2 * Port on Texas Instruments TMS320C6x architecture
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
35 #include <asm/clock.h>
37 #include <asm/special_insns.h>
39 static const char *c6x_soc_name;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
48 * Device status register. This holds information
49 * about device configuration needed by some drivers.
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
55 * Some SoCs have fuse registers holding a unique MAC
56 * address. This is parsed out of the device tree with
57 * the resulting MAC being held here.
59 unsigned char c6x_fuse_mac[6];
61 unsigned long memory_start;
62 unsigned long memory_end;
64 unsigned long ram_start;
65 unsigned long ram_end;
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
71 char c6x_command_line[COMMAND_LINE_SIZE];
73 #if defined(CONFIG_CMDLINE_BOOL)
74 static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
80 const char *cpu_voltage;
88 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
90 unsigned int ticks_per_ns_scaled;
91 EXPORT_SYMBOL(ticks_per_ns_scaled);
93 unsigned int c6x_core_freq;
95 static void __init get_cpuinfo(void)
97 unsigned cpu_id, rev_id, csr;
98 struct clk *coreclk = clk_get_sys(NULL, "core");
99 unsigned long core_khz;
101 struct cpuinfo_c6x *p;
102 struct device_node *node, *np;
104 p = &per_cpu(cpu_data, smp_processor_id());
106 if (!IS_ERR(coreclk))
107 c6x_core_freq = clk_get_rate(coreclk);
110 "Cannot find core clock frequency. Using 700MHz\n");
111 c6x_core_freq = 700000000;
114 core_khz = c6x_core_freq / 1000;
116 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
117 do_div(tmp, 1000000);
118 ticks_per_ns_scaled = tmp;
122 rev_id = (csr >> 16) & 0xff;
126 p->cpu_voltage = "unknown";
130 p->cpu_name = "C67x";
134 p->cpu_name = "C62x";
137 p->cpu_name = "C64x";
140 p->cpu_name = "C64x";
143 p->cpu_name = "C64x+";
144 p->cpu_voltage = "1.2";
147 p->cpu_name = "C66X";
148 p->cpu_voltage = "1.2";
151 p->cpu_name = "unknown";
159 p->cpu_rev = "DM640/DM641/DM642/DM643";
160 p->cpu_voltage = "1.2 - 1.4";
162 p->cpu_rev = "C6201";
163 p->cpu_voltage = "2.5";
167 p->cpu_rev = "C6201B/C6202/C6211";
168 p->cpu_voltage = "1.8";
171 p->cpu_rev = "C6202B/C6203/C6204/C6205";
172 p->cpu_voltage = "1.5";
175 p->cpu_rev = "C6701 revision 0 (early CPU)";
176 p->cpu_voltage = "1.8";
179 p->cpu_rev = "C6701/C6711/C6712";
180 p->cpu_voltage = "1.8";
184 p->cpu_voltage = "1.5";
187 p->cpu_rev = "unknown";
190 p->cpu_rev = p->__cpu_rev;
191 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
194 p->core_id = get_coreid();
196 node = of_find_node_by_name(NULL, "cpus");
198 for_each_child_of_node(node, np)
199 if (!strcmp("cpu", np->name))
204 node = of_find_node_by_name(NULL, "soc");
206 if (of_property_read_string(node, "model", &c6x_soc_name))
207 c6x_soc_name = "unknown";
210 c6x_soc_name = "unknown";
212 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
213 p->core_id, p->cpu_name, p->cpu_rev,
214 p->cpu_voltage, c6x_core_freq / 1000000);
218 * Early parsing of the command line
220 static u32 mem_size __initdata;
222 /* "mem=" parsing. */
223 static int __init early_mem(char *p)
228 mem_size = memparse(p, &p);
229 /* don't remove all of memory when handling "mem={invalid}" */
235 early_param("mem", early_mem);
237 /* "memdma=<size>[@<address>]" parsing. */
238 static int __init early_memdma(char *p)
243 dma_size = memparse(p, &p);
245 dma_start = memparse(p, &p);
249 early_param("memdma", early_memdma);
251 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
253 static int ram_found __initdata;
255 /* We only handle one bank (the one with PAGE_OFFSET) for now */
259 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
263 ram_end = start + size;
270 * Do early machine setup and device tree parsing. This is called very
271 * early on the boot process.
273 notrace void __init machine_init(unsigned long dt_ptr)
275 struct boot_param_header *dtb = __va(dt_ptr);
276 struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
278 /* interrupts must be masked */
282 * Set the Interrupt Service Table (IST) to the beginning of the
285 set_ist(_vectors_start);
290 * dtb is passed in from bootloader.
291 * fdt is linked in blob.
