)
2534 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2537 return __split_vma(vmi, vma, addr, new_below);
2541 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2542 * context and anonymous VMA name within the range [start, end).
2544 * As a result, we might be able to merge the newly modified VMA range with an
2545 * adjacent VMA with identical properties.
2547 * If no merge is possible and the range does not span the entirety of the VMA,
2548 * we then need to split the VMA to accommodate the change.
2550 * The function returns either the merged VMA, the original VMA if a split was
2551 * required instead, or an error if the split failed.
2553 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2554 struct vm_area_struct *prev,
2555 struct vm_area_struct *vma,
2556 unsigned long start, unsigned long end,
2557 unsigned long vm_flags,
2558 struct mempolicy *policy,
2559 struct vm_userfaultfd_ctx uffd_ctx,
2560 struct anon_vma_name *anon_name)
2562 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2563 struct vm_area_struct *merged;
2565 merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2566 pgoff, policy, uffd_ctx, anon_name);
2570 if (vma->vm_start < start) {
2571 int err = split_vma(vmi, vma, start, 1);
2574 return ERR_PTR(err);
2577 if (vma->vm_end > end) {
2578 int err = split_vma(vmi, vma, end, 0);
2581 return ERR_PTR(err);
2588 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2589 * must ensure that [start, end) does not overlap any existing VMA.
2591 static struct vm_area_struct
2592 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2593 struct vm_area_struct *vma, unsigned long start,
2594 unsigned long end, pgoff_t pgoff)
2596 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2597 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2601 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2602 * VMA with identical properties.
2604 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2605 struct vm_area_struct *vma,
2606 unsigned long delta)
2608 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2610 /* vma is specified as prev, so case 1 or 2 will apply. */
2611 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2612 vma->vm_flags, pgoff, vma_policy(vma),
2613 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2617 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2618 * @vmi: The vma iterator
2619 * @vma: The starting vm_area_struct
2620 * @mm: The mm_struct
2621 * @start: The aligned start address to munmap.
2622 * @end: The aligned end address to munmap.
2623 * @uf: The userfaultfd list_head
2624 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2627 * Return: 0 on success and drops the lock if so directed, error and leaves the
2628 * lock held otherwise.
2631 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2632 struct mm_struct *mm, unsigned long start,
2633 unsigned long end, struct list_head *uf, bool unlock)
2635 struct vm_area_struct *prev, *next = NULL;
2636 struct maple_tree mt_detach;
2638 int error = -ENOMEM;
2639 unsigned long locked_vm = 0;
2640 MA_STATE(mas_detach, &mt_detach, 0, 0);
2641 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2642 mt_on_stack(mt_detach);
2645 * If we need to split any vma, do it now to save pain later.
2647 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2648 * unmapped vm_area_struct will remain in use: so lower split_vma
2649 * places tmp vma above, and higher split_vma places tmp vma below.
2652 /* Does it split the first one? */
2653 if (start > vma->vm_start) {
2656 * Make sure that map_count on return from munmap() will
2657 * not exceed its limit; but let map_count go just above
2658 * its limit temporarily, to help free resources as expected.
2660 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2661 goto map_count_exceeded;
2663 error = __split_vma(vmi, vma, start, 1);
2665 goto start_split_failed;
2669 * Detach a range of VMAs from the mm. Using next as a temp variable as
2670 * it is always overwritten.
2674 /* Does it split the end? */
2675 if (next->vm_end > end) {
2676 error = __split_vma(vmi, next, end, 0);
2678 goto end_split_failed;
2680 vma_start_write(next);
2681 mas_set(&mas_detach, count);
2682 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2684 goto munmap_gather_failed;
2685 vma_mark_detached(next, true);
2686 if (next->vm_flags & VM_LOCKED)
2687 locked_vm += vma_pages(next);
2692 * If userfaultfd_unmap_prep returns an error the vmas
2693 * will remain split, but userland will get a
2694 * highly unexpected error anyway. This is no
2695 * different than the case where the first of the two
2696 * __split_vma fails, but we don't undo the first
2697 * split, despite we could. This is unlikely enough
2698 * failure that it's not worth optimizing it for.
