2 * X86 specific Hyper-V initialization code.
4 * Copyright (C) 2016, Microsoft, Inc.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more
20 #include <linux/efi.h>
21 #include <linux/types.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
35 #ifdef CONFIG_HYPERV_TSCPAGE
37 static struct ms_hyperv_tsc_page *tsc_pg;
39 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
45 static u64 read_hv_clock_tsc(struct clocksource *arg)
47 u64 current_tick = hv_read_tsc_page(tsc_pg);
49 if (current_tick == U64_MAX)
50 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
55 static struct clocksource hyperv_cs_tsc = {
56 .name = "hyperv_clocksource_tsc_page",
58 .read = read_hv_clock_tsc,
59 .mask = CLOCKSOURCE_MASK(64),
60 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
64 static u64 read_hv_clock_msr(struct clocksource *arg)
68 * Read the partition counter to get the current tick count. This count
69 * is set to 0 when the partition is created and is incremented in
70 * 100 nanosecond units.
72 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
76 static struct clocksource hyperv_cs_msr = {
77 .name = "hyperv_clocksource_msr",
79 .read = read_hv_clock_msr,
80 .mask = CLOCKSOURCE_MASK(64),
81 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 void *hv_hypercall_pg;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
86 struct clocksource *hyperv_cs;
87 EXPORT_SYMBOL_GPL(hyperv_cs);
90 EXPORT_SYMBOL_GPL(hv_vp_index);
92 struct hv_vp_assist_page **hv_vp_assist_page;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
95 void __percpu **hyperv_pcpu_input_arg;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
99 EXPORT_SYMBOL_GPL(hv_max_vp_index);
101 static int hv_cpu_init(unsigned int cpu)
104 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
108 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
109 pg = alloc_page(GFP_KERNEL);
112 *input_arg = page_address(pg);
114 hv_get_vp_index(msr_vp_index);
116 hv_vp_index[smp_processor_id()] = msr_vp_index;
118 if (msr_vp_index > hv_max_vp_index)
119 hv_max_vp_index = msr_vp_index;
121 if (!hv_vp_assist_page)
125 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
130 val = vmalloc_to_pfn(*hvp);
131 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
132 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
134 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
140 static void (*hv_reenlightenment_cb)(void);
142 static void hv_reenlightenment_notify(struct work_struct *dummy)
144 struct hv_tsc_emulation_status emu_status;
146 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
148 /* Don't issue the callback if TSC accesses are not emulated */
149 if (hv_reenlightenment_cb && emu_status.inprogress)
150 hv_reenlightenment_cb();
152 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
154 void hyperv_stop_tsc_emulation(void)
157 struct hv_tsc_emulation_status emu_status;
159 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
160 emu_status.inprogress = 0;
161 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
163 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
164 tsc_khz = div64_u64(freq, 1000);
166 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
168 static inline bool hv_reenlightenment_available(void)
171 * Check for required features and priviliges to make TSC frequency
172 * change notifications work.
174 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
175 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
176 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
179 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
183 inc_irq_stat(irq_hv_reenlightenment_count);
185 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
190 void set_hv_tscchange_cb(void (*cb)(void))
192 struct hv_reenlightenment_control re_ctrl = {
193 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
195 .target_vp = hv_vp_index[smp_processor_id()]
197 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
199 if (!hv_reenlightenment_available()) {
200 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
204 hv_reenlightenment_cb = cb;
206 /* Make sure callback is registered before we write to MSRs */
209 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
210 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
212 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
214 void clear_hv_tscchange_cb(void)
216 struct hv_reenlightenment_control re_ctrl;
218 if (!hv_reenlightenment_available())
221 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
223 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
225 hv_reenlightenment_cb = NULL;
227 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
229 static int hv_cpu_die(unsigned int cpu)
231 struct hv_reenlightenment_control re_ctrl;
232 unsigned int new_cpu;
235 void *input_pg = NULL;
237 local_irq_save(flags);
238 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
239 input_pg = *input_arg;
241 local_irq_restore(flags);
242 free_page((unsigned long)input_pg);
244 if (hv_vp_assist_page && hv_vp_assist_page[cpu])
245 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
247 if (hv_reenlightenment_cb == NULL)
250 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
251 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
252 /* Reassign to some other online CPU */
253 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
255 re_ctrl.target_vp = hv_vp_index[new_cpu];
256 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
262 static int __init hv_pci_init(void)
264 int gen2vm = efi_enabled(EFI_BOOT);
267 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
268 * The purpose is to suppress the harmless warning:
269 * "PCI: Fatal: No config space access function found"
274 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
279 * This function is to be invoked early in the boot sequence after the
280 * hypervisor has been detected.
282 * 1. Setup the hypercall page.
283 * 2. Register Hyper-V specific clocksource.
284 * 3. Setup Hyper-V specific APIC entry points.