293 if (dtb && dtb != fdt)
296 /* Do some early initialization based on the flat device tree */
297 early_init_devtree(fdt);
299 /* parse_early_param needs a boot_command_line */
300 strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
304 void __init setup_arch(char **cmdline_p)
307 struct memblock_region *reg;
309 printk(KERN_INFO "Initializing kernel\n");
311 /* Initialize command line */
312 *cmdline_p = c6x_command_line;
314 memory_end = ram_end;
315 memory_end &= ~(PAGE_SIZE - 1);
317 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
318 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
320 /* add block that this kernel can use */
321 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
323 /* reserve kernel text/data/bss */
324 memblock_reserve(PAGE_OFFSET,
325 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
328 /* align to cacheability granularity */
329 dma_size = CACHE_REGION_END(dma_size);
332 dma_start = memory_end - dma_size;
334 /* align to cacheability granularity */
335 dma_start = CACHE_REGION_START(dma_start);
337 /* reserve DMA memory taken from kernel memory */
338 if (memblock_is_region_memory(dma_start, dma_size))
339 memblock_reserve(dma_start, dma_size);
342 memory_start = PAGE_ALIGN((unsigned int) &_end);
344 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
345 memory_start, memory_end);
347 #ifdef CONFIG_BLK_DEV_INITRD
349 * Reserve initrd memory if in kernel memory.
351 if (initrd_start < initrd_end)
352 if (memblock_is_region_memory(initrd_start,
353 initrd_end - initrd_start))
354 memblock_reserve(initrd_start,
355 initrd_end - initrd_start);
358 init_mm.start_code = (unsigned long) &_stext;
359 init_mm.end_code = (unsigned long) &_etext;
360 init_mm.end_data = memory_start;
361 init_mm.brk = memory_start;
364 * Give all the memory to the bootmap allocator, tell it to put the
365 * boot mem_map at the start of memory
367 bootmap_size = init_bootmem_node(NODE_DATA(0),
368 memory_start >> PAGE_SHIFT,
369 PAGE_OFFSET >> PAGE_SHIFT,
370 memory_end >> PAGE_SHIFT);
371 memblock_reserve(memory_start, bootmap_size);
373 unflatten_device_tree();
377 /* Set the whole external memory as non-cacheable */
378 disable_caching(ram_start, ram_end - 1);
380 /* Set caching of external RAM used by Linux */
381 for_each_memblock(memory, reg)
382 enable_caching(CACHE_REGION_START(reg->base),
383 CACHE_REGION_START(reg->base + reg->size - 1));
385 #ifdef CONFIG_BLK_DEV_INITRD
387 * Enable caching for initrd which falls outside kernel memory.
389 if (initrd_start < initrd_end) {
390 if (!memblock_is_region_memory(initrd_start,
391 initrd_end - initrd_start))
392 enable_caching(CACHE_REGION_START(initrd_start),
393 CACHE_REGION_START(initrd_end - 1));
398 * Disable caching for dma coherent memory taken from kernel memory.
400 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
401 disable_caching(dma_start,
402 CACHE_REGION_START(dma_start + dma_size - 1));
404 /* Initialize the coherent memory allocator */
405 coherent_mem_init(dma_start, dma_size);
408 * Free all memory as a starting point.
410 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
413 * Then reserve memory which is already being used.
415 for_each_memblock(reserved, reg) {
416 pr_debug("reserved - 0x%08x-0x%08x\n",
417 (u32) reg->base, (u32) reg->size);
418 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
421 max_low_pfn = PFN_DOWN(memory_end);
422 min_low_pfn = PFN_UP(memory_start);
423 max_mapnr = max_low_pfn - min_low_pfn;
425 /* Get kmalloc into gear */
429 * Probe for Device State Configuration Registers.
430 * We have to do this early in case timer needs to be enabled
435 /* We do this early for timer and core clock frequency */
441 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
442 conswitchp = &dummy_con;
446 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
447 #define ptr_to_cpu(p) ((long)(p) - 1)
449 static int show_cpuinfo(struct seq_file *m, void *v)
451 int n = ptr_to_cpu(v);
452 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
457 "soc revision\t: 0x%x\n"
459 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
466 "core revision\t: %s\n"
467 "core voltage\t: %s\n"
472 "bogomips\t: %lu.%02lu\n\n",
474 p->cpu_name, p->cpu_rev, p->cpu_voltage,
475 p->core_id, p->mmu, p->fpu,
476 (c6x_core_freq + 500000) / 1000000,
477 (loops_per_jiffy/(500000/HZ)),
478 (loops_per_jiffy/(5000/HZ))%100);
483 static void *c_start(struct seq_file *m, loff_t *pos)
485 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
487 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
492 static void c_stop(struct seq_file *m, void *v)
496 const struct seq_operations cpuinfo_op = {
503 static struct cpu cpu_devices[NR_CPUS];
505 static int __init topology_init(void)
509 for_each_present_cpu(i)
510 register_cpu(&cpu_devices[i], i);
515 subsys_initcall(topology_init);