2700 error = userfaultfd_unmap_prep(next, start, end, uf);
2703 goto userfaultfd_error;
2705 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2706 BUG_ON(next->vm_start < start);
2707 BUG_ON(next->vm_start > end);
2709 } for_each_vma_range(*vmi, next, end);
2711 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2712 /* Make sure no VMAs are about to be lost. */
2714 MA_STATE(test, &mt_detach, 0, 0);
2715 struct vm_area_struct *vma_mas, *vma_test;
2718 vma_iter_set(vmi, start);
2720 vma_test = mas_find(&test, count - 1);
2721 for_each_vma_range(*vmi, vma_mas, end) {
2722 BUG_ON(vma_mas != vma_test);
2724 vma_test = mas_next(&test, count - 1);
2727 BUG_ON(count != test_count);
2731 while (vma_iter_addr(vmi) > start)
2732 vma_iter_prev_range(vmi);
2734 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2736 goto clear_tree_failed;
2738 /* Point of no return */
2739 mm->locked_vm -= locked_vm;
2740 mm->map_count -= count;
2742 mmap_write_downgrade(mm);
2744 prev = vma_iter_prev_range(vmi);
2745 next = vma_next(vmi);
2747 vma_iter_prev_range(vmi);
2750 * We can free page tables without write-locking mmap_lock because VMAs
2751 * were isolated before we downgraded mmap_lock.
2753 mas_set(&mas_detach, 1);
2754 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2756 /* Statistics and freeing VMAs */
2757 mas_set(&mas_detach, 0);
2758 remove_mt(mm, &mas_detach);
2761 mmap_read_unlock(mm);
2763 __mt_destroy(&mt_detach);
2768 munmap_gather_failed:
2770 mas_set(&mas_detach, 0);
2771 mas_for_each(&mas_detach, next, end)
2772 vma_mark_detached(next, false);
2774 __mt_destroy(&mt_detach);
2782 * do_vmi_munmap() - munmap a given range.
2783 * @vmi: The vma iterator
2784 * @mm: The mm_struct
2785 * @start: The start address to munmap
2786 * @len: The length of the range to munmap
2787 * @uf: The userfaultfd list_head
2788 * @unlock: set to true if the user wants to drop the mmap_lock on success
2790 * This function takes a @mas that is either pointing to the previous VMA or set
2791 * to MA_START and sets it up to remove the mapping(s). The @len will be
2792 * aligned and any arch_unmap work will be preformed.
2794 * Return: 0 on success and drops the lock if so directed, error and leaves the
2795 * lock held otherwise.
2797 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2798 unsigned long start, size_t len, struct list_head *uf,
2802 struct vm_area_struct *vma;
2804 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2807 end = start + PAGE_ALIGN(len);
2812 * Check if memory is sealed before arch_unmap.
2813 * Prevent unmapping a sealed VMA.
2814 * can_modify_mm assumes we have acquired the lock on MM.
2816 if (unlikely(!can_modify_mm(mm, start, end)))
2819 /* arch_unmap() might do unmaps itself. */
2820 arch_unmap(mm, start, end);
2822 /* Find the first overlapping VMA */
2823 vma = vma_find(vmi, end);
2826 mmap_write_unlock(mm);
2830 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2833 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2834 * @mm: The mm_struct
2835 * @start: The start address to munmap
2836 * @len: The length to be munmapped.
2837 * @uf: The userfaultfd list_head
2839 * Return: 0 on success, error otherwise.
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842 struct list_head *uf)
2844 VMA_ITERATOR(vmi, mm, start);
2846 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2849 unsigned long mmap_region(struct file *file, unsigned long addr,
2850 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2851 struct list_head *uf)
2853 struct mm_struct *mm = current->mm;
2854 struct vm_area_struct *vma = NULL;
2855 struct vm_area_struct *next, *prev, *merge;
2856 pgoff_t pglen = len >> PAGE_SHIFT;
2857 unsigned long charged = 0;
2858 unsigned long end = addr + len;
2859 unsigned long merge_start = addr, merge_end = end;
2860 bool writable_file_mapping = false;
2863 VMA_ITERATOR(vmi, mm, addr);
2865 /* Check against address space limit. */
2866 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2867 unsigned long nr_pages;
2870 * MAP_FIXED may remove pages of mappings that intersects with
2871 * requested mapping. Account for the pages it would unmap.
2873 nr_pages = count_vma_pages_range(mm, addr, end);
2875 if (!may_expand_vm(mm, vm_flags,
2876 (len >> PAGE_SHIFT) - nr_pages))
2880 /* Unmap any existing mapping in the area */
2881 error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2882 if (error == -EPERM)
2888 * Private writable mapping: check memory availability
2890 if (accountable_mapping(file, vm_flags)) {
2891 charged = len >> PAGE_SHIFT;
2892 if (security_vm_enough_memory_mm(mm, charged))
2894 vm_flags |= VM_ACCOUNT;
2897 next = vma_next(&vmi);
2898 prev = vma_prev(&vmi);
2899 if (vm_flags & VM_SPECIAL) {
2901 vma_iter_next_range(&vmi);
2905 /* Attempt to expand an old mapping */
2907 if (next && next->vm_start == end && !vma_policy(next) &&
2908 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2909 NULL_VM_UFFD_CTX, NULL)) {
2910 merge_end = next->vm_end;
2912 vm_pgoff = next->vm_pgoff - pglen;
2916 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2917 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2918 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2919 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2920 NULL_VM_UFFD_CTX, NULL))) {
2921 merge_start = prev->vm_start;
2923 vm_pgoff = prev->vm_pgoff;
2925 vma_iter_next_range(&vmi);
2928 /* Actually expand, if possible */
2930 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2931 khugepaged_enter_vma(vma, vm_flags);
2936 vma_iter_set(&vmi, addr);
2940 * Determine the object being mapped and call the appropriate
2941 * specific mapper. the address has already been validated, but
2942 * not unmapped, but the maps are removed from the list.
