]> Git Repo - linux.git/blob - drivers/base/arch_topology.c
drm/vc4: Run DRM default client setup
[linux.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cleanup.h>
12 #include <linux/cpu.h>
13 #include <linux/cpufreq.h>
14 #include <linux/device.h>
15 #include <linux/of.h>
16 #include <linux/slab.h>
17 #include <linux/sched/topology.h>
18 #include <linux/cpuset.h>
19 #include <linux/cpumask.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/units.h>
24
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/hw_pressure.h>
27
28 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
29 static struct cpumask scale_freq_counters_mask;
30 static bool scale_freq_invariant;
31 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
32 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
33
34 static bool supports_scale_freq_counters(const struct cpumask *cpus)
35 {
36         return cpumask_subset(cpus, &scale_freq_counters_mask);
37 }
38
39 bool topology_scale_freq_invariant(void)
40 {
41         return cpufreq_supports_freq_invariance() ||
42                supports_scale_freq_counters(cpu_online_mask);
43 }
44
45 static void update_scale_freq_invariant(bool status)
46 {
47         if (scale_freq_invariant == status)
48                 return;
49
50         /*
51          * Task scheduler behavior depends on frequency invariance support,
52          * either cpufreq or counter driven. If the support status changes as
53          * a result of counter initialisation and use, retrigger the build of
54          * scheduling domains to ensure the information is propagated properly.
55          */
56         if (topology_scale_freq_invariant() == status) {
57                 scale_freq_invariant = status;
58                 rebuild_sched_domains_energy();
59         }
60 }
61
62 void topology_set_scale_freq_source(struct scale_freq_data *data,
63                                     const struct cpumask *cpus)
64 {
65         struct scale_freq_data *sfd;
66         int cpu;
67
68         /*
69          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
70          * supported by cpufreq.
71          */
72         if (cpumask_empty(&scale_freq_counters_mask))
73                 scale_freq_invariant = topology_scale_freq_invariant();
74
75         rcu_read_lock();
76
77         for_each_cpu(cpu, cpus) {
78                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
79
80                 /* Use ARCH provided counters whenever possible */
81                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
82                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
83                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
84                 }
85         }
86
87         rcu_read_unlock();
88
89         update_scale_freq_invariant(true);
90 }
91 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
92
93 void topology_clear_scale_freq_source(enum scale_freq_source source,
94                                       const struct cpumask *cpus)
95 {
96         struct scale_freq_data *sfd;
97         int cpu;
98
99         rcu_read_lock();
100
101         for_each_cpu(cpu, cpus) {
102                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
103
104                 if (sfd && sfd->source == source) {
105                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
106                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
107                 }
108         }
109
110         rcu_read_unlock();
111
112         /*
113          * Make sure all references to previous sft_data are dropped to avoid
114          * use-after-free races.
115          */
116         synchronize_rcu();
117
118         update_scale_freq_invariant(false);
119 }
120 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
121
122 void topology_scale_freq_tick(void)
123 {
124         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
125
126         if (sfd)
127                 sfd->set_freq_scale();
128 }
129
130 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
131 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
132
133 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
134                              unsigned long max_freq)
135 {
136         unsigned long scale;
137         int i;
138
139         if (WARN_ON_ONCE(!cur_freq || !max_freq))
140                 return;
141
142         /*
143          * If the use of counters for FIE is enabled, just return as we don't
144          * want to update the scale factor with information from CPUFREQ.
145          * Instead the scale factor will be updated from arch_scale_freq_tick.
