1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
78 #include "page_reporting.h"
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION (8)
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
102 /* work_structs for global per-cpu drains */
105 struct work_struct work;
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
116 * Array of node states.
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
130 EXPORT_SYMBOL(node_states);
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144 EXPORT_SYMBOL(init_on_alloc);
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
151 EXPORT_SYMBOL(init_on_free);
153 static int __init early_init_on_alloc(char *buf)
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 static_branch_enable(&init_on_alloc);
166 static_branch_disable(&init_on_alloc);
169 early_param("init_on_alloc", early_init_on_alloc);
171 static int __init early_init_on_free(char *buf)
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 static_branch_enable(&init_on_free);
184 static_branch_disable(&init_on_free);
187 early_param("init_on_free", early_init_on_free);
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
197 static inline int get_pcppage_migratetype(struct page *page)
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204 page->index = migratetype;
207 #ifdef CONFIG_PM_SLEEP
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
218 static gfp_t saved_gfp_mask;
220 void pm_restore_gfp_mask(void)
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
229 void pm_restrict_gfp_mask(void)
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
237 bool pm_suspended_storage(void)
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
243 #endif /* CONFIG_PM_SLEEP */
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
249 static void __free_pages_ok(struct page *page, unsigned int order);
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
266 #ifdef CONFIG_ZONE_DMA32
270 #ifdef CONFIG_HIGHMEM
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
280 #ifdef CONFIG_ZONE_DMA32
284 #ifdef CONFIG_HIGHMEM
288 #ifdef CONFIG_ZONE_DEVICE
293 const char * const migratetype_names[MIGRATE_TYPES] = {
301 #ifdef CONFIG_MEMORY_ISOLATION
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 [HUGETLB_PAGE_DTOR] = free_huge_page,
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
329 int watermark_boost_factor __read_mostly;
331 int watermark_boost_factor __read_mostly = 15000;
333 int watermark_scale_factor = 10;
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone);
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
359 int page_group_by_mobility_disabled __read_mostly;
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 int nid = early_pfn_to_nid(pfn);
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 static unsigned long prev_end_pfn, nr_initialised;
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436 static inline bool early_page_uninitialised(unsigned long pfn)
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn));
454 return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 #ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @mask: mask of bits that the caller is interested in
474 * Return: pageblock_bits flags
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
485 bitmap = get_pageblock_bitmap(page, pfn);
486 bitidx = pfn_to_bitidx(page, pfn);
487 word_bitidx = bitidx / BITS_PER_LONG;
488 bitidx &= (BITS_PER_LONG-1);
490 word = bitmap[word_bitidx];
491 return (word >> bitidx) & mask;
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
497 return __get_pfnblock_flags_mask(page, pfn, mask);
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507 * @page: The page within the block of interest
508 * @flags: The flags to set
509 * @pfn: The target page frame number
510 * @mask: mask of bits that the caller is interested in
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
516 unsigned long *bitmap;
517 unsigned long bitidx, word_bitidx;
518 unsigned long old_word, word;
520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
523 bitmap = get_pageblock_bitmap(page, pfn);
524 bitidx = pfn_to_bitidx(page, pfn);
525 word_bitidx = bitidx / BITS_PER_LONG;
526 bitidx &= (BITS_PER_LONG-1);
528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
533 word = READ_ONCE(bitmap[word_bitidx]);
535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 if (word == old_word)
542 void set_pageblock_migratetype(struct page *page, int migratetype)
544 if (unlikely(page_group_by_mobility_disabled &&
545 migratetype < MIGRATE_PCPTYPES))
546 migratetype = MIGRATE_UNMOVABLE;
548 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 page_to_pfn(page), MIGRATETYPE_MASK);
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
557 unsigned long pfn = page_to_pfn(page);
558 unsigned long sp, start_pfn;
561 seq = zone_span_seqbegin(zone);
562 start_pfn = zone->zone_start_pfn;
563 sp = zone->spanned_pages;
564 if (!zone_spans_pfn(zone, pfn))
566 } while (zone_span_seqretry(zone, seq));
569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 pfn, zone_to_nid(zone), zone->name,
571 start_pfn, start_pfn + sp);
576 static int page_is_consistent(struct zone *zone, struct page *page)
578 if (!pfn_valid_within(page_to_pfn(page)))
580 if (zone != page_zone(page))
586 * Temporary debugging check for pages not lying within a given zone.
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
590 if (page_outside_zone_boundaries(zone, page))
592 if (!page_is_consistent(zone, page))
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
604 static void bad_page(struct page *page, const char *reason)
606 static unsigned long resume;
607 static unsigned long nr_shown;
608 static unsigned long nr_unshown;
611 * Allow a burst of 60 reports, then keep quiet for that minute;
612 * or allow a steady drip of one report per second.
614 if (nr_shown == 60) {
615 if (time_before(jiffies, resume)) {
621 "BUG: Bad page state: %lu messages suppressed\n",
628 resume = jiffies + 60 * HZ;
630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
631 current->comm, page_to_pfn(page));
632 __dump_page(page, reason);
633 dump_page_owner(page);
638 /* Leave bad fields for debug, except PageBuddy could make trouble */
639 page_mapcount_reset(page); /* remove PageBuddy */
640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
644 * Higher-order pages are called "compound pages". They are structured thusly:
646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
654 * The first tail page's ->compound_order holds the order of allocation.
655 * This usage means that zero-order pages may not be compound.
658 void free_compound_page(struct page *page)
660 mem_cgroup_uncharge(page);
661 __free_pages_ok(page, compound_order(page));
664 void prep_compound_page(struct page *page, unsigned int order)
667 int nr_pages = 1 << order;
670 for (i = 1; i < nr_pages; i++) {
671 struct page *p = page + i;
672 set_page_count(p, 0);
673 p->mapping = TAIL_MAPPING;
674 set_compound_head(p, page);
677 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 set_compound_order(page, order);
679 atomic_set(compound_mapcount_ptr(page), -1);
680 if (hpage_pincount_available(page))
681 atomic_set(compound_pincount_ptr(page), 0);
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder;
687 bool _debug_pagealloc_enabled_early __read_mostly
688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled);
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
695 static int __init early_debug_pagealloc(char *buf)
697 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
699 early_param("debug_pagealloc", early_debug_pagealloc);
701 void init_debug_pagealloc(void)
703 if (!debug_pagealloc_enabled())
706 static_branch_enable(&_debug_pagealloc_enabled);
708 if (!debug_guardpage_minorder())
711 static_branch_enable(&_debug_guardpage_enabled);
714 static int __init debug_guardpage_minorder_setup(char *buf)
718 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
719 pr_err("Bad debug_guardpage_minorder value\n");
722 _debug_guardpage_minorder = res;
723 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
728 static inline bool set_page_guard(struct zone *zone, struct page *page,
729 unsigned int order, int migratetype)
731 if (!debug_guardpage_enabled())
734 if (order >= debug_guardpage_minorder())
737 __SetPageGuard(page);
738 INIT_LIST_HEAD(&page->lru);
739 set_page_private(page, order);
740 /* Guard pages are not available for any usage */
741 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
746 static inline void clear_page_guard(struct zone *zone, struct page *page,
747 unsigned int order, int migratetype)
749 if (!debug_guardpage_enabled())
752 __ClearPageGuard(page);
754 set_page_private(page, 0);
755 if (!is_migrate_isolate(migratetype))
756 __mod_zone_freepage_state(zone, (1 << order), migratetype);
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 unsigned int order, int migratetype) { return false; }
761 static inline void clear_page_guard(struct zone *zone, struct page *page,
762 unsigned int order, int migratetype) {}
765 static inline void set_page_order(struct page *page, unsigned int order)
767 set_page_private(page, order);
768 __SetPageBuddy(page);
772 * This function checks whether a page is free && is the buddy
773 * we can coalesce a page and its buddy if
774 * (a) the buddy is not in a hole (check before calling!) &&
775 * (b) the buddy is in the buddy system &&
776 * (c) a page and its buddy have the same order &&
777 * (d) a page and its buddy are in the same zone.
779 * For recording whether a page is in the buddy system, we set PageBuddy.
780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
782 * For recording page's order, we use page_private(page).
784 static inline bool page_is_buddy(struct page *page, struct page *buddy,
787 if (!page_is_guard(buddy) && !PageBuddy(buddy))
790 if (page_order(buddy) != order)
794 * zone check is done late to avoid uselessly calculating
795 * zone/node ids for pages that could never merge.
797 if (page_zone_id(page) != page_zone_id(buddy))
800 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
808 struct capture_control *capc = current->capture_control;
810 return unlikely(capc) &&
811 !(current->flags & PF_KTHREAD) &&
813 capc->cc->zone == zone ? capc : NULL;
817 compaction_capture(struct capture_control *capc, struct page *page,
818 int order, int migratetype)
820 if (!capc || order != capc->cc->order)
823 /* Do not accidentally pollute CMA or isolated regions*/
824 if (is_migrate_cma(migratetype) ||
825 is_migrate_isolate(migratetype))
829 * Do not let lower order allocations polluate a movable pageblock.
830 * This might let an unmovable request use a reclaimable pageblock
831 * and vice-versa but no more than normal fallback logic which can
832 * have trouble finding a high-order free page.
834 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
842 static inline struct capture_control *task_capc(struct zone *zone)
848 compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
853 #endif /* CONFIG_COMPACTION */
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page *page, struct zone *zone,
857 unsigned int order, int migratetype)
859 struct free_area *area = &zone->free_area[order];
861 list_add(&page->lru, &area->free_list[migratetype]);
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 unsigned int order, int migratetype)
869 struct free_area *area = &zone->free_area[order];
871 list_add_tail(&page->lru, &area->free_list[migratetype]);
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page *page, struct zone *zone,
877 unsigned int order, int migratetype)
879 struct free_area *area = &zone->free_area[order];
881 list_move(&page->lru, &area->free_list[migratetype]);
884 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
887 /* clear reported state and update reported page count */
888 if (page_reported(page))
889 __ClearPageReported(page);
891 list_del(&page->lru);
892 __ClearPageBuddy(page);
893 set_page_private(page, 0);
894 zone->free_area[order].nr_free--;
898 * If this is not the largest possible page, check if the buddy
899 * of the next-highest order is free. If it is, it's possible
900 * that pages are being freed that will coalesce soon. In case,
901 * that is happening, add the free page to the tail of the list
902 * so it's less likely to be used soon and more likely to be merged
903 * as a higher order page
906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 struct page *page, unsigned int order)
909 struct page *higher_page, *higher_buddy;
910 unsigned long combined_pfn;
912 if (order >= MAX_ORDER - 2)
915 if (!pfn_valid_within(buddy_pfn))
918 combined_pfn = buddy_pfn & pfn;
919 higher_page = page + (combined_pfn - pfn);
920 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923 return pfn_valid_within(buddy_pfn) &&
924 page_is_buddy(higher_page, higher_buddy, order + 1);
928 * Freeing function for a buddy system allocator.
930 * The concept of a buddy system is to maintain direct-mapped table
931 * (containing bit values) for memory blocks of various "orders".
932 * The bottom level table contains the map for the smallest allocatable
933 * units of memory (here, pages), and each level above it describes
934 * pairs of units from the levels below, hence, "buddies".
935 * At a high level, all that happens here is marking the table entry
936 * at the bottom level available, and propagating the changes upward
937 * as necessary, plus some accounting needed to play nicely with other
938 * parts of the VM system.
939 * At each level, we keep a list of pages, which are heads of continuous
940 * free pages of length of (1 << order) and marked with PageBuddy.
941 * Page's order is recorded in page_private(page) field.
942 * So when we are allocating or freeing one, we can derive the state of the
943 * other. That is, if we allocate a small block, and both were
944 * free, the remainder of the region must be split into blocks.
945 * If a block is freed, and its buddy is also free, then this
946 * triggers coalescing into a block of larger size.
951 static inline void __free_one_page(struct page *page,
953 struct zone *zone, unsigned int order,
954 int migratetype, bool report)
956 struct capture_control *capc = task_capc(zone);
957 unsigned long buddy_pfn;
958 unsigned long combined_pfn;
959 unsigned int max_order;
963 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
965 VM_BUG_ON(!zone_is_initialized(zone));
966 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
968 VM_BUG_ON(migratetype == -1);
969 if (likely(!is_migrate_isolate(migratetype)))
970 __mod_zone_freepage_state(zone, 1 << order, migratetype);
972 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
973 VM_BUG_ON_PAGE(bad_range(zone, page), page);
976 while (order < max_order - 1) {
977 if (compaction_capture(capc, page, order, migratetype)) {
978 __mod_zone_freepage_state(zone, -(1 << order),
982 buddy_pfn = __find_buddy_pfn(pfn, order);
983 buddy = page + (buddy_pfn - pfn);
985 if (!pfn_valid_within(buddy_pfn))
987 if (!page_is_buddy(page, buddy, order))
990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 * merge with it and move up one order.
993 if (page_is_guard(buddy))
994 clear_page_guard(zone, buddy, order, migratetype);
996 del_page_from_free_list(buddy, zone, order);
997 combined_pfn = buddy_pfn & pfn;
998 page = page + (combined_pfn - pfn);
1002 if (max_order < MAX_ORDER) {
1003 /* If we are here, it means order is >= pageblock_order.
1004 * We want to prevent merge between freepages on isolate
1005 * pageblock and normal pageblock. Without this, pageblock
1006 * isolation could cause incorrect freepage or CMA accounting.
1008 * We don't want to hit this code for the more frequent
1009 * low-order merging.
1011 if (unlikely(has_isolate_pageblock(zone))) {
1014 buddy_pfn = __find_buddy_pfn(pfn, order);
1015 buddy = page + (buddy_pfn - pfn);
1016 buddy_mt = get_pageblock_migratetype(buddy);
1018 if (migratetype != buddy_mt
1019 && (is_migrate_isolate(migratetype) ||
1020 is_migrate_isolate(buddy_mt)))
1024 goto continue_merging;
1028 set_page_order(page, order);
1030 if (is_shuffle_order(order))
1031 to_tail = shuffle_pick_tail();
1033 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1036 add_to_free_list_tail(page, zone, order, migratetype);
1038 add_to_free_list(page, zone, order, migratetype);
1040 /* Notify page reporting subsystem of freed page */
1042 page_reporting_notify_free(order);
1046 * A bad page could be due to a number of fields. Instead of multiple branches,
1047 * try and check multiple fields with one check. The caller must do a detailed
1048 * check if necessary.
1050 static inline bool page_expected_state(struct page *page,
1051 unsigned long check_flags)
1053 if (unlikely(atomic_read(&page->_mapcount) != -1))
1056 if (unlikely((unsigned long)page->mapping |
1057 page_ref_count(page) |
1059 (unsigned long)page->mem_cgroup |
1061 (page->flags & check_flags)))
1067 static const char *page_bad_reason(struct page *page, unsigned long flags)
1069 const char *bad_reason = NULL;
1071 if (unlikely(atomic_read(&page->_mapcount) != -1))
1072 bad_reason = "nonzero mapcount";
1073 if (unlikely(page->mapping != NULL))
1074 bad_reason = "non-NULL mapping";
1075 if (unlikely(page_ref_count(page) != 0))
1076 bad_reason = "nonzero _refcount";
1077 if (unlikely(page->flags & flags)) {
1078 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1084 if (unlikely(page->mem_cgroup))
1085 bad_reason = "page still charged to cgroup";
1090 static void check_free_page_bad(struct page *page)
1093 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1096 static inline int check_free_page(struct page *page)
1098 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1101 /* Something has gone sideways, find it */
1102 check_free_page_bad(page);
1106 static int free_tail_pages_check(struct page *head_page, struct page *page)
1111 * We rely page->lru.next never has bit 0 set, unless the page
1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1120 switch (page - head_page) {
1122 /* the first tail page: ->mapping may be compound_mapcount() */
1123 if (unlikely(compound_mapcount(page))) {
1124 bad_page(page, "nonzero compound_mapcount");
1130 * the second tail page: ->mapping is
1131 * deferred_list.next -- ignore value.
1135 if (page->mapping != TAIL_MAPPING) {
1136 bad_page(page, "corrupted mapping in tail page");
1141 if (unlikely(!PageTail(page))) {
1142 bad_page(page, "PageTail not set");
1145 if (unlikely(compound_head(page) != head_page)) {
1146 bad_page(page, "compound_head not consistent");
1151 page->mapping = NULL;
1152 clear_compound_head(page);
1156 static void kernel_init_free_pages(struct page *page, int numpages)
1160 /* s390's use of memset() could override KASAN redzones. */
1161 kasan_disable_current();
1162 for (i = 0; i < numpages; i++)
1163 clear_highpage(page + i);
1164 kasan_enable_current();
1167 static __always_inline bool free_pages_prepare(struct page *page,
1168 unsigned int order, bool check_free)
1172 VM_BUG_ON_PAGE(PageTail(page), page);
1174 trace_mm_page_free(page, order);
1177 * Check tail pages before head page information is cleared to
1178 * avoid checking PageCompound for order-0 pages.
1180 if (unlikely(order)) {
1181 bool compound = PageCompound(page);
1184 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1187 ClearPageDoubleMap(page);
1188 for (i = 1; i < (1 << order); i++) {
1190 bad += free_tail_pages_check(page, page + i);
1191 if (unlikely(check_free_page(page + i))) {
1195 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1198 if (PageMappingFlags(page))
1199 page->mapping = NULL;
1200 if (memcg_kmem_enabled() && PageKmemcg(page))
1201 __memcg_kmem_uncharge_page(page, order);
1203 bad += check_free_page(page);
1207 page_cpupid_reset_last(page);
1208 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 reset_page_owner(page, order);
1211 if (!PageHighMem(page)) {
1212 debug_check_no_locks_freed(page_address(page),
1213 PAGE_SIZE << order);
1214 debug_check_no_obj_freed(page_address(page),
1215 PAGE_SIZE << order);
1217 if (want_init_on_free())
1218 kernel_init_free_pages(page, 1 << order);
1220 kernel_poison_pages(page, 1 << order, 0);
1222 * arch_free_page() can make the page's contents inaccessible. s390
1223 * does this. So nothing which can access the page's contents should
1224 * happen after this.
1226 arch_free_page(page, order);
1228 if (debug_pagealloc_enabled_static())
1229 kernel_map_pages(page, 1 << order, 0);
1231 kasan_free_nondeferred_pages(page, order);
1236 #ifdef CONFIG_DEBUG_VM
1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240 * moved from pcp lists to free lists.
1242 static bool free_pcp_prepare(struct page *page)
1244 return free_pages_prepare(page, 0, true);
1247 static bool bulkfree_pcp_prepare(struct page *page)
1249 if (debug_pagealloc_enabled_static())
1250 return check_free_page(page);
1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257 * moving from pcp lists to free list in order to reduce overhead. With
1258 * debug_pagealloc enabled, they are checked also immediately when being freed
1261 static bool free_pcp_prepare(struct page *page)
1263 if (debug_pagealloc_enabled_static())
1264 return free_pages_prepare(page, 0, true);
1266 return free_pages_prepare(page, 0, false);
1269 static bool bulkfree_pcp_prepare(struct page *page)
1271 return check_free_page(page);
1273 #endif /* CONFIG_DEBUG_VM */
1275 static inline void prefetch_buddy(struct page *page)
1277 unsigned long pfn = page_to_pfn(page);
1278 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 struct page *buddy = page + (buddy_pfn - pfn);
1285 * Frees a number of pages from the PCP lists
1286 * Assumes all pages on list are in same zone, and of same order.
1287 * count is the number of pages to free.
1289 * If the zone was previously in an "all pages pinned" state then look to
1290 * see if this freeing clears that state.
1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293 * pinned" detection logic.
1295 static void free_pcppages_bulk(struct zone *zone, int count,
1296 struct per_cpu_pages *pcp)
1298 int migratetype = 0;
1300 int prefetch_nr = 0;
1301 bool isolated_pageblocks;
1302 struct page *page, *tmp;
1306 * Ensure proper count is passed which otherwise would stuck in the
1307 * below while (list_empty(list)) loop.
1309 count = min(pcp->count, count);
1311 struct list_head *list;
1314 * Remove pages from lists in a round-robin fashion. A
1315 * batch_free count is maintained that is incremented when an
1316 * empty list is encountered. This is so more pages are freed
1317 * off fuller lists instead of spinning excessively around empty
1322 if (++migratetype == MIGRATE_PCPTYPES)
1324 list = &pcp->lists[migratetype];
1325 } while (list_empty(list));
1327 /* This is the only non-empty list. Free them all. */
1328 if (batch_free == MIGRATE_PCPTYPES)
1332 page = list_last_entry(list, struct page, lru);
1333 /* must delete to avoid corrupting pcp list */
1334 list_del(&page->lru);
1337 if (bulkfree_pcp_prepare(page))
1340 list_add_tail(&page->lru, &head);
1343 * We are going to put the page back to the global
1344 * pool, prefetch its buddy to speed up later access
1345 * under zone->lock. It is believed the overhead of
1346 * an additional test and calculating buddy_pfn here
1347 * can be offset by reduced memory latency later. To
1348 * avoid excessive prefetching due to large count, only
1349 * prefetch buddy for the first pcp->batch nr of pages.
1351 if (prefetch_nr++ < pcp->batch)
1352 prefetch_buddy(page);
1353 } while (--count && --batch_free && !list_empty(list));
1356 spin_lock(&zone->lock);
1357 isolated_pageblocks = has_isolate_pageblock(zone);
1360 * Use safe version since after __free_one_page(),
1361 * page->lru.next will not point to original list.
1363 list_for_each_entry_safe(page, tmp, &head, lru) {
1364 int mt = get_pcppage_migratetype(page);
1365 /* MIGRATE_ISOLATE page should not go to pcplists */
1366 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1367 /* Pageblock could have been isolated meanwhile */
1368 if (unlikely(isolated_pageblocks))
1369 mt = get_pageblock_migratetype(page);
1371 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1372 trace_mm_page_pcpu_drain(page, 0, mt);
1374 spin_unlock(&zone->lock);
1377 static void free_one_page(struct zone *zone,
1378 struct page *page, unsigned long pfn,
1382 spin_lock(&zone->lock);
1383 if (unlikely(has_isolate_pageblock(zone) ||
1384 is_migrate_isolate(migratetype))) {
1385 migratetype = get_pfnblock_migratetype(page, pfn);
1387 __free_one_page(page, pfn, zone, order, migratetype, true);
1388 spin_unlock(&zone->lock);
1391 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1392 unsigned long zone, int nid)
1394 mm_zero_struct_page(page);
1395 set_page_links(page, zone, nid, pfn);
1396 init_page_count(page);
1397 page_mapcount_reset(page);
1398 page_cpupid_reset_last(page);
1399 page_kasan_tag_reset(page);
1401 INIT_LIST_HEAD(&page->lru);
1402 #ifdef WANT_PAGE_VIRTUAL
1403 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 if (!is_highmem_idx(zone))
1405 set_page_address(page, __va(pfn << PAGE_SHIFT));
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __meminit init_reserved_page(unsigned long pfn)
1415 if (!early_page_uninitialised(pfn))
1418 nid = early_pfn_to_nid(pfn);
1419 pgdat = NODE_DATA(nid);
1421 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1422 struct zone *zone = &pgdat->node_zones[zid];
1424 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1427 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1430 static inline void init_reserved_page(unsigned long pfn)
1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1436 * Initialised pages do not have PageReserved set. This function is
1437 * called for each range allocated by the bootmem allocator and
1438 * marks the pages PageReserved. The remaining valid pages are later
1439 * sent to the buddy page allocator.