2944 vma = vm_area_alloc(mm);
2950 vma_iter_config(&vmi, addr, end);
2951 vma_set_range(vma, addr, end, pgoff);
2952 vm_flags_init(vma, vm_flags);
2953 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2956 vma->vm_file = get_file(file);
2957 error = call_mmap(file, vma);
2959 goto unmap_and_free_vma;
2961 if (vma_is_shared_maywrite(vma)) {
2962 error = mapping_map_writable(file->f_mapping);
2964 goto close_and_free_vma;
2966 writable_file_mapping = true;
2970 * Expansion is handled above, merging is handled below.
2971 * Drivers should not alter the address of the VMA.
2974 if (WARN_ON((addr != vma->vm_start)))
2975 goto close_and_free_vma;
2977 vma_iter_config(&vmi, addr, end);
2979 * If vm_flags changed after call_mmap(), we should try merge
2980 * vma again as we may succeed this time.
2982 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2983 merge = vma_merge_new_vma(&vmi, prev, vma,
2984 vma->vm_start, vma->vm_end,
2988 * ->mmap() can change vma->vm_file and fput
2989 * the original file. So fput the vma->vm_file
2990 * here or we would add an extra fput for file
2991 * and cause general protection fault
2997 /* Update vm_flags to pick up the change. */
2998 vm_flags = vma->vm_flags;
2999 goto unmap_writable;
3003 vm_flags = vma->vm_flags;
3004 } else if (vm_flags & VM_SHARED) {
3005 error = shmem_zero_setup(vma);
3009 vma_set_anonymous(vma);
3012 if (map_deny_write_exec(vma, vma->vm_flags)) {
3014 goto close_and_free_vma;
3017 /* Allow architectures to sanity-check the vm_flags */
3019 if (!arch_validate_flags(vma->vm_flags))
3020 goto close_and_free_vma;
3023 if (vma_iter_prealloc(&vmi, vma))
3024 goto close_and_free_vma;
3026 /* Lock the VMA since it is modified after insertion into VMA tree */
3027 vma_start_write(vma);
3028 vma_iter_store(&vmi, vma);
3033 * vma_merge() calls khugepaged_enter_vma() either, the below
3034 * call covers the non-merge case.
3036 khugepaged_enter_vma(vma, vma->vm_flags);
3038 /* Once vma denies write, undo our temporary denial count */
3040 if (writable_file_mapping)
3041 mapping_unmap_writable(file->f_mapping);
3042 file = vma->vm_file;
3045 perf_event_mmap(vma);
3047 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
3048 if (vm_flags & VM_LOCKED) {
3049 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
3050 is_vm_hugetlb_page(vma) ||
3051 vma == get_gate_vma(current->mm))
3052 vm_flags_clear(vma, VM_LOCKED_MASK);
3054 mm->locked_vm += (len >> PAGE_SHIFT);
3061 * New (or expanded) vma always get soft dirty status.
3062 * Otherwise user-space soft-dirty page tracker won't
3063 * be able to distinguish situation when vma area unmapped,
3064 * then new mapped in-place (which must be aimed as
3065 * a completely new data area).
3067 vm_flags_set(vma, VM_SOFTDIRTY);
3069 vma_set_page_prot(vma);
3075 if (file && vma->vm_ops && vma->vm_ops->close)
3076 vma->vm_ops->close(vma);
3078 if (file || vma->vm_file) {
3081 vma->vm_file = NULL;
3083 vma_iter_set(&vmi, vma->vm_end);
3084 /* Undo any partial mapping done by a device driver. */
3085 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3086 vma->vm_end, vma->vm_end, true);
3088 if (writable_file_mapping)
3089 mapping_unmap_writable(file->f_mapping);
3094 vm_unacct_memory(charged);
3099 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3102 struct mm_struct *mm = current->mm;
3104 VMA_ITERATOR(vmi, mm, start);
3106 if (mmap_write_lock_killable(mm))
3109 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3111 mmap_write_unlock(mm);
3113 userfaultfd_unmap_complete(mm, &uf);
3117 int vm_munmap(unsigned long start, size_t len)
3119 return __vm_munmap(start, len, false);
3121 EXPORT_SYMBOL(vm_munmap);
3123 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3125 addr = untagged_addr(addr);
3126 return __vm_munmap(addr, len, true);
3131 * Emulation of deprecated remap_file_pages() syscall.