146          */
147         if (supports_scale_freq_counters(cpus))
148                 return;
149
150         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
151
152         for_each_cpu(i, cpus)
153                 per_cpu(arch_freq_scale, i) = scale;
154 }
155
156 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
157 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
158
159 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
160 {
161         per_cpu(cpu_scale, cpu) = capacity;
162 }
163
164 DEFINE_PER_CPU(unsigned long, hw_pressure);
165
166 /**
167  * topology_update_hw_pressure() - Update HW pressure for CPUs
168  * @cpus        : The related CPUs for which capacity has been reduced
169  * @capped_freq : The maximum allowed frequency that CPUs can run at
170  *
171  * Update the value of HW pressure for all @cpus in the mask. The
172  * cpumask should include all (online+offline) affected CPUs, to avoid
173  * operating on stale data when hot-plug is used for some CPUs. The
174  * @capped_freq reflects the currently allowed max CPUs frequency due to
175  * HW capping. It might be also a boost frequency value, which is bigger
176  * than the internal 'capacity_freq_ref' max frequency. In such case the
177  * pressure value should simply be removed, since this is an indication that
178  * there is no HW throttling. The @capped_freq must be provided in kHz.
179  */
180 void topology_update_hw_pressure(const struct cpumask *cpus,
181                                       unsigned long capped_freq)
182 {
183         unsigned long max_capacity, capacity, pressure;
184         u32 max_freq;
185         int cpu;
186
187         cpu = cpumask_first(cpus);
188         max_capacity = arch_scale_cpu_capacity(cpu);
189         max_freq = arch_scale_freq_ref(cpu);
190
191         /*
192          * Handle properly the boost frequencies, which should simply clean
193          * the HW pressure value.
194          */
195         if (max_freq <= capped_freq)
196                 capacity = max_capacity;
197         else
198                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
199
200         pressure = max_capacity - capacity;
201
202         trace_hw_pressure_update(cpu, pressure);
203
204         for_each_cpu(cpu, cpus)
205                 WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
206 }
207 EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
208
209 static ssize_t cpu_capacity_show(struct device *dev,
210                                  struct device_attribute *attr,
211                                  char *buf)
212 {
213         struct cpu *cpu = container_of(dev, struct cpu, dev);
214
215         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
216 }
217
218 static void update_topology_flags_workfn(struct work_struct *work);
219 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
220
221 static DEVICE_ATTR_RO(cpu_capacity);
222
223 static int cpu_capacity_sysctl_add(unsigned int cpu)
224 {
225         struct device *cpu_dev = get_cpu_device(cpu);
226
227         if (!cpu_dev)
228                 return -ENOENT;
229
230         device_create_file(cpu_dev, &dev_attr_cpu_capacity);
231
232         return 0;
233 }
234
235 static int cpu_capacity_sysctl_remove(unsigned int cpu)
236 {
237         struct device *cpu_dev = get_cpu_device(cpu);
238
239         if (!cpu_dev)
240                 return -ENOENT;
241
242         device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
243
244         return 0;
245 }
246
247 static int register_cpu_capacity_sysctl(void)
248 {
249         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
250                           cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
251
252         return 0;
253 }
254 subsys_initcall(register_cpu_capacity_sysctl);
255
256 static int update_topology;
257
258 int topology_update_cpu_topology(void)
259 {
260         return update_topology;
261 }
262
263 /*
264  * Updating the sched_domains can't be done directly from cpufreq callbacks
265  * due to locking, so queue the work for later.
266  */
267 static void update_topology_flags_workfn(struct work_struct *work)
268 {
269         update_topology = 1;
270         rebuild_sched_domains();
271         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
272         update_topology = 0;
273 }
274
275 static u32 *raw_capacity;
276
277 static int free_raw_capacity(void)
278 {
279         kfree(raw_capacity);
280         raw_capacity = NULL;
281
282         return 0;
283 }
284
285 void topology_normalize_cpu_scale(void)
286 {
287         u64 capacity;
288         u64 capacity_scale;
289         int cpu;
290
291         if (!raw_capacity)
292                 return;
293
294         capacity_scale = 1;
295         for_each_possible_cpu(cpu) {
296                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
297                 capacity_scale = max(capacity, capacity_scale);
298         }
299
300         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
301         for_each_possible_cpu(cpu) {
302                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
303                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
304                         capacity_scale);
305                 topology_set_cpu_scale(cpu, capacity);
306                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
307                         cpu, topology_get_cpu_scale(cpu));
308         }
309 }
310
311 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
312 {
313         struct clk *cpu_clk;
314         static bool cap_parsing_failed;
315         int ret;
316         u32 cpu_capacity;
317
318         if (cap_parsing_failed)
319                 return false;
320
321         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
322                                    &cpu_capacity);
323         if (!ret) {
324                 if (!raw_capacity) {
325                         raw_capacity = kcalloc(num_possible_cpus(),
326                                                sizeof(*raw_capacity),
327                                                GFP_KERNEL);
328                         if (!raw_capacity) {
329                                 cap_parsing_failed = true;
330                                 return false;
331                         }
332                 }
333                 raw_capacity[cpu] = cpu_capacity;
334                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
335                         cpu_node, raw_capacity[cpu]);
336
337                 /*
338                  * Update capacity_freq_ref for calculating early boot CPU capacities.