1441 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 unsigned long start_pfn = PFN_DOWN(start);
1444 unsigned long end_pfn = PFN_UP(end);
1446 for (; start_pfn < end_pfn; start_pfn++) {
1447 if (pfn_valid(start_pfn)) {
1448 struct page *page = pfn_to_page(start_pfn);
1450 init_reserved_page(start_pfn);
1452 /* Avoid false-positive PageTail() */
1453 INIT_LIST_HEAD(&page->lru);
1456 * no need for atomic set_bit because the struct
1457 * page is not visible yet so nobody should
1460 __SetPageReserved(page);
1465 static void __free_pages_ok(struct page *page, unsigned int order)
1467 unsigned long flags;
1469 unsigned long pfn = page_to_pfn(page);
1471 if (!free_pages_prepare(page, order, true))
1474 migratetype = get_pfnblock_migratetype(page, pfn);
1475 local_irq_save(flags);
1476 __count_vm_events(PGFREE, 1 << order);
1477 free_one_page(page_zone(page), page, pfn, order, migratetype);
1478 local_irq_restore(flags);
1481 void __free_pages_core(struct page *page, unsigned int order)
1483 unsigned int nr_pages = 1 << order;
1484 struct page *p = page;
1488 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 __ClearPageReserved(p);
1491 set_page_count(p, 0);
1493 __ClearPageReserved(p);
1494 set_page_count(p, 0);
1496 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1497 set_page_refcounted(page);
1498 __free_pages(page, order);
1501 #ifdef CONFIG_NEED_MULTIPLE_NODES
1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 int __meminit __early_pfn_to_nid(unsigned long pfn,
1511 struct mminit_pfnnid_cache *state)
1513 unsigned long start_pfn, end_pfn;
1516 if (state->last_start <= pfn && pfn < state->last_end)
1517 return state->last_nid;
1519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1520 if (nid != NUMA_NO_NODE) {
1521 state->last_start = start_pfn;
1522 state->last_end = end_pfn;
1523 state->last_nid = nid;
1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530 int __meminit early_pfn_to_nid(unsigned long pfn)
1532 static DEFINE_SPINLOCK(early_pfn_lock);
1535 spin_lock(&early_pfn_lock);
1536 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538 nid = first_online_node;
1539 spin_unlock(&early_pfn_lock);
1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1548 if (early_page_uninitialised(pfn))
1550 __free_pages_core(page, order);
1554 * Check that the whole (or subset of) a pageblock given by the interval of
1555 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556 * with the migration of free compaction scanner. The scanners then need to
1557 * use only pfn_valid_within() check for arches that allow holes within
1560 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 * It's possible on some configurations to have a setup like node0 node1 node0
1563 * i.e. it's possible that all pages within a zones range of pages do not
1564 * belong to a single zone. We assume that a border between node0 and node1
1565 * can occur within a single pageblock, but not a node0 node1 node0
1566 * interleaving within a single pageblock. It is therefore sufficient to check
1567 * the first and last page of a pageblock and avoid checking each individual
1568 * page in a pageblock.
1570 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1571 unsigned long end_pfn, struct zone *zone)
1573 struct page *start_page;
1574 struct page *end_page;
1576 /* end_pfn is one past the range we are checking */
1579 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1582 start_page = pfn_to_online_page(start_pfn);
1586 if (page_zone(start_page) != zone)
1589 end_page = pfn_to_page(end_pfn);
1591 /* This gives a shorter code than deriving page_zone(end_page) */
1592 if (page_zone_id(start_page) != page_zone_id(end_page))
1598 void set_zone_contiguous(struct zone *zone)
1600 unsigned long block_start_pfn = zone->zone_start_pfn;
1601 unsigned long block_end_pfn;
1603 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1604 for (; block_start_pfn < zone_end_pfn(zone);
1605 block_start_pfn = block_end_pfn,
1606 block_end_pfn += pageblock_nr_pages) {
1608 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610 if (!__pageblock_pfn_to_page(block_start_pfn,
1611 block_end_pfn, zone))
1616 /* We confirm that there is no hole */
1617 zone->contiguous = true;
1620 void clear_zone_contiguous(struct zone *zone)
1622 zone->contiguous = false;
1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1626 static void __init deferred_free_range(unsigned long pfn,
1627 unsigned long nr_pages)
1635 page = pfn_to_page(pfn);
1637 /* Free a large naturally-aligned chunk if possible */
1638 if (nr_pages == pageblock_nr_pages &&
1639 (pfn & (pageblock_nr_pages - 1)) == 0) {
1640 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1641 __free_pages_core(page, pageblock_order);
1645 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1646 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1647 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1648 __free_pages_core(page, 0);
1652 /* Completion tracking for deferred_init_memmap() threads */
1653 static atomic_t pgdat_init_n_undone __initdata;
1654 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656 static inline void __init pgdat_init_report_one_done(void)
1658 if (atomic_dec_and_test(&pgdat_init_n_undone))
1659 complete(&pgdat_init_all_done_comp);
1663 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 * First we check if pfn is valid on architectures where it is possible to have
1666 * holes within pageblock_nr_pages. On systems where it is not possible, this
1667 * function is optimized out.
1669 * Then, we check if a current large page is valid by only checking the validity
1672 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1674 if (!pfn_valid_within(pfn))
1676 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1682 * Free pages to buddy allocator. Try to free aligned pages in
1683 * pageblock_nr_pages sizes.
1685 static void __init deferred_free_pages(unsigned long pfn,
1686 unsigned long end_pfn)
1688 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1689 unsigned long nr_free = 0;
1691 for (; pfn < end_pfn; pfn++) {
1692 if (!deferred_pfn_valid(pfn)) {
1693 deferred_free_range(pfn - nr_free, nr_free);
1695 } else if (!(pfn & nr_pgmask)) {
1696 deferred_free_range(pfn - nr_free, nr_free);
1702 /* Free the last block of pages to allocator */
1703 deferred_free_range(pfn - nr_free, nr_free);
1707 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1708 * by performing it only once every pageblock_nr_pages.
1709 * Return number of pages initialized.
1711 static unsigned long __init deferred_init_pages(struct zone *zone,
1713 unsigned long end_pfn)
1715 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1716 int nid = zone_to_nid(zone);
1717 unsigned long nr_pages = 0;
1718 int zid = zone_idx(zone);
1719 struct page *page = NULL;
1721 for (; pfn < end_pfn; pfn++) {
1722 if (!deferred_pfn_valid(pfn)) {
1725 } else if (!page || !(pfn & nr_pgmask)) {
1726 page = pfn_to_page(pfn);
1730 __init_single_page(page, pfn, zid, nid);
1737 * This function is meant to pre-load the iterator for the zone init.
1738 * Specifically it walks through the ranges until we are caught up to the
1739 * first_init_pfn value and exits there. If we never encounter the value we
1740 * return false indicating there are no valid ranges left.
1743 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 unsigned long *spfn, unsigned long *epfn,
1745 unsigned long first_init_pfn)
1750 * Start out by walking through the ranges in this zone that have
1751 * already been initialized. We don't need to do anything with them
1752 * so we just need to flush them out of the system.
1754 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 if (*epfn <= first_init_pfn)
1757 if (*spfn < first_init_pfn)
1758 *spfn = first_init_pfn;
1767 * Initialize and free pages. We do it in two loops: first we initialize
1768 * struct page, then free to buddy allocator, because while we are
1769 * freeing pages we can access pages that are ahead (computing buddy
1770 * page in __free_one_page()).
1772 * In order to try and keep some memory in the cache we have the loop
1773 * broken along max page order boundaries. This way we will not cause
1774 * any issues with the buddy page computation.
1776 static unsigned long __init
1777 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 unsigned long *end_pfn)
1780 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 unsigned long nr_pages = 0;
1785 /* First we loop through and initialize the page values */
1786 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1789 if (mo_pfn <= *start_pfn)
1792 t = min(mo_pfn, *end_pfn);
1793 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795 if (mo_pfn < *end_pfn) {
1796 *start_pfn = mo_pfn;
1801 /* Reset values and now loop through freeing pages as needed */
1804 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1810 t = min(mo_pfn, epfn);
1811 deferred_free_pages(spfn, t);
1821 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1824 unsigned long spfn, epfn;
1825 struct zone *zone = arg;
1828 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1831 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 * can avoid introducing any issues with the buddy allocator.
1834 while (spfn < end_pfn) {
1835 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1840 /* An arch may override for more concurrency. */
1842 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1847 /* Initialise remaining memory on a node */
1848 static int __init deferred_init_memmap(void *data)
1850 pg_data_t *pgdat = data;
1851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1852 unsigned long spfn = 0, epfn = 0;
1853 unsigned long first_init_pfn, flags;
1854 unsigned long start = jiffies;
1856 int zid, max_threads;
1859 /* Bind memory initialisation thread to a local node if possible */
1860 if (!cpumask_empty(cpumask))
1861 set_cpus_allowed_ptr(current, cpumask);
1863 pgdat_resize_lock(pgdat, &flags);
1864 first_init_pfn = pgdat->first_deferred_pfn;
1865 if (first_init_pfn == ULONG_MAX) {
1866 pgdat_resize_unlock(pgdat, &flags);
1867 pgdat_init_report_one_done();
1871 /* Sanity check boundaries */
1872 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1873 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1874 pgdat->first_deferred_pfn = ULONG_MAX;
1877 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 * interrupt thread must allocate this early in boot, zone must be
1879 * pre-grown prior to start of deferred page initialization.
1881 pgdat_resize_unlock(pgdat, &flags);
1883 /* Only the highest zone is deferred so find it */
1884 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 zone = pgdat->node_zones + zid;
1886 if (first_init_pfn < zone_end_pfn(zone))
1890 /* If the zone is empty somebody else may have cleared out the zone */
1891 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1895 max_threads = deferred_page_init_max_threads(cpumask);
1897 while (spfn < epfn) {
1898 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1899 struct padata_mt_job job = {
1900 .thread_fn = deferred_init_memmap_chunk,
1903 .size = epfn_align - spfn,
1904 .align = PAGES_PER_SECTION,
1905 .min_chunk = PAGES_PER_SECTION,
1906 .max_threads = max_threads,
1909 padata_do_multithreaded(&job);
1910 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1914 /* Sanity check that the next zone really is unpopulated */
1915 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917 pr_info("node %d deferred pages initialised in %ums\n",
1918 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920 pgdat_init_report_one_done();
1925 * If this zone has deferred pages, try to grow it by initializing enough
1926 * deferred pages to satisfy the allocation specified by order, rounded up to
1927 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1928 * of SECTION_SIZE bytes by initializing struct pages in increments of
1929 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 * Return true when zone was grown, otherwise return false. We return true even
1932 * when we grow less than requested, to let the caller decide if there are
1933 * enough pages to satisfy the allocation.
1935 * Note: We use noinline because this function is needed only during boot, and
1936 * it is called from a __ref function _deferred_grow_zone. This way we are
1937 * making sure that it is not inlined into permanent text section.
1939 static noinline bool __init
1940 deferred_grow_zone(struct zone *zone, unsigned int order)
1942 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1943 pg_data_t *pgdat = zone->zone_pgdat;
1944 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1945 unsigned long spfn, epfn, flags;
1946 unsigned long nr_pages = 0;
1949 /* Only the last zone may have deferred pages */
1950 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1953 pgdat_resize_lock(pgdat, &flags);
1956 * If someone grew this zone while we were waiting for spinlock, return
1957 * true, as there might be enough pages already.
1959 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1960 pgdat_resize_unlock(pgdat, &flags);
1964 /* If the zone is empty somebody else may have cleared out the zone */
1965 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 first_deferred_pfn)) {
1967 pgdat->first_deferred_pfn = ULONG_MAX;
1968 pgdat_resize_unlock(pgdat, &flags);
1969 /* Retry only once. */
1970 return first_deferred_pfn != ULONG_MAX;
1974 * Initialize and free pages in MAX_ORDER sized increments so
1975 * that we can avoid introducing any issues with the buddy
1978 while (spfn < epfn) {
1979 /* update our first deferred PFN for this section */
1980 first_deferred_pfn = spfn;
1982 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1983 touch_nmi_watchdog();
1985 /* We should only stop along section boundaries */
1986 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1989 /* If our quota has been met we can stop here */
1990 if (nr_pages >= nr_pages_needed)
1994 pgdat->first_deferred_pfn = spfn;
1995 pgdat_resize_unlock(pgdat, &flags);
1997 return nr_pages > 0;
2001 * deferred_grow_zone() is __init, but it is called from
2002 * get_page_from_freelist() during early boot until deferred_pages permanently
2003 * disables this call. This is why we have refdata wrapper to avoid warning,
2004 * and to ensure that the function body gets unloaded.
2007 _deferred_grow_zone(struct zone *zone, unsigned int order)
2009 return deferred_grow_zone(zone, order);
2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014 void __init page_alloc_init_late(void)
2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021 /* There will be num_node_state(N_MEMORY) threads */
2022 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2023 for_each_node_state(nid, N_MEMORY) {
2024 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2027 /* Block until all are initialised */
2028 wait_for_completion(&pgdat_init_all_done_comp);
2031 * The number of managed pages has changed due to the initialisation
2032 * so the pcpu batch and high limits needs to be updated or the limits
2033 * will be artificially small.
2035 for_each_populated_zone(zone)
2036 zone_pcp_update(zone);
2039 * We initialized the rest of the deferred pages. Permanently disable
2040 * on-demand struct page initialization.
2042 static_branch_disable(&deferred_pages);
2044 /* Reinit limits that are based on free pages after the kernel is up */
2045 files_maxfiles_init();
2048 /* Discard memblock private memory */
2051 for_each_node_state(nid, N_MEMORY)
2052 shuffle_free_memory(NODE_DATA(nid));
2054 for_each_populated_zone(zone)
2055 set_zone_contiguous(zone);
2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2060 void __init init_cma_reserved_pageblock(struct page *page)
2062 unsigned i = pageblock_nr_pages;
2063 struct page *p = page;
2066 __ClearPageReserved(p);
2067 set_page_count(p, 0);
2070 set_pageblock_migratetype(page, MIGRATE_CMA);
2072 if (pageblock_order >= MAX_ORDER) {
2073 i = pageblock_nr_pages;
2076 set_page_refcounted(p);
2077 __free_pages(p, MAX_ORDER - 1);
2078 p += MAX_ORDER_NR_PAGES;
2079 } while (i -= MAX_ORDER_NR_PAGES);
2081 set_page_refcounted(page);
2082 __free_pages(page, pageblock_order);
2085 adjust_managed_page_count(page, pageblock_nr_pages);
2090 * The order of subdivision here is critical for the IO subsystem.
2091 * Please do not alter this order without good reasons and regression
2092 * testing. Specifically, as large blocks of memory are subdivided,
2093 * the order in which smaller blocks are delivered depends on the order
2094 * they're subdivided in this function. This is the primary factor
2095 * influencing the order in which pages are delivered to the IO
2096 * subsystem according to empirical testing, and this is also justified
2097 * by considering the behavior of a buddy system containing a single
2098 * large block of memory acted on by a series of small allocations.
2099 * This behavior is a critical factor in sglist merging's success.
2103 static inline void expand(struct zone *zone, struct page *page,
2104 int low, int high, int migratetype)
2106 unsigned long size = 1 << high;
2108 while (high > low) {
2111 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2114 * Mark as guard pages (or page), that will allow to
2115 * merge back to allocator when buddy will be freed.
2116 * Corresponding page table entries will not be touched,
2117 * pages will stay not present in virtual address space
2119 if (set_page_guard(zone, &page[size], high, migratetype))
2122 add_to_free_list(&page[size], zone, high, migratetype);
2123 set_page_order(&page[size], high);
2127 static void check_new_page_bad(struct page *page)
2129 if (unlikely(page->flags & __PG_HWPOISON)) {
2130 /* Don't complain about hwpoisoned pages */
2131 page_mapcount_reset(page); /* remove PageBuddy */
2136 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2140 * This page is about to be returned from the page allocator
2142 static inline int check_new_page(struct page *page)
2144 if (likely(page_expected_state(page,
2145 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2148 check_new_page_bad(page);
2152 static inline bool free_pages_prezeroed(void)
2154 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2155 page_poisoning_enabled()) || want_init_on_free();
2158 #ifdef CONFIG_DEBUG_VM
2160 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162 * also checked when pcp lists are refilled from the free lists.
2164 static inline bool check_pcp_refill(struct page *page)
2166 if (debug_pagealloc_enabled_static())
2167 return check_new_page(page);
2172 static inline bool check_new_pcp(struct page *page)
2174 return check_new_page(page);
2178 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180 * enabled, they are also checked when being allocated from the pcp lists.
2182 static inline bool check_pcp_refill(struct page *page)
2184 return check_new_page(page);
2186 static inline bool check_new_pcp(struct page *page)
2188 if (debug_pagealloc_enabled_static())
2189 return check_new_page(page);
2193 #endif /* CONFIG_DEBUG_VM */
2195 static bool check_new_pages(struct page *page, unsigned int order)
2198 for (i = 0; i < (1 << order); i++) {
2199 struct page *p = page + i;
2201 if (unlikely(check_new_page(p)))
2208 inline void post_alloc_hook(struct page *page, unsigned int order,
2211 set_page_private(page, 0);
2212 set_page_refcounted(page);
2214 arch_alloc_page(page, order);
2215 if (debug_pagealloc_enabled_static())
2216 kernel_map_pages(page, 1 << order, 1);
2217 kasan_alloc_pages(page, order);
2218 kernel_poison_pages(page, 1 << order, 1);
2219 set_page_owner(page, order, gfp_flags);
2222 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2223 unsigned int alloc_flags)
2225 post_alloc_hook(page, order, gfp_flags);
2227 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2228 kernel_init_free_pages(page, 1 << order);
2230 if (order && (gfp_flags & __GFP_COMP))
2231 prep_compound_page(page, order);
2234 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2235 * allocate the page. The expectation is that the caller is taking
2236 * steps that will free more memory. The caller should avoid the page
2237 * being used for !PFMEMALLOC purposes.
2239 if (alloc_flags & ALLOC_NO_WATERMARKS)
2240 set_page_pfmemalloc(page);
2242 clear_page_pfmemalloc(page);
2246 * Go through the free lists for the given migratetype and remove
2247 * the smallest available page from the freelists
2249 static __always_inline
2250 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2253 unsigned int current_order;
2254 struct free_area *area;
2257 /* Find a page of the appropriate size in the preferred list */
2258 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2259 area = &(zone->free_area[current_order]);
2260 page = get_page_from_free_area(area, migratetype);
2263 del_page_from_free_list(page, zone, current_order);
2264 expand(zone, page, order, current_order, migratetype);
2265 set_pcppage_migratetype(page, migratetype);
2274 * This array describes the order lists are fallen back to when
2275 * the free lists for the desirable migrate type are depleted
2277 static int fallbacks[MIGRATE_TYPES][3] = {
2278 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2279 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2280 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2282 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2284 #ifdef CONFIG_MEMORY_ISOLATION
2285 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2290 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2293 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2296 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2297 unsigned int order) { return NULL; }
2301 * Move the free pages in a range to the free lists of the requested type.
2302 * Note that start_page and end_pages are not aligned on a pageblock
2303 * boundary. If alignment is required, use move_freepages_block()
2305 static int move_freepages(struct zone *zone,
2306 struct page *start_page, struct page *end_page,
2307 int migratetype, int *num_movable)
2311 int pages_moved = 0;
2313 for (page = start_page; page <= end_page;) {
2314 if (!pfn_valid_within(page_to_pfn(page))) {
2319 if (!PageBuddy(page)) {
2321 * We assume that pages that could be isolated for
2322 * migration are movable. But we don't actually try
2323 * isolating, as that would be expensive.
2326 (PageLRU(page) || __PageMovable(page)))
2333 /* Make sure we are not inadvertently changing nodes */
2334 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2335 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337 order = page_order(page);
2338 move_to_free_list(page, zone, order, migratetype);
2340 pages_moved += 1 << order;
2346 int move_freepages_block(struct zone *zone, struct page *page,
2347 int migratetype, int *num_movable)
2349 unsigned long start_pfn, end_pfn;
2350 struct page *start_page, *end_page;
2355 start_pfn = page_to_pfn(page);
2356 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2357 start_page = pfn_to_page(start_pfn);
2358 end_page = start_page + pageblock_nr_pages - 1;
2359 end_pfn = start_pfn + pageblock_nr_pages - 1;
2361 /* Do not cross zone boundaries */
2362 if (!zone_spans_pfn(zone, start_pfn))
2364 if (!zone_spans_pfn(zone, end_pfn))
2367 return move_freepages(zone, start_page, end_page, migratetype,
2371 static void change_pageblock_range(struct page *pageblock_page,
2372 int start_order, int migratetype)
2374 int nr_pageblocks = 1 << (start_order - pageblock_order);
2376 while (nr_pageblocks--) {
2377 set_pageblock_migratetype(pageblock_page, migratetype);
2378 pageblock_page += pageblock_nr_pages;
2383 * When we are falling back to another migratetype during allocation, try to
2384 * steal extra free pages from the same pageblocks to satisfy further
2385 * allocations, instead of polluting multiple pageblocks.
2387 * If we are stealing a relatively large buddy page, it is likely there will
2388 * be more free pages in the pageblock, so try to steal them all. For
2389 * reclaimable and unmovable allocations, we steal regardless of page size,
2390 * as fragmentation caused by those allocations polluting movable pageblocks
2391 * is worse than movable allocations stealing from unmovable and reclaimable
2394 static bool can_steal_fallback(unsigned int order, int start_mt)
2397 * Leaving this order check is intended, although there is
2398 * relaxed order check in next check. The reason is that
2399 * we can actually steal whole pageblock if this condition met,
2400 * but, below check doesn't guarantee it and that is just heuristic
2401 * so could be changed anytime.
2403 if (order >= pageblock_order)
2406 if (order >= pageblock_order / 2 ||
2407 start_mt == MIGRATE_RECLAIMABLE ||
2408 start_mt == MIGRATE_UNMOVABLE ||
2409 page_group_by_mobility_disabled)
2415 static inline void boost_watermark(struct zone *zone)
2417 unsigned long max_boost;
2419 if (!watermark_boost_factor)
2422 * Don't bother in zones that are unlikely to produce results.
2423 * On small machines, including kdump capture kernels running
2424 * in a small area, boosting the watermark can cause an out of
2425 * memory situation immediately.
2427 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2430 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2431 watermark_boost_factor, 10000);
2434 * high watermark may be uninitialised if fragmentation occurs
2435 * very early in boot so do not boost. We do not fall
2436 * through and boost by pageblock_nr_pages as failing
2437 * allocations that early means that reclaim is not going
2438 * to help and it may even be impossible to reclaim the
2439 * boosted watermark resulting in a hang.
2444 max_boost = max(pageblock_nr_pages, max_boost);
2446 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2451 * This function implements actual steal behaviour. If order is large enough,
2452 * we can steal whole pageblock. If not, we first move freepages in this
2453 * pageblock to our migratetype and determine how many already-allocated pages
2454 * are there in the pageblock with a compatible migratetype. If at least half
2455 * of pages are free or compatible, we can change migratetype of the pageblock
2456 * itself, so pages freed in the future will be put on the correct free list.
2458 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2459 unsigned int alloc_flags, int start_type, bool whole_block)
2461 unsigned int current_order = page_order(page);
2462 int free_pages, movable_pages, alike_pages;
2465 old_block_type = get_pageblock_migratetype(page);
2468 * This can happen due to races and we want to prevent broken
2469 * highatomic accounting.
2471 if (is_migrate_highatomic(old_block_type))
2474 /* Take ownership for orders >= pageblock_order */
2475 if (current_order >= pageblock_order) {
2476 change_pageblock_range(page, current_order, start_type);
2481 * Boost watermarks to increase reclaim pressure to reduce the
2482 * likelihood of future fallbacks. Wake kswapd now as the node
2483 * may be balanced overall and kswapd will not wake naturally.
2485 boost_watermark(zone);
2486 if (alloc_flags & ALLOC_KSWAPD)
2487 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489 /* We are not allowed to try stealing from the whole block */
2493 free_pages = move_freepages_block(zone, page, start_type,
2496 * Determine how many pages are compatible with our allocation.
2497 * For movable allocation, it's the number of movable pages which
2498 * we just obtained. For other types it's a bit more tricky.
2500 if (start_type == MIGRATE_MOVABLE) {
2501 alike_pages = movable_pages;
2504 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 * to MOVABLE pageblock, consider all non-movable pages as
2506 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 * vice versa, be conservative since we can't distinguish the
2508 * exact migratetype of non-movable pages.
2510 if (old_block_type == MIGRATE_MOVABLE)
2511 alike_pages = pageblock_nr_pages
2512 - (free_pages + movable_pages);
2517 /* moving whole block can fail due to zone boundary conditions */
2522 * If a sufficient number of pages in the block are either free or of
2523 * comparable migratability as our allocation, claim the whole block.
2525 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2526 page_group_by_mobility_disabled)
2527 set_pageblock_migratetype(page, start_type);
2532 move_to_free_list(page, zone, current_order, start_type);
2536 * Check whether there is a suitable fallback freepage with requested order.
2537 * If only_stealable is true, this function returns fallback_mt only if
2538 * we can steal other freepages all together. This would help to reduce
2539 * fragmentation due to mixed migratetype pages in one pageblock.