3133 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3134 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3137 struct mm_struct *mm = current->mm;
3138 struct vm_area_struct *vma;
3139 unsigned long populate = 0;
3140 unsigned long ret = -EINVAL;
3143 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3144 current->comm, current->pid);
3148 start = start & PAGE_MASK;
3149 size = size & PAGE_MASK;
3151 if (start + size <= start)
3154 /* Does pgoff wrap? */
3155 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3158 if (mmap_write_lock_killable(mm))
3161 vma = vma_lookup(mm, start);
3163 if (!vma || !(vma->vm_flags & VM_SHARED))
3166 if (start + size > vma->vm_end) {
3167 VMA_ITERATOR(vmi, mm, vma->vm_end);
3168 struct vm_area_struct *next, *prev = vma;
3170 for_each_vma_range(vmi, next, start + size) {
3171 /* hole between vmas ? */
3172 if (next->vm_start != prev->vm_end)
3175 if (next->vm_file != vma->vm_file)
3178 if (next->vm_flags != vma->vm_flags)
3181 if (start + size <= next->vm_end)
3191 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3192 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3193 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3195 flags &= MAP_NONBLOCK;
3196 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3197 if (vma->vm_flags & VM_LOCKED)
3198 flags |= MAP_LOCKED;
3200 file = get_file(vma->vm_file);
3201 ret = do_mmap(vma->vm_file, start, size,
3202 prot, flags, 0, pgoff, &populate, NULL);
3205 mmap_write_unlock(mm);
3207 mm_populate(ret, populate);
3208 if (!IS_ERR_VALUE(ret))
3214 * do_vma_munmap() - Unmap a full or partial vma.
3215 * @vmi: The vma iterator pointing at the vma
3216 * @vma: The first vma to be munmapped
3217 * @start: the start of the address to unmap
3218 * @end: The end of the address to unmap
3219 * @uf: The userfaultfd list_head
3220 * @unlock: Drop the lock on success
3222 * unmaps a VMA mapping when the vma iterator is already in position.
3223 * Does not handle alignment.
3225 * Return: 0 on success drops the lock of so directed, error on failure and will
3226 * still hold the lock.
3228 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3229 unsigned long start, unsigned long end, struct list_head *uf,
3232 struct mm_struct *mm = vma->vm_mm;
3235 * Check if memory is sealed before arch_unmap.
3236 * Prevent unmapping a sealed VMA.
3237 * can_modify_mm assumes we have acquired the lock on MM.
3239 if (unlikely(!can_modify_mm(mm, start, end)))
3242 arch_unmap(mm, start, end);
3243 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3247 * do_brk_flags() - Increase the brk vma if the flags match.
3248 * @vmi: The vma iterator
3249 * @addr: The start address
3250 * @len: The length of the increase
3252 * @flags: The VMA Flags
3254 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3255 * do not match then create a new anonymous VMA. Eventually we may be able to
3256 * do some brk-specific accounting here.
3258 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3259 unsigned long addr, unsigned long len, unsigned long flags)
3261 struct mm_struct *mm = current->mm;
3262 struct vma_prepare vp;
3265 * Check against address space limits by the changed size
3266 * Note: This happens *after* clearing old mappings in some code paths.
3268 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3269 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3272 if (mm->map_count > sysctl_max_map_count)
3275 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3279 * Expand the existing vma if possible; Note that singular lists do not
3280 * occur after forking, so the expand will only happen on new VMAs.
