1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the TCP module.
9 * Version: @(#)tcp.h 1.0.5 05/23/93
17 #define FASTRETRANS_DEBUG 1
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
43 #include <net/mptcp.h>
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
50 extern struct inet_hashinfo tcp_hashinfo;
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
55 DECLARE_PER_CPU(u32, tcp_tw_isn);
57 void tcp_time_wait(struct sock *sk, int state, int timeo);
59 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
60 #define MAX_TCP_OPTION_SPACE 40
61 #define TCP_MIN_SND_MSS 48
62 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
65 * Never offer a window over 32767 without using window scaling. Some
66 * poor stacks do signed 16bit maths!
68 #define MAX_TCP_WINDOW 32767U
70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71 #define TCP_MIN_MSS 88U
73 /* The initial MTU to use for probing */
74 #define TCP_BASE_MSS 1024
76 /* probing interval, default to 10 minutes as per RFC4821 */
77 #define TCP_PROBE_INTERVAL 600
79 /* Specify interval when tcp mtu probing will stop */
80 #define TCP_PROBE_THRESHOLD 8
82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83 #define TCP_FASTRETRANS_THRESH 3
85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86 #define TCP_MAX_QUICKACKS 16U
88 /* Maximal number of window scale according to RFC1323 */
89 #define TCP_MAX_WSCALE 14U
92 #define TCP_URG_VALID 0x0100
93 #define TCP_URG_NOTYET 0x0200
94 #define TCP_URG_READ 0x0400
96 #define TCP_RETR1 3 /*
97 * This is how many retries it does before it
98 * tries to figure out if the gateway is
99 * down. Minimal RFC value is 3; it corresponds
100 * to ~3sec-8min depending on RTO.
103 #define TCP_RETR2 15 /*
104 * This should take at least
105 * 90 minutes to time out.
106 * RFC1122 says that the limit is 100 sec.
107 * 15 is ~13-30min depending on RTO.
110 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
111 * when active opening a connection.
112 * RFC1122 says the minimum retry MUST
113 * be at least 180secs. Nevertheless
114 * this value is corresponding to
115 * 63secs of retransmission with the
116 * current initial RTO.
119 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
120 * when passive opening a connection.
121 * This is corresponding to 31secs of
122 * retransmission with the current
126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127 * state, about 60 seconds */
128 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
129 /* BSD style FIN_WAIT2 deadlock breaker.
130 * It used to be 3min, new value is 60sec,
131 * to combine FIN-WAIT-2 timeout with
134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
136 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
140 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
141 #define TCP_ATO_MIN ((unsigned)(HZ/25))
143 #define TCP_DELACK_MIN 4U
144 #define TCP_ATO_MIN 4U
146 #define TCP_RTO_MAX ((unsigned)(120*HZ))
147 #define TCP_RTO_MIN ((unsigned)(HZ/5))
148 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
154 * used as a fallback RTO for the
155 * initial data transmission if no
156 * valid RTT sample has been acquired,
157 * most likely due to retrans in 3WHS.
160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161 * for local resources.
163 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
164 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
165 #define TCP_KEEPALIVE_INTVL (75*HZ)
167 #define MAX_TCP_KEEPIDLE 32767
168 #define MAX_TCP_KEEPINTVL 32767
169 #define MAX_TCP_KEEPCNT 127
170 #define MAX_TCP_SYNCNT 127
172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
178 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
179 * after this time. It should be equal
180 * (or greater than) TCP_TIMEWAIT_LEN
181 * to provide reliability equal to one
182 * provided by timewait state.
184 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
185 * timestamps. It must be less than
186 * minimal timewait lifetime.
192 #define TCPOPT_NOP 1 /* Padding */
193 #define TCPOPT_EOL 0 /* End of options */
194 #define TCPOPT_MSS 2 /* Segment size negotiating */
195 #define TCPOPT_WINDOW 3 /* Window scaling */
196 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
197 #define TCPOPT_SACK 5 /* SACK Block */
198 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
199 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
200 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */
201 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
202 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
203 #define TCPOPT_EXP 254 /* Experimental */
204 /* Magic number to be after the option value for sharing TCP
205 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
207 #define TCPOPT_FASTOPEN_MAGIC 0xF989
208 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
214 #define TCPOLEN_MSS 4
215 #define TCPOLEN_WINDOW 3
216 #define TCPOLEN_SACK_PERM 2
217 #define TCPOLEN_TIMESTAMP 10
218 #define TCPOLEN_MD5SIG 18
219 #define TCPOLEN_FASTOPEN_BASE 2
220 #define TCPOLEN_EXP_FASTOPEN_BASE 4
221 #define TCPOLEN_EXP_SMC_BASE 6
223 /* But this is what stacks really send out. */
224 #define TCPOLEN_TSTAMP_ALIGNED 12
225 #define TCPOLEN_WSCALE_ALIGNED 4
226 #define TCPOLEN_SACKPERM_ALIGNED 4
227 #define TCPOLEN_SACK_BASE 2
228 #define TCPOLEN_SACK_BASE_ALIGNED 4
229 #define TCPOLEN_SACK_PERBLOCK 8
230 #define TCPOLEN_MD5SIG_ALIGNED 20
231 #define TCPOLEN_MSS_ALIGNED 4
232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
234 /* Flags in tp->nonagle */
235 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
236 #define TCP_NAGLE_CORK 2 /* Socket is corked */
237 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
239 /* TCP thin-stream limits */
240 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
242 /* TCP initial congestion window as per rfc6928 */
243 #define TCP_INIT_CWND 10
245 /* Bit Flags for sysctl_tcp_fastopen */
246 #define TFO_CLIENT_ENABLE 1
247 #define TFO_SERVER_ENABLE 2
248 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
250 /* Accept SYN data w/o any cookie option */
251 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
253 /* Force enable TFO on all listeners, i.e., not requiring the
254 * TCP_FASTOPEN socket option.
256 #define TFO_SERVER_WO_SOCKOPT1 0x400
259 /* sysctl variables for tcp */
260 extern int sysctl_tcp_max_orphans;
261 extern long sysctl_tcp_mem[3];
263 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
264 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
265 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
267 extern atomic_long_t tcp_memory_allocated;
268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern unsigned long tcp_memory_pressure;
273 /* optimized version of sk_under_memory_pressure() for TCP sockets */
274 static inline bool tcp_under_memory_pressure(const struct sock *sk)
276 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277 mem_cgroup_under_socket_pressure(sk->sk_memcg))
280 return READ_ONCE(tcp_memory_pressure);
283 * The next routines deal with comparing 32 bit unsigned ints
284 * and worry about wraparound (automatic with unsigned arithmetic).