2541 int find_suitable_fallback(struct free_area *area, unsigned int order,
2542 int migratetype, bool only_stealable, bool *can_steal)
2547 if (area->nr_free == 0)
2552 fallback_mt = fallbacks[migratetype][i];
2553 if (fallback_mt == MIGRATE_TYPES)
2556 if (free_area_empty(area, fallback_mt))
2559 if (can_steal_fallback(order, migratetype))
2562 if (!only_stealable)
2573 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574 * there are no empty page blocks that contain a page with a suitable order
2576 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2577 unsigned int alloc_order)
2580 unsigned long max_managed, flags;
2583 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 * Check is race-prone but harmless.
2586 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2587 if (zone->nr_reserved_highatomic >= max_managed)
2590 spin_lock_irqsave(&zone->lock, flags);
2592 /* Recheck the nr_reserved_highatomic limit under the lock */
2593 if (zone->nr_reserved_highatomic >= max_managed)
2597 mt = get_pageblock_migratetype(page);
2598 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2599 && !is_migrate_cma(mt)) {
2600 zone->nr_reserved_highatomic += pageblock_nr_pages;
2601 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2602 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2606 spin_unlock_irqrestore(&zone->lock, flags);
2610 * Used when an allocation is about to fail under memory pressure. This
2611 * potentially hurts the reliability of high-order allocations when under
2612 * intense memory pressure but failed atomic allocations should be easier
2613 * to recover from than an OOM.
2615 * If @force is true, try to unreserve a pageblock even though highatomic
2616 * pageblock is exhausted.
2618 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2621 struct zonelist *zonelist = ac->zonelist;
2622 unsigned long flags;
2629 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2632 * Preserve at least one pageblock unless memory pressure
2635 if (!force && zone->nr_reserved_highatomic <=
2639 spin_lock_irqsave(&zone->lock, flags);
2640 for (order = 0; order < MAX_ORDER; order++) {
2641 struct free_area *area = &(zone->free_area[order]);
2643 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2648 * In page freeing path, migratetype change is racy so
2649 * we can counter several free pages in a pageblock
2650 * in this loop althoug we changed the pageblock type
2651 * from highatomic to ac->migratetype. So we should
2652 * adjust the count once.
2654 if (is_migrate_highatomic_page(page)) {
2656 * It should never happen but changes to
2657 * locking could inadvertently allow a per-cpu
2658 * drain to add pages to MIGRATE_HIGHATOMIC
2659 * while unreserving so be safe and watch for
2662 zone->nr_reserved_highatomic -= min(
2664 zone->nr_reserved_highatomic);
2668 * Convert to ac->migratetype and avoid the normal
2669 * pageblock stealing heuristics. Minimally, the caller
2670 * is doing the work and needs the pages. More
2671 * importantly, if the block was always converted to
2672 * MIGRATE_UNMOVABLE or another type then the number
2673 * of pageblocks that cannot be completely freed
2676 set_pageblock_migratetype(page, ac->migratetype);
2677 ret = move_freepages_block(zone, page, ac->migratetype,
2680 spin_unlock_irqrestore(&zone->lock, flags);
2684 spin_unlock_irqrestore(&zone->lock, flags);
2691 * Try finding a free buddy page on the fallback list and put it on the free
2692 * list of requested migratetype, possibly along with other pages from the same
2693 * block, depending on fragmentation avoidance heuristics. Returns true if
2694 * fallback was found so that __rmqueue_smallest() can grab it.
2696 * The use of signed ints for order and current_order is a deliberate
2697 * deviation from the rest of this file, to make the for loop
2698 * condition simpler.
2700 static __always_inline bool
2701 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2702 unsigned int alloc_flags)
2704 struct free_area *area;
2706 int min_order = order;
2712 * Do not steal pages from freelists belonging to other pageblocks
2713 * i.e. orders < pageblock_order. If there are no local zones free,
2714 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 if (alloc_flags & ALLOC_NOFRAGMENT)
2717 min_order = pageblock_order;
2720 * Find the largest available free page in the other list. This roughly
2721 * approximates finding the pageblock with the most free pages, which
2722 * would be too costly to do exactly.
2724 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726 area = &(zone->free_area[current_order]);
2727 fallback_mt = find_suitable_fallback(area, current_order,
2728 start_migratetype, false, &can_steal);
2729 if (fallback_mt == -1)
2733 * We cannot steal all free pages from the pageblock and the
2734 * requested migratetype is movable. In that case it's better to
2735 * steal and split the smallest available page instead of the
2736 * largest available page, because even if the next movable
2737 * allocation falls back into a different pageblock than this
2738 * one, it won't cause permanent fragmentation.
2740 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2741 && current_order > order)
2750 for (current_order = order; current_order < MAX_ORDER;
2752 area = &(zone->free_area[current_order]);
2753 fallback_mt = find_suitable_fallback(area, current_order,
2754 start_migratetype, false, &can_steal);
2755 if (fallback_mt != -1)
2760 * This should not happen - we already found a suitable fallback
2761 * when looking for the largest page.
2763 VM_BUG_ON(current_order == MAX_ORDER);
2766 page = get_page_from_free_area(area, fallback_mt);
2768 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2771 trace_mm_page_alloc_extfrag(page, order, current_order,
2772 start_migratetype, fallback_mt);
2779 * Do the hard work of removing an element from the buddy allocator.
2780 * Call me with the zone->lock already held.
2782 static __always_inline struct page *
2783 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2784 unsigned int alloc_flags)
2790 * Balance movable allocations between regular and CMA areas by
2791 * allocating from CMA when over half of the zone's free memory
2792 * is in the CMA area.
2794 if (alloc_flags & ALLOC_CMA &&
2795 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2796 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2797 page = __rmqueue_cma_fallback(zone, order);
2803 page = __rmqueue_smallest(zone, order, migratetype);
2804 if (unlikely(!page)) {
2805 if (alloc_flags & ALLOC_CMA)
2806 page = __rmqueue_cma_fallback(zone, order);
2808 if (!page && __rmqueue_fallback(zone, order, migratetype,
2813 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2818 * Obtain a specified number of elements from the buddy allocator, all under
2819 * a single hold of the lock, for efficiency. Add them to the supplied list.
2820 * Returns the number of new pages which were placed at *list.
2822 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2823 unsigned long count, struct list_head *list,
2824 int migratetype, unsigned int alloc_flags)
2828 spin_lock(&zone->lock);
2829 for (i = 0; i < count; ++i) {
2830 struct page *page = __rmqueue(zone, order, migratetype,
2832 if (unlikely(page == NULL))
2835 if (unlikely(check_pcp_refill(page)))
2839 * Split buddy pages returned by expand() are received here in
2840 * physical page order. The page is added to the tail of
2841 * caller's list. From the callers perspective, the linked list
2842 * is ordered by page number under some conditions. This is
2843 * useful for IO devices that can forward direction from the
2844 * head, thus also in the physical page order. This is useful
2845 * for IO devices that can merge IO requests if the physical
2846 * pages are ordered properly.
2848 list_add_tail(&page->lru, list);
2850 if (is_migrate_cma(get_pcppage_migratetype(page)))
2851 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2856 * i pages were removed from the buddy list even if some leak due
2857 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 * on i. Do not confuse with 'alloced' which is the number of
2859 * pages added to the pcp list.
2861 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2862 spin_unlock(&zone->lock);
2868 * Called from the vmstat counter updater to drain pagesets of this
2869 * currently executing processor on remote nodes after they have
2872 * Note that this function must be called with the thread pinned to
2873 * a single processor.
2875 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877 unsigned long flags;
2878 int to_drain, batch;
2880 local_irq_save(flags);
2881 batch = READ_ONCE(pcp->batch);
2882 to_drain = min(pcp->count, batch);
2884 free_pcppages_bulk(zone, to_drain, pcp);
2885 local_irq_restore(flags);
2890 * Drain pcplists of the indicated processor and zone.
2892 * The processor must either be the current processor and the
2893 * thread pinned to the current processor or a processor that
2896 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2898 unsigned long flags;
2899 struct per_cpu_pageset *pset;
2900 struct per_cpu_pages *pcp;
2902 local_irq_save(flags);
2903 pset = per_cpu_ptr(zone->pageset, cpu);
2907 free_pcppages_bulk(zone, pcp->count, pcp);
2908 local_irq_restore(flags);
2912 * Drain pcplists of all zones on the indicated processor.
2914 * The processor must either be the current processor and the
2915 * thread pinned to the current processor or a processor that
2918 static void drain_pages(unsigned int cpu)
2922 for_each_populated_zone(zone) {
2923 drain_pages_zone(cpu, zone);
2928 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931 * the single zone's pages.
2933 void drain_local_pages(struct zone *zone)
2935 int cpu = smp_processor_id();
2938 drain_pages_zone(cpu, zone);
2943 static void drain_local_pages_wq(struct work_struct *work)
2945 struct pcpu_drain *drain;
2947 drain = container_of(work, struct pcpu_drain, work);
2950 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 * we can race with cpu offline when the WQ can move this from
2952 * a cpu pinned worker to an unbound one. We can operate on a different
2953 * cpu which is allright but we also have to make sure to not move to
2957 drain_local_pages(drain->zone);
2962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 * Note that this can be extremely slow as the draining happens in a workqueue.
2968 void drain_all_pages(struct zone *zone)
2973 * Allocate in the BSS so we wont require allocation in
2974 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 static cpumask_t cpus_with_pcps;
2979 * Make sure nobody triggers this path before mm_percpu_wq is fully
2982 if (WARN_ON_ONCE(!mm_percpu_wq))
2986 * Do not drain if one is already in progress unless it's specific to
2987 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 * the drain to be complete when the call returns.
2990 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2993 mutex_lock(&pcpu_drain_mutex);
2997 * We don't care about racing with CPU hotplug event
2998 * as offline notification will cause the notified
2999 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 * disables preemption as part of its processing
3002 for_each_online_cpu(cpu) {
3003 struct per_cpu_pageset *pcp;
3005 bool has_pcps = false;
3008 pcp = per_cpu_ptr(zone->pageset, cpu);
3012 for_each_populated_zone(z) {
3013 pcp = per_cpu_ptr(z->pageset, cpu);
3014 if (pcp->pcp.count) {
3022 cpumask_set_cpu(cpu, &cpus_with_pcps);
3024 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3027 for_each_cpu(cpu, &cpus_with_pcps) {
3028 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3031 INIT_WORK(&drain->work, drain_local_pages_wq);
3032 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034 for_each_cpu(cpu, &cpus_with_pcps)
3035 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037 mutex_unlock(&pcpu_drain_mutex);
3040 #ifdef CONFIG_HIBERNATION
3043 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 #define WD_PAGE_COUNT (128*1024)
3047 void mark_free_pages(struct zone *zone)
3049 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3050 unsigned long flags;
3051 unsigned int order, t;
3054 if (zone_is_empty(zone))
3057 spin_lock_irqsave(&zone->lock, flags);
3059 max_zone_pfn = zone_end_pfn(zone);
3060 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3061 if (pfn_valid(pfn)) {
3062 page = pfn_to_page(pfn);
3064 if (!--page_count) {
3065 touch_nmi_watchdog();
3066 page_count = WD_PAGE_COUNT;
3069 if (page_zone(page) != zone)
3072 if (!swsusp_page_is_forbidden(page))
3073 swsusp_unset_page_free(page);
3076 for_each_migratetype_order(order, t) {
3077 list_for_each_entry(page,
3078 &zone->free_area[order].free_list[t], lru) {
3081 pfn = page_to_pfn(page);
3082 for (i = 0; i < (1UL << order); i++) {
3083 if (!--page_count) {
3084 touch_nmi_watchdog();
3085 page_count = WD_PAGE_COUNT;
3087 swsusp_set_page_free(pfn_to_page(pfn + i));
3091 spin_unlock_irqrestore(&zone->lock, flags);
3093 #endif /* CONFIG_PM */
3095 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3099 if (!free_pcp_prepare(page))
3102 migratetype = get_pfnblock_migratetype(page, pfn);
3103 set_pcppage_migratetype(page, migratetype);
3107 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109 struct zone *zone = page_zone(page);
3110 struct per_cpu_pages *pcp;
3113 migratetype = get_pcppage_migratetype(page);
3114 __count_vm_event(PGFREE);
3117 * We only track unmovable, reclaimable and movable on pcp lists.
3118 * Free ISOLATE pages back to the allocator because they are being
3119 * offlined but treat HIGHATOMIC as movable pages so we can get those
3120 * areas back if necessary. Otherwise, we may have to free
3121 * excessively into the page allocator
3123 if (migratetype >= MIGRATE_PCPTYPES) {
3124 if (unlikely(is_migrate_isolate(migratetype))) {
3125 free_one_page(zone, page, pfn, 0, migratetype);
3128 migratetype = MIGRATE_MOVABLE;
3131 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3132 list_add(&page->lru, &pcp->lists[migratetype]);
3134 if (pcp->count >= pcp->high) {
3135 unsigned long batch = READ_ONCE(pcp->batch);
3136 free_pcppages_bulk(zone, batch, pcp);
3141 * Free a 0-order page
3143 void free_unref_page(struct page *page)
3145 unsigned long flags;
3146 unsigned long pfn = page_to_pfn(page);
3148 if (!free_unref_page_prepare(page, pfn))
3151 local_irq_save(flags);
3152 free_unref_page_commit(page, pfn);
3153 local_irq_restore(flags);
3157 * Free a list of 0-order pages
3159 void free_unref_page_list(struct list_head *list)
3161 struct page *page, *next;
3162 unsigned long flags, pfn;
3163 int batch_count = 0;
3165 /* Prepare pages for freeing */
3166 list_for_each_entry_safe(page, next, list, lru) {
3167 pfn = page_to_pfn(page);
3168 if (!free_unref_page_prepare(page, pfn))
3169 list_del(&page->lru);
3170 set_page_private(page, pfn);
3173 local_irq_save(flags);
3174 list_for_each_entry_safe(page, next, list, lru) {
3175 unsigned long pfn = page_private(page);
3177 set_page_private(page, 0);
3178 trace_mm_page_free_batched(page);
3179 free_unref_page_commit(page, pfn);
3182 * Guard against excessive IRQ disabled times when we get
3183 * a large list of pages to free.
3185 if (++batch_count == SWAP_CLUSTER_MAX) {
3186 local_irq_restore(flags);
3188 local_irq_save(flags);
3191 local_irq_restore(flags);
3195 * split_page takes a non-compound higher-order page, and splits it into
3196 * n (1<<order) sub-pages: page[0..n]
3197 * Each sub-page must be freed individually.
3199 * Note: this is probably too low level an operation for use in drivers.
3200 * Please consult with lkml before using this in your driver.
3202 void split_page(struct page *page, unsigned int order)
3206 VM_BUG_ON_PAGE(PageCompound(page), page);
3207 VM_BUG_ON_PAGE(!page_count(page), page);
3209 for (i = 1; i < (1 << order); i++)
3210 set_page_refcounted(page + i);
3211 split_page_owner(page, order);
3213 EXPORT_SYMBOL_GPL(split_page);
3215 int __isolate_free_page(struct page *page, unsigned int order)
3217 unsigned long watermark;
3221 BUG_ON(!PageBuddy(page));
3223 zone = page_zone(page);
3224 mt = get_pageblock_migratetype(page);
3226 if (!is_migrate_isolate(mt)) {
3228 * Obey watermarks as if the page was being allocated. We can
3229 * emulate a high-order watermark check with a raised order-0
3230 * watermark, because we already know our high-order page
3233 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3234 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3237 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3240 /* Remove page from free list */
3242 del_page_from_free_list(page, zone, order);
3245 * Set the pageblock if the isolated page is at least half of a
3248 if (order >= pageblock_order - 1) {
3249 struct page *endpage = page + (1 << order) - 1;
3250 for (; page < endpage; page += pageblock_nr_pages) {
3251 int mt = get_pageblock_migratetype(page);
3252 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3253 && !is_migrate_highatomic(mt))
3254 set_pageblock_migratetype(page,
3260 return 1UL << order;
3264 * __putback_isolated_page - Return a now-isolated page back where we got it
3265 * @page: Page that was isolated
3266 * @order: Order of the isolated page
3267 * @mt: The page's pageblock's migratetype
3269 * This function is meant to return a page pulled from the free lists via
3270 * __isolate_free_page back to the free lists they were pulled from.
3272 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274 struct zone *zone = page_zone(page);
3276 /* zone lock should be held when this function is called */
3277 lockdep_assert_held(&zone->lock);
3279 /* Return isolated page to tail of freelist. */
3280 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3284 * Update NUMA hit/miss statistics
3286 * Must be called with interrupts disabled.
3288 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3291 enum numa_stat_item local_stat = NUMA_LOCAL;
3293 /* skip numa counters update if numa stats is disabled */
3294 if (!static_branch_likely(&vm_numa_stat_key))
3297 if (zone_to_nid(z) != numa_node_id())
3298 local_stat = NUMA_OTHER;
3300 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3301 __inc_numa_state(z, NUMA_HIT);
3303 __inc_numa_state(z, NUMA_MISS);
3304 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306 __inc_numa_state(z, local_stat);
3310 /* Remove page from the per-cpu list, caller must protect the list */
3311 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3312 unsigned int alloc_flags,
3313 struct per_cpu_pages *pcp,
3314 struct list_head *list)
3319 if (list_empty(list)) {
3320 pcp->count += rmqueue_bulk(zone, 0,
3322 migratetype, alloc_flags);
3323 if (unlikely(list_empty(list)))
3327 page = list_first_entry(list, struct page, lru);
3328 list_del(&page->lru);
3330 } while (check_new_pcp(page));
3335 /* Lock and remove page from the per-cpu list */
3336 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3337 struct zone *zone, gfp_t gfp_flags,
3338 int migratetype, unsigned int alloc_flags)
3340 struct per_cpu_pages *pcp;
3341 struct list_head *list;
3343 unsigned long flags;
3345 local_irq_save(flags);
3346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3347 list = &pcp->lists[migratetype];
3348 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3350 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3351 zone_statistics(preferred_zone, zone);
3353 local_irq_restore(flags);
3358 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3361 struct page *rmqueue(struct zone *preferred_zone,
3362 struct zone *zone, unsigned int order,
3363 gfp_t gfp_flags, unsigned int alloc_flags,
3366 unsigned long flags;
3369 if (likely(order == 0)) {
3371 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3372 * we need to skip it when CMA area isn't allowed.
3374 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3375 migratetype != MIGRATE_MOVABLE) {
3376 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3377 migratetype, alloc_flags);
3383 * We most definitely don't want callers attempting to
3384 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3387 spin_lock_irqsave(&zone->lock, flags);
3392 * order-0 request can reach here when the pcplist is skipped
3393 * due to non-CMA allocation context. HIGHATOMIC area is
3394 * reserved for high-order atomic allocation, so order-0
3395 * request should skip it.
3397 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3398 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3403 page = __rmqueue(zone, order, migratetype, alloc_flags);
3404 } while (page && check_new_pages(page, order));
3405 spin_unlock(&zone->lock);
3408 __mod_zone_freepage_state(zone, -(1 << order),
3409 get_pcppage_migratetype(page));
3411 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3412 zone_statistics(preferred_zone, zone);
3413 local_irq_restore(flags);
3416 /* Separate test+clear to avoid unnecessary atomics */
3417 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3418 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3419 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3422 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3426 local_irq_restore(flags);
3430 #ifdef CONFIG_FAIL_PAGE_ALLOC
3433 struct fault_attr attr;
3435 bool ignore_gfp_highmem;
3436 bool ignore_gfp_reclaim;
3438 } fail_page_alloc = {
3439 .attr = FAULT_ATTR_INITIALIZER,
3440 .ignore_gfp_reclaim = true,
3441 .ignore_gfp_highmem = true,
3445 static int __init setup_fail_page_alloc(char *str)
3447 return setup_fault_attr(&fail_page_alloc.attr, str);
3449 __setup("fail_page_alloc=", setup_fail_page_alloc);
3451 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453 if (order < fail_page_alloc.min_order)
3455 if (gfp_mask & __GFP_NOFAIL)
3457 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459 if (fail_page_alloc.ignore_gfp_reclaim &&
3460 (gfp_mask & __GFP_DIRECT_RECLAIM))
3463 return should_fail(&fail_page_alloc.attr, 1 << order);
3466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468 static int __init fail_page_alloc_debugfs(void)
3470 umode_t mode = S_IFREG | 0600;
3473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3474 &fail_page_alloc.attr);
3476 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3477 &fail_page_alloc.ignore_gfp_reclaim);
3478 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3479 &fail_page_alloc.ignore_gfp_highmem);
3480 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3485 late_initcall(fail_page_alloc_debugfs);
3487 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489 #else /* CONFIG_FAIL_PAGE_ALLOC */
3491 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3496 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3498 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500 return __should_fail_alloc_page(gfp_mask, order);
3502 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504 static inline long __zone_watermark_unusable_free(struct zone *z,
3505 unsigned int order, unsigned int alloc_flags)
3507 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3508 long unusable_free = (1 << order) - 1;
3511 * If the caller does not have rights to ALLOC_HARDER then subtract
3512 * the high-atomic reserves. This will over-estimate the size of the
3513 * atomic reserve but it avoids a search.
3515 if (likely(!alloc_harder))
3516 unusable_free += z->nr_reserved_highatomic;
3519 /* If allocation can't use CMA areas don't use free CMA pages */
3520 if (!(alloc_flags & ALLOC_CMA))
3521 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3524 return unusable_free;
3528 * Return true if free base pages are above 'mark'. For high-order checks it
3529 * will return true of the order-0 watermark is reached and there is at least
3530 * one free page of a suitable size. Checking now avoids taking the zone lock
3531 * to check in the allocation paths if no pages are free.
3533 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3534 int highest_zoneidx, unsigned int alloc_flags,
3539 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3541 /* free_pages may go negative - that's OK */
3542 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544 if (alloc_flags & ALLOC_HIGH)
3547 if (unlikely(alloc_harder)) {
3549 * OOM victims can try even harder than normal ALLOC_HARDER
3550 * users on the grounds that it's definitely going to be in
3551 * the exit path shortly and free memory. Any allocation it
3552 * makes during the free path will be small and short-lived.
3554 if (alloc_flags & ALLOC_OOM)
3561 * Check watermarks for an order-0 allocation request. If these
3562 * are not met, then a high-order request also cannot go ahead
3563 * even if a suitable page happened to be free.
3565 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3568 /* If this is an order-0 request then the watermark is fine */
3572 /* For a high-order request, check at least one suitable page is free */
3573 for (o = order; o < MAX_ORDER; o++) {
3574 struct free_area *area = &z->free_area[o];
3580 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3581 if (!free_area_empty(area, mt))
3586 if ((alloc_flags & ALLOC_CMA) &&
3587 !free_area_empty(area, MIGRATE_CMA)) {
3591 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3597 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3598 int highest_zoneidx, unsigned int alloc_flags)
3600 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3601 zone_page_state(z, NR_FREE_PAGES));
3604 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3605 unsigned long mark, int highest_zoneidx,
3606 unsigned int alloc_flags, gfp_t gfp_mask)
3610 free_pages = zone_page_state(z, NR_FREE_PAGES);
3613 * Fast check for order-0 only. If this fails then the reserves
3614 * need to be calculated.
3619 fast_free = free_pages;
3620 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3621 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3625 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3629 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3630 * when checking the min watermark. The min watermark is the
3631 * point where boosting is ignored so that kswapd is woken up
3632 * when below the low watermark.
3634 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3635 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3636 mark = z->_watermark[WMARK_MIN];
3637 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3638 alloc_flags, free_pages);
3644 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3645 unsigned long mark, int highest_zoneidx)
3647 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3650 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3657 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3660 node_reclaim_distance;
3662 #else /* CONFIG_NUMA */
3663 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3667 #endif /* CONFIG_NUMA */
3670 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3671 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3672 * premature use of a lower zone may cause lowmem pressure problems that
3673 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3674 * probably too small. It only makes sense to spread allocations to avoid
3675 * fragmentation between the Normal and DMA32 zones.
3677 static inline unsigned int
3678 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680 unsigned int alloc_flags;
3683 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3686 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688 #ifdef CONFIG_ZONE_DMA32
3692 if (zone_idx(zone) != ZONE_NORMAL)
3696 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3697 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3698 * on UMA that if Normal is populated then so is DMA32.