286 void __init hyperv_init(void)
288 u64 guest_id, required_msrs;
289 union hv_x64_msr_hypercall_contents hypercall_msr;
292 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
295 /* Absolutely required MSRs */
296 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
297 HV_X64_MSR_VP_INDEX_AVAILABLE;
299 if ((ms_hyperv.features & required_msrs) != required_msrs)
303 * Allocate the per-CPU state for the hypercall input arg.
304 * If this allocation fails, we will not be able to setup
305 * (per-CPU) hypercall input page and thus this failure is
308 hyperv_pcpu_input_arg = alloc_percpu(void *);
310 BUG_ON(hyperv_pcpu_input_arg == NULL);
312 /* Allocate percpu VP index */
313 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
318 for (i = 0; i < num_possible_cpus(); i++)
319 hv_vp_index[i] = VP_INVAL;
321 hv_vp_assist_page = kcalloc(num_possible_cpus(),
322 sizeof(*hv_vp_assist_page), GFP_KERNEL);
323 if (!hv_vp_assist_page) {
324 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
328 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
329 hv_cpu_init, hv_cpu_die);
331 goto free_vp_assist_page;
334 * Setup the hypercall page and enable hypercalls.
335 * 1. Register the guest ID
336 * 2. Enable the hypercall and register the hypercall page
338 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
339 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
341 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
342 if (hv_hypercall_pg == NULL) {
343 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
344 goto remove_cpuhp_state;
347 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
348 hypercall_msr.enable = 1;
349 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
350 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
354 x86_init.pci.arch_init = hv_pci_init;
357 * Register Hyper-V specific clocksource.
359 #ifdef CONFIG_HYPERV_TSCPAGE
360 if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
361 union hv_x64_msr_hypercall_contents tsc_msr;
363 tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
365 goto register_msr_cs;
367 hyperv_cs = &hyperv_cs_tsc;
369 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
372 tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
374 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
376 hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
378 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
384 * For 32 bit guests just use the MSR based mechanism for reading
385 * the partition counter.
388 hyperv_cs = &hyperv_cs_msr;
389 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
390 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
395 cpuhp_remove_state(cpuhp);
397 kfree(hv_vp_assist_page);
398 hv_vp_assist_page = NULL;
405 * This routine is called before kexec/kdump, it does the required cleanup.
407 void hyperv_cleanup(void)
409 union hv_x64_msr_hypercall_contents hypercall_msr;
411 /* Reset our OS id */
412 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
415 * Reset hypercall page reference before reset the page,
416 * let hypercall operations fail safely rather than
417 * panic the kernel for using invalid hypercall page
419 hv_hypercall_pg = NULL;
421 /* Reset the hypercall page */
422 hypercall_msr.as_uint64 = 0;
423 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
425 /* Reset the TSC page */
426 hypercall_msr.as_uint64 = 0;
427 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
429 EXPORT_SYMBOL_GPL(hyperv_cleanup);
431 void hyperv_report_panic(struct pt_regs *regs, long err)
433 static bool panic_reported;
437 * We prefer to report panic on 'die' chain as we have proper
438 * registers to report, but if we miss it (e.g. on BUG()) we need
439 * to report it on 'panic'.
443 panic_reported = true;
445 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
447 wrmsrl(HV_X64_MSR_CRASH_P0, err);
448 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
449 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
450 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
451 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
454 * Let Hyper-V know there is crash data available
456 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
458 EXPORT_SYMBOL_GPL(hyperv_report_panic);
461 * hyperv_report_panic_msg - report panic message to Hyper-V
462 * @pa: physical address of the panic page containing the message
463 * @size: size of the message in the page
465 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
468 * P3 to contain the physical address of the panic page & P4 to
469 * contain the size of the panic data in that page. Rest of the
470 * registers are no-op when the NOTIFY_MSG flag is set.
472 wrmsrl(HV_X64_MSR_CRASH_P0, 0);
473 wrmsrl(HV_X64_MSR_CRASH_P1, 0);
474 wrmsrl(HV_X64_MSR_CRASH_P2, 0);
475 wrmsrl(HV_X64_MSR_CRASH_P3, pa);
476 wrmsrl(HV_X64_MSR_CRASH_P4, size);
479 * Let Hyper-V know there is crash data available along with
482 wrmsrl(HV_X64_MSR_CRASH_CTL,
483 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
485 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
487 bool hv_is_hyperv_initialized(void)
489 union hv_x64_msr_hypercall_contents hypercall_msr;
492 * Ensure that we're really on Hyper-V, and not a KVM or Xen
493 * emulation of Hyper-V
495 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
499 * Verify that earlier initialization succeeded by checking
500 * that the hypercall page is setup
502 hypercall_msr.as_uint64 = 0;
503 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
505 return hypercall_msr.enable;
507 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);