287 static inline bool before(__u32 seq1, __u32 seq2)
289 return (__s32)(seq1-seq2) < 0;
291 #define after(seq2, seq1) before(seq1, seq2)
293 /* is s2<=s1<=s3 ? */
294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
296 return seq3 - seq2 >= seq1 - seq2;
299 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
301 sk_wmem_queued_add(sk, -skb->truesize);
302 if (!skb_zcopy_pure(skb))
303 sk_mem_uncharge(sk, skb->truesize);
305 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
309 void sk_forced_mem_schedule(struct sock *sk, int size);
311 bool tcp_check_oom(const struct sock *sk, int shift);
314 extern struct proto tcp_prot;
316 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
319 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
321 void tcp_tasklet_init(void);
323 int tcp_v4_err(struct sk_buff *skb, u32);
325 void tcp_shutdown(struct sock *sk, int how);
327 int tcp_v4_early_demux(struct sk_buff *skb);
328 int tcp_v4_rcv(struct sk_buff *skb);
330 void tcp_remove_empty_skb(struct sock *sk);
331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
332 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
333 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
334 size_t size, struct ubuf_info *uarg);
335 void tcp_splice_eof(struct socket *sock);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 int tcp_wmem_schedule(struct sock *sk, int copy);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
345 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 void tcp_twsk_purge(struct list_head *net_exit_list);
351 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
352 struct pipe_inode_info *pipe, size_t len,
354 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
355 bool force_schedule);
357 static inline void tcp_dec_quickack_mode(struct sock *sk)
359 struct inet_connection_sock *icsk = inet_csk(sk);
361 if (icsk->icsk_ack.quick) {
362 /* How many ACKs S/ACKing new data have we sent? */
363 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
365 if (pkts >= icsk->icsk_ack.quick) {
366 icsk->icsk_ack.quick = 0;
367 /* Leaving quickack mode we deflate ATO. */
368 icsk->icsk_ack.ato = TCP_ATO_MIN;
370 icsk->icsk_ack.quick -= pkts;
375 #define TCP_ECN_QUEUE_CWR 2
376 #define TCP_ECN_DEMAND_CWR 4
377 #define TCP_ECN_SEEN 8
387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
389 const struct tcphdr *th,
391 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
392 struct request_sock *req, bool fastopen,
394 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
395 struct sk_buff *skb);
396 void tcp_enter_loss(struct sock *sk);
397 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
398 void tcp_clear_retrans(struct tcp_sock *tp);
399 void tcp_update_metrics(struct sock *sk);
400 void tcp_init_metrics(struct sock *sk);
401 void tcp_metrics_init(void);
402 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
403 void __tcp_close(struct sock *sk, long timeout);
404 void tcp_close(struct sock *sk, long timeout);
405 void tcp_init_sock(struct sock *sk);
406 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
407 __poll_t tcp_poll(struct file *file, struct socket *sock,
408 struct poll_table_struct *wait);
409 int do_tcp_getsockopt(struct sock *sk, int level,
410 int optname, sockptr_t optval, sockptr_t optlen);
411 int tcp_getsockopt(struct sock *sk, int level, int optname,
412 char __user *optval, int __user *optlen);
413 bool tcp_bpf_bypass_getsockopt(int level, int optname);
414 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
415 sockptr_t optval, unsigned int optlen);
416 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
417 unsigned int optlen);
418 void tcp_set_keepalive(struct sock *sk, int val);
419 void tcp_syn_ack_timeout(const struct request_sock *req);
420 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
421 int flags, int *addr_len);
422 int tcp_set_rcvlowat(struct sock *sk, int val);
423 int tcp_set_window_clamp(struct sock *sk, int val);
424 void tcp_update_recv_tstamps(struct sk_buff *skb,
425 struct scm_timestamping_internal *tss);
426 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
427 struct scm_timestamping_internal *tss);
428 void tcp_data_ready(struct sock *sk);
430 int tcp_mmap(struct file *file, struct socket *sock,
431 struct vm_area_struct *vma);
433 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
434 struct tcp_options_received *opt_rx,
435 int estab, struct tcp_fastopen_cookie *foc);
438 * BPF SKB-less helpers
440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
441 struct tcphdr *th, u32 *cookie);
442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
443 struct tcphdr *th, u32 *cookie);
444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
446 const struct tcp_request_sock_ops *af_ops,
447 struct sock *sk, struct tcphdr *th);
449 * TCP v4 functions exported for the inet6 API
452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
453 void tcp_v4_mtu_reduced(struct sock *sk);
454 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457 struct sock *tcp_create_openreq_child(const struct sock *sk,
458 struct request_sock *req,
459 struct sk_buff *skb);
460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
462 struct request_sock *req,
463 struct dst_entry *dst,
464 struct request_sock *req_unhash,
466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
468 int tcp_connect(struct sock *sk);
469 enum tcp_synack_type {
474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
475 struct request_sock *req,
476 struct tcp_fastopen_cookie *foc,
477 enum tcp_synack_type synack_type,
478 struct sk_buff *syn_skb);
479 int tcp_disconnect(struct sock *sk, int flags);
481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
485 /* From syncookies.c */
486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
487 struct request_sock *req,
488 struct dst_entry *dst);
489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
492 struct sock *sk, struct sk_buff *skb,
493 struct tcp_options_received *tcp_opt,
496 #if IS_ENABLED(CONFIG_BPF)
497 struct bpf_tcp_req_attrs {
512 #ifdef CONFIG_SYN_COOKIES
514 /* Syncookies use a monotonic timer which increments every 60 seconds.
515 * This counter is used both as a hash input and partially encoded into
516 * the cookie value. A cookie is only validated further if the delta
517 * between the current counter value and the encoded one is less than this,
518 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
519 * the counter advances immediately after a cookie is generated).
521 #define MAX_SYNCOOKIE_AGE 2
522 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
523 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
525 /* syncookies: remember time of last synqueue overflow
526 * But do not dirty this field too often (once per second is enough)
527 * It is racy as we do not hold a lock, but race is very minor.
529 static inline void tcp_synq_overflow(const struct sock *sk)
531 unsigned int last_overflow;
532 unsigned int now = jiffies;
534 if (sk->sk_reuseport) {
535 struct sock_reuseport *reuse;
537 reuse = rcu_dereference(sk->sk_reuseport_cb);
539 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 if (!time_between32(now, last_overflow,
542 WRITE_ONCE(reuse->synq_overflow_ts, now);
547 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
548 if (!time_between32(now, last_overflow, last_overflow + HZ))
549 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
552 /* syncookies: no recent synqueue overflow on this listening socket? */
553 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
555 unsigned int last_overflow;
556 unsigned int now = jiffies;
558 if (sk->sk_reuseport) {
559 struct sock_reuseport *reuse;
561 reuse = rcu_dereference(sk->sk_reuseport_cb);
563 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
564 return !time_between32(now, last_overflow - HZ,
566 TCP_SYNCOOKIE_VALID);
570 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
572 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
573 * then we're under synflood. However, we have to use
574 * 'last_overflow - HZ' as lower bound. That's because a concurrent
575 * tcp_synq_overflow() could update .ts_recent_stamp after we read
576 * jiffies but before we store .ts_recent_stamp into last_overflow,
577 * which could lead to rejecting a valid syncookie.