3700 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3701 if (nr_online_nodes > 1 && !populated_zone(--zone))
3704 alloc_flags |= ALLOC_NOFRAGMENT;
3705 #endif /* CONFIG_ZONE_DMA32 */
3709 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3710 unsigned int alloc_flags)
3713 unsigned int pflags = current->flags;
3715 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3716 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3717 alloc_flags |= ALLOC_CMA;
3724 * get_page_from_freelist goes through the zonelist trying to allocate
3727 static struct page *
3728 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3729 const struct alloc_context *ac)
3733 struct pglist_data *last_pgdat_dirty_limit = NULL;
3738 * Scan zonelist, looking for a zone with enough free.
3739 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3741 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3742 z = ac->preferred_zoneref;
3743 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3744 ac->highest_zoneidx, ac->nodemask) {
3748 if (cpusets_enabled() &&
3749 (alloc_flags & ALLOC_CPUSET) &&
3750 !__cpuset_zone_allowed(zone, gfp_mask))
3753 * When allocating a page cache page for writing, we
3754 * want to get it from a node that is within its dirty
3755 * limit, such that no single node holds more than its
3756 * proportional share of globally allowed dirty pages.
3757 * The dirty limits take into account the node's
3758 * lowmem reserves and high watermark so that kswapd
3759 * should be able to balance it without having to
3760 * write pages from its LRU list.
3762 * XXX: For now, allow allocations to potentially
3763 * exceed the per-node dirty limit in the slowpath
3764 * (spread_dirty_pages unset) before going into reclaim,
3765 * which is important when on a NUMA setup the allowed
3766 * nodes are together not big enough to reach the
3767 * global limit. The proper fix for these situations
3768 * will require awareness of nodes in the
3769 * dirty-throttling and the flusher threads.
3771 if (ac->spread_dirty_pages) {
3772 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3775 if (!node_dirty_ok(zone->zone_pgdat)) {
3776 last_pgdat_dirty_limit = zone->zone_pgdat;
3781 if (no_fallback && nr_online_nodes > 1 &&
3782 zone != ac->preferred_zoneref->zone) {
3786 * If moving to a remote node, retry but allow
3787 * fragmenting fallbacks. Locality is more important
3788 * than fragmentation avoidance.
3790 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3791 if (zone_to_nid(zone) != local_nid) {
3792 alloc_flags &= ~ALLOC_NOFRAGMENT;
3797 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3798 if (!zone_watermark_fast(zone, order, mark,
3799 ac->highest_zoneidx, alloc_flags,
3803 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805 * Watermark failed for this zone, but see if we can
3806 * grow this zone if it contains deferred pages.
3808 if (static_branch_unlikely(&deferred_pages)) {
3809 if (_deferred_grow_zone(zone, order))
3813 /* Checked here to keep the fast path fast */
3814 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3815 if (alloc_flags & ALLOC_NO_WATERMARKS)
3818 if (node_reclaim_mode == 0 ||
3819 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3822 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824 case NODE_RECLAIM_NOSCAN:
3827 case NODE_RECLAIM_FULL:
3828 /* scanned but unreclaimable */
3831 /* did we reclaim enough */
3832 if (zone_watermark_ok(zone, order, mark,
3833 ac->highest_zoneidx, alloc_flags))
3841 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3842 gfp_mask, alloc_flags, ac->migratetype);
3844 prep_new_page(page, order, gfp_mask, alloc_flags);
3847 * If this is a high-order atomic allocation then check
3848 * if the pageblock should be reserved for the future
3850 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3851 reserve_highatomic_pageblock(page, zone, order);
3855 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3856 /* Try again if zone has deferred pages */
3857 if (static_branch_unlikely(&deferred_pages)) {
3858 if (_deferred_grow_zone(zone, order))
3866 * It's possible on a UMA machine to get through all zones that are
3867 * fragmented. If avoiding fragmentation, reset and try again.
3870 alloc_flags &= ~ALLOC_NOFRAGMENT;
3877 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879 unsigned int filter = SHOW_MEM_FILTER_NODES;
3882 * This documents exceptions given to allocations in certain
3883 * contexts that are allowed to allocate outside current's set
3886 if (!(gfp_mask & __GFP_NOMEMALLOC))
3887 if (tsk_is_oom_victim(current) ||
3888 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3889 filter &= ~SHOW_MEM_FILTER_NODES;
3890 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3891 filter &= ~SHOW_MEM_FILTER_NODES;
3893 show_mem(filter, nodemask);
3896 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898 struct va_format vaf;
3900 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3902 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3905 va_start(args, fmt);
3908 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3909 current->comm, &vaf, gfp_mask, &gfp_mask,
3910 nodemask_pr_args(nodemask));
3913 cpuset_print_current_mems_allowed();
3916 warn_alloc_show_mem(gfp_mask, nodemask);
3919 static inline struct page *
3920 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3921 unsigned int alloc_flags,
3922 const struct alloc_context *ac)
3926 page = get_page_from_freelist(gfp_mask, order,
3927 alloc_flags|ALLOC_CPUSET, ac);
3929 * fallback to ignore cpuset restriction if our nodes
3933 page = get_page_from_freelist(gfp_mask, order,
3939 static inline struct page *
3940 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3941 const struct alloc_context *ac, unsigned long *did_some_progress)
3943 struct oom_control oc = {
3944 .zonelist = ac->zonelist,
3945 .nodemask = ac->nodemask,
3947 .gfp_mask = gfp_mask,
3952 *did_some_progress = 0;
3955 * Acquire the oom lock. If that fails, somebody else is
3956 * making progress for us.
3958 if (!mutex_trylock(&oom_lock)) {
3959 *did_some_progress = 1;
3960 schedule_timeout_uninterruptible(1);
3965 * Go through the zonelist yet one more time, keep very high watermark
3966 * here, this is only to catch a parallel oom killing, we must fail if
3967 * we're still under heavy pressure. But make sure that this reclaim
3968 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3969 * allocation which will never fail due to oom_lock already held.
3971 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3972 ~__GFP_DIRECT_RECLAIM, order,
3973 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3977 /* Coredumps can quickly deplete all memory reserves */
3978 if (current->flags & PF_DUMPCORE)
3980 /* The OOM killer will not help higher order allocs */
3981 if (order > PAGE_ALLOC_COSTLY_ORDER)
3984 * We have already exhausted all our reclaim opportunities without any
3985 * success so it is time to admit defeat. We will skip the OOM killer
3986 * because it is very likely that the caller has a more reasonable
3987 * fallback than shooting a random task.
3989 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3991 /* The OOM killer does not needlessly kill tasks for lowmem */
3992 if (ac->highest_zoneidx < ZONE_NORMAL)
3994 if (pm_suspended_storage())
3997 * XXX: GFP_NOFS allocations should rather fail than rely on
3998 * other request to make a forward progress.
3999 * We are in an unfortunate situation where out_of_memory cannot
4000 * do much for this context but let's try it to at least get
4001 * access to memory reserved if the current task is killed (see
4002 * out_of_memory). Once filesystems are ready to handle allocation
4003 * failures more gracefully we should just bail out here.
4006 /* The OOM killer may not free memory on a specific node */
4007 if (gfp_mask & __GFP_THISNODE)
4010 /* Exhausted what can be done so it's blame time */
4011 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4012 *did_some_progress = 1;
4015 * Help non-failing allocations by giving them access to memory
4018 if (gfp_mask & __GFP_NOFAIL)
4019 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4020 ALLOC_NO_WATERMARKS, ac);
4023 mutex_unlock(&oom_lock);
4028 * Maximum number of compaction retries wit a progress before OOM
4029 * killer is consider as the only way to move forward.
4031 #define MAX_COMPACT_RETRIES 16
4033 #ifdef CONFIG_COMPACTION
4034 /* Try memory compaction for high-order allocations before reclaim */
4035 static struct page *
4036 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4037 unsigned int alloc_flags, const struct alloc_context *ac,
4038 enum compact_priority prio, enum compact_result *compact_result)
4040 struct page *page = NULL;
4041 unsigned long pflags;
4042 unsigned int noreclaim_flag;
4047 psi_memstall_enter(&pflags);
4048 noreclaim_flag = memalloc_noreclaim_save();
4050 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4053 memalloc_noreclaim_restore(noreclaim_flag);
4054 psi_memstall_leave(&pflags);
4057 * At least in one zone compaction wasn't deferred or skipped, so let's
4058 * count a compaction stall
4060 count_vm_event(COMPACTSTALL);
4062 /* Prep a captured page if available */
4064 prep_new_page(page, order, gfp_mask, alloc_flags);
4066 /* Try get a page from the freelist if available */
4068 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4071 struct zone *zone = page_zone(page);
4073 zone->compact_blockskip_flush = false;
4074 compaction_defer_reset(zone, order, true);
4075 count_vm_event(COMPACTSUCCESS);
4080 * It's bad if compaction run occurs and fails. The most likely reason
4081 * is that pages exist, but not enough to satisfy watermarks.
4083 count_vm_event(COMPACTFAIL);
4091 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4092 enum compact_result compact_result,
4093 enum compact_priority *compact_priority,
4094 int *compaction_retries)
4096 int max_retries = MAX_COMPACT_RETRIES;
4099 int retries = *compaction_retries;
4100 enum compact_priority priority = *compact_priority;
4105 if (compaction_made_progress(compact_result))
4106 (*compaction_retries)++;
4109 * compaction considers all the zone as desperately out of memory
4110 * so it doesn't really make much sense to retry except when the
4111 * failure could be caused by insufficient priority
4113 if (compaction_failed(compact_result))
4114 goto check_priority;
4117 * compaction was skipped because there are not enough order-0 pages
4118 * to work with, so we retry only if it looks like reclaim can help.
4120 if (compaction_needs_reclaim(compact_result)) {
4121 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4126 * make sure the compaction wasn't deferred or didn't bail out early
4127 * due to locks contention before we declare that we should give up.
4128 * But the next retry should use a higher priority if allowed, so
4129 * we don't just keep bailing out endlessly.
4131 if (compaction_withdrawn(compact_result)) {
4132 goto check_priority;
4136 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4137 * costly ones because they are de facto nofail and invoke OOM
4138 * killer to move on while costly can fail and users are ready
4139 * to cope with that. 1/4 retries is rather arbitrary but we
4140 * would need much more detailed feedback from compaction to
4141 * make a better decision.
4143 if (order > PAGE_ALLOC_COSTLY_ORDER)
4145 if (*compaction_retries <= max_retries) {
4151 * Make sure there are attempts at the highest priority if we exhausted
4152 * all retries or failed at the lower priorities.
4155 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4156 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4158 if (*compact_priority > min_priority) {
4159 (*compact_priority)--;
4160 *compaction_retries = 0;
4164 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4168 static inline struct page *
4169 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4170 unsigned int alloc_flags, const struct alloc_context *ac,
4171 enum compact_priority prio, enum compact_result *compact_result)
4173 *compact_result = COMPACT_SKIPPED;
4178 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4179 enum compact_result compact_result,
4180 enum compact_priority *compact_priority,
4181 int *compaction_retries)
4186 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4190 * There are setups with compaction disabled which would prefer to loop
4191 * inside the allocator rather than hit the oom killer prematurely.
4192 * Let's give them a good hope and keep retrying while the order-0
4193 * watermarks are OK.
4195 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4196 ac->highest_zoneidx, ac->nodemask) {
4197 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4198 ac->highest_zoneidx, alloc_flags))
4203 #endif /* CONFIG_COMPACTION */
4205 #ifdef CONFIG_LOCKDEP
4206 static struct lockdep_map __fs_reclaim_map =
4207 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4209 static bool __need_fs_reclaim(gfp_t gfp_mask)
4211 gfp_mask = current_gfp_context(gfp_mask);
4213 /* no reclaim without waiting on it */
4214 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4217 /* this guy won't enter reclaim */
4218 if (current->flags & PF_MEMALLOC)
4221 /* We're only interested __GFP_FS allocations for now */
4222 if (!(gfp_mask & __GFP_FS))
4225 if (gfp_mask & __GFP_NOLOCKDEP)
4231 void __fs_reclaim_acquire(void)
4233 lock_map_acquire(&__fs_reclaim_map);
4236 void __fs_reclaim_release(void)
4238 lock_map_release(&__fs_reclaim_map);
4241 void fs_reclaim_acquire(gfp_t gfp_mask)
4243 if (__need_fs_reclaim(gfp_mask))
4244 __fs_reclaim_acquire();
4246 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4248 void fs_reclaim_release(gfp_t gfp_mask)
4250 if (__need_fs_reclaim(gfp_mask))
4251 __fs_reclaim_release();
4253 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4256 /* Perform direct synchronous page reclaim */
4258 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4259 const struct alloc_context *ac)
4262 unsigned int noreclaim_flag;
4263 unsigned long pflags;
4267 /* We now go into synchronous reclaim */
4268 cpuset_memory_pressure_bump();
4269 psi_memstall_enter(&pflags);
4270 fs_reclaim_acquire(gfp_mask);
4271 noreclaim_flag = memalloc_noreclaim_save();
4273 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4276 memalloc_noreclaim_restore(noreclaim_flag);
4277 fs_reclaim_release(gfp_mask);
4278 psi_memstall_leave(&pflags);
4285 /* The really slow allocator path where we enter direct reclaim */
4286 static inline struct page *
4287 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4288 unsigned int alloc_flags, const struct alloc_context *ac,
4289 unsigned long *did_some_progress)
4291 struct page *page = NULL;
4292 bool drained = false;
4294 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4295 if (unlikely(!(*did_some_progress)))
4299 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4302 * If an allocation failed after direct reclaim, it could be because
4303 * pages are pinned on the per-cpu lists or in high alloc reserves.
4304 * Shrink them and try again
4306 if (!page && !drained) {
4307 unreserve_highatomic_pageblock(ac, false);
4308 drain_all_pages(NULL);
4316 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4317 const struct alloc_context *ac)
4321 pg_data_t *last_pgdat = NULL;
4322 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4324 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4326 if (last_pgdat != zone->zone_pgdat)
4327 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4328 last_pgdat = zone->zone_pgdat;
4332 static inline unsigned int
4333 gfp_to_alloc_flags(gfp_t gfp_mask)
4335 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4338 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4339 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4340 * to save two branches.
4342 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4343 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4346 * The caller may dip into page reserves a bit more if the caller
4347 * cannot run direct reclaim, or if the caller has realtime scheduling
4348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4349 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4351 alloc_flags |= (__force int)
4352 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4354 if (gfp_mask & __GFP_ATOMIC) {
4356 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4357 * if it can't schedule.
4359 if (!(gfp_mask & __GFP_NOMEMALLOC))
4360 alloc_flags |= ALLOC_HARDER;
4362 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4363 * comment for __cpuset_node_allowed().
4365 alloc_flags &= ~ALLOC_CPUSET;
4366 } else if (unlikely(rt_task(current)) && !in_interrupt())
4367 alloc_flags |= ALLOC_HARDER;
4369 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4374 static bool oom_reserves_allowed(struct task_struct *tsk)
4376 if (!tsk_is_oom_victim(tsk))
4380 * !MMU doesn't have oom reaper so give access to memory reserves
4381 * only to the thread with TIF_MEMDIE set
4383 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4390 * Distinguish requests which really need access to full memory
4391 * reserves from oom victims which can live with a portion of it
4393 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4395 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4397 if (gfp_mask & __GFP_MEMALLOC)
4398 return ALLOC_NO_WATERMARKS;
4399 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4400 return ALLOC_NO_WATERMARKS;
4401 if (!in_interrupt()) {
4402 if (current->flags & PF_MEMALLOC)
4403 return ALLOC_NO_WATERMARKS;
4404 else if (oom_reserves_allowed(current))
4411 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4413 return !!__gfp_pfmemalloc_flags(gfp_mask);
4417 * Checks whether it makes sense to retry the reclaim to make a forward progress
4418 * for the given allocation request.
4420 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4421 * without success, or when we couldn't even meet the watermark if we
4422 * reclaimed all remaining pages on the LRU lists.
4424 * Returns true if a retry is viable or false to enter the oom path.
4427 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4428 struct alloc_context *ac, int alloc_flags,
4429 bool did_some_progress, int *no_progress_loops)
4436 * Costly allocations might have made a progress but this doesn't mean
4437 * their order will become available due to high fragmentation so
4438 * always increment the no progress counter for them
4440 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4441 *no_progress_loops = 0;
4443 (*no_progress_loops)++;
4446 * Make sure we converge to OOM if we cannot make any progress
4447 * several times in the row.
4449 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4450 /* Before OOM, exhaust highatomic_reserve */
4451 return unreserve_highatomic_pageblock(ac, true);
4455 * Keep reclaiming pages while there is a chance this will lead
4456 * somewhere. If none of the target zones can satisfy our allocation
4457 * request even if all reclaimable pages are considered then we are
4458 * screwed and have to go OOM.
4460 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4461 ac->highest_zoneidx, ac->nodemask) {
4462 unsigned long available;
4463 unsigned long reclaimable;
4464 unsigned long min_wmark = min_wmark_pages(zone);
4467 available = reclaimable = zone_reclaimable_pages(zone);
4468 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4471 * Would the allocation succeed if we reclaimed all
4472 * reclaimable pages?
4474 wmark = __zone_watermark_ok(zone, order, min_wmark,
4475 ac->highest_zoneidx, alloc_flags, available);
4476 trace_reclaim_retry_zone(z, order, reclaimable,
4477 available, min_wmark, *no_progress_loops, wmark);
4480 * If we didn't make any progress and have a lot of
4481 * dirty + writeback pages then we should wait for
4482 * an IO to complete to slow down the reclaim and
4483 * prevent from pre mature OOM
4485 if (!did_some_progress) {
4486 unsigned long write_pending;
4488 write_pending = zone_page_state_snapshot(zone,
4489 NR_ZONE_WRITE_PENDING);
4491 if (2 * write_pending > reclaimable) {
4492 congestion_wait(BLK_RW_ASYNC, HZ/10);
4504 * Memory allocation/reclaim might be called from a WQ context and the
4505 * current implementation of the WQ concurrency control doesn't
4506 * recognize that a particular WQ is congested if the worker thread is
4507 * looping without ever sleeping. Therefore we have to do a short sleep
4508 * here rather than calling cond_resched().
4510 if (current->flags & PF_WQ_WORKER)
4511 schedule_timeout_uninterruptible(1);
4518 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4521 * It's possible that cpuset's mems_allowed and the nodemask from
4522 * mempolicy don't intersect. This should be normally dealt with by
4523 * policy_nodemask(), but it's possible to race with cpuset update in
4524 * such a way the check therein was true, and then it became false
4525 * before we got our cpuset_mems_cookie here.
4526 * This assumes that for all allocations, ac->nodemask can come only
4527 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4528 * when it does not intersect with the cpuset restrictions) or the
4529 * caller can deal with a violated nodemask.
4531 if (cpusets_enabled() && ac->nodemask &&
4532 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4533 ac->nodemask = NULL;
4538 * When updating a task's mems_allowed or mempolicy nodemask, it is
4539 * possible to race with parallel threads in such a way that our
4540 * allocation can fail while the mask is being updated. If we are about
4541 * to fail, check if the cpuset changed during allocation and if so,
4544 if (read_mems_allowed_retry(cpuset_mems_cookie))
4550 static inline struct page *
4551 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4552 struct alloc_context *ac)
4554 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4555 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4556 struct page *page = NULL;
4557 unsigned int alloc_flags;
4558 unsigned long did_some_progress;
4559 enum compact_priority compact_priority;
4560 enum compact_result compact_result;
4561 int compaction_retries;
4562 int no_progress_loops;
4563 unsigned int cpuset_mems_cookie;
4567 * We also sanity check to catch abuse of atomic reserves being used by
4568 * callers that are not in atomic context.
4570 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4571 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4572 gfp_mask &= ~__GFP_ATOMIC;
4575 compaction_retries = 0;
4576 no_progress_loops = 0;
4577 compact_priority = DEF_COMPACT_PRIORITY;
4578 cpuset_mems_cookie = read_mems_allowed_begin();
4581 * The fast path uses conservative alloc_flags to succeed only until
4582 * kswapd needs to be woken up, and to avoid the cost of setting up
4583 * alloc_flags precisely. So we do that now.
4585 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4588 * We need to recalculate the starting point for the zonelist iterator
4589 * because we might have used different nodemask in the fast path, or
4590 * there was a cpuset modification and we are retrying - otherwise we
4591 * could end up iterating over non-eligible zones endlessly.
4593 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4594 ac->highest_zoneidx, ac->nodemask);
4595 if (!ac->preferred_zoneref->zone)
4598 if (alloc_flags & ALLOC_KSWAPD)
4599 wake_all_kswapds(order, gfp_mask, ac);
4602 * The adjusted alloc_flags might result in immediate success, so try
4605 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4610 * For costly allocations, try direct compaction first, as it's likely
4611 * that we have enough base pages and don't need to reclaim. For non-
4612 * movable high-order allocations, do that as well, as compaction will
4613 * try prevent permanent fragmentation by migrating from blocks of the
4615 * Don't try this for allocations that are allowed to ignore
4616 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4618 if (can_direct_reclaim &&
4620 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4621 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4622 page = __alloc_pages_direct_compact(gfp_mask, order,
4624 INIT_COMPACT_PRIORITY,
4630 * Checks for costly allocations with __GFP_NORETRY, which
4631 * includes some THP page fault allocations
4633 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4635 * If allocating entire pageblock(s) and compaction
4636 * failed because all zones are below low watermarks
4637 * or is prohibited because it recently failed at this
4638 * order, fail immediately unless the allocator has
4639 * requested compaction and reclaim retry.
4642 * - potentially very expensive because zones are far
4643 * below their low watermarks or this is part of very
4644 * bursty high order allocations,
4645 * - not guaranteed to help because isolate_freepages()
4646 * may not iterate over freed pages as part of its
4648 * - unlikely to make entire pageblocks free on its
4651 if (compact_result == COMPACT_SKIPPED ||
4652 compact_result == COMPACT_DEFERRED)
4656 * Looks like reclaim/compaction is worth trying, but
4657 * sync compaction could be very expensive, so keep
4658 * using async compaction.
4660 compact_priority = INIT_COMPACT_PRIORITY;
4665 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4666 if (alloc_flags & ALLOC_KSWAPD)
4667 wake_all_kswapds(order, gfp_mask, ac);
4669 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4671 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4674 * Reset the nodemask and zonelist iterators if memory policies can be
4675 * ignored. These allocations are high priority and system rather than
4678 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4679 ac->nodemask = NULL;
4680 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4681 ac->highest_zoneidx, ac->nodemask);
4684 /* Attempt with potentially adjusted zonelist and alloc_flags */
4685 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4689 /* Caller is not willing to reclaim, we can't balance anything */
4690 if (!can_direct_reclaim)
4693 /* Avoid recursion of direct reclaim */
4694 if (current->flags & PF_MEMALLOC)
4697 /* Try direct reclaim and then allocating */
4698 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4699 &did_some_progress);
4703 /* Try direct compaction and then allocating */
4704 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4705 compact_priority, &compact_result);
4709 /* Do not loop if specifically requested */
4710 if (gfp_mask & __GFP_NORETRY)
4714 * Do not retry costly high order allocations unless they are
4715 * __GFP_RETRY_MAYFAIL
4717 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4720 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4721 did_some_progress > 0, &no_progress_loops))
4725 * It doesn't make any sense to retry for the compaction if the order-0
4726 * reclaim is not able to make any progress because the current
4727 * implementation of the compaction depends on the sufficient amount
4728 * of free memory (see __compaction_suitable)
4730 if (did_some_progress > 0 &&
4731 should_compact_retry(ac, order, alloc_flags,
4732 compact_result, &compact_priority,
4733 &compaction_retries))
4737 /* Deal with possible cpuset update races before we start OOM killing */
4738 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4741 /* Reclaim has failed us, start killing things */
4742 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4746 /* Avoid allocations with no watermarks from looping endlessly */
4747 if (tsk_is_oom_victim(current) &&
4748 (alloc_flags & ALLOC_OOM ||
4749 (gfp_mask & __GFP_NOMEMALLOC)))
4752 /* Retry as long as the OOM killer is making progress */
4753 if (did_some_progress) {
4754 no_progress_loops = 0;
4759 /* Deal with possible cpuset update races before we fail */
4760 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4764 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4767 if (gfp_mask & __GFP_NOFAIL) {
4769 * All existing users of the __GFP_NOFAIL are blockable, so warn
4770 * of any new users that actually require GFP_NOWAIT
4772 if (WARN_ON_ONCE(!can_direct_reclaim))
4776 * PF_MEMALLOC request from this context is rather bizarre
4777 * because we cannot reclaim anything and only can loop waiting
4778 * for somebody to do a work for us
4780 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4783 * non failing costly orders are a hard requirement which we
4784 * are not prepared for much so let's warn about these users
4785 * so that we can identify them and convert them to something
4788 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4791 * Help non-failing allocations by giving them access to memory
4792 * reserves but do not use ALLOC_NO_WATERMARKS because this
4793 * could deplete whole memory reserves which would just make
4794 * the situation worse
4796 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4804 warn_alloc(gfp_mask, ac->nodemask,
4805 "page allocation failure: order:%u", order);
4810 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4811 int preferred_nid, nodemask_t *nodemask,
4812 struct alloc_context *ac, gfp_t *alloc_mask,
4813 unsigned int *alloc_flags)
4815 ac->highest_zoneidx = gfp_zone(gfp_mask);
4816 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4817 ac->nodemask = nodemask;
4818 ac->migratetype = gfp_migratetype(gfp_mask);
4820 if (cpusets_enabled()) {
4821 *alloc_mask |= __GFP_HARDWALL;
4823 * When we are in the interrupt context, it is irrelevant
4824 * to the current task context. It means that any node ok.
