2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
118 static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
139 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
140 bytes - PAGE_SIZE, false);
143 static int btrfs_dirty_inode(struct inode *inode);
145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
146 void btrfs_test_inode_set_ops(struct inode *inode)
148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
152 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
153 struct inode *inode, struct inode *dir,
154 const struct qstr *qstr)
158 err = btrfs_init_acl(trans, inode, dir);
160 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
165 * this does all the hard work for inserting an inline extent into
166 * the btree. The caller should have done a btrfs_drop_extents so that
167 * no overlapping inline items exist in the btree
169 static int insert_inline_extent(struct btrfs_trans_handle *trans,
170 struct btrfs_path *path, int extent_inserted,
171 struct btrfs_root *root, struct inode *inode,
172 u64 start, size_t size, size_t compressed_size,
174 struct page **compressed_pages)
176 struct extent_buffer *leaf;
177 struct page *page = NULL;
180 struct btrfs_file_extent_item *ei;
183 size_t cur_size = size;
184 unsigned long offset;
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
189 inode_add_bytes(inode, size);
191 if (!extent_inserted) {
192 struct btrfs_key key;
195 key.objectid = btrfs_ino(BTRFS_I(inode));
197 key.type = BTRFS_EXTENT_DATA_KEY;
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
208 leaf = path->nodes[0];
209 ei = btrfs_item_ptr(leaf, path->slots[0],
210 struct btrfs_file_extent_item);
211 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
212 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
213 btrfs_set_file_extent_encryption(leaf, ei, 0);
214 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
215 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
216 ptr = btrfs_file_extent_inline_start(ei);
218 if (compress_type != BTRFS_COMPRESS_NONE) {
221 while (compressed_size > 0) {
222 cpage = compressed_pages[i];
223 cur_size = min_t(unsigned long, compressed_size,
226 kaddr = kmap_atomic(cpage);
227 write_extent_buffer(leaf, kaddr, ptr, cur_size);
228 kunmap_atomic(kaddr);
232 compressed_size -= cur_size;
234 btrfs_set_file_extent_compression(leaf, ei,
237 page = find_get_page(inode->i_mapping,
238 start >> PAGE_SHIFT);
239 btrfs_set_file_extent_compression(leaf, ei, 0);
240 kaddr = kmap_atomic(page);
241 offset = start & (PAGE_SIZE - 1);
242 write_extent_buffer(leaf, kaddr + offset, ptr, size);
243 kunmap_atomic(kaddr);
246 btrfs_mark_buffer_dirty(leaf);
247 btrfs_release_path(path);
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
268 * conditionally insert an inline extent into the file. This
269 * does the checks required to make sure the data is small enough
270 * to fit as an inline extent.
272 static noinline int cow_file_range_inline(struct btrfs_root *root,
273 struct inode *inode, u64 start,
274 u64 end, size_t compressed_size,
276 struct page **compressed_pages)
278 struct btrfs_fs_info *fs_info = root->fs_info;
279 struct btrfs_trans_handle *trans;
280 u64 isize = i_size_read(inode);
281 u64 actual_end = min(end + 1, isize);
282 u64 inline_len = actual_end - start;
283 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
284 u64 data_len = inline_len;
286 struct btrfs_path *path;
287 int extent_inserted = 0;
288 u32 extent_item_size;
291 data_len = compressed_size;
294 actual_end > fs_info->sectorsize ||
295 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
297 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
299 data_len > fs_info->max_inline) {
303 path = btrfs_alloc_path();
307 trans = btrfs_join_transaction(root);
309 btrfs_free_path(path);
310 return PTR_ERR(trans);
312 trans->block_rsv = &fs_info->delalloc_block_rsv;
314 if (compressed_size && compressed_pages)
315 extent_item_size = btrfs_file_extent_calc_inline_size(
318 extent_item_size = btrfs_file_extent_calc_inline_size(
321 ret = __btrfs_drop_extents(trans, root, inode, path,
322 start, aligned_end, NULL,
323 1, 1, extent_item_size, &extent_inserted);
325 btrfs_abort_transaction(trans, ret);
329 if (isize > actual_end)
330 inline_len = min_t(u64, isize, actual_end);
331 ret = insert_inline_extent(trans, path, extent_inserted,
333 inline_len, compressed_size,
334 compress_type, compressed_pages);
335 if (ret && ret != -ENOSPC) {
336 btrfs_abort_transaction(trans, ret);
338 } else if (ret == -ENOSPC) {
343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
344 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
353 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
354 btrfs_free_path(path);
355 btrfs_end_transaction(trans);
359 struct async_extent {
364 unsigned long nr_pages;
366 struct list_head list;
371 struct btrfs_root *root;
372 struct page *locked_page;
375 struct list_head extents;
376 struct btrfs_work work;
379 static noinline int add_async_extent(struct async_cow *cow,
380 u64 start, u64 ram_size,
383 unsigned long nr_pages,
386 struct async_extent *async_extent;
388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
389 BUG_ON(!async_extent); /* -ENOMEM */
390 async_extent->start = start;
391 async_extent->ram_size = ram_size;
392 async_extent->compressed_size = compressed_size;
393 async_extent->pages = pages;
394 async_extent->nr_pages = nr_pages;
395 async_extent->compress_type = compress_type;
396 list_add_tail(&async_extent->list, &cow->extents);
400 static inline int inode_need_compress(struct inode *inode)
402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
405 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
407 /* bad compression ratios */
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
410 if (btrfs_test_opt(fs_info, COMPRESS) ||
411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 BTRFS_I(inode)->force_compress)
417 static inline void inode_should_defrag(struct btrfs_inode *inode,
418 u64 start, u64 end, u64 num_bytes, u64 small_write)
420 /* If this is a small write inside eof, kick off a defrag */
421 if (num_bytes < small_write &&
422 (start > 0 || end + 1 < inode->disk_i_size))
423 btrfs_add_inode_defrag(NULL, inode);
427 * we create compressed extents in two phases. The first
428 * phase compresses a range of pages that have already been
429 * locked (both pages and state bits are locked).
431 * This is done inside an ordered work queue, and the compression
432 * is spread across many cpus. The actual IO submission is step
433 * two, and the ordered work queue takes care of making sure that
434 * happens in the same order things were put onto the queue by
435 * writepages and friends.
437 * If this code finds it can't get good compression, it puts an
438 * entry onto the work queue to write the uncompressed bytes. This
439 * makes sure that both compressed inodes and uncompressed inodes
440 * are written in the same order that the flusher thread sent them
443 static noinline void compress_file_range(struct inode *inode,
444 struct page *locked_page,
446 struct async_cow *async_cow,
449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
450 struct btrfs_root *root = BTRFS_I(inode)->root;
452 u64 blocksize = fs_info->sectorsize;
454 u64 isize = i_size_read(inode);
456 struct page **pages = NULL;
457 unsigned long nr_pages;
458 unsigned long total_compressed = 0;
459 unsigned long total_in = 0;
462 int compress_type = fs_info->compress_type;
465 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 actual_end = min_t(u64, isize, end + 1);
471 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
472 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
473 nr_pages = min_t(unsigned long, nr_pages,
474 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
477 * we don't want to send crud past the end of i_size through
478 * compression, that's just a waste of CPU time. So, if the
479 * end of the file is before the start of our current
480 * requested range of bytes, we bail out to the uncompressed
481 * cleanup code that can deal with all of this.
483 * It isn't really the fastest way to fix things, but this is a
484 * very uncommon corner.
486 if (actual_end <= start)
487 goto cleanup_and_bail_uncompressed;
489 total_compressed = actual_end - start;
492 * skip compression for a small file range(<=blocksize) that
493 * isn't an inline extent, since it doesn't save disk space at all.