579 return !time_between32(now, last_overflow - HZ,
580 last_overflow + TCP_SYNCOOKIE_VALID);
583 static inline u32 tcp_cookie_time(void)
585 u64 val = get_jiffies_64();
587 do_div(val, TCP_SYNCOOKIE_PERIOD);
591 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
592 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
595 return div_u64(val, NSEC_PER_USEC);
597 return div_u64(val, NSEC_PER_MSEC);
600 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
602 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
603 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
604 bool cookie_timestamp_decode(const struct net *net,
605 struct tcp_options_received *opt);
607 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
609 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
610 dst_feature(dst, RTAX_FEATURE_ECN);
613 #if IS_ENABLED(CONFIG_BPF)
614 static inline bool cookie_bpf_ok(struct sk_buff *skb)
619 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
621 static inline bool cookie_bpf_ok(struct sk_buff *skb)
626 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
633 /* From net/ipv6/syncookies.c */
634 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
635 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
637 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
638 const struct tcphdr *th, u16 *mssp);
639 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
643 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
645 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
647 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
648 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
649 void tcp_retransmit_timer(struct sock *sk);
650 void tcp_xmit_retransmit_queue(struct sock *);
651 void tcp_simple_retransmit(struct sock *);
652 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
653 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
655 TCP_FRAG_IN_WRITE_QUEUE,
656 TCP_FRAG_IN_RTX_QUEUE,
658 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
659 struct sk_buff *skb, u32 len,
660 unsigned int mss_now, gfp_t gfp);
662 void tcp_send_probe0(struct sock *);
663 int tcp_write_wakeup(struct sock *, int mib);
664 void tcp_send_fin(struct sock *sk);
665 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
666 enum sk_rst_reason reason);
667 int tcp_send_synack(struct sock *);
668 void tcp_push_one(struct sock *, unsigned int mss_now);
669 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
670 void tcp_send_ack(struct sock *sk);
671 void tcp_send_delayed_ack(struct sock *sk);
672 void tcp_send_loss_probe(struct sock *sk);
673 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
674 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
675 const struct sk_buff *next_skb);
678 void tcp_rearm_rto(struct sock *sk);
679 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
680 void tcp_done_with_error(struct sock *sk, int err);
681 void tcp_reset(struct sock *sk, struct sk_buff *skb);
682 void tcp_fin(struct sock *sk);
683 void tcp_check_space(struct sock *sk);
684 void tcp_sack_compress_send_ack(struct sock *sk);
687 void tcp_init_xmit_timers(struct sock *);
688 static inline void tcp_clear_xmit_timers(struct sock *sk)
690 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
693 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
696 inet_csk_clear_xmit_timers(sk);
699 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
700 unsigned int tcp_current_mss(struct sock *sk);
701 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
703 /* Bound MSS / TSO packet size with the half of the window */
704 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
708 /* When peer uses tiny windows, there is no use in packetizing
709 * to sub-MSS pieces for the sake of SWS or making sure there
710 * are enough packets in the pipe for fast recovery.
712 * On the other hand, for extremely large MSS devices, handling
713 * smaller than MSS windows in this way does make sense.
715 if (tp->max_window > TCP_MSS_DEFAULT)
716 cutoff = (tp->max_window >> 1);
718 cutoff = tp->max_window;
720 if (cutoff && pktsize > cutoff)
721 return max_t(int, cutoff, 68U - tp->tcp_header_len);
727 void tcp_get_info(struct sock *, struct tcp_info *);
729 /* Read 'sendfile()'-style from a TCP socket */
730 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
731 sk_read_actor_t recv_actor);
732 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
733 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
734 void tcp_read_done(struct sock *sk, size_t len);
736 void tcp_initialize_rcv_mss(struct sock *sk);
738 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
739 int tcp_mss_to_mtu(struct sock *sk, int mss);
740 void tcp_mtup_init(struct sock *sk);
742 static inline void tcp_bound_rto(struct sock *sk)
744 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
745 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
748 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
750 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
753 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
755 /* mptcp hooks are only on the slow path */
756 if (sk_is_mptcp((struct sock *)tp))
759 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
760 ntohl(TCP_FLAG_ACK) |
764 static inline void tcp_fast_path_on(struct tcp_sock *tp)
766 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
769 static inline void tcp_fast_path_check(struct sock *sk)
771 struct tcp_sock *tp = tcp_sk(sk);
773 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
775 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
777 tcp_fast_path_on(tp);
780 u32 tcp_delack_max(const struct sock *sk);
782 /* Compute the actual rto_min value */
783 static inline u32 tcp_rto_min(const struct sock *sk)
785 const struct dst_entry *dst = __sk_dst_get(sk);
786 u32 rto_min = inet_csk(sk)->icsk_rto_min;
788 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
789 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
793 static inline u32 tcp_rto_min_us(const struct sock *sk)
795 return jiffies_to_usecs(tcp_rto_min(sk));
798 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
800 return dst_metric_locked(dst, RTAX_CC_ALGO);
803 /* Minimum RTT in usec. ~0 means not available. */
804 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
806 return minmax_get(&tp->rtt_min);
809 /* Compute the actual receive window we are currently advertising.
810 * Rcv_nxt can be after the window if our peer push more data
811 * than the offered window.
813 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
815 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
822 /* Choose a new window, without checks for shrinking, and without
823 * scaling applied to the result. The caller does these things
824 * if necessary. This is a "raw" window selection.
826 u32 __tcp_select_window(struct sock *sk);
828 void tcp_send_window_probe(struct sock *sk);
830 /* TCP uses 32bit jiffies to save some space.
831 * Note that this is different from tcp_time_stamp, which
832 * historically has been the same until linux-4.13.
834 #define tcp_jiffies32 ((u32)jiffies)
837 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
838 * It is no longer tied to jiffies, but to 1 ms clock.
839 * Note: double check if you want to use tcp_jiffies32 instead of this.
841 #define TCP_TS_HZ 1000
843 static inline u64 tcp_clock_ns(void)
845 return ktime_get_ns();
848 static inline u64 tcp_clock_us(void)
850 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
853 static inline u64 tcp_clock_ms(void)
855 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
858 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
859 * or usec resolution. Each socket carries a flag to select one or other
860 * resolution, as the route attribute could change anytime.
861 * Each flow must stick to initial resolution.
863 static inline u32 tcp_clock_ts(bool usec_ts)
865 return usec_ts ? tcp_clock_us() : tcp_clock_ms();
868 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
870 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
873 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
876 return tp->tcp_mstamp;
877 return tcp_time_stamp_ms(tp);
880 void tcp_mstamp_refresh(struct tcp_sock *tp);
882 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
884 return max_t(s64, t1 - t0, 0);
887 /* provide the departure time in us unit */
888 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
890 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
893 /* Provide skb TSval in usec or ms unit */
894 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
897 return tcp_skb_timestamp_us(skb);
899 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
902 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
904 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
907 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
909 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
912 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
914 #define TCPHDR_FIN 0x01
915 #define TCPHDR_SYN 0x02
916 #define TCPHDR_RST 0x04
917 #define TCPHDR_PSH 0x08
918 #define TCPHDR_ACK 0x10
919 #define TCPHDR_URG 0x20
920 #define TCPHDR_ECE 0x40
921 #define TCPHDR_CWR 0x80
923 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
925 /* State flags for sacked in struct tcp_skb_cb */
926 enum tcp_skb_cb_sacked_flags {
927 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */
928 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */
929 TCPCB_LOST = (1 << 2), /* SKB is lost */
930 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
931 TCPCB_LOST), /* All tag bits */
932 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */
933 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */
934 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
938 /* This is what the send packet queuing engine uses to pass
939 * TCP per-packet control information to the transmission code.
940 * We also store the host-order sequence numbers in here too.
941 * This is 44 bytes if IPV6 is enabled.