4826 if (!in_interrupt() && !ac->nodemask)
4827 ac->nodemask = &cpuset_current_mems_allowed;
4829 *alloc_flags |= ALLOC_CPUSET;
4832 fs_reclaim_acquire(gfp_mask);
4833 fs_reclaim_release(gfp_mask);
4835 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4837 if (should_fail_alloc_page(gfp_mask, order))
4840 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4845 /* Determine whether to spread dirty pages and what the first usable zone */
4846 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4848 /* Dirty zone balancing only done in the fast path */
4849 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4852 * The preferred zone is used for statistics but crucially it is
4853 * also used as the starting point for the zonelist iterator. It
4854 * may get reset for allocations that ignore memory policies.
4856 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4857 ac->highest_zoneidx, ac->nodemask);
4861 * This is the 'heart' of the zoned buddy allocator.
4864 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4865 nodemask_t *nodemask)
4868 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4869 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4870 struct alloc_context ac = { };
4873 * There are several places where we assume that the order value is sane
4874 * so bail out early if the request is out of bound.
4876 if (unlikely(order >= MAX_ORDER)) {
4877 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4881 gfp_mask &= gfp_allowed_mask;
4882 alloc_mask = gfp_mask;
4883 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4886 finalise_ac(gfp_mask, &ac);
4889 * Forbid the first pass from falling back to types that fragment
4890 * memory until all local zones are considered.
4892 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4894 /* First allocation attempt */
4895 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4900 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4901 * resp. GFP_NOIO which has to be inherited for all allocation requests
4902 * from a particular context which has been marked by
4903 * memalloc_no{fs,io}_{save,restore}.
4905 alloc_mask = current_gfp_context(gfp_mask);
4906 ac.spread_dirty_pages = false;
4909 * Restore the original nodemask if it was potentially replaced with
4910 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4912 ac.nodemask = nodemask;
4914 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4917 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4918 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4919 __free_pages(page, order);
4923 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4927 EXPORT_SYMBOL(__alloc_pages_nodemask);
4930 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4931 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4932 * you need to access high mem.
4934 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4938 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4941 return (unsigned long) page_address(page);
4943 EXPORT_SYMBOL(__get_free_pages);
4945 unsigned long get_zeroed_page(gfp_t gfp_mask)
4947 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4949 EXPORT_SYMBOL(get_zeroed_page);
4951 static inline void free_the_page(struct page *page, unsigned int order)
4953 if (order == 0) /* Via pcp? */
4954 free_unref_page(page);
4956 __free_pages_ok(page, order);
4959 void __free_pages(struct page *page, unsigned int order)
4961 if (put_page_testzero(page))
4962 free_the_page(page, order);
4964 EXPORT_SYMBOL(__free_pages);
4966 void free_pages(unsigned long addr, unsigned int order)
4969 VM_BUG_ON(!virt_addr_valid((void *)addr));
4970 __free_pages(virt_to_page((void *)addr), order);
4974 EXPORT_SYMBOL(free_pages);
4978 * An arbitrary-length arbitrary-offset area of memory which resides
4979 * within a 0 or higher order page. Multiple fragments within that page
4980 * are individually refcounted, in the page's reference counter.
4982 * The page_frag functions below provide a simple allocation framework for
4983 * page fragments. This is used by the network stack and network device
4984 * drivers to provide a backing region of memory for use as either an
4985 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4987 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4990 struct page *page = NULL;
4991 gfp_t gfp = gfp_mask;
4993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4994 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4996 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4997 PAGE_FRAG_CACHE_MAX_ORDER);
4998 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5000 if (unlikely(!page))
5001 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5003 nc->va = page ? page_address(page) : NULL;
5008 void __page_frag_cache_drain(struct page *page, unsigned int count)
5010 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5012 if (page_ref_sub_and_test(page, count))
5013 free_the_page(page, compound_order(page));
5015 EXPORT_SYMBOL(__page_frag_cache_drain);
5017 void *page_frag_alloc(struct page_frag_cache *nc,
5018 unsigned int fragsz, gfp_t gfp_mask)
5020 unsigned int size = PAGE_SIZE;
5024 if (unlikely(!nc->va)) {
5026 page = __page_frag_cache_refill(nc, gfp_mask);
5030 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5031 /* if size can vary use size else just use PAGE_SIZE */
5034 /* Even if we own the page, we do not use atomic_set().
5035 * This would break get_page_unless_zero() users.
5037 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5039 /* reset page count bias and offset to start of new frag */
5040 nc->pfmemalloc = page_is_pfmemalloc(page);
5041 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5045 offset = nc->offset - fragsz;
5046 if (unlikely(offset < 0)) {
5047 page = virt_to_page(nc->va);
5049 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5052 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5053 /* if size can vary use size else just use PAGE_SIZE */
5056 /* OK, page count is 0, we can safely set it */
5057 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5059 /* reset page count bias and offset to start of new frag */
5060 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5061 offset = size - fragsz;
5065 nc->offset = offset;
5067 return nc->va + offset;
5069 EXPORT_SYMBOL(page_frag_alloc);
5072 * Frees a page fragment allocated out of either a compound or order 0 page.
5074 void page_frag_free(void *addr)
5076 struct page *page = virt_to_head_page(addr);
5078 if (unlikely(put_page_testzero(page)))
5079 free_the_page(page, compound_order(page));
5081 EXPORT_SYMBOL(page_frag_free);
5083 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5087 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5088 unsigned long used = addr + PAGE_ALIGN(size);
5090 split_page(virt_to_page((void *)addr), order);
5091 while (used < alloc_end) {
5096 return (void *)addr;
5100 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5101 * @size: the number of bytes to allocate
5102 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5104 * This function is similar to alloc_pages(), except that it allocates the
5105 * minimum number of pages to satisfy the request. alloc_pages() can only
5106 * allocate memory in power-of-two pages.
5108 * This function is also limited by MAX_ORDER.
5110 * Memory allocated by this function must be released by free_pages_exact().
5112 * Return: pointer to the allocated area or %NULL in case of error.
5114 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5116 unsigned int order = get_order(size);
5119 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5120 gfp_mask &= ~__GFP_COMP;
5122 addr = __get_free_pages(gfp_mask, order);
5123 return make_alloc_exact(addr, order, size);
5125 EXPORT_SYMBOL(alloc_pages_exact);
5128 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5130 * @nid: the preferred node ID where memory should be allocated
5131 * @size: the number of bytes to allocate
5132 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5134 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5137 * Return: pointer to the allocated area or %NULL in case of error.
5139 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5141 unsigned int order = get_order(size);
5144 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5145 gfp_mask &= ~__GFP_COMP;
5147 p = alloc_pages_node(nid, gfp_mask, order);
5150 return make_alloc_exact((unsigned long)page_address(p), order, size);
5154 * free_pages_exact - release memory allocated via alloc_pages_exact()
5155 * @virt: the value returned by alloc_pages_exact.
5156 * @size: size of allocation, same value as passed to alloc_pages_exact().
5158 * Release the memory allocated by a previous call to alloc_pages_exact.
5160 void free_pages_exact(void *virt, size_t size)
5162 unsigned long addr = (unsigned long)virt;
5163 unsigned long end = addr + PAGE_ALIGN(size);
5165 while (addr < end) {
5170 EXPORT_SYMBOL(free_pages_exact);
5173 * nr_free_zone_pages - count number of pages beyond high watermark
5174 * @offset: The zone index of the highest zone
5176 * nr_free_zone_pages() counts the number of pages which are beyond the
5177 * high watermark within all zones at or below a given zone index. For each
5178 * zone, the number of pages is calculated as:
5180 * nr_free_zone_pages = managed_pages - high_pages
5182 * Return: number of pages beyond high watermark.
5184 static unsigned long nr_free_zone_pages(int offset)
5189 /* Just pick one node, since fallback list is circular */
5190 unsigned long sum = 0;
5192 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5194 for_each_zone_zonelist(zone, z, zonelist, offset) {
5195 unsigned long size = zone_managed_pages(zone);
5196 unsigned long high = high_wmark_pages(zone);
5205 * nr_free_buffer_pages - count number of pages beyond high watermark
5207 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5208 * watermark within ZONE_DMA and ZONE_NORMAL.
5210 * Return: number of pages beyond high watermark within ZONE_DMA and
5213 unsigned long nr_free_buffer_pages(void)
5215 return nr_free_zone_pages(gfp_zone(GFP_USER));
5217 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5219 static inline void show_node(struct zone *zone)
5221 if (IS_ENABLED(CONFIG_NUMA))
5222 printk("Node %d ", zone_to_nid(zone));
5225 long si_mem_available(void)
5228 unsigned long pagecache;
5229 unsigned long wmark_low = 0;
5230 unsigned long pages[NR_LRU_LISTS];
5231 unsigned long reclaimable;
5235 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5236 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5239 wmark_low += low_wmark_pages(zone);
5242 * Estimate the amount of memory available for userspace allocations,
5243 * without causing swapping.
5245 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5248 * Not all the page cache can be freed, otherwise the system will
5249 * start swapping. Assume at least half of the page cache, or the
5250 * low watermark worth of cache, needs to stay.
5252 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5253 pagecache -= min(pagecache / 2, wmark_low);
5254 available += pagecache;
5257 * Part of the reclaimable slab and other kernel memory consists of
5258 * items that are in use, and cannot be freed. Cap this estimate at the
5261 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5262 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5263 available += reclaimable - min(reclaimable / 2, wmark_low);
5269 EXPORT_SYMBOL_GPL(si_mem_available);
5271 void si_meminfo(struct sysinfo *val)
5273 val->totalram = totalram_pages();
5274 val->sharedram = global_node_page_state(NR_SHMEM);
5275 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5276 val->bufferram = nr_blockdev_pages();
5277 val->totalhigh = totalhigh_pages();
5278 val->freehigh = nr_free_highpages();
5279 val->mem_unit = PAGE_SIZE;
5282 EXPORT_SYMBOL(si_meminfo);
5285 void si_meminfo_node(struct sysinfo *val, int nid)
5287 int zone_type; /* needs to be signed */
5288 unsigned long managed_pages = 0;
5289 unsigned long managed_highpages = 0;
5290 unsigned long free_highpages = 0;
5291 pg_data_t *pgdat = NODE_DATA(nid);
5293 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5294 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5295 val->totalram = managed_pages;
5296 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5297 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5298 #ifdef CONFIG_HIGHMEM
5299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5300 struct zone *zone = &pgdat->node_zones[zone_type];
5302 if (is_highmem(zone)) {
5303 managed_highpages += zone_managed_pages(zone);
5304 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5307 val->totalhigh = managed_highpages;
5308 val->freehigh = free_highpages;
5310 val->totalhigh = managed_highpages;
5311 val->freehigh = free_highpages;
5313 val->mem_unit = PAGE_SIZE;
5318 * Determine whether the node should be displayed or not, depending on whether
5319 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5321 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5323 if (!(flags & SHOW_MEM_FILTER_NODES))
5327 * no node mask - aka implicit memory numa policy. Do not bother with
5328 * the synchronization - read_mems_allowed_begin - because we do not
5329 * have to be precise here.
5332 nodemask = &cpuset_current_mems_allowed;
5334 return !node_isset(nid, *nodemask);
5337 #define K(x) ((x) << (PAGE_SHIFT-10))
5339 static void show_migration_types(unsigned char type)
5341 static const char types[MIGRATE_TYPES] = {
5342 [MIGRATE_UNMOVABLE] = 'U',
5343 [MIGRATE_MOVABLE] = 'M',
5344 [MIGRATE_RECLAIMABLE] = 'E',
5345 [MIGRATE_HIGHATOMIC] = 'H',
5347 [MIGRATE_CMA] = 'C',
5349 #ifdef CONFIG_MEMORY_ISOLATION
5350 [MIGRATE_ISOLATE] = 'I',
5353 char tmp[MIGRATE_TYPES + 1];
5357 for (i = 0; i < MIGRATE_TYPES; i++) {
5358 if (type & (1 << i))
5363 printk(KERN_CONT "(%s) ", tmp);
5367 * Show free area list (used inside shift_scroll-lock stuff)
5368 * We also calculate the percentage fragmentation. We do this by counting the
5369 * memory on each free list with the exception of the first item on the list.
5372 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5375 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5377 unsigned long free_pcp = 0;
5382 for_each_populated_zone(zone) {
5383 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5386 for_each_online_cpu(cpu)
5387 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5390 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5391 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5392 " unevictable:%lu dirty:%lu writeback:%lu\n"
5393 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5394 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5395 " free:%lu free_pcp:%lu free_cma:%lu\n",
5396 global_node_page_state(NR_ACTIVE_ANON),
5397 global_node_page_state(NR_INACTIVE_ANON),
5398 global_node_page_state(NR_ISOLATED_ANON),
5399 global_node_page_state(NR_ACTIVE_FILE),
5400 global_node_page_state(NR_INACTIVE_FILE),
5401 global_node_page_state(NR_ISOLATED_FILE),
5402 global_node_page_state(NR_UNEVICTABLE),
5403 global_node_page_state(NR_FILE_DIRTY),
5404 global_node_page_state(NR_WRITEBACK),
5405 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5406 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5407 global_node_page_state(NR_FILE_MAPPED),
5408 global_node_page_state(NR_SHMEM),
5409 global_zone_page_state(NR_PAGETABLE),
5410 global_zone_page_state(NR_BOUNCE),
5411 global_zone_page_state(NR_FREE_PAGES),
5413 global_zone_page_state(NR_FREE_CMA_PAGES));
5415 for_each_online_pgdat(pgdat) {
5416 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5420 " active_anon:%lukB"
5421 " inactive_anon:%lukB"
5422 " active_file:%lukB"
5423 " inactive_file:%lukB"
5424 " unevictable:%lukB"
5425 " isolated(anon):%lukB"
5426 " isolated(file):%lukB"
5431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433 " shmem_pmdmapped: %lukB"
5436 " writeback_tmp:%lukB"
5437 " kernel_stack:%lukB"
5438 #ifdef CONFIG_SHADOW_CALL_STACK
5439 " shadow_call_stack:%lukB"
5441 " all_unreclaimable? %s"
5444 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5445 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5446 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5447 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5448 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5449 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5450 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5451 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5452 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5453 K(node_page_state(pgdat, NR_WRITEBACK)),
5454 K(node_page_state(pgdat, NR_SHMEM)),
5455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5456 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5457 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5459 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5461 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5462 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5463 #ifdef CONFIG_SHADOW_CALL_STACK
5464 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5466 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5470 for_each_populated_zone(zone) {
5473 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5477 for_each_online_cpu(cpu)
5478 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5487 " reserved_highatomic:%luKB"
5488 " active_anon:%lukB"
5489 " inactive_anon:%lukB"
5490 " active_file:%lukB"
5491 " inactive_file:%lukB"
5492 " unevictable:%lukB"
5493 " writepending:%lukB"
5504 K(zone_page_state(zone, NR_FREE_PAGES)),
5505 K(min_wmark_pages(zone)),
5506 K(low_wmark_pages(zone)),
5507 K(high_wmark_pages(zone)),
5508 K(zone->nr_reserved_highatomic),
5509 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5510 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5511 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5512 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5513 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5514 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5515 K(zone->present_pages),
5516 K(zone_managed_pages(zone)),
5517 K(zone_page_state(zone, NR_MLOCK)),
5518 K(zone_page_state(zone, NR_PAGETABLE)),
5519 K(zone_page_state(zone, NR_BOUNCE)),
5521 K(this_cpu_read(zone->pageset->pcp.count)),
5522 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5523 printk("lowmem_reserve[]:");
5524 for (i = 0; i < MAX_NR_ZONES; i++)
5525 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5526 printk(KERN_CONT "\n");
5529 for_each_populated_zone(zone) {
5531 unsigned long nr[MAX_ORDER], flags, total = 0;
5532 unsigned char types[MAX_ORDER];
5534 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5537 printk(KERN_CONT "%s: ", zone->name);
5539 spin_lock_irqsave(&zone->lock, flags);
5540 for (order = 0; order < MAX_ORDER; order++) {
5541 struct free_area *area = &zone->free_area[order];
5544 nr[order] = area->nr_free;
5545 total += nr[order] << order;
5548 for (type = 0; type < MIGRATE_TYPES; type++) {
5549 if (!free_area_empty(area, type))
5550 types[order] |= 1 << type;
5553 spin_unlock_irqrestore(&zone->lock, flags);
5554 for (order = 0; order < MAX_ORDER; order++) {
5555 printk(KERN_CONT "%lu*%lukB ",
5556 nr[order], K(1UL) << order);
5558 show_migration_types(types[order]);
5560 printk(KERN_CONT "= %lukB\n", K(total));
5563 hugetlb_show_meminfo();
5565 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5567 show_swap_cache_info();
5570 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5572 zoneref->zone = zone;
5573 zoneref->zone_idx = zone_idx(zone);
5577 * Builds allocation fallback zone lists.
5579 * Add all populated zones of a node to the zonelist.
5581 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5584 enum zone_type zone_type = MAX_NR_ZONES;
5589 zone = pgdat->node_zones + zone_type;
5590 if (managed_zone(zone)) {
5591 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5592 check_highest_zone(zone_type);
5594 } while (zone_type);
5601 static int __parse_numa_zonelist_order(char *s)
5604 * We used to support different zonlists modes but they turned
5605 * out to be just not useful. Let's keep the warning in place
5606 * if somebody still use the cmd line parameter so that we do
5607 * not fail it silently
5609 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5610 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5616 char numa_zonelist_order[] = "Node";
5619 * sysctl handler for numa_zonelist_order
5621 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5622 void *buffer, size_t *length, loff_t *ppos)
5625 return __parse_numa_zonelist_order(buffer);
5626 return proc_dostring(table, write, buffer, length, ppos);
5630 #define MAX_NODE_LOAD (nr_online_nodes)
5631 static int node_load[MAX_NUMNODES];
5634 * find_next_best_node - find the next node that should appear in a given node's fallback list
5635 * @node: node whose fallback list we're appending
5636 * @used_node_mask: nodemask_t of already used nodes
5638 * We use a number of factors to determine which is the next node that should
5639 * appear on a given node's fallback list. The node should not have appeared
5640 * already in @node's fallback list, and it should be the next closest node
5641 * according to the distance array (which contains arbitrary distance values
5642 * from each node to each node in the system), and should also prefer nodes
5643 * with no CPUs, since presumably they'll have very little allocation pressure
5644 * on them otherwise.
5646 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5648 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5651 int min_val = INT_MAX;
5652 int best_node = NUMA_NO_NODE;
5653 const struct cpumask *tmp = cpumask_of_node(0);
5655 /* Use the local node if we haven't already */
5656 if (!node_isset(node, *used_node_mask)) {
5657 node_set(node, *used_node_mask);
5661 for_each_node_state(n, N_MEMORY) {
5663 /* Don't want a node to appear more than once */
5664 if (node_isset(n, *used_node_mask))
5667 /* Use the distance array to find the distance */
5668 val = node_distance(node, n);
5670 /* Penalize nodes under us ("prefer the next node") */
5673 /* Give preference to headless and unused nodes */
5674 tmp = cpumask_of_node(n);
5675 if (!cpumask_empty(tmp))
5676 val += PENALTY_FOR_NODE_WITH_CPUS;
5678 /* Slight preference for less loaded node */
5679 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5680 val += node_load[n];
5682 if (val < min_val) {
5689 node_set(best_node, *used_node_mask);
5696 * Build zonelists ordered by node and zones within node.
5697 * This results in maximum locality--normal zone overflows into local
5698 * DMA zone, if any--but risks exhausting DMA zone.
5700 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5703 struct zoneref *zonerefs;
5706 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5708 for (i = 0; i < nr_nodes; i++) {
5711 pg_data_t *node = NODE_DATA(node_order[i]);
5713 nr_zones = build_zonerefs_node(node, zonerefs);
5714 zonerefs += nr_zones;
5716 zonerefs->zone = NULL;
5717 zonerefs->zone_idx = 0;
5721 * Build gfp_thisnode zonelists
5723 static void build_thisnode_zonelists(pg_data_t *pgdat)
5725 struct zoneref *zonerefs;
5728 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5729 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5730 zonerefs += nr_zones;
5731 zonerefs->zone = NULL;
5732 zonerefs->zone_idx = 0;
5736 * Build zonelists ordered by zone and nodes within zones.
5737 * This results in conserving DMA zone[s] until all Normal memory is
5738 * exhausted, but results in overflowing to remote node while memory
5739 * may still exist in local DMA zone.
5742 static void build_zonelists(pg_data_t *pgdat)
5744 static int node_order[MAX_NUMNODES];
5745 int node, load, nr_nodes = 0;
5746 nodemask_t used_mask = NODE_MASK_NONE;
5747 int local_node, prev_node;
5749 /* NUMA-aware ordering of nodes */
5750 local_node = pgdat->node_id;
5751 load = nr_online_nodes;
5752 prev_node = local_node;
5754 memset(node_order, 0, sizeof(node_order));
5755 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5757 * We don't want to pressure a particular node.
5758 * So adding penalty to the first node in same
5759 * distance group to make it round-robin.
5761 if (node_distance(local_node, node) !=
5762 node_distance(local_node, prev_node))
5763 node_load[node] = load;
5765 node_order[nr_nodes++] = node;
5770 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5771 build_thisnode_zonelists(pgdat);
5774 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5776 * Return node id of node used for "local" allocations.
5777 * I.e., first node id of first zone in arg node's generic zonelist.
5778 * Used for initializing percpu 'numa_mem', which is used primarily
5779 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5781 int local_memory_node(int node)
5785 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5786 gfp_zone(GFP_KERNEL),
5788 return zone_to_nid(z->zone);
5792 static void setup_min_unmapped_ratio(void);
5793 static void setup_min_slab_ratio(void);
5794 #else /* CONFIG_NUMA */
5796 static void build_zonelists(pg_data_t *pgdat)
5798 int node, local_node;
5799 struct zoneref *zonerefs;
5802 local_node = pgdat->node_id;
5804 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5805 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5806 zonerefs += nr_zones;
5809 * Now we build the zonelist so that it contains the zones
5810 * of all the other nodes.
5811 * We don't want to pressure a particular node, so when
5812 * building the zones for node N, we make sure that the
5813 * zones coming right after the local ones are those from
5814 * node N+1 (modulo N)
5816 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5817 if (!node_online(node))
5819 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5820 zonerefs += nr_zones;
5822 for (node = 0; node < local_node; node++) {
5823 if (!node_online(node))
5825 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5826 zonerefs += nr_zones;
5829 zonerefs->zone = NULL;
5830 zonerefs->zone_idx = 0;
5833 #endif /* CONFIG_NUMA */
5836 * Boot pageset table. One per cpu which is going to be used for all
5837 * zones and all nodes. The parameters will be set in such a way
5838 * that an item put on a list will immediately be handed over to
5839 * the buddy list. This is safe since pageset manipulation is done
5840 * with interrupts disabled.
5842 * The boot_pagesets must be kept even after bootup is complete for
5843 * unused processors and/or zones. They do play a role for bootstrapping
5844 * hotplugged processors.
5846 * zoneinfo_show() and maybe other functions do
5847 * not check if the processor is online before following the pageset pointer.
5848 * Other parts of the kernel may not check if the zone is available.