339                  * For non-clk CPU DVFS mechanism, there's no way to get the
340                  * frequency value now, assuming they are running at the same
341                  * frequency (by keeping the initial capacity_freq_ref value).
342                  */
343                 cpu_clk = of_clk_get(cpu_node, 0);
344                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
345                         per_cpu(capacity_freq_ref, cpu) =
346                                 clk_get_rate(cpu_clk) / HZ_PER_KHZ;
347                         clk_put(cpu_clk);
348                 }
349         } else {
350                 if (raw_capacity) {
351                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
352                                 cpu_node);
353                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
354                 }
355                 cap_parsing_failed = true;
356                 free_raw_capacity();
357         }
358
359         return !ret;
360 }
361
362 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
363 {
364 }
365
366 #ifdef CONFIG_ACPI_CPPC_LIB
367 #include <acpi/cppc_acpi.h>
368
369 void topology_init_cpu_capacity_cppc(void)
370 {
371         u64 capacity, capacity_scale = 0;
372         struct cppc_perf_caps perf_caps;
373         int cpu;
374
375         if (likely(!acpi_cpc_valid()))
376                 return;
377
378         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
379                                GFP_KERNEL);
380         if (!raw_capacity)
381                 return;
382
383         for_each_possible_cpu(cpu) {
384                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
385                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
386                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
387                         raw_capacity[cpu] = perf_caps.highest_perf;
388                         capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
389
390                         per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
391
392                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
393                                  cpu, raw_capacity[cpu]);
394                         continue;
395                 }
396
397                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
398                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
399                 goto exit;
400         }
401
402         for_each_possible_cpu(cpu) {
403                 freq_inv_set_max_ratio(cpu,
404                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
405
406                 capacity = raw_capacity[cpu];
407                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
408                                      capacity_scale);
409                 topology_set_cpu_scale(cpu, capacity);
410                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
411                         cpu, topology_get_cpu_scale(cpu));
412         }
413
414         schedule_work(&update_topology_flags_work);
415         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
416
417 exit:
418         free_raw_capacity();
419 }
420 #endif
421
422 #ifdef CONFIG_CPU_FREQ
423 static cpumask_var_t cpus_to_visit;
424 static void parsing_done_workfn(struct work_struct *work);
425 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
426
427 static int
428 init_cpu_capacity_callback(struct notifier_block *nb,
429                            unsigned long val,
430                            void *data)
431 {
432         struct cpufreq_policy *policy = data;
433         int cpu;
434
435         if (val != CPUFREQ_CREATE_POLICY)
436                 return 0;
437
438         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
439                  cpumask_pr_args(policy->related_cpus),
440                  cpumask_pr_args(cpus_to_visit));
441
442         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
443
444         for_each_cpu(cpu, policy->related_cpus) {
445                 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
446                 freq_inv_set_max_ratio(cpu,
447                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
448         }
449
450         if (cpumask_empty(cpus_to_visit)) {
451                 if (raw_capacity) {
452                         topology_normalize_cpu_scale();
453                         schedule_work(&update_topology_flags_work);
454                         free_raw_capacity();
455                 }
456                 pr_debug("cpu_capacity: parsing done\n");
457                 schedule_work(&parsing_done_work);
458         }
459
460         return 0;
461 }
462
463 static struct notifier_block init_cpu_capacity_notifier = {
464         .notifier_call = init_cpu_capacity_callback,
465 };
466
467 static int __init register_cpufreq_notifier(void)
468 {
469         int ret;
470
471         /*
472          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
473          * information is not needed for cpu capacity initialization.