495 if (total_compressed <= blocksize &&
496 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
497 goto cleanup_and_bail_uncompressed;
499 total_compressed = min_t(unsigned long, total_compressed,
500 BTRFS_MAX_UNCOMPRESSED);
501 num_bytes = ALIGN(end - start + 1, blocksize);
502 num_bytes = max(blocksize, num_bytes);
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
511 if (inode_need_compress(inode)) {
513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
515 /* just bail out to the uncompressed code */
519 if (BTRFS_I(inode)->force_compress)
520 compress_type = BTRFS_I(inode)->force_compress;
523 * we need to call clear_page_dirty_for_io on each
524 * page in the range. Otherwise applications with the file
525 * mmap'd can wander in and change the page contents while
526 * we are compressing them.
528 * If the compression fails for any reason, we set the pages
529 * dirty again later on.
531 extent_range_clear_dirty_for_io(inode, start, end);
533 ret = btrfs_compress_pages(compress_type,
534 inode->i_mapping, start,
541 unsigned long offset = total_compressed &
543 struct page *page = pages[nr_pages - 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
553 kunmap_atomic(kaddr);
560 /* lets try to make an inline extent */
561 if (ret || total_in < (actual_end - start)) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret = cow_file_range_inline(root, inode, start, end,
566 0, BTRFS_COMPRESS_NONE, NULL);
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(root, inode, start, end,
571 compress_type, pages);
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
576 unsigned long page_error_op;
578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 extent_clear_unlock_delalloc(inode, start, end, end,
594 btrfs_free_reserved_data_space_noquota(inode,
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
607 total_compressed = ALIGN(total_compressed, blocksize);
610 * one last check to make sure the compression is really a
611 * win, compare the page count read with the blocks on disk
613 total_in = ALIGN(total_in, PAGE_SIZE);
614 if (total_compressed >= total_in) {
617 num_bytes = total_in;
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
625 add_async_extent(async_cow, start, num_bytes,
626 total_compressed, pages, nr_pages,
629 if (start + num_bytes < end) {
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
649 total_compressed = 0;
652 /* flag the file so we don't compress in the future */
653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 !(BTRFS_I(inode)->force_compress)) {
655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
658 cleanup_and_bail_uncompressed:
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
679 for (i = 0; i < nr_pages; i++) {
680 WARN_ON(pages[i]->mapping);
686 static void free_async_extent_pages(struct async_extent *async_extent)
690 if (!async_extent->pages)
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 put_page(async_extent->pages[i]);
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
708 static noinline void submit_compressed_extents(struct inode *inode,
709 struct async_cow *async_cow)
711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 struct async_extent *async_extent;
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
717 struct extent_io_tree *io_tree;
721 while (!list_empty(&async_cow->extents)) {
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
726 io_tree = &BTRFS_I(inode)->io_tree;
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
734 lock_extent(io_tree, async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
738 /* allocate blocks */
739 ret = cow_file_range(inode, async_cow->locked_page,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
756 if (!page_started && !ret)
757 extent_write_locked_range(io_tree,
758 inode, async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1,
764 unlock_page(async_cow->locked_page);
770 lock_extent(io_tree, async_extent->start,
771 async_extent->start + async_extent->ram_size - 1);
773 ret = btrfs_reserve_extent(root, async_extent->ram_size,
774 async_extent->compressed_size,
775 async_extent->compressed_size,
776 0, alloc_hint, &ins, 1, 1);
778 free_async_extent_pages(async_extent);
780 if (ret == -ENOSPC) {
781 unlock_extent(io_tree, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1);
786 * we need to redirty the pages if we decide to
787 * fallback to uncompressed IO, otherwise we
788 * will not submit these pages down to lower
791 extent_range_redirty_for_io(inode,
793 async_extent->start +
794 async_extent->ram_size - 1);
801 * here we're doing allocation and writeback of the
804 em = create_io_em(inode, async_extent->start,
805 async_extent->ram_size, /* len */
806 async_extent->start, /* orig_start */
807 ins.objectid, /* block_start */
808 ins.offset, /* block_len */
809 ins.offset, /* orig_block_len */
810 async_extent->ram_size, /* ram_bytes */
811 async_extent->compress_type,
812 BTRFS_ORDERED_COMPRESSED);
814 /* ret value is not necessary due to void function */
815 goto out_free_reserve;
818 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->ram_size,
823 BTRFS_ORDERED_COMPRESSED,
824 async_extent->compress_type);
826 btrfs_drop_extent_cache(BTRFS_I(inode),
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
830 goto out_free_reserve;
832 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
835 * clear dirty, set writeback and unlock the pages.
837 extent_clear_unlock_delalloc(inode, async_extent->start,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 async_extent->start +
841 async_extent->ram_size - 1,
842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
845 if (btrfs_submit_compressed_write(inode,
847 async_extent->ram_size,
849 ins.offset, async_extent->pages,
850 async_extent->nr_pages)) {
851 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
852 struct page *p = async_extent->pages[0];
853 const u64 start = async_extent->start;
854 const u64 end = start + async_extent->ram_size - 1;
856 p->mapping = inode->i_mapping;
857 tree->ops->writepage_end_io_hook(p, start, end,
860 extent_clear_unlock_delalloc(inode, start, end, end,
864 free_async_extent_pages(async_extent);
866 alloc_hint = ins.objectid + ins.offset;
872 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
873 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
875 extent_clear_unlock_delalloc(inode, async_extent->start,
876 async_extent->start +
877 async_extent->ram_size - 1,
878 async_extent->start +
879 async_extent->ram_size - 1,
880 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
881 EXTENT_DELALLOC_NEW |
882 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
883 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
884 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 free_async_extent_pages(async_extent);
891 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
894 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
895 struct extent_map *em;
898 read_lock(&em_tree->lock);
899 em = search_extent_mapping(em_tree, start, num_bytes);
902 * if block start isn't an actual block number then find the
903 * first block in this inode and use that as a hint. If that
904 * block is also bogus then just don't worry about it.
906 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 em = search_extent_mapping(em_tree, 0, 0);
909 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
910 alloc_hint = em->block_start;
914 alloc_hint = em->block_start;
918 read_unlock(&em_tree->lock);
924 * when extent_io.c finds a delayed allocation range in the file,
925 * the call backs end up in this code. The basic idea is to
926 * allocate extents on disk for the range, and create ordered data structs
927 * in ram to track those extents.
929 * locked_page is the page that writepage had locked already. We use
930 * it to make sure we don't do extra locks or unlocks.