942 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
945 __u32 seq; /* Starting sequence number */
946 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
949 * tcp_gso_segs/size are used in write queue only,
950 * cf tcp_skb_pcount()/tcp_skb_mss()
957 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
959 __u8 sacked; /* State flags for SACK. */
960 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
961 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
962 eor:1, /* Is skb MSG_EOR marked? */
963 has_rxtstamp:1, /* SKB has a RX timestamp */
965 __u32 ack_seq; /* Sequence number ACK'd */
968 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
969 /* There is space for up to 24 bytes */
970 __u32 is_app_limited:1, /* cwnd not fully used? */
973 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
975 /* start of send pipeline phase */
977 /* when we reached the "delivered" count */
978 u64 delivered_mstamp;
979 } tx; /* only used for outgoing skbs */
981 struct inet_skb_parm h4;
982 #if IS_ENABLED(CONFIG_IPV6)
983 struct inet6_skb_parm h6;
985 } header; /* For incoming skbs */
989 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
991 extern const struct inet_connection_sock_af_ops ipv4_specific;
993 #if IS_ENABLED(CONFIG_IPV6)
994 /* This is the variant of inet6_iif() that must be used by TCP,
995 * as TCP moves IP6CB into a different location in skb->cb[]
997 static inline int tcp_v6_iif(const struct sk_buff *skb)
999 return TCP_SKB_CB(skb)->header.h6.iif;
1002 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1004 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1006 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1009 /* TCP_SKB_CB reference means this can not be used from early demux */
1010 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1012 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1013 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1014 return TCP_SKB_CB(skb)->header.h6.iif;
1019 extern const struct inet_connection_sock_af_ops ipv6_specific;
1021 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1022 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1023 void tcp_v6_early_demux(struct sk_buff *skb);
1027 /* TCP_SKB_CB reference means this can not be used from early demux */
1028 static inline int tcp_v4_sdif(struct sk_buff *skb)
1030 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1031 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1032 return TCP_SKB_CB(skb)->header.h4.iif;
1037 /* Due to TSO, an SKB can be composed of multiple actual
1038 * packets. To keep these tracked properly, we use this.
1040 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1042 return TCP_SKB_CB(skb)->tcp_gso_segs;
1045 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1047 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1050 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1052 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1055 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1056 static inline int tcp_skb_mss(const struct sk_buff *skb)
1058 return TCP_SKB_CB(skb)->tcp_gso_size;
1061 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1063 return likely(!TCP_SKB_CB(skb)->eor);
1066 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1067 const struct sk_buff *from)
1069 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1070 return likely(tcp_skb_can_collapse_to(to) &&
1071 mptcp_skb_can_collapse(to, from) &&
1072 skb_pure_zcopy_same(to, from));
1075 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1076 const struct sk_buff *from)
1078 return likely(mptcp_skb_can_collapse(to, from) &&
1079 !skb_cmp_decrypted(to, from));
1082 /* Events passed to congestion control interface */
1084 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1085 CA_EVENT_CWND_RESTART, /* congestion window restart */
1086 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1087 CA_EVENT_LOSS, /* loss timeout */
1088 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1089 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1092 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1093 enum tcp_ca_ack_event_flags {
1094 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1095 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1096 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1100 * Interface for adding new TCP congestion control handlers
1102 #define TCP_CA_NAME_MAX 16
1103 #define TCP_CA_MAX 128
1104 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1106 #define TCP_CA_UNSPEC 0
1108 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1109 #define TCP_CONG_NON_RESTRICTED 0x1
1110 /* Requires ECN/ECT set on all packets */
1111 #define TCP_CONG_NEEDS_ECN 0x2
1112 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1122 /* A rate sample measures the number of (original/retransmitted) data
1123 * packets delivered "delivered" over an interval of time "interval_us".
1124 * The tcp_rate.c code fills in the rate sample, and congestion
1125 * control modules that define a cong_control function to run at the end
1126 * of ACK processing can optionally chose to consult this sample when
1127 * setting cwnd and pacing rate.
1128 * A sample is invalid if "delivered" or "interval_us" is negative.
1130 struct rate_sample {
1131 u64 prior_mstamp; /* starting timestamp for interval */
1132 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1133 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1134 s32 delivered; /* number of packets delivered over interval */
1135 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1136 long interval_us; /* time for tp->delivered to incr "delivered" */
1137 u32 snd_interval_us; /* snd interval for delivered packets */
1138 u32 rcv_interval_us; /* rcv interval for delivered packets */
1139 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1140 int losses; /* number of packets marked lost upon ACK */
1141 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1142 u32 prior_in_flight; /* in flight before this ACK */
1143 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1144 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1145 bool is_retrans; /* is sample from retransmission? */
1146 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1149 struct tcp_congestion_ops {
1150 /* fast path fields are put first to fill one cache line */
1152 /* return slow start threshold (required) */
1153 u32 (*ssthresh)(struct sock *sk);
1155 /* do new cwnd calculation (required) */
1156 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1158 /* call before changing ca_state (optional) */
1159 void (*set_state)(struct sock *sk, u8 new_state);
1161 /* call when cwnd event occurs (optional) */
1162 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1164 /* call when ack arrives (optional) */
1165 void (*in_ack_event)(struct sock *sk, u32 flags);
1167 /* hook for packet ack accounting (optional) */
1168 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1170 /* override sysctl_tcp_min_tso_segs */
1171 u32 (*min_tso_segs)(struct sock *sk);
1173 /* call when packets are delivered to update cwnd and pacing rate,
1174 * after all the ca_state processing. (optional)
1176 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1179 /* new value of cwnd after loss (required) */
1180 u32 (*undo_cwnd)(struct sock *sk);
1181 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1182 u32 (*sndbuf_expand)(struct sock *sk);
1184 /* control/slow paths put last */
1185 /* get info for inet_diag (optional) */
1186 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1187 union tcp_cc_info *info);
1189 char name[TCP_CA_NAME_MAX];
1190 struct module *owner;
1191 struct list_head list;
1195 /* initialize private data (optional) */
1196 void (*init)(struct sock *sk);
1197 /* cleanup private data (optional) */
1198 void (*release)(struct sock *sk);
1199 } ____cacheline_aligned_in_smp;
1201 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1202 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1203 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1204 struct tcp_congestion_ops *old_type);
1205 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1207 void tcp_assign_congestion_control(struct sock *sk);
1208 void tcp_init_congestion_control(struct sock *sk);
1209 void tcp_cleanup_congestion_control(struct sock *sk);
1210 int tcp_set_default_congestion_control(struct net *net, const char *name);
1211 void tcp_get_default_congestion_control(struct net *net, char *name);
1212 void tcp_get_available_congestion_control(char *buf, size_t len);
1213 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1214 int tcp_set_allowed_congestion_control(char *allowed);
1215 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1216 bool cap_net_admin);
1217 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1218 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1220 u32 tcp_reno_ssthresh(struct sock *sk);
1221 u32 tcp_reno_undo_cwnd(struct sock *sk);
1222 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1223 extern struct tcp_congestion_ops tcp_reno;
1225 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1226 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1227 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1229 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1231 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1237 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1239 const struct inet_connection_sock *icsk = inet_csk(sk);
1241 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1244 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1246 const struct inet_connection_sock *icsk = inet_csk(sk);
1248 if (icsk->icsk_ca_ops->cwnd_event)
1249 icsk->icsk_ca_ops->cwnd_event(sk, event);
1252 /* From tcp_cong.c */
1253 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1255 /* From tcp_rate.c */
1256 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1257 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1258 struct rate_sample *rs);
1259 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1260 bool is_sack_reneg, struct rate_sample *rs);
1261 void tcp_rate_check_app_limited(struct sock *sk);
1263 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1265 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1268 /* These functions determine how the current flow behaves in respect of SACK
1269 * handling. SACK is negotiated with the peer, and therefore it can vary
1270 * between different flows.
1272 * tcp_is_sack - SACK enabled
1273 * tcp_is_reno - No SACK
1275 static inline int tcp_is_sack(const struct tcp_sock *tp)
1277 return likely(tp->rx_opt.sack_ok);
1280 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1282 return !tcp_is_sack(tp);
1285 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1287 return tp->sacked_out + tp->lost_out;
1290 /* This determines how many packets are "in the network" to the best
1291 * of our knowledge. In many cases it is conservative, but where
1292 * detailed information is available from the receiver (via SACK
1293 * blocks etc.) we can make more aggressive calculations.
1295 * Use this for decisions involving congestion control, use just
1296 * tp->packets_out to determine if the send queue is empty or not.