5850 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5851 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5852 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5854 static void __build_all_zonelists(void *data)
5857 int __maybe_unused cpu;
5858 pg_data_t *self = data;
5859 static DEFINE_SPINLOCK(lock);
5864 memset(node_load, 0, sizeof(node_load));
5868 * This node is hotadded and no memory is yet present. So just
5869 * building zonelists is fine - no need to touch other nodes.
5871 if (self && !node_online(self->node_id)) {
5872 build_zonelists(self);
5874 for_each_online_node(nid) {
5875 pg_data_t *pgdat = NODE_DATA(nid);
5877 build_zonelists(pgdat);
5880 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5882 * We now know the "local memory node" for each node--
5883 * i.e., the node of the first zone in the generic zonelist.
5884 * Set up numa_mem percpu variable for on-line cpus. During
5885 * boot, only the boot cpu should be on-line; we'll init the
5886 * secondary cpus' numa_mem as they come on-line. During
5887 * node/memory hotplug, we'll fixup all on-line cpus.
5889 for_each_online_cpu(cpu)
5890 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5897 static noinline void __init
5898 build_all_zonelists_init(void)
5902 __build_all_zonelists(NULL);
5905 * Initialize the boot_pagesets that are going to be used
5906 * for bootstrapping processors. The real pagesets for
5907 * each zone will be allocated later when the per cpu
5908 * allocator is available.
5910 * boot_pagesets are used also for bootstrapping offline
5911 * cpus if the system is already booted because the pagesets
5912 * are needed to initialize allocators on a specific cpu too.
5913 * F.e. the percpu allocator needs the page allocator which
5914 * needs the percpu allocator in order to allocate its pagesets
5915 * (a chicken-egg dilemma).
5917 for_each_possible_cpu(cpu)
5918 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5920 mminit_verify_zonelist();
5921 cpuset_init_current_mems_allowed();
5925 * unless system_state == SYSTEM_BOOTING.
5927 * __ref due to call of __init annotated helper build_all_zonelists_init
5928 * [protected by SYSTEM_BOOTING].
5930 void __ref build_all_zonelists(pg_data_t *pgdat)
5932 unsigned long vm_total_pages;
5934 if (system_state == SYSTEM_BOOTING) {
5935 build_all_zonelists_init();
5937 __build_all_zonelists(pgdat);
5938 /* cpuset refresh routine should be here */
5940 /* Get the number of free pages beyond high watermark in all zones. */
5941 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5943 * Disable grouping by mobility if the number of pages in the
5944 * system is too low to allow the mechanism to work. It would be
5945 * more accurate, but expensive to check per-zone. This check is
5946 * made on memory-hotadd so a system can start with mobility
5947 * disabled and enable it later
5949 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5950 page_group_by_mobility_disabled = 1;
5952 page_group_by_mobility_disabled = 0;
5954 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5956 page_group_by_mobility_disabled ? "off" : "on",
5959 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5963 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5964 static bool __meminit
5965 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5967 static struct memblock_region *r;
5969 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5970 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5971 for_each_memblock(memory, r) {
5972 if (*pfn < memblock_region_memory_end_pfn(r))
5976 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5977 memblock_is_mirror(r)) {
5978 *pfn = memblock_region_memory_end_pfn(r);
5986 * Initially all pages are reserved - free ones are freed
5987 * up by memblock_free_all() once the early boot process is
5988 * done. Non-atomic initialization, single-pass.
5990 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5991 unsigned long start_pfn, enum meminit_context context,
5992 struct vmem_altmap *altmap)
5994 unsigned long pfn, end_pfn = start_pfn + size;
5997 if (highest_memmap_pfn < end_pfn - 1)
5998 highest_memmap_pfn = end_pfn - 1;
6000 #ifdef CONFIG_ZONE_DEVICE
6002 * Honor reservation requested by the driver for this ZONE_DEVICE
6003 * memory. We limit the total number of pages to initialize to just
6004 * those that might contain the memory mapping. We will defer the
6005 * ZONE_DEVICE page initialization until after we have released
6008 if (zone == ZONE_DEVICE) {
6012 if (start_pfn == altmap->base_pfn)
6013 start_pfn += altmap->reserve;
6014 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6018 for (pfn = start_pfn; pfn < end_pfn; ) {
6020 * There can be holes in boot-time mem_map[]s handed to this
6021 * function. They do not exist on hotplugged memory.
6023 if (context == MEMINIT_EARLY) {
6024 if (overlap_memmap_init(zone, &pfn))
6026 if (defer_init(nid, pfn, end_pfn))
6030 page = pfn_to_page(pfn);
6031 __init_single_page(page, pfn, zone, nid);
6032 if (context == MEMINIT_HOTPLUG)
6033 __SetPageReserved(page);
6036 * Mark the block movable so that blocks are reserved for
6037 * movable at startup. This will force kernel allocations
6038 * to reserve their blocks rather than leaking throughout
6039 * the address space during boot when many long-lived
6040 * kernel allocations are made.
6042 * bitmap is created for zone's valid pfn range. but memmap
6043 * can be created for invalid pages (for alignment)
6044 * check here not to call set_pageblock_migratetype() against
6047 if (!(pfn & (pageblock_nr_pages - 1))) {
6048 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6055 #ifdef CONFIG_ZONE_DEVICE
6056 void __ref memmap_init_zone_device(struct zone *zone,
6057 unsigned long start_pfn,
6058 unsigned long nr_pages,
6059 struct dev_pagemap *pgmap)
6061 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6062 struct pglist_data *pgdat = zone->zone_pgdat;
6063 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6064 unsigned long zone_idx = zone_idx(zone);
6065 unsigned long start = jiffies;
6066 int nid = pgdat->node_id;
6068 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6072 * The call to memmap_init_zone should have already taken care
6073 * of the pages reserved for the memmap, so we can just jump to
6074 * the end of that region and start processing the device pages.
6077 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6078 nr_pages = end_pfn - start_pfn;
6081 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6082 struct page *page = pfn_to_page(pfn);
6084 __init_single_page(page, pfn, zone_idx, nid);
6087 * Mark page reserved as it will need to wait for onlining
6088 * phase for it to be fully associated with a zone.
6090 * We can use the non-atomic __set_bit operation for setting
6091 * the flag as we are still initializing the pages.
6093 __SetPageReserved(page);
6096 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6097 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6098 * ever freed or placed on a driver-private list.
6100 page->pgmap = pgmap;
6101 page->zone_device_data = NULL;
6104 * Mark the block movable so that blocks are reserved for
6105 * movable at startup. This will force kernel allocations
6106 * to reserve their blocks rather than leaking throughout
6107 * the address space during boot when many long-lived
6108 * kernel allocations are made.
6110 * bitmap is created for zone's valid pfn range. but memmap
6111 * can be created for invalid pages (for alignment)
6112 * check here not to call set_pageblock_migratetype() against
6115 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6116 * because this is done early in section_activate()
6118 if (!(pfn & (pageblock_nr_pages - 1))) {
6119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6124 pr_info("%s initialised %lu pages in %ums\n", __func__,
6125 nr_pages, jiffies_to_msecs(jiffies - start));
6129 static void __meminit zone_init_free_lists(struct zone *zone)
6131 unsigned int order, t;
6132 for_each_migratetype_order(order, t) {
6133 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6134 zone->free_area[order].nr_free = 0;
6138 void __meminit __weak memmap_init(unsigned long size, int nid,
6140 unsigned long range_start_pfn)
6142 unsigned long start_pfn, end_pfn;
6143 unsigned long range_end_pfn = range_start_pfn + size;
6146 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6147 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6148 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6150 if (end_pfn > start_pfn) {
6151 size = end_pfn - start_pfn;
6152 memmap_init_zone(size, nid, zone, start_pfn,
6153 MEMINIT_EARLY, NULL);
6158 static int zone_batchsize(struct zone *zone)
6164 * The per-cpu-pages pools are set to around 1000th of the
6167 batch = zone_managed_pages(zone) / 1024;
6168 /* But no more than a meg. */
6169 if (batch * PAGE_SIZE > 1024 * 1024)
6170 batch = (1024 * 1024) / PAGE_SIZE;
6171 batch /= 4; /* We effectively *= 4 below */
6176 * Clamp the batch to a 2^n - 1 value. Having a power
6177 * of 2 value was found to be more likely to have
6178 * suboptimal cache aliasing properties in some cases.
6180 * For example if 2 tasks are alternately allocating
6181 * batches of pages, one task can end up with a lot
6182 * of pages of one half of the possible page colors
6183 * and the other with pages of the other colors.
6185 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6190 /* The deferral and batching of frees should be suppressed under NOMMU
6193 * The problem is that NOMMU needs to be able to allocate large chunks
6194 * of contiguous memory as there's no hardware page translation to
6195 * assemble apparent contiguous memory from discontiguous pages.
6197 * Queueing large contiguous runs of pages for batching, however,
6198 * causes the pages to actually be freed in smaller chunks. As there
6199 * can be a significant delay between the individual batches being
6200 * recycled, this leads to the once large chunks of space being
6201 * fragmented and becoming unavailable for high-order allocations.
6208 * pcp->high and pcp->batch values are related and dependent on one another:
6209 * ->batch must never be higher then ->high.
6210 * The following function updates them in a safe manner without read side
6213 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6214 * those fields changing asynchronously (acording to the above rule).
6216 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6217 * outside of boot time (or some other assurance that no concurrent updaters
6220 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6221 unsigned long batch)
6223 /* start with a fail safe value for batch */
6227 /* Update high, then batch, in order */
6234 /* a companion to pageset_set_high() */
6235 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6237 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6240 static void pageset_init(struct per_cpu_pageset *p)
6242 struct per_cpu_pages *pcp;
6245 memset(p, 0, sizeof(*p));
6248 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6249 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6252 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6255 pageset_set_batch(p, batch);
6259 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6260 * to the value high for the pageset p.
6262 static void pageset_set_high(struct per_cpu_pageset *p,
6265 unsigned long batch = max(1UL, high / 4);
6266 if ((high / 4) > (PAGE_SHIFT * 8))
6267 batch = PAGE_SHIFT * 8;
6269 pageset_update(&p->pcp, high, batch);
6272 static void pageset_set_high_and_batch(struct zone *zone,
6273 struct per_cpu_pageset *pcp)
6275 if (percpu_pagelist_fraction)
6276 pageset_set_high(pcp,
6277 (zone_managed_pages(zone) /
6278 percpu_pagelist_fraction));
6280 pageset_set_batch(pcp, zone_batchsize(zone));
6283 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6285 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6288 pageset_set_high_and_batch(zone, pcp);
6291 void __meminit setup_zone_pageset(struct zone *zone)
6294 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6295 for_each_possible_cpu(cpu)
6296 zone_pageset_init(zone, cpu);
6300 * Allocate per cpu pagesets and initialize them.
6301 * Before this call only boot pagesets were available.
6303 void __init setup_per_cpu_pageset(void)
6305 struct pglist_data *pgdat;
6307 int __maybe_unused cpu;
6309 for_each_populated_zone(zone)
6310 setup_zone_pageset(zone);
6314 * Unpopulated zones continue using the boot pagesets.
6315 * The numa stats for these pagesets need to be reset.
6316 * Otherwise, they will end up skewing the stats of
6317 * the nodes these zones are associated with.
6319 for_each_possible_cpu(cpu) {
6320 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6321 memset(pcp->vm_numa_stat_diff, 0,
6322 sizeof(pcp->vm_numa_stat_diff));
6326 for_each_online_pgdat(pgdat)
6327 pgdat->per_cpu_nodestats =
6328 alloc_percpu(struct per_cpu_nodestat);
6331 static __meminit void zone_pcp_init(struct zone *zone)
6334 * per cpu subsystem is not up at this point. The following code
6335 * relies on the ability of the linker to provide the
6336 * offset of a (static) per cpu variable into the per cpu area.
6338 zone->pageset = &boot_pageset;
6340 if (populated_zone(zone))
6341 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6342 zone->name, zone->present_pages,
6343 zone_batchsize(zone));
6346 void __meminit init_currently_empty_zone(struct zone *zone,
6347 unsigned long zone_start_pfn,
6350 struct pglist_data *pgdat = zone->zone_pgdat;
6351 int zone_idx = zone_idx(zone) + 1;
6353 if (zone_idx > pgdat->nr_zones)
6354 pgdat->nr_zones = zone_idx;
6356 zone->zone_start_pfn = zone_start_pfn;
6358 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6359 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6361 (unsigned long)zone_idx(zone),
6362 zone_start_pfn, (zone_start_pfn + size));
6364 zone_init_free_lists(zone);
6365 zone->initialized = 1;
6369 * get_pfn_range_for_nid - Return the start and end page frames for a node
6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6374 * It returns the start and end page frame of a node based on information
6375 * provided by memblock_set_node(). If called for a node
6376 * with no available memory, a warning is printed and the start and end
6379 void __init get_pfn_range_for_nid(unsigned int nid,
6380 unsigned long *start_pfn, unsigned long *end_pfn)
6382 unsigned long this_start_pfn, this_end_pfn;
6388 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6389 *start_pfn = min(*start_pfn, this_start_pfn);
6390 *end_pfn = max(*end_pfn, this_end_pfn);
6393 if (*start_pfn == -1UL)
6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399 * assumption is made that zones within a node are ordered in monotonic
6400 * increasing memory addresses so that the "highest" populated zone is used
6402 static void __init find_usable_zone_for_movable(void)
6405 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6406 if (zone_index == ZONE_MOVABLE)
6409 if (arch_zone_highest_possible_pfn[zone_index] >
6410 arch_zone_lowest_possible_pfn[zone_index])
6414 VM_BUG_ON(zone_index == -1);
6415 movable_zone = zone_index;
6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6420 * because it is sized independent of architecture. Unlike the other zones,
6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422 * in each node depending on the size of each node and how evenly kernelcore
6423 * is distributed. This helper function adjusts the zone ranges
6424 * provided by the architecture for a given node by using the end of the
6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426 * zones within a node are in order of monotonic increases memory addresses
6428 static void __init adjust_zone_range_for_zone_movable(int nid,
6429 unsigned long zone_type,
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
6432 unsigned long *zone_start_pfn,
6433 unsigned long *zone_end_pfn)
6435 /* Only adjust if ZONE_MOVABLE is on this node */
6436 if (zone_movable_pfn[nid]) {
6437 /* Size ZONE_MOVABLE */
6438 if (zone_type == ZONE_MOVABLE) {
6439 *zone_start_pfn = zone_movable_pfn[nid];
6440 *zone_end_pfn = min(node_end_pfn,
6441 arch_zone_highest_possible_pfn[movable_zone]);
6443 /* Adjust for ZONE_MOVABLE starting within this range */
6444 } else if (!mirrored_kernelcore &&
6445 *zone_start_pfn < zone_movable_pfn[nid] &&
6446 *zone_end_pfn > zone_movable_pfn[nid]) {
6447 *zone_end_pfn = zone_movable_pfn[nid];
6449 /* Check if this whole range is within ZONE_MOVABLE */
6450 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6451 *zone_start_pfn = *zone_end_pfn;
6456 * Return the number of pages a zone spans in a node, including holes
6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459 static unsigned long __init zone_spanned_pages_in_node(int nid,
6460 unsigned long zone_type,
6461 unsigned long node_start_pfn,
6462 unsigned long node_end_pfn,
6463 unsigned long *zone_start_pfn,
6464 unsigned long *zone_end_pfn)
6466 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6467 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6468 /* When hotadd a new node from cpu_up(), the node should be empty */
6469 if (!node_start_pfn && !node_end_pfn)
6472 /* Get the start and end of the zone */
6473 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6474 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6475 adjust_zone_range_for_zone_movable(nid, zone_type,
6476 node_start_pfn, node_end_pfn,
6477 zone_start_pfn, zone_end_pfn);
6479 /* Check that this node has pages within the zone's required range */
6480 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6483 /* Move the zone boundaries inside the node if necessary */
6484 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6485 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6487 /* Return the spanned pages */
6488 return *zone_end_pfn - *zone_start_pfn;
6492 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6493 * then all holes in the requested range will be accounted for.
6495 unsigned long __init __absent_pages_in_range(int nid,
6496 unsigned long range_start_pfn,
6497 unsigned long range_end_pfn)
6499 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6500 unsigned long start_pfn, end_pfn;
6503 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6504 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6505 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6506 nr_absent -= end_pfn - start_pfn;
6512 * absent_pages_in_range - Return number of page frames in holes within a range
6513 * @start_pfn: The start PFN to start searching for holes
6514 * @end_pfn: The end PFN to stop searching for holes
6516 * Return: the number of pages frames in memory holes within a range.
6518 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6519 unsigned long end_pfn)
6521 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6524 /* Return the number of page frames in holes in a zone on a node */
6525 static unsigned long __init zone_absent_pages_in_node(int nid,
6526 unsigned long zone_type,
6527 unsigned long node_start_pfn,
6528 unsigned long node_end_pfn)
6530 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6531 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6532 unsigned long zone_start_pfn, zone_end_pfn;
6533 unsigned long nr_absent;
6535 /* When hotadd a new node from cpu_up(), the node should be empty */
6536 if (!node_start_pfn && !node_end_pfn)
6539 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6540 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6542 adjust_zone_range_for_zone_movable(nid, zone_type,
6543 node_start_pfn, node_end_pfn,
6544 &zone_start_pfn, &zone_end_pfn);
6545 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6548 * ZONE_MOVABLE handling.
6549 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6552 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6553 unsigned long start_pfn, end_pfn;
6554 struct memblock_region *r;
6556 for_each_memblock(memory, r) {
6557 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6558 zone_start_pfn, zone_end_pfn);
6559 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6560 zone_start_pfn, zone_end_pfn);
6562 if (zone_type == ZONE_MOVABLE &&
6563 memblock_is_mirror(r))
6564 nr_absent += end_pfn - start_pfn;
6566 if (zone_type == ZONE_NORMAL &&
6567 !memblock_is_mirror(r))
6568 nr_absent += end_pfn - start_pfn;
6575 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6576 unsigned long node_start_pfn,
6577 unsigned long node_end_pfn)
6579 unsigned long realtotalpages = 0, totalpages = 0;
6582 for (i = 0; i < MAX_NR_ZONES; i++) {
6583 struct zone *zone = pgdat->node_zones + i;
6584 unsigned long zone_start_pfn, zone_end_pfn;
6585 unsigned long spanned, absent;
6586 unsigned long size, real_size;
6588 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6593 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6598 real_size = size - absent;
6601 zone->zone_start_pfn = zone_start_pfn;
6603 zone->zone_start_pfn = 0;
6604 zone->spanned_pages = size;
6605 zone->present_pages = real_size;
6608 realtotalpages += real_size;
6611 pgdat->node_spanned_pages = totalpages;
6612 pgdat->node_present_pages = realtotalpages;
6613 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6617 #ifndef CONFIG_SPARSEMEM
6619 * Calculate the size of the zone->blockflags rounded to an unsigned long
6620 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6621 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6622 * round what is now in bits to nearest long in bits, then return it in
6625 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6627 unsigned long usemapsize;
6629 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6630 usemapsize = roundup(zonesize, pageblock_nr_pages);
6631 usemapsize = usemapsize >> pageblock_order;
6632 usemapsize *= NR_PAGEBLOCK_BITS;
6633 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6635 return usemapsize / 8;
6638 static void __ref setup_usemap(struct pglist_data *pgdat,
6640 unsigned long zone_start_pfn,
6641 unsigned long zonesize)
6643 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6644 zone->pageblock_flags = NULL;
6646 zone->pageblock_flags =
6647 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6649 if (!zone->pageblock_flags)
6650 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6651 usemapsize, zone->name, pgdat->node_id);
6655 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6656 unsigned long zone_start_pfn, unsigned long zonesize) {}
6657 #endif /* CONFIG_SPARSEMEM */
6659 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6661 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6662 void __init set_pageblock_order(void)
6666 /* Check that pageblock_nr_pages has not already been setup */
6667 if (pageblock_order)
6670 if (HPAGE_SHIFT > PAGE_SHIFT)
6671 order = HUGETLB_PAGE_ORDER;
6673 order = MAX_ORDER - 1;
6676 * Assume the largest contiguous order of interest is a huge page.
6677 * This value may be variable depending on boot parameters on IA64 and
6680 pageblock_order = order;
6682 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6685 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6686 * is unused as pageblock_order is set at compile-time. See
6687 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6690 void __init set_pageblock_order(void)
6694 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6696 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6697 unsigned long present_pages)
6699 unsigned long pages = spanned_pages;
6702 * Provide a more accurate estimation if there are holes within
6703 * the zone and SPARSEMEM is in use. If there are holes within the
6704 * zone, each populated memory region may cost us one or two extra
6705 * memmap pages due to alignment because memmap pages for each
6706 * populated regions may not be naturally aligned on page boundary.
6707 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6709 if (spanned_pages > present_pages + (present_pages >> 4) &&
6710 IS_ENABLED(CONFIG_SPARSEMEM))
6711 pages = present_pages;
6713 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6717 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6719 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6721 spin_lock_init(&ds_queue->split_queue_lock);
6722 INIT_LIST_HEAD(&ds_queue->split_queue);
6723 ds_queue->split_queue_len = 0;
6726 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6729 #ifdef CONFIG_COMPACTION
6730 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6732 init_waitqueue_head(&pgdat->kcompactd_wait);
6735 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6738 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6740 pgdat_resize_init(pgdat);
6742 pgdat_init_split_queue(pgdat);
6743 pgdat_init_kcompactd(pgdat);
6745 init_waitqueue_head(&pgdat->kswapd_wait);
6746 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6748 pgdat_page_ext_init(pgdat);
6749 spin_lock_init(&pgdat->lru_lock);
6750 lruvec_init(&pgdat->__lruvec);
6753 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6754 unsigned long remaining_pages)
6756 atomic_long_set(&zone->managed_pages, remaining_pages);
6757 zone_set_nid(zone, nid);
6758 zone->name = zone_names[idx];
6759 zone->zone_pgdat = NODE_DATA(nid);
6760 spin_lock_init(&zone->lock);
6761 zone_seqlock_init(zone);
6762 zone_pcp_init(zone);
6766 * Set up the zone data structures
6767 * - init pgdat internals
6768 * - init all zones belonging to this node
6770 * NOTE: this function is only called during memory hotplug
6772 #ifdef CONFIG_MEMORY_HOTPLUG
6773 void __ref free_area_init_core_hotplug(int nid)
6776 pg_data_t *pgdat = NODE_DATA(nid);
6778 pgdat_init_internals(pgdat);
6779 for (z = 0; z < MAX_NR_ZONES; z++)
6780 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6785 * Set up the zone data structures:
6786 * - mark all pages reserved
6787 * - mark all memory queues empty
6788 * - clear the memory bitmaps
6790 * NOTE: pgdat should get zeroed by caller.
6791 * NOTE: this function is only called during early init.
6793 static void __init free_area_init_core(struct pglist_data *pgdat)
6796 int nid = pgdat->node_id;
6798 pgdat_init_internals(pgdat);
6799 pgdat->per_cpu_nodestats = &boot_nodestats;
6801 for (j = 0; j < MAX_NR_ZONES; j++) {
6802 struct zone *zone = pgdat->node_zones + j;
6803 unsigned long size, freesize, memmap_pages;
6804 unsigned long zone_start_pfn = zone->zone_start_pfn;
6806 size = zone->spanned_pages;
6807 freesize = zone->present_pages;
6810 * Adjust freesize so that it accounts for how much memory
6811 * is used by this zone for memmap. This affects the watermark
6812 * and per-cpu initialisations
6814 memmap_pages = calc_memmap_size(size, freesize);
6815 if (!is_highmem_idx(j)) {
6816 if (freesize >= memmap_pages) {
6817 freesize -= memmap_pages;
6820 " %s zone: %lu pages used for memmap\n",
6821 zone_names[j], memmap_pages);
6823 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6824 zone_names[j], memmap_pages, freesize);
6827 /* Account for reserved pages */
6828 if (j == 0 && freesize > dma_reserve) {
6829 freesize -= dma_reserve;
6830 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6831 zone_names[0], dma_reserve);
6834 if (!is_highmem_idx(j))
6835 nr_kernel_pages += freesize;
6836 /* Charge for highmem memmap if there are enough kernel pages */
6837 else if (nr_kernel_pages > memmap_pages * 2)
6838 nr_kernel_pages -= memmap_pages;
6839 nr_all_pages += freesize;
6842 * Set an approximate value for lowmem here, it will be adjusted
6843 * when the bootmem allocator frees pages into the buddy system.