932 * *page_started is set to one if we unlock locked_page and do everything
933 * required to start IO on it. It may be clean and already done with
936 static noinline int cow_file_range(struct inode *inode,
937 struct page *locked_page,
938 u64 start, u64 end, u64 delalloc_end,
939 int *page_started, unsigned long *nr_written,
940 int unlock, struct btrfs_dedupe_hash *hash)
942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
943 struct btrfs_root *root = BTRFS_I(inode)->root;
946 unsigned long ram_size;
948 u64 cur_alloc_size = 0;
949 u64 blocksize = fs_info->sectorsize;
950 struct btrfs_key ins;
951 struct extent_map *em;
953 unsigned long page_ops;
954 bool extent_reserved = false;
957 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
963 num_bytes = ALIGN(end - start + 1, blocksize);
964 num_bytes = max(blocksize, num_bytes);
965 disk_num_bytes = num_bytes;
967 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
970 /* lets try to make an inline extent */
971 ret = cow_file_range_inline(root, inode, start, end, 0,
972 BTRFS_COMPRESS_NONE, NULL);
974 extent_clear_unlock_delalloc(inode, start, end,
976 EXTENT_LOCKED | EXTENT_DELALLOC |
977 EXTENT_DELALLOC_NEW |
978 EXTENT_DEFRAG, PAGE_UNLOCK |
979 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 btrfs_free_reserved_data_space_noquota(inode, start,
983 *nr_written = *nr_written +
984 (end - start + PAGE_SIZE) / PAGE_SIZE;
987 } else if (ret < 0) {
992 BUG_ON(disk_num_bytes >
993 btrfs_super_total_bytes(fs_info->super_copy));
995 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
996 btrfs_drop_extent_cache(BTRFS_I(inode), start,
997 start + num_bytes - 1, 0);
999 while (disk_num_bytes > 0) {
1000 cur_alloc_size = disk_num_bytes;
1001 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1002 fs_info->sectorsize, 0, alloc_hint,
1006 cur_alloc_size = ins.offset;
1007 extent_reserved = true;
1009 ram_size = ins.offset;
1010 em = create_io_em(inode, start, ins.offset, /* len */
1011 start, /* orig_start */
1012 ins.objectid, /* block_start */
1013 ins.offset, /* block_len */
1014 ins.offset, /* orig_block_len */
1015 ram_size, /* ram_bytes */
1016 BTRFS_COMPRESS_NONE, /* compress_type */
1017 BTRFS_ORDERED_REGULAR /* type */);
1020 free_extent_map(em);
1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 ram_size, cur_alloc_size, 0);
1025 goto out_drop_extent_cache;
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1032 * Only drop cache here, and process as normal.
1034 * We must not allow extent_clear_unlock_delalloc()
1035 * at out_unlock label to free meta of this ordered
1036 * extent, as its meta should be freed by
1037 * btrfs_finish_ordered_io().
1039 * So we must continue until @start is increased to
1040 * skip current ordered extent.
1043 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1044 start + ram_size - 1, 0);
1047 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049 /* we're not doing compressed IO, don't unlock the first
1050 * page (which the caller expects to stay locked), don't
1051 * clear any dirty bits and don't set any writeback bits
1053 * Do set the Private2 bit so we know this page was properly
1054 * setup for writepage
1056 page_ops = unlock ? PAGE_UNLOCK : 0;
1057 page_ops |= PAGE_SET_PRIVATE2;
1059 extent_clear_unlock_delalloc(inode, start,
1060 start + ram_size - 1,
1061 delalloc_end, locked_page,
1062 EXTENT_LOCKED | EXTENT_DELALLOC,
1064 if (disk_num_bytes < cur_alloc_size)
1067 disk_num_bytes -= cur_alloc_size;
1068 num_bytes -= cur_alloc_size;
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
1071 extent_reserved = false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1111 start += cur_alloc_size;
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1123 * work queue call back to started compression on a file and pages
1125 static noinline void async_cow_start(struct btrfs_work *work)
1127 struct async_cow *async_cow;
1129 async_cow = container_of(work, struct async_cow, work);
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1134 if (num_added == 0) {
1135 btrfs_add_delayed_iput(async_cow->inode);
1136 async_cow->inode = NULL;
1141 * work queue call back to submit previously compressed pages
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1145 struct btrfs_fs_info *fs_info;
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1150 async_cow = container_of(work, struct async_cow, work);
1152 root = async_cow->root;
1153 fs_info = root->fs_info;
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1158 * atomic_sub_return implies a barrier for waitqueue_active
1160 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1162 waitqueue_active(&fs_info->async_submit_wait))
1163 wake_up(&fs_info->async_submit_wait);
1165 if (async_cow->inode)
1166 submit_compressed_extents(async_cow->inode, async_cow);
1169 static noinline void async_cow_free(struct btrfs_work *work)
1171 struct async_cow *async_cow;
1172 async_cow = container_of(work, struct async_cow, work);
1173 if (async_cow->inode)
1174 btrfs_add_delayed_iput(async_cow->inode);
1178 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1179 u64 start, u64 end, int *page_started,
1180 unsigned long *nr_written)
1182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1183 struct async_cow *async_cow;
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 unsigned long nr_pages;
1188 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1189 1, 0, NULL, GFP_NOFS);
1190 while (start < end) {
1191 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1192 BUG_ON(!async_cow); /* -ENOMEM */
1193 async_cow->inode = igrab(inode);
1194 async_cow->root = root;
1195 async_cow->locked_page = locked_page;
1196 async_cow->start = start;
1198 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1199 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1202 cur_end = min(end, start + SZ_512K - 1);
1204 async_cow->end = cur_end;
1205 INIT_LIST_HEAD(&async_cow->extents);
1207 btrfs_init_work(&async_cow->work,
1208 btrfs_delalloc_helper,
1209 async_cow_start, async_cow_submit,
1212 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1216 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1218 while (atomic_read(&fs_info->async_submit_draining) &&
1219 atomic_read(&fs_info->async_delalloc_pages)) {
1220 wait_event(fs_info->async_submit_wait,
1221 (atomic_read(&fs_info->async_delalloc_pages) ==
1225 *nr_written += nr_pages;
1226 start = cur_end + 1;
1232 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1233 u64 bytenr, u64 num_bytes)
1236 struct btrfs_ordered_sum *sums;
1239 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1240 bytenr + num_bytes - 1, &list, 0);
1241 if (ret == 0 && list_empty(&list))
1244 while (!list_empty(&list)) {
1245 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1246 list_del(&sums->list);
1253 * when nowcow writeback call back. This checks for snapshots or COW copies
1254 * of the extents that exist in the file, and COWs the file as required.
1256 * If no cow copies or snapshots exist, we write directly to the existing
1259 static noinline int run_delalloc_nocow(struct inode *inode,
1260 struct page *locked_page,
1261 u64 start, u64 end, int *page_started, int force,
1262 unsigned long *nr_written)
1264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1265 struct btrfs_root *root = BTRFS_I(inode)->root;
1266 struct extent_buffer *leaf;
1267 struct btrfs_path *path;
1268 struct btrfs_file_extent_item *fi;
1269 struct btrfs_key found_key;
1270 struct extent_map *em;
1285 u64 ino = btrfs_ino(BTRFS_I(inode));
1287 path = btrfs_alloc_path();
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1291 EXTENT_LOCKED | EXTENT_DELALLOC |
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
1300 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1302 cow_start = (u64)-1;
1305 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1309 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 leaf = path->nodes[0];
1311 btrfs_item_key_to_cpu(leaf, &found_key,
1312 path->slots[0] - 1);
1313 if (found_key.objectid == ino &&
1314 found_key.type == BTRFS_EXTENT_DATA_KEY)
1319 leaf = path->nodes[0];
1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 ret = btrfs_next_leaf(root, path);
1326 leaf = path->nodes[0];
1332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334 if (found_key.objectid > ino)
1336 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1337 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1341 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1342 found_key.offset > end)
1345 if (found_key.offset > cur_offset) {
1346 extent_end = found_key.offset;
1351 fi = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_file_extent_item);
1353 extent_type = btrfs_file_extent_type(leaf, fi);
1355 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1356 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1357 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1358 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1359 extent_offset = btrfs_file_extent_offset(leaf, fi);
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_num_bytes(leaf, fi);
1363 btrfs_file_extent_disk_num_bytes(leaf, fi);
1364 if (extent_end <= start) {
1368 if (disk_bytenr == 0)
1370 if (btrfs_file_extent_compression(leaf, fi) ||
1371 btrfs_file_extent_encryption(leaf, fi) ||
1372 btrfs_file_extent_other_encoding(leaf, fi))
1374 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1378 if (btrfs_cross_ref_exist(root, ino,
1380 extent_offset, disk_bytenr))
1382 disk_bytenr += extent_offset;
1383 disk_bytenr += cur_offset - found_key.offset;
1384 num_bytes = min(end + 1, extent_end) - cur_offset;
1386 * if there are pending snapshots for this root,
1387 * we fall into common COW way.