1298 * Read this equation as:
1300 * "Packets sent once on transmission queue" MINUS
1301 * "Packets left network, but not honestly ACKed yet" PLUS
1302 * "Packets fast retransmitted"
1304 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1306 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1309 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1311 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1313 return tp->snd_cwnd;
1316 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1318 WARN_ON_ONCE((int)val <= 0);
1322 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1324 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1327 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1329 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1332 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1334 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1335 (1 << inet_csk(sk)->icsk_ca_state);
1338 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1339 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1342 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1344 const struct tcp_sock *tp = tcp_sk(sk);
1346 if (tcp_in_cwnd_reduction(sk))
1347 return tp->snd_ssthresh;
1349 return max(tp->snd_ssthresh,
1350 ((tcp_snd_cwnd(tp) >> 1) +
1351 (tcp_snd_cwnd(tp) >> 2)));
1354 /* Use define here intentionally to get WARN_ON location shown at the caller */
1355 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1357 void tcp_enter_cwr(struct sock *sk);
1358 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1360 /* The maximum number of MSS of available cwnd for which TSO defers
1361 * sending if not using sysctl_tcp_tso_win_divisor.
1363 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1368 /* Returns end sequence number of the receiver's advertised window */
1369 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1371 return tp->snd_una + tp->snd_wnd;
1374 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1375 * flexible approach. The RFC suggests cwnd should not be raised unless
1376 * it was fully used previously. And that's exactly what we do in
1377 * congestion avoidance mode. But in slow start we allow cwnd to grow
1378 * as long as the application has used half the cwnd.
1380 * cwnd is 10 (IW10), but application sends 9 frames.
1381 * We allow cwnd to reach 18 when all frames are ACKed.
1382 * This check is safe because it's as aggressive as slow start which already
1383 * risks 100% overshoot. The advantage is that we discourage application to
1384 * either send more filler packets or data to artificially blow up the cwnd
1385 * usage, and allow application-limited process to probe bw more aggressively.
1387 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1389 const struct tcp_sock *tp = tcp_sk(sk);
1391 if (tp->is_cwnd_limited)
1394 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1395 if (tcp_in_slow_start(tp))
1396 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1401 /* BBR congestion control needs pacing.
1402 * Same remark for SO_MAX_PACING_RATE.
1403 * sch_fq packet scheduler is efficiently handling pacing,
1404 * but is not always installed/used.
1405 * Return true if TCP stack should pace packets itself.
1407 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1409 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1412 /* Estimates in how many jiffies next packet for this flow can be sent.
1413 * Scheduling a retransmit timer too early would be silly.
1415 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1417 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1419 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1422 static inline void tcp_reset_xmit_timer(struct sock *sk,
1425 const unsigned long max_when)
1427 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1431 /* Something is really bad, we could not queue an additional packet,
1432 * because qdisc is full or receiver sent a 0 window, or we are paced.
1433 * We do not want to add fuel to the fire, or abort too early,
1434 * so make sure the timer we arm now is at least 200ms in the future,
1435 * regardless of current icsk_rto value (as it could be ~2ms)
1437 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1439 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1442 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1443 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1444 unsigned long max_when)
1446 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1447 inet_csk(sk)->icsk_backoff);
1448 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1450 return (unsigned long)min_t(u64, when, max_when);
1453 static inline void tcp_check_probe_timer(struct sock *sk)
1455 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1456 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1457 tcp_probe0_base(sk), TCP_RTO_MAX);
1460 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1465 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1471 * Calculate(/check) TCP checksum
1473 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1474 __be32 daddr, __wsum base)
1476 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1479 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1481 return !skb_csum_unnecessary(skb) &&
1482 __skb_checksum_complete(skb);
1485 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1486 enum skb_drop_reason *reason);
1489 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1490 void tcp_set_state(struct sock *sk, int state);
1491 void tcp_done(struct sock *sk);
1492 int tcp_abort(struct sock *sk, int err);
1494 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1497 rx_opt->num_sacks = 0;
1500 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1502 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1504 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1505 struct tcp_sock *tp = tcp_sk(sk);
1508 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1509 tp->packets_out || ca_ops->cong_control)
1511 delta = tcp_jiffies32 - tp->lsndtime;
1512 if (delta > inet_csk(sk)->icsk_rto)
1513 tcp_cwnd_restart(sk, delta);
1516 /* Determine a window scaling and initial window to offer. */
1517 void tcp_select_initial_window(const struct sock *sk, int __space,
1518 __u32 mss, __u32 *rcv_wnd,
1519 __u32 *window_clamp, int wscale_ok,
1520 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1522 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1524 s64 scaled_space = (s64)space * scaling_ratio;
1526 return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1529 static inline int tcp_win_from_space(const struct sock *sk, int space)
1531 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1534 /* inverse of __tcp_win_from_space() */
1535 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1537 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1539 do_div(val, scaling_ratio);
1543 static inline int tcp_space_from_win(const struct sock *sk, int win)
1545 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1548 /* Assume a 50% default for skb->len/skb->truesize ratio.
1549 * This may be adjusted later in tcp_measure_rcv_mss().
1551 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1553 static inline void tcp_scaling_ratio_init(struct sock *sk)
1555 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1558 /* Note: caller must be prepared to deal with negative returns */
1559 static inline int tcp_space(const struct sock *sk)
1561 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1562 READ_ONCE(sk->sk_backlog.len) -
1563 atomic_read(&sk->sk_rmem_alloc));
1566 static inline int tcp_full_space(const struct sock *sk)
1568 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1571 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1573 int unused_mem = sk_unused_reserved_mem(sk);
1574 struct tcp_sock *tp = tcp_sk(sk);
1576 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1578 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1579 tcp_win_from_space(sk, unused_mem));
1582 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1584 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1587 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1588 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1591 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1592 * If 87.5 % (7/8) of the space has been consumed, we want to override
1593 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1594 * len/truesize ratio.
1596 static inline bool tcp_rmem_pressure(const struct sock *sk)
1598 int rcvbuf, threshold;
1600 if (tcp_under_memory_pressure(sk))
1603 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1604 threshold = rcvbuf - (rcvbuf >> 3);
1606 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1609 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1611 const struct tcp_sock *tp = tcp_sk(sk);
1612 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1617 return (avail >= target) || tcp_rmem_pressure(sk) ||
1618 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1621 extern void tcp_openreq_init_rwin(struct request_sock *req,
1622 const struct sock *sk_listener,
1623 const struct dst_entry *dst);
1625 void tcp_enter_memory_pressure(struct sock *sk);
1626 void tcp_leave_memory_pressure(struct sock *sk);
1628 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1630 struct net *net = sock_net((struct sock *)tp);
1633 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1634 * and do_tcp_setsockopt().
1636 val = READ_ONCE(tp->keepalive_intvl);
1638 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1641 static inline int keepalive_time_when(const struct tcp_sock *tp)
1643 struct net *net = sock_net((struct sock *)tp);
1646 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1647 val = READ_ONCE(tp->keepalive_time);
1649 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1652 static inline int keepalive_probes(const struct tcp_sock *tp)
1654 struct net *net = sock_net((struct sock *)tp);
1657 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1658 * and do_tcp_setsockopt().