6844 * And all highmem pages will be managed by the buddy system.
6846 zone_init_internals(zone, j, nid, freesize);
6851 set_pageblock_order();
6852 setup_usemap(pgdat, zone, zone_start_pfn, size);
6853 init_currently_empty_zone(zone, zone_start_pfn, size);
6854 memmap_init(size, nid, j, zone_start_pfn);
6858 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6859 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6861 unsigned long __maybe_unused start = 0;
6862 unsigned long __maybe_unused offset = 0;
6864 /* Skip empty nodes */
6865 if (!pgdat->node_spanned_pages)
6868 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6869 offset = pgdat->node_start_pfn - start;
6870 /* ia64 gets its own node_mem_map, before this, without bootmem */
6871 if (!pgdat->node_mem_map) {
6872 unsigned long size, end;
6876 * The zone's endpoints aren't required to be MAX_ORDER
6877 * aligned but the node_mem_map endpoints must be in order
6878 * for the buddy allocator to function correctly.
6880 end = pgdat_end_pfn(pgdat);
6881 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6882 size = (end - start) * sizeof(struct page);
6883 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6886 panic("Failed to allocate %ld bytes for node %d memory map\n",
6887 size, pgdat->node_id);
6888 pgdat->node_mem_map = map + offset;
6890 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6891 __func__, pgdat->node_id, (unsigned long)pgdat,
6892 (unsigned long)pgdat->node_mem_map);
6893 #ifndef CONFIG_NEED_MULTIPLE_NODES
6895 * With no DISCONTIG, the global mem_map is just set as node 0's
6897 if (pgdat == NODE_DATA(0)) {
6898 mem_map = NODE_DATA(0)->node_mem_map;
6899 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6905 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6908 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6909 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6911 pgdat->first_deferred_pfn = ULONG_MAX;
6914 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6917 static void __init free_area_init_node(int nid)
6919 pg_data_t *pgdat = NODE_DATA(nid);
6920 unsigned long start_pfn = 0;
6921 unsigned long end_pfn = 0;
6923 /* pg_data_t should be reset to zero when it's allocated */
6924 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6926 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6928 pgdat->node_id = nid;
6929 pgdat->node_start_pfn = start_pfn;
6930 pgdat->per_cpu_nodestats = NULL;
6932 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6933 (u64)start_pfn << PAGE_SHIFT,
6934 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6935 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6937 alloc_node_mem_map(pgdat);
6938 pgdat_set_deferred_range(pgdat);
6940 free_area_init_core(pgdat);
6943 void __init free_area_init_memoryless_node(int nid)
6945 free_area_init_node(nid);
6948 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6950 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6951 * PageReserved(). Return the number of struct pages that were initialized.
6953 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6958 for (pfn = spfn; pfn < epfn; pfn++) {
6959 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6960 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6961 + pageblock_nr_pages - 1;
6965 * Use a fake node/zone (0) for now. Some of these pages
6966 * (in memblock.reserved but not in memblock.memory) will
6967 * get re-initialized via reserve_bootmem_region() later.
6969 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6970 __SetPageReserved(pfn_to_page(pfn));
6978 * Only struct pages that are backed by physical memory are zeroed and
6979 * initialized by going through __init_single_page(). But, there are some
6980 * struct pages which are reserved in memblock allocator and their fields
6981 * may be accessed (for example page_to_pfn() on some configuration accesses
6982 * flags). We must explicitly initialize those struct pages.
6984 * This function also addresses a similar issue where struct pages are left
6985 * uninitialized because the physical address range is not covered by
6986 * memblock.memory or memblock.reserved. That could happen when memblock
6987 * layout is manually configured via memmap=, or when the highest physical
6988 * address (max_pfn) does not end on a section boundary.
6990 static void __init init_unavailable_mem(void)
6992 phys_addr_t start, end;
6994 phys_addr_t next = 0;
6997 * Loop through unavailable ranges not covered by memblock.memory.
7000 for_each_mem_range(i, &memblock.memory, NULL,
7001 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7003 pgcnt += init_unavailable_range(PFN_DOWN(next),
7009 * Early sections always have a fully populated memmap for the whole
7010 * section - see pfn_valid(). If the last section has holes at the
7011 * end and that section is marked "online", the memmap will be
7012 * considered initialized. Make sure that memmap has a well defined
7015 pgcnt += init_unavailable_range(PFN_DOWN(next),
7016 round_up(max_pfn, PAGES_PER_SECTION));
7019 * Struct pages that do not have backing memory. This could be because
7020 * firmware is using some of this memory, or for some other reasons.
7023 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7026 static inline void __init init_unavailable_mem(void)
7029 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7031 #if MAX_NUMNODES > 1
7033 * Figure out the number of possible node ids.
7035 void __init setup_nr_node_ids(void)
7037 unsigned int highest;
7039 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7040 nr_node_ids = highest + 1;
7045 * node_map_pfn_alignment - determine the maximum internode alignment
7047 * This function should be called after node map is populated and sorted.
7048 * It calculates the maximum power of two alignment which can distinguish
7051 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7052 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7053 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7054 * shifted, 1GiB is enough and this function will indicate so.
7056 * This is used to test whether pfn -> nid mapping of the chosen memory
7057 * model has fine enough granularity to avoid incorrect mapping for the
7058 * populated node map.
7060 * Return: the determined alignment in pfn's. 0 if there is no alignment
7061 * requirement (single node).
7063 unsigned long __init node_map_pfn_alignment(void)
7065 unsigned long accl_mask = 0, last_end = 0;
7066 unsigned long start, end, mask;
7067 int last_nid = NUMA_NO_NODE;
7070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7071 if (!start || last_nid < 0 || last_nid == nid) {
7078 * Start with a mask granular enough to pin-point to the
7079 * start pfn and tick off bits one-by-one until it becomes
7080 * too coarse to separate the current node from the last.
7082 mask = ~((1 << __ffs(start)) - 1);
7083 while (mask && last_end <= (start & (mask << 1)))
7086 /* accumulate all internode masks */
7090 /* convert mask to number of pages */
7091 return ~accl_mask + 1;
7095 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7097 * Return: the minimum PFN based on information provided via
7098 * memblock_set_node().
7100 unsigned long __init find_min_pfn_with_active_regions(void)
7102 return PHYS_PFN(memblock_start_of_DRAM());
7106 * early_calculate_totalpages()
7107 * Sum pages in active regions for movable zone.
7108 * Populate N_MEMORY for calculating usable_nodes.
7110 static unsigned long __init early_calculate_totalpages(void)
7112 unsigned long totalpages = 0;
7113 unsigned long start_pfn, end_pfn;
7116 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7117 unsigned long pages = end_pfn - start_pfn;
7119 totalpages += pages;
7121 node_set_state(nid, N_MEMORY);
7127 * Find the PFN the Movable zone begins in each node. Kernel memory
7128 * is spread evenly between nodes as long as the nodes have enough
7129 * memory. When they don't, some nodes will have more kernelcore than
7132 static void __init find_zone_movable_pfns_for_nodes(void)
7135 unsigned long usable_startpfn;
7136 unsigned long kernelcore_node, kernelcore_remaining;
7137 /* save the state before borrow the nodemask */
7138 nodemask_t saved_node_state = node_states[N_MEMORY];
7139 unsigned long totalpages = early_calculate_totalpages();
7140 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7141 struct memblock_region *r;
7143 /* Need to find movable_zone earlier when movable_node is specified. */
7144 find_usable_zone_for_movable();
7147 * If movable_node is specified, ignore kernelcore and movablecore
7150 if (movable_node_is_enabled()) {
7151 for_each_memblock(memory, r) {
7152 if (!memblock_is_hotpluggable(r))
7155 nid = memblock_get_region_node(r);
7157 usable_startpfn = PFN_DOWN(r->base);
7158 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7159 min(usable_startpfn, zone_movable_pfn[nid]) :
7167 * If kernelcore=mirror is specified, ignore movablecore option
7169 if (mirrored_kernelcore) {
7170 bool mem_below_4gb_not_mirrored = false;
7172 for_each_memblock(memory, r) {
7173 if (memblock_is_mirror(r))
7176 nid = memblock_get_region_node(r);
7178 usable_startpfn = memblock_region_memory_base_pfn(r);
7180 if (usable_startpfn < 0x100000) {
7181 mem_below_4gb_not_mirrored = true;
7185 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7186 min(usable_startpfn, zone_movable_pfn[nid]) :
7190 if (mem_below_4gb_not_mirrored)
7191 pr_warn("This configuration results in unmirrored kernel memory.\n");
7197 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7198 * amount of necessary memory.
7200 if (required_kernelcore_percent)
7201 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7203 if (required_movablecore_percent)
7204 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7208 * If movablecore= was specified, calculate what size of
7209 * kernelcore that corresponds so that memory usable for
7210 * any allocation type is evenly spread. If both kernelcore
7211 * and movablecore are specified, then the value of kernelcore
7212 * will be used for required_kernelcore if it's greater than
7213 * what movablecore would have allowed.
7215 if (required_movablecore) {
7216 unsigned long corepages;
7219 * Round-up so that ZONE_MOVABLE is at least as large as what
7220 * was requested by the user
7222 required_movablecore =
7223 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7224 required_movablecore = min(totalpages, required_movablecore);
7225 corepages = totalpages - required_movablecore;
7227 required_kernelcore = max(required_kernelcore, corepages);
7231 * If kernelcore was not specified or kernelcore size is larger
7232 * than totalpages, there is no ZONE_MOVABLE.
7234 if (!required_kernelcore || required_kernelcore >= totalpages)
7237 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7238 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7241 /* Spread kernelcore memory as evenly as possible throughout nodes */
7242 kernelcore_node = required_kernelcore / usable_nodes;
7243 for_each_node_state(nid, N_MEMORY) {
7244 unsigned long start_pfn, end_pfn;
7247 * Recalculate kernelcore_node if the division per node
7248 * now exceeds what is necessary to satisfy the requested
7249 * amount of memory for the kernel
7251 if (required_kernelcore < kernelcore_node)
7252 kernelcore_node = required_kernelcore / usable_nodes;
7255 * As the map is walked, we track how much memory is usable
7256 * by the kernel using kernelcore_remaining. When it is
7257 * 0, the rest of the node is usable by ZONE_MOVABLE
7259 kernelcore_remaining = kernelcore_node;
7261 /* Go through each range of PFNs within this node */
7262 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7263 unsigned long size_pages;
7265 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7266 if (start_pfn >= end_pfn)
7269 /* Account for what is only usable for kernelcore */
7270 if (start_pfn < usable_startpfn) {
7271 unsigned long kernel_pages;
7272 kernel_pages = min(end_pfn, usable_startpfn)
7275 kernelcore_remaining -= min(kernel_pages,
7276 kernelcore_remaining);
7277 required_kernelcore -= min(kernel_pages,
7278 required_kernelcore);
7280 /* Continue if range is now fully accounted */
7281 if (end_pfn <= usable_startpfn) {
7284 * Push zone_movable_pfn to the end so
7285 * that if we have to rebalance
7286 * kernelcore across nodes, we will
7287 * not double account here
7289 zone_movable_pfn[nid] = end_pfn;
7292 start_pfn = usable_startpfn;
7296 * The usable PFN range for ZONE_MOVABLE is from
7297 * start_pfn->end_pfn. Calculate size_pages as the
7298 * number of pages used as kernelcore
7300 size_pages = end_pfn - start_pfn;
7301 if (size_pages > kernelcore_remaining)
7302 size_pages = kernelcore_remaining;
7303 zone_movable_pfn[nid] = start_pfn + size_pages;
7306 * Some kernelcore has been met, update counts and
7307 * break if the kernelcore for this node has been
7310 required_kernelcore -= min(required_kernelcore,
7312 kernelcore_remaining -= size_pages;
7313 if (!kernelcore_remaining)
7319 * If there is still required_kernelcore, we do another pass with one
7320 * less node in the count. This will push zone_movable_pfn[nid] further
7321 * along on the nodes that still have memory until kernelcore is
7325 if (usable_nodes && required_kernelcore > usable_nodes)
7329 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7330 for (nid = 0; nid < MAX_NUMNODES; nid++)
7331 zone_movable_pfn[nid] =
7332 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7335 /* restore the node_state */
7336 node_states[N_MEMORY] = saved_node_state;
7339 /* Any regular or high memory on that node ? */
7340 static void check_for_memory(pg_data_t *pgdat, int nid)
7342 enum zone_type zone_type;
7344 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7345 struct zone *zone = &pgdat->node_zones[zone_type];
7346 if (populated_zone(zone)) {
7347 if (IS_ENABLED(CONFIG_HIGHMEM))
7348 node_set_state(nid, N_HIGH_MEMORY);
7349 if (zone_type <= ZONE_NORMAL)
7350 node_set_state(nid, N_NORMAL_MEMORY);
7357 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7358 * such cases we allow max_zone_pfn sorted in the descending order
7360 bool __weak arch_has_descending_max_zone_pfns(void)
7366 * free_area_init - Initialise all pg_data_t and zone data
7367 * @max_zone_pfn: an array of max PFNs for each zone
7369 * This will call free_area_init_node() for each active node in the system.
7370 * Using the page ranges provided by memblock_set_node(), the size of each
7371 * zone in each node and their holes is calculated. If the maximum PFN
7372 * between two adjacent zones match, it is assumed that the zone is empty.
7373 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7374 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7375 * starts where the previous one ended. For example, ZONE_DMA32 starts
7376 * at arch_max_dma_pfn.
7378 void __init free_area_init(unsigned long *max_zone_pfn)
7380 unsigned long start_pfn, end_pfn;
7384 /* Record where the zone boundaries are */
7385 memset(arch_zone_lowest_possible_pfn, 0,
7386 sizeof(arch_zone_lowest_possible_pfn));
7387 memset(arch_zone_highest_possible_pfn, 0,
7388 sizeof(arch_zone_highest_possible_pfn));
7390 start_pfn = find_min_pfn_with_active_regions();
7391 descending = arch_has_descending_max_zone_pfns();
7393 for (i = 0; i < MAX_NR_ZONES; i++) {
7395 zone = MAX_NR_ZONES - i - 1;
7399 if (zone == ZONE_MOVABLE)
7402 end_pfn = max(max_zone_pfn[zone], start_pfn);
7403 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7404 arch_zone_highest_possible_pfn[zone] = end_pfn;
7406 start_pfn = end_pfn;
7409 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7410 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7411 find_zone_movable_pfns_for_nodes();
7413 /* Print out the zone ranges */
7414 pr_info("Zone ranges:\n");
7415 for (i = 0; i < MAX_NR_ZONES; i++) {
7416 if (i == ZONE_MOVABLE)
7418 pr_info(" %-8s ", zone_names[i]);
7419 if (arch_zone_lowest_possible_pfn[i] ==
7420 arch_zone_highest_possible_pfn[i])
7423 pr_cont("[mem %#018Lx-%#018Lx]\n",
7424 (u64)arch_zone_lowest_possible_pfn[i]
7426 ((u64)arch_zone_highest_possible_pfn[i]
7427 << PAGE_SHIFT) - 1);
7430 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7431 pr_info("Movable zone start for each node\n");
7432 for (i = 0; i < MAX_NUMNODES; i++) {
7433 if (zone_movable_pfn[i])
7434 pr_info(" Node %d: %#018Lx\n", i,
7435 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7439 * Print out the early node map, and initialize the
7440 * subsection-map relative to active online memory ranges to
7441 * enable future "sub-section" extensions of the memory map.
7443 pr_info("Early memory node ranges\n");
7444 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7445 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7446 (u64)start_pfn << PAGE_SHIFT,
7447 ((u64)end_pfn << PAGE_SHIFT) - 1);
7448 subsection_map_init(start_pfn, end_pfn - start_pfn);
7451 /* Initialise every node */
7452 mminit_verify_pageflags_layout();
7453 setup_nr_node_ids();
7454 init_unavailable_mem();
7455 for_each_online_node(nid) {
7456 pg_data_t *pgdat = NODE_DATA(nid);
7457 free_area_init_node(nid);
7459 /* Any memory on that node */
7460 if (pgdat->node_present_pages)
7461 node_set_state(nid, N_MEMORY);
7462 check_for_memory(pgdat, nid);
7466 static int __init cmdline_parse_core(char *p, unsigned long *core,
7467 unsigned long *percent)
7469 unsigned long long coremem;
7475 /* Value may be a percentage of total memory, otherwise bytes */
7476 coremem = simple_strtoull(p, &endptr, 0);
7477 if (*endptr == '%') {
7478 /* Paranoid check for percent values greater than 100 */
7479 WARN_ON(coremem > 100);
7483 coremem = memparse(p, &p);
7484 /* Paranoid check that UL is enough for the coremem value */
7485 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7487 *core = coremem >> PAGE_SHIFT;
7494 * kernelcore=size sets the amount of memory for use for allocations that
7495 * cannot be reclaimed or migrated.
7497 static int __init cmdline_parse_kernelcore(char *p)
7499 /* parse kernelcore=mirror */
7500 if (parse_option_str(p, "mirror")) {
7501 mirrored_kernelcore = true;
7505 return cmdline_parse_core(p, &required_kernelcore,
7506 &required_kernelcore_percent);
7510 * movablecore=size sets the amount of memory for use for allocations that
7511 * can be reclaimed or migrated.
7513 static int __init cmdline_parse_movablecore(char *p)
7515 return cmdline_parse_core(p, &required_movablecore,
7516 &required_movablecore_percent);
7519 early_param("kernelcore", cmdline_parse_kernelcore);
7520 early_param("movablecore", cmdline_parse_movablecore);
7522 void adjust_managed_page_count(struct page *page, long count)
7524 atomic_long_add(count, &page_zone(page)->managed_pages);
7525 totalram_pages_add(count);
7526 #ifdef CONFIG_HIGHMEM
7527 if (PageHighMem(page))
7528 totalhigh_pages_add(count);
7531 EXPORT_SYMBOL(adjust_managed_page_count);
7533 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7536 unsigned long pages = 0;
7538 start = (void *)PAGE_ALIGN((unsigned long)start);
7539 end = (void *)((unsigned long)end & PAGE_MASK);
7540 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7541 struct page *page = virt_to_page(pos);
7542 void *direct_map_addr;
7545 * 'direct_map_addr' might be different from 'pos'
7546 * because some architectures' virt_to_page()
7547 * work with aliases. Getting the direct map
7548 * address ensures that we get a _writeable_
7549 * alias for the memset().
7551 direct_map_addr = page_address(page);
7552 if ((unsigned int)poison <= 0xFF)
7553 memset(direct_map_addr, poison, PAGE_SIZE);
7555 free_reserved_page(page);
7559 pr_info("Freeing %s memory: %ldK\n",
7560 s, pages << (PAGE_SHIFT - 10));
7565 #ifdef CONFIG_HIGHMEM
7566 void free_highmem_page(struct page *page)
7568 __free_reserved_page(page);
7569 totalram_pages_inc();
7570 atomic_long_inc(&page_zone(page)->managed_pages);
7571 totalhigh_pages_inc();
7576 void __init mem_init_print_info(const char *str)
7578 unsigned long physpages, codesize, datasize, rosize, bss_size;
7579 unsigned long init_code_size, init_data_size;
7581 physpages = get_num_physpages();
7582 codesize = _etext - _stext;
7583 datasize = _edata - _sdata;
7584 rosize = __end_rodata - __start_rodata;
7585 bss_size = __bss_stop - __bss_start;
7586 init_data_size = __init_end - __init_begin;
7587 init_code_size = _einittext - _sinittext;
7590 * Detect special cases and adjust section sizes accordingly:
7591 * 1) .init.* may be embedded into .data sections
7592 * 2) .init.text.* may be out of [__init_begin, __init_end],
7593 * please refer to arch/tile/kernel/vmlinux.lds.S.
7594 * 3) .rodata.* may be embedded into .text or .data sections.
7596 #define adj_init_size(start, end, size, pos, adj) \
7598 if (start <= pos && pos < end && size > adj) \
7602 adj_init_size(__init_begin, __init_end, init_data_size,
7603 _sinittext, init_code_size);
7604 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7605 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7606 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7607 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7609 #undef adj_init_size
7611 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7612 #ifdef CONFIG_HIGHMEM
7616 nr_free_pages() << (PAGE_SHIFT - 10),
7617 physpages << (PAGE_SHIFT - 10),
7618 codesize >> 10, datasize >> 10, rosize >> 10,
7619 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7620 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7621 totalcma_pages << (PAGE_SHIFT - 10),
7622 #ifdef CONFIG_HIGHMEM
7623 totalhigh_pages() << (PAGE_SHIFT - 10),
7625 str ? ", " : "", str ? str : "");
7629 * set_dma_reserve - set the specified number of pages reserved in the first zone
7630 * @new_dma_reserve: The number of pages to mark reserved
7632 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7633 * In the DMA zone, a significant percentage may be consumed by kernel image
7634 * and other unfreeable allocations which can skew the watermarks badly. This
7635 * function may optionally be used to account for unfreeable pages in the
7636 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7637 * smaller per-cpu batchsize.
7639 void __init set_dma_reserve(unsigned long new_dma_reserve)
7641 dma_reserve = new_dma_reserve;
7644 static int page_alloc_cpu_dead(unsigned int cpu)
7647 lru_add_drain_cpu(cpu);
7651 * Spill the event counters of the dead processor
7652 * into the current processors event counters.
7653 * This artificially elevates the count of the current
7656 vm_events_fold_cpu(cpu);
7659 * Zero the differential counters of the dead processor
7660 * so that the vm statistics are consistent.
7662 * This is only okay since the processor is dead and cannot
7663 * race with what we are doing.
7665 cpu_vm_stats_fold(cpu);
7670 int hashdist = HASHDIST_DEFAULT;
7672 static int __init set_hashdist(char *str)
7676 hashdist = simple_strtoul(str, &str, 0);
7679 __setup("hashdist=", set_hashdist);
7682 void __init page_alloc_init(void)
7687 if (num_node_state(N_MEMORY) == 1)
7691 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7692 "mm/page_alloc:dead", NULL,
7693 page_alloc_cpu_dead);
7698 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7699 * or min_free_kbytes changes.
7701 static void calculate_totalreserve_pages(void)
7703 struct pglist_data *pgdat;
7704 unsigned long reserve_pages = 0;
7705 enum zone_type i, j;
7707 for_each_online_pgdat(pgdat) {
7709 pgdat->totalreserve_pages = 0;
7711 for (i = 0; i < MAX_NR_ZONES; i++) {
7712 struct zone *zone = pgdat->node_zones + i;
7714 unsigned long managed_pages = zone_managed_pages(zone);
7716 /* Find valid and maximum lowmem_reserve in the zone */
7717 for (j = i; j < MAX_NR_ZONES; j++) {
7718 if (zone->lowmem_reserve[j] > max)
7719 max = zone->lowmem_reserve[j];
7722 /* we treat the high watermark as reserved pages. */
7723 max += high_wmark_pages(zone);
7725 if (max > managed_pages)
7726 max = managed_pages;
7728 pgdat->totalreserve_pages += max;
7730 reserve_pages += max;
7733 totalreserve_pages = reserve_pages;
7737 * setup_per_zone_lowmem_reserve - called whenever
7738 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7739 * has a correct pages reserved value, so an adequate number of
7740 * pages are left in the zone after a successful __alloc_pages().
7742 static void setup_per_zone_lowmem_reserve(void)
7744 struct pglist_data *pgdat;
7745 enum zone_type j, idx;
7747 for_each_online_pgdat(pgdat) {
7748 for (j = 0; j < MAX_NR_ZONES; j++) {
7749 struct zone *zone = pgdat->node_zones + j;
7750 unsigned long managed_pages = zone_managed_pages(zone);
7752 zone->lowmem_reserve[j] = 0;
7756 struct zone *lower_zone;
7759 lower_zone = pgdat->node_zones + idx;
7761 if (!sysctl_lowmem_reserve_ratio[idx] ||
7762 !zone_managed_pages(lower_zone)) {
7763 lower_zone->lowmem_reserve[j] = 0;
7766 lower_zone->lowmem_reserve[j] =
7767 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7769 managed_pages += zone_managed_pages(lower_zone);
7774 /* update totalreserve_pages */
7775 calculate_totalreserve_pages();
7778 static void __setup_per_zone_wmarks(void)
7780 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7781 unsigned long lowmem_pages = 0;
7783 unsigned long flags;
7785 /* Calculate total number of !ZONE_HIGHMEM pages */
7786 for_each_zone(zone) {
7787 if (!is_highmem(zone))
7788 lowmem_pages += zone_managed_pages(zone);
7791 for_each_zone(zone) {
7794 spin_lock_irqsave(&zone->lock, flags);
7795 tmp = (u64)pages_min * zone_managed_pages(zone);
7796 do_div(tmp, lowmem_pages);
7797 if (is_highmem(zone)) {
7799 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7800 * need highmem pages, so cap pages_min to a small
7803 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7804 * deltas control async page reclaim, and so should
7805 * not be capped for highmem.