3282 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3283 can_vma_merge_after(vma, flags, NULL, NULL,
3284 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3285 vma_iter_config(vmi, vma->vm_start, addr + len);
3286 if (vma_iter_prealloc(vmi, vma))
3289 vma_start_write(vma);
3291 init_vma_prep(&vp, vma);
3293 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3294 vma->vm_end = addr + len;
3295 vm_flags_set(vma, VM_SOFTDIRTY);
3296 vma_iter_store(vmi, vma);
3298 vma_complete(&vp, vmi, mm);
3299 khugepaged_enter_vma(vma, flags);
3304 vma_iter_next_range(vmi);
3305 /* create a vma struct for an anonymous mapping */
3306 vma = vm_area_alloc(mm);
3310 vma_set_anonymous(vma);
3311 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3312 vm_flags_init(vma, flags);
3313 vma->vm_page_prot = vm_get_page_prot(flags);
3314 vma_start_write(vma);
3315 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3316 goto mas_store_fail;
3322 perf_event_mmap(vma);
3323 mm->total_vm += len >> PAGE_SHIFT;
3324 mm->data_vm += len >> PAGE_SHIFT;
3325 if (flags & VM_LOCKED)
3326 mm->locked_vm += (len >> PAGE_SHIFT);
3327 vm_flags_set(vma, VM_SOFTDIRTY);
3333 vm_unacct_memory(len >> PAGE_SHIFT);
3337 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3339 struct mm_struct *mm = current->mm;
3340 struct vm_area_struct *vma = NULL;
3345 VMA_ITERATOR(vmi, mm, addr);
3347 len = PAGE_ALIGN(request);
3353 /* Until we need other flags, refuse anything except VM_EXEC. */
3354 if ((flags & (~VM_EXEC)) != 0)
3357 if (mmap_write_lock_killable(mm))
3360 ret = check_brk_limits(addr, len);
3364 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3368 vma = vma_prev(&vmi);
3369 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3370 populate = ((mm->def_flags & VM_LOCKED) != 0);
3371 mmap_write_unlock(mm);
3372 userfaultfd_unmap_complete(mm, &uf);
3373 if (populate && !ret)
3374 mm_populate(addr, len);
3379 mmap_write_unlock(mm);
3382 EXPORT_SYMBOL(vm_brk_flags);
3384 /* Release all mmaps. */
3385 void exit_mmap(struct mm_struct *mm)
3387 struct mmu_gather tlb;
3388 struct vm_area_struct *vma;
3389 unsigned long nr_accounted = 0;
3390 VMA_ITERATOR(vmi, mm, 0);
3393 /* mm's last user has gone, and its about to be pulled down */
3394 mmu_notifier_release(mm);
3399 vma = vma_next(&vmi);
3400 if (!vma || unlikely(xa_is_zero(vma))) {
3401 /* Can happen if dup_mmap() received an OOM */
3402 mmap_read_unlock(mm);
3403 mmap_write_lock(mm);
3409 tlb_gather_mmu_fullmm(&tlb, mm);
3410 /* update_hiwater_rss(mm) here? but nobody should be looking */
3411 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3412 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3413 mmap_read_unlock(mm);
3416 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3417 * because the memory has been already freed.
3419 set_bit(MMF_OOM_SKIP, &mm->flags);
3420 mmap_write_lock(mm);
3421 mt_clear_in_rcu(&mm->mm_mt);
3422 vma_iter_set(&vmi, vma->vm_end);
3423 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3424 USER_PGTABLES_CEILING, true);
3425 tlb_finish_mmu(&tlb);
3428 * Walk the list again, actually closing and freeing it, with preemption
3429 * enabled, without holding any MM locks besides the unreachable
3432 vma_iter_set(&vmi, vma->vm_end);
3434 if (vma->vm_flags & VM_ACCOUNT)
3435 nr_accounted += vma_pages(vma);
3436 remove_vma(vma, true);
3439 vma = vma_next(&vmi);
3440 } while (vma && likely(!xa_is_zero(vma)));
3442 BUG_ON(count != mm->map_count);
3444 trace_exit_mmap(mm);
3446 __mt_destroy(&mm->mm_mt);
3447 mmap_write_unlock(mm);
3448 vm_unacct_memory(nr_accounted);
3451 /* Insert vm structure into process list sorted by address
3452 * and into the inode's i_mmap tree. If vm_file is non-NULL
3453 * then i_mmap_rwsem is taken here.
3455 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3457 unsigned long charged = vma_pages(vma);
3460 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3463 if ((vma->vm_flags & VM_ACCOUNT) &&
3464 security_vm_enough_memory_mm(mm, charged))
3468 * The vm_pgoff of a purely anonymous vma should be irrelevant
3469 * until its first write fault, when page's anon_vma and index
3470 * are set. But now set the vm_pgoff it will almost certainly
3471 * end up with (unless mremap moves it elsewhere before that
3472 * first wfault), so /proc/pid/maps tells a consistent story.
3474 * By setting it to reflect the virtual start address of the
3475 * vma, merges and splits can happen in a seamless way, just
3476 * using the existing file pgoff checks and manipulations.
3477 * Similarly in do_mmap and in do_brk_flags.
3479 if (vma_is_anonymous(vma)) {
3480 BUG_ON(vma->anon_vma);
3481 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3484 if (vma_link(mm, vma)) {
3485 if (vma->vm_flags & VM_ACCOUNT)
3486 vm_unacct_memory(charged);
3494 * Copy the vma structure to a new location in the same mm,
3495 * prior to moving page table entries, to effect an mremap move.
3497 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3498 unsigned long addr, unsigned long len, pgoff_t pgoff,
3499 bool *need_rmap_locks)
3501 struct vm_area_struct *vma = *vmap;
3502 unsigned long vma_start = vma->vm_start;
3503 struct mm_struct *mm = vma->vm_mm;
3504 struct vm_area_struct *new_vma, *prev;
3505 bool faulted_in_anon_vma = true;
3506 VMA_ITERATOR(vmi, mm, addr);
3509 * If anonymous vma has not yet been faulted, update new pgoff
3510 * to match new location, to increase its chance of merging.