1390 err = btrfs_start_write_no_snapshoting(root);
1395 * force cow if csum exists in the range.
1396 * this ensure that csum for a given extent are
1397 * either valid or do not exist.
1399 if (csum_exist_in_range(fs_info, disk_bytenr,
1402 btrfs_end_write_no_snapshoting(root);
1405 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1407 btrfs_end_write_no_snapshoting(root);
1411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1412 extent_end = found_key.offset +
1413 btrfs_file_extent_inline_len(leaf,
1414 path->slots[0], fi);
1415 extent_end = ALIGN(extent_end,
1416 fs_info->sectorsize);
1421 if (extent_end <= start) {
1423 if (!nolock && nocow)
1424 btrfs_end_write_no_snapshoting(root);
1426 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1430 if (cow_start == (u64)-1)
1431 cow_start = cur_offset;
1432 cur_offset = extent_end;
1433 if (cur_offset > end)
1439 btrfs_release_path(path);
1440 if (cow_start != (u64)-1) {
1441 ret = cow_file_range(inode, locked_page,
1442 cow_start, found_key.offset - 1,
1443 end, page_started, nr_written, 1,
1446 if (!nolock && nocow)
1447 btrfs_end_write_no_snapshoting(root);
1449 btrfs_dec_nocow_writers(fs_info,
1453 cow_start = (u64)-1;
1456 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1457 u64 orig_start = found_key.offset - extent_offset;
1459 em = create_io_em(inode, cur_offset, num_bytes,
1461 disk_bytenr, /* block_start */
1462 num_bytes, /* block_len */
1463 disk_num_bytes, /* orig_block_len */
1464 ram_bytes, BTRFS_COMPRESS_NONE,
1465 BTRFS_ORDERED_PREALLOC);
1467 if (!nolock && nocow)
1468 btrfs_end_write_no_snapshoting(root);
1470 btrfs_dec_nocow_writers(fs_info,
1475 free_extent_map(em);
1478 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1479 type = BTRFS_ORDERED_PREALLOC;
1481 type = BTRFS_ORDERED_NOCOW;
1484 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1485 num_bytes, num_bytes, type);
1487 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1488 BUG_ON(ret); /* -ENOMEM */
1490 if (root->root_key.objectid ==
1491 BTRFS_DATA_RELOC_TREE_OBJECTID)
1493 * Error handled later, as we must prevent
1494 * extent_clear_unlock_delalloc() in error handler
1495 * from freeing metadata of created ordered extent.
1497 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1500 extent_clear_unlock_delalloc(inode, cur_offset,
1501 cur_offset + num_bytes - 1, end,
1502 locked_page, EXTENT_LOCKED |
1504 EXTENT_CLEAR_DATA_RESV,
1505 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1507 if (!nolock && nocow)
1508 btrfs_end_write_no_snapshoting(root);
1509 cur_offset = extent_end;
1512 * btrfs_reloc_clone_csums() error, now we're OK to call error
1513 * handler, as metadata for created ordered extent will only
1514 * be freed by btrfs_finish_ordered_io().
1518 if (cur_offset > end)
1521 btrfs_release_path(path);
1523 if (cur_offset <= end && cow_start == (u64)-1) {
1524 cow_start = cur_offset;
1528 if (cow_start != (u64)-1) {
1529 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1530 page_started, nr_written, 1, NULL);
1536 if (ret && cur_offset < end)
1537 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1538 locked_page, EXTENT_LOCKED |
1539 EXTENT_DELALLOC | EXTENT_DEFRAG |
1540 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1542 PAGE_SET_WRITEBACK |
1543 PAGE_END_WRITEBACK);
1544 btrfs_free_path(path);
1548 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1551 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1552 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1556 * @defrag_bytes is a hint value, no spinlock held here,
1557 * if is not zero, it means the file is defragging.
1558 * Force cow if given extent needs to be defragged.
1560 if (BTRFS_I(inode)->defrag_bytes &&
1561 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1562 EXTENT_DEFRAG, 0, NULL))
1569 * extent_io.c call back to do delayed allocation processing
1571 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1572 u64 start, u64 end, int *page_started,
1573 unsigned long *nr_written)
1576 int force_cow = need_force_cow(inode, start, end);
1578 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1579 ret = run_delalloc_nocow(inode, locked_page, start, end,
1580 page_started, 1, nr_written);
1581 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1582 ret = run_delalloc_nocow(inode, locked_page, start, end,
1583 page_started, 0, nr_written);
1584 } else if (!inode_need_compress(inode)) {
1585 ret = cow_file_range(inode, locked_page, start, end, end,
1586 page_started, nr_written, 1, NULL);
1588 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1589 &BTRFS_I(inode)->runtime_flags);
1590 ret = cow_file_range_async(inode, locked_page, start, end,
1591 page_started, nr_written);
1594 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1598 static void btrfs_split_extent_hook(struct inode *inode,
1599 struct extent_state *orig, u64 split)
1603 /* not delalloc, ignore it */
1604 if (!(orig->state & EXTENT_DELALLOC))
1607 size = orig->end - orig->start + 1;
1608 if (size > BTRFS_MAX_EXTENT_SIZE) {
1613 * See the explanation in btrfs_merge_extent_hook, the same
1614 * applies here, just in reverse.
1616 new_size = orig->end - split + 1;
1617 num_extents = count_max_extents(new_size);
1618 new_size = split - orig->start;
1619 num_extents += count_max_extents(new_size);
1620 if (count_max_extents(size) >= num_extents)
1624 spin_lock(&BTRFS_I(inode)->lock);
1625 BTRFS_I(inode)->outstanding_extents++;
1626 spin_unlock(&BTRFS_I(inode)->lock);
1630 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631 * extents so we can keep track of new extents that are just merged onto old
1632 * extents, such as when we are doing sequential writes, so we can properly
1633 * account for the metadata space we'll need.