7807 unsigned long min_pages;
7809 min_pages = zone_managed_pages(zone) / 1024;
7810 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7811 zone->_watermark[WMARK_MIN] = min_pages;
7814 * If it's a lowmem zone, reserve a number of pages
7815 * proportionate to the zone's size.
7817 zone->_watermark[WMARK_MIN] = tmp;
7821 * Set the kswapd watermarks distance according to the
7822 * scale factor in proportion to available memory, but
7823 * ensure a minimum size on small systems.
7825 tmp = max_t(u64, tmp >> 2,
7826 mult_frac(zone_managed_pages(zone),
7827 watermark_scale_factor, 10000));
7829 zone->watermark_boost = 0;
7830 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7831 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7833 spin_unlock_irqrestore(&zone->lock, flags);
7836 /* update totalreserve_pages */
7837 calculate_totalreserve_pages();
7841 * setup_per_zone_wmarks - called when min_free_kbytes changes
7842 * or when memory is hot-{added|removed}
7844 * Ensures that the watermark[min,low,high] values for each zone are set
7845 * correctly with respect to min_free_kbytes.
7847 void setup_per_zone_wmarks(void)
7849 static DEFINE_SPINLOCK(lock);
7852 __setup_per_zone_wmarks();
7857 * Initialise min_free_kbytes.
7859 * For small machines we want it small (128k min). For large machines
7860 * we want it large (256MB max). But it is not linear, because network
7861 * bandwidth does not increase linearly with machine size. We use
7863 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7864 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7880 int __meminit init_per_zone_wmark_min(void)
7882 unsigned long lowmem_kbytes;
7883 int new_min_free_kbytes;
7885 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7886 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7888 if (new_min_free_kbytes > user_min_free_kbytes) {
7889 min_free_kbytes = new_min_free_kbytes;
7890 if (min_free_kbytes < 128)
7891 min_free_kbytes = 128;
7892 if (min_free_kbytes > 262144)
7893 min_free_kbytes = 262144;
7895 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7896 new_min_free_kbytes, user_min_free_kbytes);
7898 setup_per_zone_wmarks();
7899 refresh_zone_stat_thresholds();
7900 setup_per_zone_lowmem_reserve();
7903 setup_min_unmapped_ratio();
7904 setup_min_slab_ratio();
7909 postcore_initcall(init_per_zone_wmark_min)
7912 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7913 * that we can call two helper functions whenever min_free_kbytes
7916 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7917 void *buffer, size_t *length, loff_t *ppos)
7921 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7926 user_min_free_kbytes = min_free_kbytes;
7927 setup_per_zone_wmarks();
7932 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7933 void *buffer, size_t *length, loff_t *ppos)
7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7942 setup_per_zone_wmarks();
7948 static void setup_min_unmapped_ratio(void)
7953 for_each_online_pgdat(pgdat)
7954 pgdat->min_unmapped_pages = 0;
7957 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7958 sysctl_min_unmapped_ratio) / 100;
7962 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7963 void *buffer, size_t *length, loff_t *ppos)
7967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971 setup_min_unmapped_ratio();
7976 static void setup_min_slab_ratio(void)
7981 for_each_online_pgdat(pgdat)
7982 pgdat->min_slab_pages = 0;
7985 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7986 sysctl_min_slab_ratio) / 100;
7989 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7990 void *buffer, size_t *length, loff_t *ppos)
7994 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 setup_min_slab_ratio();
8005 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8006 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8007 * whenever sysctl_lowmem_reserve_ratio changes.
8009 * The reserve ratio obviously has absolutely no relation with the
8010 * minimum watermarks. The lowmem reserve ratio can only make sense
8011 * if in function of the boot time zone sizes.
8013 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8014 void *buffer, size_t *length, loff_t *ppos)
8018 proc_dointvec_minmax(table, write, buffer, length, ppos);
8020 for (i = 0; i < MAX_NR_ZONES; i++) {
8021 if (sysctl_lowmem_reserve_ratio[i] < 1)
8022 sysctl_lowmem_reserve_ratio[i] = 0;
8025 setup_per_zone_lowmem_reserve();
8029 static void __zone_pcp_update(struct zone *zone)
8033 for_each_possible_cpu(cpu)
8034 pageset_set_high_and_batch(zone,
8035 per_cpu_ptr(zone->pageset, cpu));
8039 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8040 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8041 * pagelist can have before it gets flushed back to buddy allocator.
8043 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8044 void *buffer, size_t *length, loff_t *ppos)
8047 int old_percpu_pagelist_fraction;
8050 mutex_lock(&pcp_batch_high_lock);
8051 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8053 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8054 if (!write || ret < 0)
8057 /* Sanity checking to avoid pcp imbalance */
8058 if (percpu_pagelist_fraction &&
8059 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8060 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8066 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8069 for_each_populated_zone(zone)
8070 __zone_pcp_update(zone);
8072 mutex_unlock(&pcp_batch_high_lock);
8076 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8078 * Returns the number of pages that arch has reserved but
8079 * is not known to alloc_large_system_hash().
8081 static unsigned long __init arch_reserved_kernel_pages(void)
8088 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8089 * machines. As memory size is increased the scale is also increased but at
8090 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8091 * quadruples the scale is increased by one, which means the size of hash table
8092 * only doubles, instead of quadrupling as well.
8093 * Because 32-bit systems cannot have large physical memory, where this scaling
8094 * makes sense, it is disabled on such platforms.
8096 #if __BITS_PER_LONG > 32
8097 #define ADAPT_SCALE_BASE (64ul << 30)
8098 #define ADAPT_SCALE_SHIFT 2
8099 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103 * allocate a large system hash table from bootmem
8104 * - it is assumed that the hash table must contain an exact power-of-2
8105 * quantity of entries
8106 * - limit is the number of hash buckets, not the total allocation size
8108 void *__init alloc_large_system_hash(const char *tablename,
8109 unsigned long bucketsize,
8110 unsigned long numentries,
8113 unsigned int *_hash_shift,
8114 unsigned int *_hash_mask,
8115 unsigned long low_limit,
8116 unsigned long high_limit)
8118 unsigned long long max = high_limit;
8119 unsigned long log2qty, size;
8124 /* allow the kernel cmdline to have a say */
8126 /* round applicable memory size up to nearest megabyte */
8127 numentries = nr_kernel_pages;
8128 numentries -= arch_reserved_kernel_pages();
8130 /* It isn't necessary when PAGE_SIZE >= 1MB */
8131 if (PAGE_SHIFT < 20)
8132 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8134 #if __BITS_PER_LONG > 32
8136 unsigned long adapt;
8138 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8139 adapt <<= ADAPT_SCALE_SHIFT)
8144 /* limit to 1 bucket per 2^scale bytes of low memory */
8145 if (scale > PAGE_SHIFT)
8146 numentries >>= (scale - PAGE_SHIFT);
8148 numentries <<= (PAGE_SHIFT - scale);
8150 /* Make sure we've got at least a 0-order allocation.. */
8151 if (unlikely(flags & HASH_SMALL)) {
8152 /* Makes no sense without HASH_EARLY */
8153 WARN_ON(!(flags & HASH_EARLY));
8154 if (!(numentries >> *_hash_shift)) {
8155 numentries = 1UL << *_hash_shift;
8156 BUG_ON(!numentries);
8158 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8159 numentries = PAGE_SIZE / bucketsize;
8161 numentries = roundup_pow_of_two(numentries);
8163 /* limit allocation size to 1/16 total memory by default */
8165 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8166 do_div(max, bucketsize);
8168 max = min(max, 0x80000000ULL);
8170 if (numentries < low_limit)
8171 numentries = low_limit;
8172 if (numentries > max)
8175 log2qty = ilog2(numentries);
8177 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8180 size = bucketsize << log2qty;
8181 if (flags & HASH_EARLY) {
8182 if (flags & HASH_ZERO)
8183 table = memblock_alloc(size, SMP_CACHE_BYTES);
8185 table = memblock_alloc_raw(size,
8187 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8188 table = __vmalloc(size, gfp_flags);
8192 * If bucketsize is not a power-of-two, we may free
8193 * some pages at the end of hash table which
8194 * alloc_pages_exact() automatically does
8196 table = alloc_pages_exact(size, gfp_flags);
8197 kmemleak_alloc(table, size, 1, gfp_flags);
8199 } while (!table && size > PAGE_SIZE && --log2qty);
8202 panic("Failed to allocate %s hash table\n", tablename);
8204 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8205 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8206 virt ? "vmalloc" : "linear");
8209 *_hash_shift = log2qty;
8211 *_hash_mask = (1 << log2qty) - 1;
8217 * This function checks whether pageblock includes unmovable pages or not.
8219 * PageLRU check without isolation or lru_lock could race so that
8220 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8221 * check without lock_page also may miss some movable non-lru pages at
8222 * race condition. So you can't expect this function should be exact.
8224 * Returns a page without holding a reference. If the caller wants to
8225 * dereference that page (e.g., dumping), it has to make sure that it
8226 * cannot get removed (e.g., via memory unplug) concurrently.
8229 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8230 int migratetype, int flags)
8232 unsigned long iter = 0;
8233 unsigned long pfn = page_to_pfn(page);
8236 * TODO we could make this much more efficient by not checking every
8237 * page in the range if we know all of them are in MOVABLE_ZONE and
8238 * that the movable zone guarantees that pages are migratable but
8239 * the later is not the case right now unfortunatelly. E.g. movablecore
8240 * can still lead to having bootmem allocations in zone_movable.
8243 if (is_migrate_cma_page(page)) {
8245 * CMA allocations (alloc_contig_range) really need to mark
8246 * isolate CMA pageblocks even when they are not movable in fact
8247 * so consider them movable here.
8249 if (is_migrate_cma(migratetype))
8255 for (; iter < pageblock_nr_pages; iter++) {
8256 if (!pfn_valid_within(pfn + iter))
8259 page = pfn_to_page(pfn + iter);
8261 if (PageReserved(page))
8265 * If the zone is movable and we have ruled out all reserved
8266 * pages then it should be reasonably safe to assume the rest
8269 if (zone_idx(zone) == ZONE_MOVABLE)
8273 * Hugepages are not in LRU lists, but they're movable.
8274 * THPs are on the LRU, but need to be counted as #small pages.
8275 * We need not scan over tail pages because we don't
8276 * handle each tail page individually in migration.
8278 if (PageHuge(page) || PageTransCompound(page)) {
8279 struct page *head = compound_head(page);
8280 unsigned int skip_pages;
8282 if (PageHuge(page)) {
8283 if (!hugepage_migration_supported(page_hstate(head)))
8285 } else if (!PageLRU(head) && !__PageMovable(head)) {
8289 skip_pages = compound_nr(head) - (page - head);
8290 iter += skip_pages - 1;
8295 * We can't use page_count without pin a page
8296 * because another CPU can free compound page.
8297 * This check already skips compound tails of THP
8298 * because their page->_refcount is zero at all time.
8300 if (!page_ref_count(page)) {
8301 if (PageBuddy(page))
8302 iter += (1 << page_order(page)) - 1;
8307 * The HWPoisoned page may be not in buddy system, and
8308 * page_count() is not 0.
8310 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8314 * We treat all PageOffline() pages as movable when offlining
8315 * to give drivers a chance to decrement their reference count
8316 * in MEM_GOING_OFFLINE in order to indicate that these pages
8317 * can be offlined as there are no direct references anymore.
8318 * For actually unmovable PageOffline() where the driver does
8319 * not support this, we will fail later when trying to actually
8320 * move these pages that still have a reference count > 0.
8321 * (false negatives in this function only)
8323 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8326 if (__PageMovable(page) || PageLRU(page))
8330 * If there are RECLAIMABLE pages, we need to check
8331 * it. But now, memory offline itself doesn't call
8332 * shrink_node_slabs() and it still to be fixed.
8335 * If the page is not RAM, page_count()should be 0.
8336 * we don't need more check. This is an _used_ not-movable page.
8338 * The problematic thing here is PG_reserved pages. PG_reserved
8339 * is set to both of a memory hole page and a _used_ kernel
8347 #ifdef CONFIG_CONTIG_ALLOC
8348 static unsigned long pfn_max_align_down(unsigned long pfn)
8350 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8351 pageblock_nr_pages) - 1);
8354 static unsigned long pfn_max_align_up(unsigned long pfn)
8356 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8357 pageblock_nr_pages));
8360 /* [start, end) must belong to a single zone. */
8361 static int __alloc_contig_migrate_range(struct compact_control *cc,
8362 unsigned long start, unsigned long end)
8364 /* This function is based on compact_zone() from compaction.c. */
8365 unsigned int nr_reclaimed;
8366 unsigned long pfn = start;
8367 unsigned int tries = 0;
8369 struct migration_target_control mtc = {
8370 .nid = zone_to_nid(cc->zone),
8371 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8376 while (pfn < end || !list_empty(&cc->migratepages)) {
8377 if (fatal_signal_pending(current)) {
8382 if (list_empty(&cc->migratepages)) {
8383 cc->nr_migratepages = 0;
8384 pfn = isolate_migratepages_range(cc, pfn, end);
8390 } else if (++tries == 5) {
8391 ret = ret < 0 ? ret : -EBUSY;
8395 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8397 cc->nr_migratepages -= nr_reclaimed;
8399 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8400 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8403 putback_movable_pages(&cc->migratepages);
8410 * alloc_contig_range() -- tries to allocate given range of pages
8411 * @start: start PFN to allocate
8412 * @end: one-past-the-last PFN to allocate
8413 * @migratetype: migratetype of the underlaying pageblocks (either
8414 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8415 * in range must have the same migratetype and it must
8416 * be either of the two.
8417 * @gfp_mask: GFP mask to use during compaction
8419 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8420 * aligned. The PFN range must belong to a single zone.
8422 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8423 * pageblocks in the range. Once isolated, the pageblocks should not
8424 * be modified by others.
8426 * Return: zero on success or negative error code. On success all
8427 * pages which PFN is in [start, end) are allocated for the caller and
8428 * need to be freed with free_contig_range().
8430 int alloc_contig_range(unsigned long start, unsigned long end,
8431 unsigned migratetype, gfp_t gfp_mask)
8433 unsigned long outer_start, outer_end;
8437 struct compact_control cc = {
8438 .nr_migratepages = 0,
8440 .zone = page_zone(pfn_to_page(start)),
8441 .mode = MIGRATE_SYNC,
8442 .ignore_skip_hint = true,
8443 .no_set_skip_hint = true,
8444 .gfp_mask = current_gfp_context(gfp_mask),
8445 .alloc_contig = true,
8447 INIT_LIST_HEAD(&cc.migratepages);
8450 * What we do here is we mark all pageblocks in range as
8451 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8452 * have different sizes, and due to the way page allocator
8453 * work, we align the range to biggest of the two pages so
8454 * that page allocator won't try to merge buddies from
8455 * different pageblocks and change MIGRATE_ISOLATE to some
8456 * other migration type.
8458 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8459 * migrate the pages from an unaligned range (ie. pages that
8460 * we are interested in). This will put all the pages in
8461 * range back to page allocator as MIGRATE_ISOLATE.
8463 * When this is done, we take the pages in range from page
8464 * allocator removing them from the buddy system. This way
8465 * page allocator will never consider using them.
8467 * This lets us mark the pageblocks back as
8468 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8469 * aligned range but not in the unaligned, original range are
8470 * put back to page allocator so that buddy can use them.
8473 ret = start_isolate_page_range(pfn_max_align_down(start),
8474 pfn_max_align_up(end), migratetype, 0);
8479 * In case of -EBUSY, we'd like to know which page causes problem.
8480 * So, just fall through. test_pages_isolated() has a tracepoint
8481 * which will report the busy page.
8483 * It is possible that busy pages could become available before
8484 * the call to test_pages_isolated, and the range will actually be
8485 * allocated. So, if we fall through be sure to clear ret so that
8486 * -EBUSY is not accidentally used or returned to caller.
8488 ret = __alloc_contig_migrate_range(&cc, start, end);
8489 if (ret && ret != -EBUSY)
8494 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8495 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8496 * more, all pages in [start, end) are free in page allocator.
8497 * What we are going to do is to allocate all pages from
8498 * [start, end) (that is remove them from page allocator).
8500 * The only problem is that pages at the beginning and at the
8501 * end of interesting range may be not aligned with pages that
8502 * page allocator holds, ie. they can be part of higher order
8503 * pages. Because of this, we reserve the bigger range and
8504 * once this is done free the pages we are not interested in.
8506 * We don't have to hold zone->lock here because the pages are
8507 * isolated thus they won't get removed from buddy.
8510 lru_add_drain_all();
8513 outer_start = start;
8514 while (!PageBuddy(pfn_to_page(outer_start))) {
8515 if (++order >= MAX_ORDER) {
8516 outer_start = start;
8519 outer_start &= ~0UL << order;
8522 if (outer_start != start) {
8523 order = page_order(pfn_to_page(outer_start));
8526 * outer_start page could be small order buddy page and
8527 * it doesn't include start page. Adjust outer_start
8528 * in this case to report failed page properly
8529 * on tracepoint in test_pages_isolated()
8531 if (outer_start + (1UL << order) <= start)
8532 outer_start = start;
8535 /* Make sure the range is really isolated. */
8536 if (test_pages_isolated(outer_start, end, 0)) {
8537 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8538 __func__, outer_start, end);
8543 /* Grab isolated pages from freelists. */
8544 outer_end = isolate_freepages_range(&cc, outer_start, end);
8550 /* Free head and tail (if any) */
8551 if (start != outer_start)
8552 free_contig_range(outer_start, start - outer_start);
8553 if (end != outer_end)
8554 free_contig_range(end, outer_end - end);
8557 undo_isolate_page_range(pfn_max_align_down(start),
8558 pfn_max_align_up(end), migratetype);
8561 EXPORT_SYMBOL(alloc_contig_range);
8563 static int __alloc_contig_pages(unsigned long start_pfn,
8564 unsigned long nr_pages, gfp_t gfp_mask)
8566 unsigned long end_pfn = start_pfn + nr_pages;
8568 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8572 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8573 unsigned long nr_pages)
8575 unsigned long i, end_pfn = start_pfn + nr_pages;
8578 for (i = start_pfn; i < end_pfn; i++) {
8579 page = pfn_to_online_page(i);
8583 if (page_zone(page) != z)
8586 if (PageReserved(page))
8589 if (page_count(page) > 0)
8598 static bool zone_spans_last_pfn(const struct zone *zone,
8599 unsigned long start_pfn, unsigned long nr_pages)
8601 unsigned long last_pfn = start_pfn + nr_pages - 1;
8603 return zone_spans_pfn(zone, last_pfn);
8607 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8608 * @nr_pages: Number of contiguous pages to allocate
8609 * @gfp_mask: GFP mask to limit search and used during compaction
8611 * @nodemask: Mask for other possible nodes
8613 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8614 * on an applicable zonelist to find a contiguous pfn range which can then be
8615 * tried for allocation with alloc_contig_range(). This routine is intended
8616 * for allocation requests which can not be fulfilled with the buddy allocator.
8618 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8619 * power of two then the alignment is guaranteed to be to the given nr_pages
8620 * (e.g. 1GB request would be aligned to 1GB).
8622 * Allocated pages can be freed with free_contig_range() or by manually calling
8623 * __free_page() on each allocated page.
8625 * Return: pointer to contiguous pages on success, or NULL if not successful.
8627 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8628 int nid, nodemask_t *nodemask)
8630 unsigned long ret, pfn, flags;
8631 struct zonelist *zonelist;
8635 zonelist = node_zonelist(nid, gfp_mask);
8636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8637 gfp_zone(gfp_mask), nodemask) {
8638 spin_lock_irqsave(&zone->lock, flags);
8640 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8641 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8642 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8644 * We release the zone lock here because
8645 * alloc_contig_range() will also lock the zone
8646 * at some point. If there's an allocation
8647 * spinning on this lock, it may win the race
8648 * and cause alloc_contig_range() to fail...
8650 spin_unlock_irqrestore(&zone->lock, flags);
8651 ret = __alloc_contig_pages(pfn, nr_pages,
8654 return pfn_to_page(pfn);
8655 spin_lock_irqsave(&zone->lock, flags);
8659 spin_unlock_irqrestore(&zone->lock, flags);
8663 #endif /* CONFIG_CONTIG_ALLOC */
8665 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8667 unsigned int count = 0;
8669 for (; nr_pages--; pfn++) {
8670 struct page *page = pfn_to_page(pfn);
8672 count += page_count(page) != 1;
8675 WARN(count != 0, "%d pages are still in use!\n", count);
8677 EXPORT_SYMBOL(free_contig_range);
8680 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8681 * page high values need to be recalulated.
8683 void __meminit zone_pcp_update(struct zone *zone)
8685 mutex_lock(&pcp_batch_high_lock);
8686 __zone_pcp_update(zone);
8687 mutex_unlock(&pcp_batch_high_lock);
8690 void zone_pcp_reset(struct zone *zone)
8692 unsigned long flags;
8694 struct per_cpu_pageset *pset;
8696 /* avoid races with drain_pages() */
8697 local_irq_save(flags);
8698 if (zone->pageset != &boot_pageset) {
8699 for_each_online_cpu(cpu) {
8700 pset = per_cpu_ptr(zone->pageset, cpu);
8701 drain_zonestat(zone, pset);
8703 free_percpu(zone->pageset);
8704 zone->pageset = &boot_pageset;
8706 local_irq_restore(flags);
8709 #ifdef CONFIG_MEMORY_HOTREMOVE
8711 * All pages in the range must be in a single zone and isolated
8712 * before calling this.
8715 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8721 unsigned long flags;
8722 unsigned long offlined_pages = 0;
8724 /* find the first valid pfn */
8725 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8729 return offlined_pages;
8731 offline_mem_sections(pfn, end_pfn);
8732 zone = page_zone(pfn_to_page(pfn));
8733 spin_lock_irqsave(&zone->lock, flags);
8735 while (pfn < end_pfn) {
8736 if (!pfn_valid(pfn)) {
8740 page = pfn_to_page(pfn);
8742 * The HWPoisoned page may be not in buddy system, and
8743 * page_count() is not 0.
8745 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8751 * At this point all remaining PageOffline() pages have a
8752 * reference count of 0 and can simply be skipped.
8754 if (PageOffline(page)) {
8755 BUG_ON(page_count(page));
8756 BUG_ON(PageBuddy(page));
8762 BUG_ON(page_count(page));
8763 BUG_ON(!PageBuddy(page));
8764 order = page_order(page);
8765 offlined_pages += 1 << order;
8766 del_page_from_free_list(page, zone, order);
8767 pfn += (1 << order);
8769 spin_unlock_irqrestore(&zone->lock, flags);
8771 return offlined_pages;
8775 bool is_free_buddy_page(struct page *page)
8777 struct zone *zone = page_zone(page);
8778 unsigned long pfn = page_to_pfn(page);
8779 unsigned long flags;
8782 spin_lock_irqsave(&zone->lock, flags);
8783 for (order = 0; order < MAX_ORDER; order++) {
8784 struct page *page_head = page - (pfn & ((1 << order) - 1));
8786 if (PageBuddy(page_head) && page_order(page_head) >= order)
8789 spin_unlock_irqrestore(&zone->lock, flags);
8791 return order < MAX_ORDER;
8794 #ifdef CONFIG_MEMORY_FAILURE
8796 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8797 * test is performed under the zone lock to prevent a race against page
8800 bool set_hwpoison_free_buddy_page(struct page *page)
8802 struct zone *zone = page_zone(page);
8803 unsigned long pfn = page_to_pfn(page);
8804 unsigned long flags;
8806 bool hwpoisoned = false;
8808 spin_lock_irqsave(&zone->lock, flags);
8809 for (order = 0; order < MAX_ORDER; order++) {
8810 struct page *page_head = page - (pfn & ((1 << order) - 1));
8812 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8813 if (!TestSetPageHWPoison(page))
8818 spin_unlock_irqrestore(&zone->lock, flags);