3512 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3513 pgoff = addr >> PAGE_SHIFT;
3514 faulted_in_anon_vma = false;
3517 new_vma = find_vma_prev(mm, addr, &prev);
3518 if (new_vma && new_vma->vm_start < addr + len)
3519 return NULL; /* should never get here */
3521 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3524 * Source vma may have been merged into new_vma
3526 if (unlikely(vma_start >= new_vma->vm_start &&
3527 vma_start < new_vma->vm_end)) {
3529 * The only way we can get a vma_merge with
3530 * self during an mremap is if the vma hasn't
3531 * been faulted in yet and we were allowed to
3532 * reset the dst vma->vm_pgoff to the
3533 * destination address of the mremap to allow
3534 * the merge to happen. mremap must change the
3535 * vm_pgoff linearity between src and dst vmas
3536 * (in turn preventing a vma_merge) to be
3537 * safe. It is only safe to keep the vm_pgoff
3538 * linear if there are no pages mapped yet.
3540 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3541 *vmap = vma = new_vma;
3543 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3545 new_vma = vm_area_dup(vma);
3548 vma_set_range(new_vma, addr, addr + len, pgoff);
3549 if (vma_dup_policy(vma, new_vma))
3551 if (anon_vma_clone(new_vma, vma))
3552 goto out_free_mempol;
3553 if (new_vma->vm_file)
3554 get_file(new_vma->vm_file);
3555 if (new_vma->vm_ops && new_vma->vm_ops->open)
3556 new_vma->vm_ops->open(new_vma);
3557 if (vma_link(mm, new_vma))
3559 *need_rmap_locks = false;
3564 if (new_vma->vm_ops && new_vma->vm_ops->close)
3565 new_vma->vm_ops->close(new_vma);
3567 if (new_vma->vm_file)
3568 fput(new_vma->vm_file);
3570 unlink_anon_vmas(new_vma);
3572 mpol_put(vma_policy(new_vma));
3574 vm_area_free(new_vma);
3580 * Return true if the calling process may expand its vm space by the passed
3583 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3585 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3588 if (is_data_mapping(flags) &&
3589 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3590 /* Workaround for Valgrind */
3591 if (rlimit(RLIMIT_DATA) == 0 &&
3592 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3595 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3596 current->comm, current->pid,
3597 (mm->data_vm + npages) << PAGE_SHIFT,
3598 rlimit(RLIMIT_DATA),
3599 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3601 if (!ignore_rlimit_data)
3608 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3610 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3612 if (is_exec_mapping(flags))
3613 mm->exec_vm += npages;
3614 else if (is_stack_mapping(flags))
3615 mm->stack_vm += npages;
3616 else if (is_data_mapping(flags))
3617 mm->data_vm += npages;
3620 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3623 * Having a close hook prevents vma merging regardless of flags.
3625 static void special_mapping_close(struct vm_area_struct *vma)
3629 static const char *special_mapping_name(struct vm_area_struct *vma)
3631 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3634 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3636 struct vm_special_mapping *sm = new_vma->vm_private_data;
3638 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3642 return sm->mremap(sm, new_vma);
3647 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3650 * Forbid splitting special mappings - kernel has expectations over
3651 * the number of pages in mapping. Together with VM_DONTEXPAND
3652 * the size of vma should stay the same over the special mapping's
3658 static const struct vm_operations_struct special_mapping_vmops = {
3659 .close = special_mapping_close,
3660 .fault = special_mapping_fault,
3661 .mremap = special_mapping_mremap,
3662 .name = special_mapping_name,
3663 /* vDSO code relies that VVAR can't be accessed remotely */
3665 .may_split = special_mapping_split,
3668 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3669 .close = special_mapping_close,
3670 .fault = special_mapping_fault,
3673 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3675 struct vm_area_struct *vma = vmf->vma;
3677 struct page **pages;
3679 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3680 pages = vma->vm_private_data;
3682 struct vm_special_mapping *sm = vma->vm_private_data;
3685 return sm->fault(sm, vmf->vma, vmf);
3690 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3694 struct page *page = *pages;
3700 return VM_FAULT_SIGBUS;
3703 static struct vm_area_struct *__install_special_mapping(
3704 struct mm_struct *mm,
3705 unsigned long addr, unsigned long len,
3706 unsigned long vm_flags, void *priv,
3707 const struct vm_operations_struct *ops)
3710 struct vm_area_struct *vma;
3712 vma = vm_area_alloc(mm);
3713 if (unlikely(vma == NULL))
3714 return ERR_PTR(-ENOMEM);
3716 vma_set_range(vma, addr, addr + len, 0);
3717 vm_flags_init(vma, (vm_flags | mm->def_flags |
3718 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3719 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3722 vma->vm_private_data = priv;
3724 ret = insert_vm_struct(mm, vma);
3728 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3730 perf_event_mmap(vma);
3736 return ERR_PTR(ret);
3739 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3740 const struct vm_special_mapping *sm)
3742 return vma->vm_private_data == sm &&
3743 (vma->vm_ops == &special_mapping_vmops ||
3744 vma->vm_ops == &legacy_special_mapping_vmops);
3748 * Called with mm->mmap_lock held for writing.