1635 static void btrfs_merge_extent_hook(struct inode *inode,
1636 struct extent_state *new,
1637 struct extent_state *other)
1639 u64 new_size, old_size;
1642 /* not delalloc, ignore it */
1643 if (!(other->state & EXTENT_DELALLOC))
1646 if (new->start > other->start)
1647 new_size = new->end - other->start + 1;
1649 new_size = other->end - new->start + 1;
1651 /* we're not bigger than the max, unreserve the space and go */
1652 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 spin_lock(&BTRFS_I(inode)->lock);
1654 BTRFS_I(inode)->outstanding_extents--;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1660 * We have to add up either side to figure out how many extents were
1661 * accounted for before we merged into one big extent. If the number of
1662 * extents we accounted for is <= the amount we need for the new range
1663 * then we can return, otherwise drop. Think of it like this
1667 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 * need 2 outstanding extents, on one side we have 1 and the other side
1669 * we have 1 so they are == and we can return. But in this case
1671 * [MAX_SIZE+4k][MAX_SIZE+4k]
1673 * Each range on their own accounts for 2 extents, but merged together
1674 * they are only 3 extents worth of accounting, so we need to drop in
1677 old_size = other->end - other->start + 1;
1678 num_extents = count_max_extents(old_size);
1679 old_size = new->end - new->start + 1;
1680 num_extents += count_max_extents(old_size);
1681 if (count_max_extents(new_size) >= num_extents)
1684 spin_lock(&BTRFS_I(inode)->lock);
1685 BTRFS_I(inode)->outstanding_extents--;
1686 spin_unlock(&BTRFS_I(inode)->lock);
1689 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1690 struct inode *inode)
1692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1694 spin_lock(&root->delalloc_lock);
1695 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1696 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1697 &root->delalloc_inodes);
1698 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1699 &BTRFS_I(inode)->runtime_flags);
1700 root->nr_delalloc_inodes++;
1701 if (root->nr_delalloc_inodes == 1) {
1702 spin_lock(&fs_info->delalloc_root_lock);
1703 BUG_ON(!list_empty(&root->delalloc_root));
1704 list_add_tail(&root->delalloc_root,
1705 &fs_info->delalloc_roots);
1706 spin_unlock(&fs_info->delalloc_root_lock);
1709 spin_unlock(&root->delalloc_lock);
1712 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1713 struct btrfs_inode *inode)
1715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1717 spin_lock(&root->delalloc_lock);
1718 if (!list_empty(&inode->delalloc_inodes)) {
1719 list_del_init(&inode->delalloc_inodes);
1720 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &inode->runtime_flags);
1722 root->nr_delalloc_inodes--;
1723 if (!root->nr_delalloc_inodes) {
1724 spin_lock(&fs_info->delalloc_root_lock);
1725 BUG_ON(list_empty(&root->delalloc_root));
1726 list_del_init(&root->delalloc_root);
1727 spin_unlock(&fs_info->delalloc_root_lock);
1730 spin_unlock(&root->delalloc_lock);
1734 * extent_io.c set_bit_hook, used to track delayed allocation
1735 * bytes in this file, and to maintain the list of inodes that
1736 * have pending delalloc work to be done.
1738 static void btrfs_set_bit_hook(struct inode *inode,
1739 struct extent_state *state, unsigned *bits)
1742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1744 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1747 * set_bit and clear bit hooks normally require _irqsave/restore
1748 * but in this case, we are only testing for the DELALLOC
1749 * bit, which is only set or cleared with irqs on
1751 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1752 struct btrfs_root *root = BTRFS_I(inode)->root;
1753 u64 len = state->end + 1 - state->start;
1754 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1756 if (*bits & EXTENT_FIRST_DELALLOC) {
1757 *bits &= ~EXTENT_FIRST_DELALLOC;
1759 spin_lock(&BTRFS_I(inode)->lock);
1760 BTRFS_I(inode)->outstanding_extents++;
1761 spin_unlock(&BTRFS_I(inode)->lock);
1764 /* For sanity tests */
1765 if (btrfs_is_testing(fs_info))
1768 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1769 fs_info->delalloc_batch);
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 BTRFS_I(inode)->delalloc_bytes += len;
1772 if (*bits & EXTENT_DEFRAG)
1773 BTRFS_I(inode)->defrag_bytes += len;
1774 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1775 &BTRFS_I(inode)->runtime_flags))
1776 btrfs_add_delalloc_inodes(root, inode);
1777 spin_unlock(&BTRFS_I(inode)->lock);
1780 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1781 (*bits & EXTENT_DELALLOC_NEW)) {
1782 spin_lock(&BTRFS_I(inode)->lock);
1783 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1785 spin_unlock(&BTRFS_I(inode)->lock);
1790 * extent_io.c clear_bit_hook, see set_bit_hook for why
1792 static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
1793 struct extent_state *state,
1796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1797 u64 len = state->end + 1 - state->start;
1798 u32 num_extents = count_max_extents(len);
1800 spin_lock(&inode->lock);
1801 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1802 inode->defrag_bytes -= len;
1803 spin_unlock(&inode->lock);
1806 * set_bit and clear bit hooks normally require _irqsave/restore
1807 * but in this case, we are only testing for the DELALLOC
1808 * bit, which is only set or cleared with irqs on
1810 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1811 struct btrfs_root *root = inode->root;
1812 bool do_list = !btrfs_is_free_space_inode(inode);
1814 if (*bits & EXTENT_FIRST_DELALLOC) {
1815 *bits &= ~EXTENT_FIRST_DELALLOC;
1816 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1817 spin_lock(&inode->lock);
1818 inode->outstanding_extents -= num_extents;
1819 spin_unlock(&inode->lock);
1823 * We don't reserve metadata space for space cache inodes so we
1824 * don't need to call dellalloc_release_metadata if there is an
1827 if (*bits & EXTENT_CLEAR_META_RESV &&
1828 root != fs_info->tree_root)
1829 btrfs_delalloc_release_metadata(inode, len);
1831 /* For sanity tests. */
1832 if (btrfs_is_testing(fs_info))
1835 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1836 do_list && !(state->state & EXTENT_NORESERVE) &&
1837 (*bits & EXTENT_CLEAR_DATA_RESV))
1838 btrfs_free_reserved_data_space_noquota(
1842 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1843 fs_info->delalloc_batch);
1844 spin_lock(&inode->lock);
1845 inode->delalloc_bytes -= len;
1846 if (do_list && inode->delalloc_bytes == 0 &&
1847 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1848 &inode->runtime_flags))
1849 btrfs_del_delalloc_inode(root, inode);
1850 spin_unlock(&inode->lock);
1853 if ((state->state & EXTENT_DELALLOC_NEW) &&
1854 (*bits & EXTENT_DELALLOC_NEW)) {
1855 spin_lock(&inode->lock);
1856 ASSERT(inode->new_delalloc_bytes >= len);
1857 inode->new_delalloc_bytes -= len;
1858 spin_unlock(&inode->lock);
1863 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1864 * we don't create bios that span stripes or chunks
1866 * return 1 if page cannot be merged to bio
1867 * return 0 if page can be merged to bio
1868 * return error otherwise
1870 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1871 size_t size, struct bio *bio,
1872 unsigned long bio_flags)
1874 struct inode *inode = page->mapping->host;
1875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1876 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1881 if (bio_flags & EXTENT_BIO_COMPRESSED)
1884 length = bio->bi_iter.bi_size;
1885 map_length = length;
1886 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1890 if (map_length < length + size)
1896 * in order to insert checksums into the metadata in large chunks,
1897 * we wait until bio submission time. All the pages in the bio are
1898 * checksummed and sums are attached onto the ordered extent record.
1900 * At IO completion time the cums attached on the ordered extent record
1901 * are inserted into the btree
1903 static blk_status_t __btrfs_submit_bio_start(struct inode *inode,
1904 struct bio *bio, int mirror_num, unsigned long bio_flags,
1907 blk_status_t ret = 0;
1909 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1910 BUG_ON(ret); /* -ENOMEM */
1915 * in order to insert checksums into the metadata in large chunks,
1916 * we wait until bio submission time. All the pages in the bio are
1917 * checksummed and sums are attached onto the ordered extent record.
1919 * At IO completion time the cums attached on the ordered extent record
1920 * are inserted into the btree
1922 static blk_status_t __btrfs_submit_bio_done(struct inode *inode,
1923 struct bio *bio, int mirror_num, unsigned long bio_flags,
1926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1931 bio->bi_status = ret;
1938 * extent_io.c submission hook. This does the right thing for csum calculation
1939 * on write, or reading the csums from the tree before a read
1941 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1942 int mirror_num, unsigned long bio_flags,
1945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1946 struct btrfs_root *root = BTRFS_I(inode)->root;
1947 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1948 blk_status_t ret = 0;
1950 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1952 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1954 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1955 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1957 if (bio_op(bio) != REQ_OP_WRITE) {
1958 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1962 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1963 ret = btrfs_submit_compressed_read(inode, bio,
1967 } else if (!skip_sum) {
1968 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1973 } else if (async && !skip_sum) {
1974 /* csum items have already been cloned */
1975 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1977 /* we're doing a write, do the async checksumming */
1978 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1979 bio_flags, bio_offset,
1980 __btrfs_submit_bio_start,
1981 __btrfs_submit_bio_done);
1983 } else if (!skip_sum) {
1984 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1994 bio->bi_status = ret;
2001 * given a list of ordered sums record them in the inode. This happens
2002 * at IO completion time based on sums calculated at bio submission time.