474          */
475         if (!acpi_disabled)
476                 return -EINVAL;
477
478         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
479                 return -ENOMEM;
480
481         cpumask_copy(cpus_to_visit, cpu_possible_mask);
482
483         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
484                                         CPUFREQ_POLICY_NOTIFIER);
485
486         if (ret)
487                 free_cpumask_var(cpus_to_visit);
488
489         return ret;
490 }
491 core_initcall(register_cpufreq_notifier);
492
493 static void parsing_done_workfn(struct work_struct *work)
494 {
495         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
496                                          CPUFREQ_POLICY_NOTIFIER);
497         free_cpumask_var(cpus_to_visit);
498 }
499
500 #else
501 core_initcall(free_raw_capacity);
502 #endif
503
504 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
505 /*
506  * This function returns the logic cpu number of the node.
507  * There are basically three kinds of return values:
508  * (1) logic cpu number which is > 0.
509  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
510  * there is no possible logical CPU in the kernel to match. This happens
511  * when CONFIG_NR_CPUS is configure to be smaller than the number of
512  * CPU nodes in DT. We need to just ignore this case.
513  * (3) -1 if the node does not exist in the device tree
514  */
515 static int __init get_cpu_for_node(struct device_node *node)
516 {
517         int cpu;
518         struct device_node *cpu_node __free(device_node) =
519                 of_parse_phandle(node, "cpu", 0);
520
521         if (!cpu_node)
522                 return -1;
523
524         cpu = of_cpu_node_to_id(cpu_node);
525         if (cpu >= 0)
526                 topology_parse_cpu_capacity(cpu_node, cpu);
527         else
528                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
529                         cpu_node, cpumask_pr_args(cpu_possible_mask));
530
531         return cpu;
532 }
533
534 static int __init parse_core(struct device_node *core, int package_id,
535                              int cluster_id, int core_id)
536 {
537         char name[20];
538         bool leaf = true;
539         int i = 0;
540         int cpu;
541
542         do {
543                 snprintf(name, sizeof(name), "thread%d", i);
544                 struct device_node *t __free(device_node) =
545                         of_get_child_by_name(core, name);
546
547                 if (!t)
548                         break;
549
550                 leaf = false;
551                 cpu = get_cpu_for_node(t);
552                 if (cpu >= 0) {
553                         cpu_topology[cpu].package_id = package_id;
554                         cpu_topology[cpu].cluster_id = cluster_id;
555                         cpu_topology[cpu].core_id = core_id;
556                         cpu_topology[cpu].thread_id = i;
557                 } else if (cpu != -ENODEV) {
558                         pr_err("%pOF: Can't get CPU for thread\n", t);
559                         return -EINVAL;
560                 }
561                 i++;
562         } while (1);
563
564         cpu = get_cpu_for_node(core);
565         if (cpu >= 0) {
566                 if (!leaf) {
567                         pr_err("%pOF: Core has both threads and CPU\n",
568                                core);
569                         return -EINVAL;
570                 }
571
572                 cpu_topology[cpu].package_id = package_id;
573                 cpu_topology[cpu].cluster_id = cluster_id;
574                 cpu_topology[cpu].core_id = core_id;
575         } else if (leaf && cpu != -ENODEV) {
576                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
577                 return -EINVAL;
578         }
579
580         return 0;
581 }
582
583 static int __init parse_cluster(struct device_node *cluster, int package_id,
584                                 int cluster_id, int depth)
585 {
586         char name[20];
587         bool leaf = true;
588         bool has_cores = false;
589         int core_id = 0;
590         int i, ret;
591
592         /*
593          * First check for child clusters; we currently ignore any
594          * information about the nesting of clusters and present the
595          * scheduler with a flat list of them.