1660 val = READ_ONCE(tp->keepalive_probes);
1662 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1665 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1667 const struct inet_connection_sock *icsk = &tp->inet_conn;
1669 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1670 tcp_jiffies32 - tp->rcv_tstamp);
1673 static inline int tcp_fin_time(const struct sock *sk)
1675 int fin_timeout = tcp_sk(sk)->linger2 ? :
1676 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1677 const int rto = inet_csk(sk)->icsk_rto;
1679 if (fin_timeout < (rto << 2) - (rto >> 1))
1680 fin_timeout = (rto << 2) - (rto >> 1);
1685 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1688 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1690 if (unlikely(!time_before32(ktime_get_seconds(),
1691 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1694 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1695 * then following tcp messages have valid values. Ignore 0 value,
1696 * or else 'negative' tsval might forbid us to accept their packets.
1698 if (!rx_opt->ts_recent)
1703 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1706 if (tcp_paws_check(rx_opt, 0))
1709 /* RST segments are not recommended to carry timestamp,
1710 and, if they do, it is recommended to ignore PAWS because
1711 "their cleanup function should take precedence over timestamps."
1712 Certainly, it is mistake. It is necessary to understand the reasons
1713 of this constraint to relax it: if peer reboots, clock may go
1714 out-of-sync and half-open connections will not be reset.
1715 Actually, the problem would be not existing if all
1716 the implementations followed draft about maintaining clock
1717 via reboots. Linux-2.2 DOES NOT!
1719 However, we can relax time bounds for RST segments to MSL.
1721 if (rst && !time_before32(ktime_get_seconds(),
1722 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1727 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1728 int mib_idx, u32 *last_oow_ack_time);
1730 static inline void tcp_mib_init(struct net *net)
1733 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1734 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1735 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1736 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1740 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1742 tp->lost_skb_hint = NULL;
1745 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1747 tcp_clear_retrans_hints_partial(tp);
1748 tp->retransmit_skb_hint = NULL;
1751 #define tcp_md5_addr tcp_ao_addr
1753 /* - key database */
1754 struct tcp_md5sig_key {
1755 struct hlist_node node;
1757 u8 family; /* AF_INET or AF_INET6 */
1760 union tcp_md5_addr addr;
1761 int l3index; /* set if key added with L3 scope */
1762 u8 key[TCP_MD5SIG_MAXKEYLEN];
1763 struct rcu_head rcu;
1767 struct tcp_md5sig_info {
1768 struct hlist_head head;
1769 struct rcu_head rcu;
1772 /* - pseudo header */
1773 struct tcp4_pseudohdr {
1781 struct tcp6_pseudohdr {
1782 struct in6_addr saddr;
1783 struct in6_addr daddr;
1785 __be32 protocol; /* including padding */
1788 union tcp_md5sum_block {
1789 struct tcp4_pseudohdr ip4;
1790 #if IS_ENABLED(CONFIG_IPV6)
1791 struct tcp6_pseudohdr ip6;
1796 * struct tcp_sigpool - per-CPU pool of ahash_requests
1797 * @scratch: per-CPU temporary area, that can be used between
1798 * tcp_sigpool_start() and tcp_sigpool_end() to perform
1800 * @req: pre-allocated ahash request
1802 struct tcp_sigpool {
1804 struct ahash_request *req;
1807 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1808 void tcp_sigpool_get(unsigned int id);
1809 void tcp_sigpool_release(unsigned int id);
1810 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1811 const struct sk_buff *skb,
1812 unsigned int header_len);
1815 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1816 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1817 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1819 * Returns 0 on success, error otherwise.
1821 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1823 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1824 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1826 void tcp_sigpool_end(struct tcp_sigpool *c);
1827 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1829 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1830 const struct sock *sk, const struct sk_buff *skb);
1831 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1832 int family, u8 prefixlen, int l3index, u8 flags,
1833 const u8 *newkey, u8 newkeylen);
1834 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1835 int family, u8 prefixlen, int l3index,
1836 struct tcp_md5sig_key *key);
1838 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1839 int family, u8 prefixlen, int l3index, u8 flags);
1840 void tcp_clear_md5_list(struct sock *sk);
1841 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1842 const struct sock *addr_sk);
1844 #ifdef CONFIG_TCP_MD5SIG
1845 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1846 const union tcp_md5_addr *addr,
1847 int family, bool any_l3index);
1848 static inline struct tcp_md5sig_key *
1849 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1850 const union tcp_md5_addr *addr, int family)
1852 if (!static_branch_unlikely(&tcp_md5_needed.key))
1854 return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1857 static inline struct tcp_md5sig_key *
1858 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1859 const union tcp_md5_addr *addr, int family)
1861 if (!static_branch_unlikely(&tcp_md5_needed.key))
1863 return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1866 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1868 static inline struct tcp_md5sig_key *
1869 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1870 const union tcp_md5_addr *addr, int family)
1875 static inline struct tcp_md5sig_key *
1876 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1877 const union tcp_md5_addr *addr, int family)
1882 #define tcp_twsk_md5_key(twsk) NULL
1885 int tcp_md5_alloc_sigpool(void);
1886 void tcp_md5_release_sigpool(void);
1887 void tcp_md5_add_sigpool(void);
1888 extern int tcp_md5_sigpool_id;
1890 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1891 const struct tcp_md5sig_key *key);
1893 /* From tcp_fastopen.c */
1894 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1895 struct tcp_fastopen_cookie *cookie);
1896 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1897 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1899 struct tcp_fastopen_request {
1900 /* Fast Open cookie. Size 0 means a cookie request */
1901 struct tcp_fastopen_cookie cookie;
1902 struct msghdr *data; /* data in MSG_FASTOPEN */
1904 int copied; /* queued in tcp_connect() */
1905 struct ubuf_info *uarg;
1907 void tcp_free_fastopen_req(struct tcp_sock *tp);
1908 void tcp_fastopen_destroy_cipher(struct sock *sk);
1909 void tcp_fastopen_ctx_destroy(struct net *net);
1910 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1911 void *primary_key, void *backup_key);
1912 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1914 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1915 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1916 struct request_sock *req,
1917 struct tcp_fastopen_cookie *foc,
1918 const struct dst_entry *dst);
1919 void tcp_fastopen_init_key_once(struct net *net);
1920 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1921 struct tcp_fastopen_cookie *cookie);
1922 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1923 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1924 #define TCP_FASTOPEN_KEY_MAX 2
1925 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1926 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1928 /* Fastopen key context */
1929 struct tcp_fastopen_context {
1930 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1932 struct rcu_head rcu;
1935 void tcp_fastopen_active_disable(struct sock *sk);
1936 bool tcp_fastopen_active_should_disable(struct sock *sk);
1937 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1938 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1940 /* Caller needs to wrap with rcu_read_(un)lock() */
1942 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1944 struct tcp_fastopen_context *ctx;
1946 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1948 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1953 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1954 const struct tcp_fastopen_cookie *orig)
1956 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1957 orig->len == foc->len &&
1958 !memcmp(orig->val, foc->val, foc->len))
1964 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1969 /* Latencies incurred by various limits for a sender. They are
1970 * chronograph-like stats that are mutually exclusive.