2004 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2005 struct inode *inode, struct list_head *list)
2007 struct btrfs_ordered_sum *sum;
2009 list_for_each_entry(sum, list, list) {
2010 trans->adding_csums = 1;
2011 btrfs_csum_file_blocks(trans,
2012 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2013 trans->adding_csums = 0;
2018 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2019 struct extent_state **cached_state, int dedupe)
2021 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2022 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2026 /* see btrfs_writepage_start_hook for details on why this is required */
2027 struct btrfs_writepage_fixup {
2029 struct btrfs_work work;
2032 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2034 struct btrfs_writepage_fixup *fixup;
2035 struct btrfs_ordered_extent *ordered;
2036 struct extent_state *cached_state = NULL;
2038 struct inode *inode;
2043 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2047 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2048 ClearPageChecked(page);
2052 inode = page->mapping->host;
2053 page_start = page_offset(page);
2054 page_end = page_offset(page) + PAGE_SIZE - 1;
2056 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2059 /* already ordered? We're done */
2060 if (PagePrivate2(page))
2063 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2066 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2067 page_end, &cached_state, GFP_NOFS);
2069 btrfs_start_ordered_extent(inode, ordered, 1);
2070 btrfs_put_ordered_extent(ordered);
2074 ret = btrfs_delalloc_reserve_space(inode, page_start,
2077 mapping_set_error(page->mapping, ret);
2078 end_extent_writepage(page, ret, page_start, page_end);
2079 ClearPageChecked(page);
2083 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2085 ClearPageChecked(page);
2086 set_page_dirty(page);
2088 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2089 &cached_state, GFP_NOFS);
2097 * There are a few paths in the higher layers of the kernel that directly
2098 * set the page dirty bit without asking the filesystem if it is a
2099 * good idea. This causes problems because we want to make sure COW
2100 * properly happens and the data=ordered rules are followed.
2102 * In our case any range that doesn't have the ORDERED bit set
2103 * hasn't been properly setup for IO. We kick off an async process
2104 * to fix it up. The async helper will wait for ordered extents, set
2105 * the delalloc bit and make it safe to write the page.
2107 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2109 struct inode *inode = page->mapping->host;
2110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2111 struct btrfs_writepage_fixup *fixup;
2113 /* this page is properly in the ordered list */
2114 if (TestClearPagePrivate2(page))
2117 if (PageChecked(page))
2120 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2124 SetPageChecked(page);
2126 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2127 btrfs_writepage_fixup_worker, NULL, NULL);
2129 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2133 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2134 struct inode *inode, u64 file_pos,
2135 u64 disk_bytenr, u64 disk_num_bytes,
2136 u64 num_bytes, u64 ram_bytes,
2137 u8 compression, u8 encryption,
2138 u16 other_encoding, int extent_type)
2140 struct btrfs_root *root = BTRFS_I(inode)->root;
2141 struct btrfs_file_extent_item *fi;
2142 struct btrfs_path *path;
2143 struct extent_buffer *leaf;
2144 struct btrfs_key ins;
2145 int extent_inserted = 0;
2148 path = btrfs_alloc_path();
2153 * we may be replacing one extent in the tree with another.
2154 * The new extent is pinned in the extent map, and we don't want
2155 * to drop it from the cache until it is completely in the btree.
2157 * So, tell btrfs_drop_extents to leave this extent in the cache.
2158 * the caller is expected to unpin it and allow it to be merged
2161 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2162 file_pos + num_bytes, NULL, 0,
2163 1, sizeof(*fi), &extent_inserted);
2167 if (!extent_inserted) {
2168 ins.objectid = btrfs_ino(BTRFS_I(inode));
2169 ins.offset = file_pos;
2170 ins.type = BTRFS_EXTENT_DATA_KEY;
2172 path->leave_spinning = 1;
2173 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2178 leaf = path->nodes[0];
2179 fi = btrfs_item_ptr(leaf, path->slots[0],
2180 struct btrfs_file_extent_item);
2181 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2182 btrfs_set_file_extent_type(leaf, fi, extent_type);
2183 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2184 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2185 btrfs_set_file_extent_offset(leaf, fi, 0);
2186 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2187 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2188 btrfs_set_file_extent_compression(leaf, fi, compression);
2189 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2190 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2192 btrfs_mark_buffer_dirty(leaf);
2193 btrfs_release_path(path);
2195 inode_add_bytes(inode, num_bytes);
2197 ins.objectid = disk_bytenr;
2198 ins.offset = disk_num_bytes;
2199 ins.type = BTRFS_EXTENT_ITEM_KEY;
2200 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2201 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
2203 * Release the reserved range from inode dirty range map, as it is
2204 * already moved into delayed_ref_head
2206 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2208 btrfs_free_path(path);
2213 /* snapshot-aware defrag */
2214 struct sa_defrag_extent_backref {
2215 struct rb_node node;
2216 struct old_sa_defrag_extent *old;
2225 struct old_sa_defrag_extent {
2226 struct list_head list;
2227 struct new_sa_defrag_extent *new;
2236 struct new_sa_defrag_extent {
2237 struct rb_root root;
2238 struct list_head head;
2239 struct btrfs_path *path;
2240 struct inode *inode;
2248 static int backref_comp(struct sa_defrag_extent_backref *b1,
2249 struct sa_defrag_extent_backref *b2)
2251 if (b1->root_id < b2->root_id)
2253 else if (b1->root_id > b2->root_id)
2256 if (b1->inum < b2->inum)
2258 else if (b1->inum > b2->inum)
2261 if (b1->file_pos < b2->file_pos)
2263 else if (b1->file_pos > b2->file_pos)
2267 * [------------------------------] ===> (a range of space)
2268 * |<--->| |<---->| =============> (fs/file tree A)
2269 * |<---------------------------->| ===> (fs/file tree B)
2271 * A range of space can refer to two file extents in one tree while
2272 * refer to only one file extent in another tree.
2274 * So we may process a disk offset more than one time(two extents in A)
2275 * and locate at the same extent(one extent in B), then insert two same
2276 * backrefs(both refer to the extent in B).
2281 static void backref_insert(struct rb_root *root,
2282 struct sa_defrag_extent_backref *backref)
2284 struct rb_node **p = &root->rb_node;
2285 struct rb_node *parent = NULL;
2286 struct sa_defrag_extent_backref *entry;
2291 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2293 ret = backref_comp(backref, entry);
2297 p = &(*p)->rb_right;
2300 rb_link_node(&backref->node, parent, p);
2301 rb_insert_color(&backref->node, root);
2305 * Note the backref might has changed, and in this case we just return 0.