596          */
597         i = 0;
598         do {
599                 snprintf(name, sizeof(name), "cluster%d", i);
600                 struct device_node *c __free(device_node) =
601                         of_get_child_by_name(cluster, name);
602
603                 if (!c)
604                         break;
605
606                 leaf = false;
607                 ret = parse_cluster(c, package_id, i, depth + 1);
608                 if (depth > 0)
609                         pr_warn("Topology for clusters of clusters not yet supported\n");
610                 if (ret != 0)
611                         return ret;
612                 i++;
613         } while (1);
614
615         /* Now check for cores */
616         i = 0;
617         do {
618                 snprintf(name, sizeof(name), "core%d", i);
619                 struct device_node *c __free(device_node) =
620                         of_get_child_by_name(cluster, name);
621
622                 if (!c)
623                         break;
624
625                 has_cores = true;
626
627                 if (depth == 0) {
628                         pr_err("%pOF: cpu-map children should be clusters\n", c);
629                         return -EINVAL;
630                 }
631
632                 if (leaf) {
633                         ret = parse_core(c, package_id, cluster_id, core_id++);
634                         if (ret != 0)
635                                 return ret;
636                 } else {
637                         pr_err("%pOF: Non-leaf cluster with core %s\n",
638                                cluster, name);
639                         return -EINVAL;
640                 }
641
642                 i++;
643         } while (1);
644
645         if (leaf && !has_cores)
646                 pr_warn("%pOF: empty cluster\n", cluster);
647
648         return 0;
649 }
650
651 static int __init parse_socket(struct device_node *socket)
652 {
653         char name[20];
654         bool has_socket = false;
655         int package_id = 0, ret;
656
657         do {
658                 snprintf(name, sizeof(name), "socket%d", package_id);
659                 struct device_node *c __free(device_node) =
660                         of_get_child_by_name(socket, name);
661
662                 if (!c)
663                         break;
664
665                 has_socket = true;
666                 ret = parse_cluster(c, package_id, -1, 0);
667                 if (ret != 0)
668                         return ret;
669
670                 package_id++;
671         } while (1);
672
673         if (!has_socket)
674                 ret = parse_cluster(socket, 0, -1, 0);
675
676         return ret;
677 }
678
679 static int __init parse_dt_topology(void)
680 {
681         int ret = 0;
682         int cpu;
683         struct device_node *cn __free(device_node) =
684                 of_find_node_by_path("/cpus");
685
686         if (!cn) {
687                 pr_err("No CPU information found in DT\n");
688                 return 0;
689         }
690
691         /*
692          * When topology is provided cpu-map is essentially a root
693          * cluster with restricted subnodes.
694          */
695         struct device_node *map __free(device_node) =
696                 of_get_child_by_name(cn, "cpu-map");
697
698         if (!map)
699                 return ret;
700
701         ret = parse_socket(map);
702         if (ret != 0)
703                 return ret;
704
705         topology_normalize_cpu_scale();
706
707         /*
708          * Check that all cores are in the topology; the SMP code will
709          * only mark cores described in the DT as possible.
710          */
711         for_each_possible_cpu(cpu)
712                 if (cpu_topology[cpu].package_id < 0) {
713                         return -EINVAL;
714                 }
715
716         return ret;
717 }
718 #endif
719
720 /*
721  * cpu topology table
722  */
723 struct cpu_topology cpu_topology[NR_CPUS];
724 EXPORT_SYMBOL_GPL(cpu_topology);
725
726 const struct cpumask *cpu_coregroup_mask(int cpu)
727 {
728         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
729
730         /* Find the smaller of NUMA, core or LLC siblings */
731         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
732                 /* not numa in package, lets use the package siblings */
733                 core_mask = &cpu_topology[cpu].core_sibling;
734         }
735
736         if (last_level_cache_is_valid(cpu)) {
737                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
738                         core_mask = &cpu_topology[cpu].llc_sibling;
739         }
740
741         /*
742          * For systems with no shared cpu-side LLC but with clusters defined,
743          * extend core_mask to cluster_siblings. The sched domain builder will
744          * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
745          */
746         if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
747             cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
748                 core_mask = &cpu_topology[cpu].cluster_sibling;
749
750         return core_mask;
751 }
752
753 const struct cpumask *cpu_clustergroup_mask(int cpu)
754 {
755         /*
756          * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
757          * cpu_coregroup_mask().