3749 * Insert a new vma covering the given region, with the given flags.
3750 * Its pages are supplied by the given array of struct page *.
3751 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3752 * The region past the last page supplied will always produce SIGBUS.
3753 * The array pointer and the pages it points to are assumed to stay alive
3754 * for as long as this mapping might exist.
3756 struct vm_area_struct *_install_special_mapping(
3757 struct mm_struct *mm,
3758 unsigned long addr, unsigned long len,
3759 unsigned long vm_flags, const struct vm_special_mapping *spec)
3761 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3762 &special_mapping_vmops);
3765 int install_special_mapping(struct mm_struct *mm,
3766 unsigned long addr, unsigned long len,
3767 unsigned long vm_flags, struct page **pages)
3769 struct vm_area_struct *vma = __install_special_mapping(
3770 mm, addr, len, vm_flags, (void *)pages,
3771 &legacy_special_mapping_vmops);
3773 return PTR_ERR_OR_ZERO(vma);
3776 static DEFINE_MUTEX(mm_all_locks_mutex);
3778 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3780 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3782 * The LSB of head.next can't change from under us
3783 * because we hold the mm_all_locks_mutex.
3785 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3787 * We can safely modify head.next after taking the
3788 * anon_vma->root->rwsem. If some other vma in this mm shares
3789 * the same anon_vma we won't take it again.
3791 * No need of atomic instructions here, head.next
3792 * can't change from under us thanks to the
3793 * anon_vma->root->rwsem.
3795 if (__test_and_set_bit(0, (unsigned long *)
3796 &anon_vma->root->rb_root.rb_root.rb_node))
3801 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3803 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3805 * AS_MM_ALL_LOCKS can't change from under us because
3806 * we hold the mm_all_locks_mutex.
3808 * Operations on ->flags have to be atomic because
3809 * even if AS_MM_ALL_LOCKS is stable thanks to the
3810 * mm_all_locks_mutex, there may be other cpus
3811 * changing other bitflags in parallel to us.
3813 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3815 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3820 * This operation locks against the VM for all pte/vma/mm related
3821 * operations that could ever happen on a certain mm. This includes
3822 * vmtruncate, try_to_unmap, and all page faults.
3824 * The caller must take the mmap_lock in write mode before calling
3825 * mm_take_all_locks(). The caller isn't allowed to release the
3826 * mmap_lock until mm_drop_all_locks() returns.
3828 * mmap_lock in write mode is required in order to block all operations
3829 * that could modify pagetables and free pages without need of
3830 * altering the vma layout. It's also needed in write mode to avoid new
3831 * anon_vmas to be associated with existing vmas.
3833 * A single task can't take more than one mm_take_all_locks() in a row
3834 * or it would deadlock.
3836 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3837 * mapping->flags avoid to take the same lock twice, if more than one
3838 * vma in this mm is backed by the same anon_vma or address_space.
3840 * We take locks in following order, accordingly to comment at beginning
3842 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3844 * - all vmas marked locked
3845 * - all i_mmap_rwsem locks;
3846 * - all anon_vma->rwseml
3848 * We can take all locks within these types randomly because the VM code
3849 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3850 * mm_all_locks_mutex.
3852 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3853 * that may have to take thousand of locks.
3855 * mm_take_all_locks() can fail if it's interrupted by signals.
3857 int mm_take_all_locks(struct mm_struct *mm)
3859 struct vm_area_struct *vma;
3860 struct anon_vma_chain *avc;
3861 VMA_ITERATOR(vmi, mm, 0);
3863 mmap_assert_write_locked(mm);
3865 mutex_lock(&mm_all_locks_mutex);
3868 * vma_start_write() does not have a complement in mm_drop_all_locks()
3869 * because vma_start_write() is always asymmetrical; it marks a VMA as
3870 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3873 for_each_vma(vmi, vma) {
3874 if (signal_pending(current))
3876 vma_start_write(vma);
3879 vma_iter_init(&vmi, mm, 0);
3880 for_each_vma(vmi, vma) {
3881 if (signal_pending(current))
3883 if (vma->vm_file && vma->vm_file->f_mapping &&
3884 is_vm_hugetlb_page(vma))
3885 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3888 vma_iter_init(&vmi, mm, 0);
3889 for_each_vma(vmi, vma) {
3890 if (signal_pending(current))
3892 if (vma->vm_file && vma->vm_file->f_mapping &&
3893 !is_vm_hugetlb_page(vma))
3894 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3897 vma_iter_init(&vmi, mm, 0);
3898 for_each_vma(vmi, vma) {
3899 if (signal_pending(current))
3902 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3903 vm_lock_anon_vma(mm, avc->anon_vma);
3909 mm_drop_all_locks(mm);
3913 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3915 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3917 * The LSB of head.next can't change to 0 from under
3918 * us because we hold the mm_all_locks_mutex.