2307 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2310 struct btrfs_file_extent_item *extent;
2311 struct old_sa_defrag_extent *old = ctx;
2312 struct new_sa_defrag_extent *new = old->new;
2313 struct btrfs_path *path = new->path;
2314 struct btrfs_key key;
2315 struct btrfs_root *root;
2316 struct sa_defrag_extent_backref *backref;
2317 struct extent_buffer *leaf;
2318 struct inode *inode = new->inode;
2319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2325 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2326 inum == btrfs_ino(BTRFS_I(inode)))
2329 key.objectid = root_id;
2330 key.type = BTRFS_ROOT_ITEM_KEY;
2331 key.offset = (u64)-1;
2333 root = btrfs_read_fs_root_no_name(fs_info, &key);
2335 if (PTR_ERR(root) == -ENOENT)
2338 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2339 inum, offset, root_id);
2340 return PTR_ERR(root);
2343 key.objectid = inum;
2344 key.type = BTRFS_EXTENT_DATA_KEY;
2345 if (offset > (u64)-1 << 32)
2348 key.offset = offset;
2350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2351 if (WARN_ON(ret < 0))
2358 leaf = path->nodes[0];
2359 slot = path->slots[0];
2361 if (slot >= btrfs_header_nritems(leaf)) {
2362 ret = btrfs_next_leaf(root, path);
2365 } else if (ret > 0) {
2374 btrfs_item_key_to_cpu(leaf, &key, slot);
2376 if (key.objectid > inum)
2379 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2382 extent = btrfs_item_ptr(leaf, slot,
2383 struct btrfs_file_extent_item);
2385 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2389 * 'offset' refers to the exact key.offset,
2390 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2391 * (key.offset - extent_offset).
2393 if (key.offset != offset)
2396 extent_offset = btrfs_file_extent_offset(leaf, extent);
2397 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2399 if (extent_offset >= old->extent_offset + old->offset +
2400 old->len || extent_offset + num_bytes <=
2401 old->extent_offset + old->offset)
2406 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2412 backref->root_id = root_id;
2413 backref->inum = inum;
2414 backref->file_pos = offset;
2415 backref->num_bytes = num_bytes;
2416 backref->extent_offset = extent_offset;
2417 backref->generation = btrfs_file_extent_generation(leaf, extent);
2419 backref_insert(&new->root, backref);
2422 btrfs_release_path(path);
2427 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2428 struct new_sa_defrag_extent *new)
2430 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2431 struct old_sa_defrag_extent *old, *tmp;
2436 list_for_each_entry_safe(old, tmp, &new->head, list) {
2437 ret = iterate_inodes_from_logical(old->bytenr +
2438 old->extent_offset, fs_info,
2439 path, record_one_backref,
2441 if (ret < 0 && ret != -ENOENT)
2444 /* no backref to be processed for this extent */
2446 list_del(&old->list);
2451 if (list_empty(&new->head))
2457 static int relink_is_mergable(struct extent_buffer *leaf,
2458 struct btrfs_file_extent_item *fi,
2459 struct new_sa_defrag_extent *new)
2461 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2464 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2467 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2470 if (btrfs_file_extent_encryption(leaf, fi) ||
2471 btrfs_file_extent_other_encoding(leaf, fi))
2478 * Note the backref might has changed, and in this case we just return 0.
2480 static noinline int relink_extent_backref(struct btrfs_path *path,
2481 struct sa_defrag_extent_backref *prev,
2482 struct sa_defrag_extent_backref *backref)
2484 struct btrfs_file_extent_item *extent;
2485 struct btrfs_file_extent_item *item;
2486 struct btrfs_ordered_extent *ordered;
2487 struct btrfs_trans_handle *trans;
2488 struct btrfs_root *root;
2489 struct btrfs_key key;
2490 struct extent_buffer *leaf;
2491 struct old_sa_defrag_extent *old = backref->old;
2492 struct new_sa_defrag_extent *new = old->new;
2493 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2494 struct inode *inode;
2495 struct extent_state *cached = NULL;
2504 if (prev && prev->root_id == backref->root_id &&
2505 prev->inum == backref->inum &&
2506 prev->file_pos + prev->num_bytes == backref->file_pos)
2509 /* step 1: get root */
2510 key.objectid = backref->root_id;
2511 key.type = BTRFS_ROOT_ITEM_KEY;
2512 key.offset = (u64)-1;
2514 index = srcu_read_lock(&fs_info->subvol_srcu);
2516 root = btrfs_read_fs_root_no_name(fs_info, &key);
2518 srcu_read_unlock(&fs_info->subvol_srcu, index);
2519 if (PTR_ERR(root) == -ENOENT)
2521 return PTR_ERR(root);
2524 if (btrfs_root_readonly(root)) {
2525 srcu_read_unlock(&fs_info->subvol_srcu, index);
2529 /* step 2: get inode */
2530 key.objectid = backref->inum;
2531 key.type = BTRFS_INODE_ITEM_KEY;
2534 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2535 if (IS_ERR(inode)) {
2536 srcu_read_unlock(&fs_info->subvol_srcu, index);
2540 srcu_read_unlock(&fs_info->subvol_srcu, index);
2542 /* step 3: relink backref */
2543 lock_start = backref->file_pos;
2544 lock_end = backref->file_pos + backref->num_bytes - 1;
2545 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2548 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2550 btrfs_put_ordered_extent(ordered);
2554 trans = btrfs_join_transaction(root);
2555 if (IS_ERR(trans)) {
2556 ret = PTR_ERR(trans);
2560 key.objectid = backref->inum;
2561 key.type = BTRFS_EXTENT_DATA_KEY;
2562 key.offset = backref->file_pos;
2564 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2567 } else if (ret > 0) {
2572 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2573 struct btrfs_file_extent_item);
2575 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2576 backref->generation)
2579 btrfs_release_path(path);
2581 start = backref->file_pos;
2582 if (backref->extent_offset < old->extent_offset + old->offset)
2583 start += old->extent_offset + old->offset -
2584 backref->extent_offset;
2586 len = min(backref->extent_offset + backref->num_bytes,
2587 old->extent_offset + old->offset + old->len);
2588 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2590 ret = btrfs_drop_extents(trans, root, inode, start,
2595 key.objectid = btrfs_ino(BTRFS_I(inode));
2596 key.type = BTRFS_EXTENT_DATA_KEY;
2599 path->leave_spinning = 1;
2601 struct btrfs_file_extent_item *fi;
2603 struct btrfs_key found_key;
2605 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2610 leaf = path->nodes[0];
2611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2613 fi = btrfs_item_ptr(leaf, path->slots[0],
2614 struct btrfs_file_extent_item);
2615 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2617 if (extent_len + found_key.offset == start &&
2618 relink_is_mergable(leaf, fi, new)) {
2619 btrfs_set_file_extent_num_bytes(leaf, fi,
2621 btrfs_mark_buffer_dirty(leaf);
2622 inode_add_bytes(inode, len);
2628 btrfs_release_path(path);
2633 ret = btrfs_insert_empty_item(trans, root, path, &key,
2636 btrfs_abort_transaction(trans, ret);
2640 leaf = path->nodes[0];
2641 item = btrfs_item_ptr(leaf, path->slots[0],
2642 struct btrfs_file_extent_item);
2643 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2644 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2645 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2646 btrfs_set_file_extent_num_bytes(leaf, item, len);
2647 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2648 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2649 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2650 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2651 btrfs_set_file_extent_encryption(leaf, item, 0);
2652 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2654 btrfs_mark_buffer_dirty(leaf);
2655 inode_add_bytes(inode, len);
2656 btrfs_release_path(path);
2658 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2660 backref->root_id, backref->inum,
2661 new->file_pos); /* start - extent_offset */
2663 btrfs_abort_transaction(trans, ret);
2669 btrfs_release_path(path);
2670 path->leave_spinning = 0;
2671 btrfs_end_transaction(trans);
2673 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2679 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2681 struct old_sa_defrag_extent *old, *tmp;