758          */
759         if (cpumask_subset(cpu_coregroup_mask(cpu),
760                            &cpu_topology[cpu].cluster_sibling))
761                 return topology_sibling_cpumask(cpu);
762
763         return &cpu_topology[cpu].cluster_sibling;
764 }
765
766 void update_siblings_masks(unsigned int cpuid)
767 {
768         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
769         int cpu, ret;
770
771         ret = detect_cache_attributes(cpuid);
772         if (ret && ret != -ENOENT)
773                 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
774
775         /* update core and thread sibling masks */
776         for_each_online_cpu(cpu) {
777                 cpu_topo = &cpu_topology[cpu];
778
779                 if (last_level_cache_is_shared(cpu, cpuid)) {
780                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
781                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
782                 }
783
784                 if (cpuid_topo->package_id != cpu_topo->package_id)
785                         continue;
786
787                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
788                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
789
790                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
791                         continue;
792
793                 if (cpuid_topo->cluster_id >= 0) {
794                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
795                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
796                 }
797
798                 if (cpuid_topo->core_id != cpu_topo->core_id)
799                         continue;
800
801                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
802                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
803         }
804 }
805
806 static void clear_cpu_topology(int cpu)
807 {
808         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
809
810         cpumask_clear(&cpu_topo->llc_sibling);
811         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
812
813         cpumask_clear(&cpu_topo->cluster_sibling);
814         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
815
816         cpumask_clear(&cpu_topo->core_sibling);
817         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
818         cpumask_clear(&cpu_topo->thread_sibling);
819         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
820 }
821
822 void __init reset_cpu_topology(void)
823 {
824         unsigned int cpu;
825
826         for_each_possible_cpu(cpu) {
827                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
828
829                 cpu_topo->thread_id = -1;
830                 cpu_topo->core_id = -1;
831                 cpu_topo->cluster_id = -1;
832                 cpu_topo->package_id = -1;
833
834                 clear_cpu_topology(cpu);
835         }
836 }
837
838 void remove_cpu_topology(unsigned int cpu)
839 {
840         int sibling;
841
842         for_each_cpu(sibling, topology_core_cpumask(cpu))
843                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
844         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
845                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
846         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
847                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
848         for_each_cpu(sibling, topology_llc_cpumask(cpu))
849                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
850
851         clear_cpu_topology(cpu);
852 }
853
854 __weak int __init parse_acpi_topology(void)
855 {
856         return 0;
857 }
858
859 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
860 void __init init_cpu_topology(void)
861 {
862         int cpu, ret;
863
864         reset_cpu_topology();
865         ret = parse_acpi_topology();
866         if (!ret)
867                 ret = of_have_populated_dt() && parse_dt_topology();
868
869         if (ret) {
870                 /*
871                  * Discard anything that was parsed if we hit an error so we
872                  * don't use partial information. But do not return yet to give
873                  * arch-specific early cache level detection a chance to run.
874                  */
875                 reset_cpu_topology();
876         }
877
878         for_each_possible_cpu(cpu) {
879                 ret = fetch_cache_info(cpu);
880                 if (!ret)
881                         continue;
882                 else if (ret != -ENOENT)
883                         pr_err("Early cacheinfo failed, ret = %d\n", ret);
884                 return;
885         }
886 }
887
888 void store_cpu_topology(unsigned int cpuid)
889 {
890         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
891
892         if (cpuid_topo->package_id != -1)
893                 goto topology_populated;
894
895         cpuid_topo->thread_id = -1;
896         cpuid_topo->core_id = cpuid;
897         cpuid_topo->package_id = cpu_to_node(cpuid);
898
899         pr_debug("CPU%u: package %d core %d thread %d\n",
900                  cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
901                  cpuid_topo->thread_id);
902
903 topology_populated:
904         update_siblings_masks(cpuid);
905 }
906 #endif
This page took 0.084615 seconds and 4 git commands to generate.