3920 * We must however clear the bitflag before unlocking
3921 * the vma so the users using the anon_vma->rb_root will
3922 * never see our bitflag.
3924 * No need of atomic instructions here, head.next
3925 * can't change from under us until we release the
3926 * anon_vma->root->rwsem.
3928 if (!__test_and_clear_bit(0, (unsigned long *)
3929 &anon_vma->root->rb_root.rb_root.rb_node))
3931 anon_vma_unlock_write(anon_vma);
3935 static void vm_unlock_mapping(struct address_space *mapping)
3937 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3939 * AS_MM_ALL_LOCKS can't change to 0 from under us
3940 * because we hold the mm_all_locks_mutex.
3942 i_mmap_unlock_write(mapping);
3943 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3950 * The mmap_lock cannot be released by the caller until
3951 * mm_drop_all_locks() returns.
3953 void mm_drop_all_locks(struct mm_struct *mm)
3955 struct vm_area_struct *vma;
3956 struct anon_vma_chain *avc;
3957 VMA_ITERATOR(vmi, mm, 0);
3959 mmap_assert_write_locked(mm);
3960 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3962 for_each_vma(vmi, vma) {
3964 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3965 vm_unlock_anon_vma(avc->anon_vma);
3966 if (vma->vm_file && vma->vm_file->f_mapping)
3967 vm_unlock_mapping(vma->vm_file->f_mapping);
3970 mutex_unlock(&mm_all_locks_mutex);
3974 * initialise the percpu counter for VM
3976 void __init mmap_init(void)
3980 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3985 * Initialise sysctl_user_reserve_kbytes.
3987 * This is intended to prevent a user from starting a single memory hogging
3988 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3991 * The default value is min(3% of free memory, 128MB)
3992 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3994 static int init_user_reserve(void)
3996 unsigned long free_kbytes;
3998 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4000 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
4003 subsys_initcall(init_user_reserve);
4006 * Initialise sysctl_admin_reserve_kbytes.
4008 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
4009 * to log in and kill a memory hogging process.
4011 * Systems with more than 256MB will reserve 8MB, enough to recover
4012 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
4013 * only reserve 3% of free pages by default.
4015 static int init_admin_reserve(void)
4017 unsigned long free_kbytes;
4019 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4021 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
4024 subsys_initcall(init_admin_reserve);
4027 * Reinititalise user and admin reserves if memory is added or removed.
4029 * The default user reserve max is 128MB, and the default max for the
4030 * admin reserve is 8MB. These are usually, but not always, enough to
4031 * enable recovery from a memory hogging process using login/sshd, a shell,
4032 * and tools like top. It may make sense to increase or even disable the
4033 * reserve depending on the existence of swap or variations in the recovery
4034 * tools. So, the admin may have changed them.
4036 * If memory is added and the reserves have been eliminated or increased above
4037 * the default max, then we'll trust the admin.
4039 * If memory is removed and there isn't enough free memory, then we
4040 * need to reset the reserves.
4042 * Otherwise keep the reserve set by the admin.
4044 static int reserve_mem_notifier(struct notifier_block *nb,
4045 unsigned long action, void *data)
4047 unsigned long tmp, free_kbytes;
4051 /* Default max is 128MB. Leave alone if modified by operator. */
4052 tmp = sysctl_user_reserve_kbytes;
4053 if (tmp > 0 && tmp < SZ_128K)
4054 init_user_reserve();
4056 /* Default max is 8MB. Leave alone if modified by operator. */
4057 tmp = sysctl_admin_reserve_kbytes;
4058 if (tmp > 0 && tmp < SZ_8K)
4059 init_admin_reserve();
4063 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4065 if (sysctl_user_reserve_kbytes > free_kbytes) {
4066 init_user_reserve();
4067 pr_info("vm.user_reserve_kbytes reset to %lu\n",
4068 sysctl_user_reserve_kbytes);
4071 if (sysctl_admin_reserve_kbytes > free_kbytes) {
4072 init_admin_reserve();
4073 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4074 sysctl_admin_reserve_kbytes);
4083 static int __meminit init_reserve_notifier(void)
4085 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4086 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4090 subsys_initcall(init_reserve_notifier);