1974 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1975 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1976 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1980 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1981 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1983 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1984 * the same memory storage than skb->destructor/_skb_refdst
1986 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1988 skb->destructor = NULL;
1989 skb->_skb_refdst = 0UL;
1992 #define tcp_skb_tsorted_save(skb) { \
1993 unsigned long _save = skb->_skb_refdst; \
1994 skb->_skb_refdst = 0UL;
1996 #define tcp_skb_tsorted_restore(skb) \
1997 skb->_skb_refdst = _save; \
2000 void tcp_write_queue_purge(struct sock *sk);
2002 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2004 return skb_rb_first(&sk->tcp_rtx_queue);
2007 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2009 return skb_rb_last(&sk->tcp_rtx_queue);
2012 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2014 return skb_peek_tail(&sk->sk_write_queue);
2017 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
2018 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2020 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2022 return skb_peek(&sk->sk_write_queue);
2025 static inline bool tcp_skb_is_last(const struct sock *sk,
2026 const struct sk_buff *skb)
2028 return skb_queue_is_last(&sk->sk_write_queue, skb);
2032 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2035 * Since the write queue can have a temporary empty skb in it,
2036 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2038 static inline bool tcp_write_queue_empty(const struct sock *sk)
2040 const struct tcp_sock *tp = tcp_sk(sk);
2042 return tp->write_seq == tp->snd_nxt;
2045 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2047 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2050 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2052 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2055 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2057 __skb_queue_tail(&sk->sk_write_queue, skb);
2059 /* Queue it, remembering where we must start sending. */
2060 if (sk->sk_write_queue.next == skb)
2061 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2064 /* Insert new before skb on the write queue of sk. */
2065 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2066 struct sk_buff *skb,
2069 __skb_queue_before(&sk->sk_write_queue, skb, new);
2072 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2074 tcp_skb_tsorted_anchor_cleanup(skb);
2075 __skb_unlink(skb, &sk->sk_write_queue);
2078 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2080 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2082 tcp_skb_tsorted_anchor_cleanup(skb);
2083 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2086 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2088 list_del(&skb->tcp_tsorted_anchor);
2089 tcp_rtx_queue_unlink(skb, sk);
2090 tcp_wmem_free_skb(sk, skb);
2093 static inline void tcp_write_collapse_fence(struct sock *sk)
2095 struct sk_buff *skb = tcp_write_queue_tail(sk);
2098 TCP_SKB_CB(skb)->eor = 1;
2101 static inline void tcp_push_pending_frames(struct sock *sk)
2103 if (tcp_send_head(sk)) {
2104 struct tcp_sock *tp = tcp_sk(sk);
2106 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2110 /* Start sequence of the skb just after the highest skb with SACKed
2111 * bit, valid only if sacked_out > 0 or when the caller has ensured
2112 * validity by itself.
2114 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2116 if (!tp->sacked_out)
2119 if (tp->highest_sack == NULL)
2122 return TCP_SKB_CB(tp->highest_sack)->seq;
2125 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2127 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2130 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2132 return tcp_sk(sk)->highest_sack;
2135 static inline void tcp_highest_sack_reset(struct sock *sk)
2137 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2140 /* Called when old skb is about to be deleted and replaced by new skb */
2141 static inline void tcp_highest_sack_replace(struct sock *sk,
2142 struct sk_buff *old,
2143 struct sk_buff *new)
2145 if (old == tcp_highest_sack(sk))
2146 tcp_sk(sk)->highest_sack = new;
2149 /* This helper checks if socket has IP_TRANSPARENT set */
2150 static inline bool inet_sk_transparent(const struct sock *sk)
2152 switch (sk->sk_state) {
2154 return inet_twsk(sk)->tw_transparent;
2155 case TCP_NEW_SYN_RECV:
2156 return inet_rsk(inet_reqsk(sk))->no_srccheck;
2158 return inet_test_bit(TRANSPARENT, sk);
2161 /* Determines whether this is a thin stream (which may suffer from
2162 * increased latency). Used to trigger latency-reducing mechanisms.
2164 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2166 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2170 enum tcp_seq_states {
2171 TCP_SEQ_STATE_LISTENING,
2172 TCP_SEQ_STATE_ESTABLISHED,
2175 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2176 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2177 void tcp_seq_stop(struct seq_file *seq, void *v);
2179 struct tcp_seq_afinfo {
2183 struct tcp_iter_state {
2184 struct seq_net_private p;
2185 enum tcp_seq_states state;
2186 struct sock *syn_wait_sk;
2187 int bucket, offset, sbucket, num;
2191 extern struct request_sock_ops tcp_request_sock_ops;
2192 extern struct request_sock_ops tcp6_request_sock_ops;
2194 void tcp_v4_destroy_sock(struct sock *sk);
2196 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2197 netdev_features_t features);
2198 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2199 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2200 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2202 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2203 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2204 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2205 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2207 void tcp_gro_complete(struct sk_buff *skb);
2209 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2212 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2214 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2216 struct net *net = sock_net((struct sock *)tp);
2219 val = READ_ONCE(tp->notsent_lowat);
2221 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2224 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2226 #ifdef CONFIG_PROC_FS
2227 int tcp4_proc_init(void);
2228 void tcp4_proc_exit(void);
2231 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2232 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2233 const struct tcp_request_sock_ops *af_ops,
2234 struct sock *sk, struct sk_buff *skb);
2236 /* TCP af-specific functions */
2237 struct tcp_sock_af_ops {
2238 #ifdef CONFIG_TCP_MD5SIG
2239 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2240 const struct sock *addr_sk);
2241 int (*calc_md5_hash)(char *location,
2242 const struct tcp_md5sig_key *md5,
2243 const struct sock *sk,
2244 const struct sk_buff *skb);
2245 int (*md5_parse)(struct sock *sk,
2250 #ifdef CONFIG_TCP_AO
2251 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2252 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2253 struct sock *addr_sk,
2254 int sndid, int rcvid);
2255 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2256 const struct sock *sk,
2257 __be32 sisn, __be32 disn, bool send);
2258 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2259 const struct sock *sk, const struct sk_buff *skb,
2260 const u8 *tkey, int hash_offset, u32 sne);
2264 struct tcp_request_sock_ops {
2266 #ifdef CONFIG_TCP_MD5SIG
2267 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2268 const struct sock *addr_sk);
2269 int (*calc_md5_hash) (char *location,
2270 const struct tcp_md5sig_key *md5,
2271 const struct sock *sk,
2272 const struct sk_buff *skb);
2274 #ifdef CONFIG_TCP_AO
2275 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2276 struct request_sock *req,
2277 int sndid, int rcvid);
2278 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2279 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2280 struct request_sock *req, const struct sk_buff *skb,
2281 int hash_offset, u32 sne);
2283 #ifdef CONFIG_SYN_COOKIES
2284 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2287 struct dst_entry *(*route_req)(const struct sock *sk,
2288 struct sk_buff *skb,
2290 struct request_sock *req,
2292 u32 (*init_seq)(const struct sk_buff *skb);
2293 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2294 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2295 struct flowi *fl, struct request_sock *req,
2296 struct tcp_fastopen_cookie *foc,
2297 enum tcp_synack_type synack_type,
2298 struct sk_buff *syn_skb);
2301 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2302 #if IS_ENABLED(CONFIG_IPV6)
2303 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2306 #ifdef CONFIG_SYN_COOKIES
2307 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2308 const struct sock *sk, struct sk_buff *skb,
2311 tcp_synq_overflow(sk);
2312 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2313 return ops->cookie_init_seq(skb, mss);
2316 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2317 const struct sock *sk, struct sk_buff *skb,
2327 struct tcp_ao_key *ao_key;
2332 struct tcp_md5sig_key *md5_key;
2341 static inline void tcp_get_current_key(const struct sock *sk,
2342 struct tcp_key *out)
2344 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2345 const struct tcp_sock *tp = tcp_sk(sk);
2348 #ifdef CONFIG_TCP_AO
2349 if (static_branch_unlikely(&tcp_ao_needed.key)) {
2350 struct tcp_ao_info *ao;
2352 ao = rcu_dereference_protected(tp->ao_info,
2353 lockdep_sock_is_held(sk));
2355 out->ao_key = READ_ONCE(ao->current_key);
2356 out->type = TCP_KEY_AO;
2361 #ifdef CONFIG_TCP_MD5SIG
2362 if (static_branch_unlikely(&tcp_md5_needed.key) &&
2363 rcu_access_pointer(tp->md5sig_info)) {
2364 out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2366 out->type = TCP_KEY_MD5;
2371 out->type = TCP_KEY_NONE;
2374 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2376 if (static_branch_tcp_md5())
2377 return key->type == TCP_KEY_MD5;
2381 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2383 if (static_branch_tcp_ao())
2384 return key->type == TCP_KEY_AO;
2388 int tcpv4_offload_init(void);
2390 void tcp_v4_init(void);
2391 void tcp_init(void);
2393 /* tcp_recovery.c */
2394 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2395 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2396 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2398 extern bool tcp_rack_mark_lost(struct sock *sk);
2399 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2401 extern void tcp_rack_reo_timeout(struct sock *sk);
2402 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2407 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2408 * expects cong_ratio which represents fraction of traffic that experienced
2409 * congestion over a single RTT. In order to avoid floating point operations,
2410 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2412 #define TCP_PLB_SCALE 8
2414 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2415 struct tcp_plb_state {
2416 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2418 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2421 static inline void tcp_plb_init(const struct sock *sk,
2422 struct tcp_plb_state *plb)
2424 plb->consec_cong_rounds = 0;
2425 plb->pause_until = 0;
2427 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2428 const int cong_ratio);
2429 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2430 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2432 /* At how many usecs into the future should the RTO fire? */
2433 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2435 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2436 u32 rto = inet_csk(sk)->icsk_rto;
2437 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2439 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2443 * Save and compile IPv4 options, return a pointer to it
2445 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2446 struct sk_buff *skb)
2448 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2449 struct ip_options_rcu *dopt = NULL;
2452 int opt_size = sizeof(*dopt) + opt->optlen;
2454 dopt = kmalloc(opt_size, GFP_ATOMIC);
2455 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2463 /* locally generated TCP pure ACKs have skb->truesize == 2
2464 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2465 * This is much faster than dissecting the packet to find out.
2466 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2468 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2470 return skb->truesize == 2;
2473 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2478 static inline int tcp_inq(struct sock *sk)
2480 struct tcp_sock *tp = tcp_sk(sk);
2483 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2485 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2487 before(tp->urg_seq, tp->copied_seq) ||
2488 !before(tp->urg_seq, tp->rcv_nxt)) {
2490 answ = tp->rcv_nxt - tp->copied_seq;
2492 /* Subtract 1, if FIN was received */
2493 if (answ && sock_flag(sk, SOCK_DONE))
2496 answ = tp->urg_seq - tp->copied_seq;
2502 int tcp_peek_len(struct socket *sock);
2504 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2508 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2510 /* We update these fields while other threads might
2511 * read them from tcp_get_info()
2513 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2514 if (skb->len > tcp_hdrlen(skb))
2515 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2519 * TCP listen path runs lockless.
2520 * We forced "struct sock" to be const qualified to make sure
2521 * we don't modify one of its field by mistake.
2522 * Here, we increment sk_drops which is an atomic_t, so we can safely
2523 * make sock writable again.
2525 static inline void tcp_listendrop(const struct sock *sk)
2527 atomic_inc(&((struct sock *)sk)->sk_drops);
2528 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2531 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2534 * Interface for adding Upper Level Protocols over TCP
2537 #define TCP_ULP_NAME_MAX 16
2538 #define TCP_ULP_MAX 128
2539 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2541 struct tcp_ulp_ops {
2542 struct list_head list;
2544 /* initialize ulp */
2545 int (*init)(struct sock *sk);
2547 void (*update)(struct sock *sk, struct proto *p,
2548 void (*write_space)(struct sock *sk));
2550 void (*release)(struct sock *sk);
2552 int (*get_info)(struct sock *sk, struct sk_buff *skb);
2553 size_t (*get_info_size)(const struct sock *sk);
2555 void (*clone)(const struct request_sock *req, struct sock *newsk,
2556 const gfp_t priority);
2558 char name[TCP_ULP_NAME_MAX];
2559 struct module *owner;
2561 int tcp_register_ulp(struct tcp_ulp_ops *type);
2562 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2563 int tcp_set_ulp(struct sock *sk, const char *name);
2564 void tcp_get_available_ulp(char *buf, size_t len);
2565 void tcp_cleanup_ulp(struct sock *sk);
2566 void tcp_update_ulp(struct sock *sk, struct proto *p,
2567 void (*write_space)(struct sock *sk));
2569 #define MODULE_ALIAS_TCP_ULP(name) \
2570 __MODULE_INFO(alias, alias_userspace, name); \
2571 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2573 #ifdef CONFIG_NET_SOCK_MSG
2577 #ifdef CONFIG_BPF_SYSCALL
2578 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2579 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2580 #endif /* CONFIG_BPF_SYSCALL */
2583 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2585 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2590 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2591 struct sk_msg *msg, u32 bytes, int flags);
2592 #endif /* CONFIG_NET_SOCK_MSG */
2594 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2595 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2600 #ifdef CONFIG_CGROUP_BPF
2601 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2602 struct sk_buff *skb,
2603 unsigned int end_offset)
2606 skops->skb_data_end = skb->data + end_offset;
2609 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2610 struct sk_buff *skb,
2611 unsigned int end_offset)
2616 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2617 * is < 0, then the BPF op failed (for example if the loaded BPF
2618 * program does not support the chosen operation or there is no BPF
2622 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2624 struct bpf_sock_ops_kern sock_ops;
2627 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2628 if (sk_fullsock(sk)) {
2629 sock_ops.is_fullsock = 1;
2630 sock_owned_by_me(sk);
2636 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2638 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2640 ret = sock_ops.reply;
2646 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2648 u32 args[2] = {arg1, arg2};
2650 return tcp_call_bpf(sk, op, 2, args);
2653 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2656 u32 args[3] = {arg1, arg2, arg3};
2658 return tcp_call_bpf(sk, op, 3, args);
2662 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2667 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2672 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2680 static inline u32 tcp_timeout_init(struct sock *sk)
2684 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2687 timeout = TCP_TIMEOUT_INIT;
2688 return min_t(int, timeout, TCP_RTO_MAX);
2691 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2695 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2702 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2704 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2707 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2709 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2710 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2713 #if IS_ENABLED(CONFIG_SMC)
2714 extern struct static_key_false tcp_have_smc;
2717 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2718 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2719 void (*cad)(struct sock *sk, u32 ack_seq));
2720 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2721 void clean_acked_data_flush(void);
2724 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2725 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2726 const struct tcp_sock *tp)
2728 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2729 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2732 /* Compute Earliest Departure Time for some control packets
2733 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2735 static inline u64 tcp_transmit_time(const struct sock *sk)
2737 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2738 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2739 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2741 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2746 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2747 const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2749 const u8 *md5_tmp, *ao_tmp;
2752 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2757 *md5_hash = md5_tmp;
2763 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2769 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2770 int family, int l3index, bool stat_inc)
2772 #ifdef CONFIG_TCP_AO
2773 struct tcp_ao_info *ao_info;
2774 struct tcp_ao_key *ao_key;
2776 if (!static_branch_unlikely(&tcp_ao_needed.key))
2779 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2780 lockdep_sock_is_held(sk));
2784 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2785 if (ao_info->ao_required || ao_key) {
2787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2788 atomic64_inc(&ao_info->counters.ao_required);
2796 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2797 const struct request_sock *req, const struct sk_buff *skb,
2798 const void *saddr, const void *daddr,
2799 int family, int dif, int sdif);