2686 list_for_each_entry_safe(old, tmp, &new->head, list) {
2692 static void relink_file_extents(struct new_sa_defrag_extent *new)
2694 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2695 struct btrfs_path *path;
2696 struct sa_defrag_extent_backref *backref;
2697 struct sa_defrag_extent_backref *prev = NULL;
2698 struct inode *inode;
2699 struct btrfs_root *root;
2700 struct rb_node *node;
2704 root = BTRFS_I(inode)->root;
2706 path = btrfs_alloc_path();
2710 if (!record_extent_backrefs(path, new)) {
2711 btrfs_free_path(path);
2714 btrfs_release_path(path);
2717 node = rb_first(&new->root);
2720 rb_erase(node, &new->root);
2722 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2724 ret = relink_extent_backref(path, prev, backref);
2737 btrfs_free_path(path);
2739 free_sa_defrag_extent(new);
2741 atomic_dec(&fs_info->defrag_running);
2742 wake_up(&fs_info->transaction_wait);
2745 static struct new_sa_defrag_extent *
2746 record_old_file_extents(struct inode *inode,
2747 struct btrfs_ordered_extent *ordered)
2749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2750 struct btrfs_root *root = BTRFS_I(inode)->root;
2751 struct btrfs_path *path;
2752 struct btrfs_key key;
2753 struct old_sa_defrag_extent *old;
2754 struct new_sa_defrag_extent *new;
2757 new = kmalloc(sizeof(*new), GFP_NOFS);
2762 new->file_pos = ordered->file_offset;
2763 new->len = ordered->len;
2764 new->bytenr = ordered->start;
2765 new->disk_len = ordered->disk_len;
2766 new->compress_type = ordered->compress_type;
2767 new->root = RB_ROOT;
2768 INIT_LIST_HEAD(&new->head);
2770 path = btrfs_alloc_path();
2774 key.objectid = btrfs_ino(BTRFS_I(inode));
2775 key.type = BTRFS_EXTENT_DATA_KEY;
2776 key.offset = new->file_pos;
2778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2781 if (ret > 0 && path->slots[0] > 0)
2784 /* find out all the old extents for the file range */
2786 struct btrfs_file_extent_item *extent;
2787 struct extent_buffer *l;
2796 slot = path->slots[0];
2798 if (slot >= btrfs_header_nritems(l)) {
2799 ret = btrfs_next_leaf(root, path);
2807 btrfs_item_key_to_cpu(l, &key, slot);
2809 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2811 if (key.type != BTRFS_EXTENT_DATA_KEY)
2813 if (key.offset >= new->file_pos + new->len)
2816 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2818 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2819 if (key.offset + num_bytes < new->file_pos)
2822 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2826 extent_offset = btrfs_file_extent_offset(l, extent);
2828 old = kmalloc(sizeof(*old), GFP_NOFS);
2832 offset = max(new->file_pos, key.offset);
2833 end = min(new->file_pos + new->len, key.offset + num_bytes);
2835 old->bytenr = disk_bytenr;
2836 old->extent_offset = extent_offset;
2837 old->offset = offset - key.offset;
2838 old->len = end - offset;
2841 list_add_tail(&old->list, &new->head);
2847 btrfs_free_path(path);
2848 atomic_inc(&fs_info->defrag_running);
2853 btrfs_free_path(path);
2855 free_sa_defrag_extent(new);
2859 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2862 struct btrfs_block_group_cache *cache;
2864 cache = btrfs_lookup_block_group(fs_info, start);
2867 spin_lock(&cache->lock);
2868 cache->delalloc_bytes -= len;
2869 spin_unlock(&cache->lock);
2871 btrfs_put_block_group(cache);
2874 /* as ordered data IO finishes, this gets called so we can finish
2875 * an ordered extent if the range of bytes in the file it covers are
2878 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2880 struct inode *inode = ordered_extent->inode;
2881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2882 struct btrfs_root *root = BTRFS_I(inode)->root;
2883 struct btrfs_trans_handle *trans = NULL;
2884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2885 struct extent_state *cached_state = NULL;
2886 struct new_sa_defrag_extent *new = NULL;
2887 int compress_type = 0;
2889 u64 logical_len = ordered_extent->len;
2891 bool truncated = false;
2892 bool range_locked = false;
2893 bool clear_new_delalloc_bytes = false;
2895 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2896 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2897 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2898 clear_new_delalloc_bytes = true;
2900 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2902 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2907 btrfs_free_io_failure_record(BTRFS_I(inode),
2908 ordered_extent->file_offset,
2909 ordered_extent->file_offset +
2910 ordered_extent->len - 1);
2912 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2914 logical_len = ordered_extent->truncated_len;
2915 /* Truncated the entire extent, don't bother adding */
2920 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2921 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2924 * For mwrite(mmap + memset to write) case, we still reserve
2925 * space for NOCOW range.
2926 * As NOCOW won't cause a new delayed ref, just free the space
2928 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2929 ordered_extent->len);
2930 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2932 trans = btrfs_join_transaction_nolock(root);
2934 trans = btrfs_join_transaction(root);
2935 if (IS_ERR(trans)) {
2936 ret = PTR_ERR(trans);
2940 trans->block_rsv = &fs_info->delalloc_block_rsv;
2941 ret = btrfs_update_inode_fallback(trans, root, inode);
2942 if (ret) /* -ENOMEM or corruption */
2943 btrfs_abort_transaction(trans, ret);
2947 range_locked = true;
2948 lock_extent_bits(io_tree, ordered_extent->file_offset,
2949 ordered_extent->file_offset + ordered_extent->len - 1,
2952 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2953 ordered_extent->file_offset + ordered_extent->len - 1,
2954 EXTENT_DEFRAG, 0, cached_state);
2956 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2957 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2958 /* the inode is shared */
2959 new = record_old_file_extents(inode, ordered_extent);
2961 clear_extent_bit(io_tree, ordered_extent->file_offset,
2962 ordered_extent->file_offset + ordered_extent->len - 1,
2963 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2967 trans = btrfs_join_transaction_nolock(root);
2969 trans = btrfs_join_transaction(root);
2970 if (IS_ERR(trans)) {
2971 ret = PTR_ERR(trans);
2976 trans->block_rsv = &fs_info->delalloc_block_rsv;
2978 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2979 compress_type = ordered_extent->compress_type;
2980 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2981 BUG_ON(compress_type);
2982 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2983 ordered_extent->file_offset,
2984 ordered_extent->file_offset +
2987 BUG_ON(root == fs_info->tree_root);
2988 ret = insert_reserved_file_extent(trans, inode,
2989 ordered_extent->file_offset,
2990 ordered_extent->start,
2991 ordered_extent->disk_len,
2992 logical_len, logical_len,
2993 compress_type, 0, 0,
2994 BTRFS_FILE_EXTENT_REG);
2996 btrfs_release_delalloc_bytes(fs_info,
2997 ordered_extent->start,
2998 ordered_extent->disk_len);
3000 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3001 ordered_extent->file_offset, ordered_extent->len,
3004 btrfs_abort_transaction(trans, ret);
3008 add_pending_csums(trans, inode, &ordered_extent->list);
3010 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3011 ret = btrfs_update_inode_fallback(trans, root, inode);
3012 if (ret) { /* -ENOMEM or corruption */
3013 btrfs_abort_transaction(trans, ret);
3018 if (range_locked || clear_new_delalloc_bytes) {
3019 unsigned int clear_bits = 0;
3022 clear_bits |= EXTENT_LOCKED;
3023 if (clear_new_delalloc_bytes)
3024 clear_bits |= EXTENT_DELALLOC_NEW;
3025 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3026 ordered_extent->file_offset,
3027 ordered_extent->file_offset +
3028 ordered_extent->len - 1,
3030 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3031 0, &cached_state, GFP_NOFS);
3034 if (root != fs_info->tree_root)
3035 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3036 ordered_extent->len);
3038 btrfs_end_transaction(trans);
3040 if (ret || truncated) {
3044 start = ordered_extent->file_offset + logical_len;
3046 start = ordered_extent->file_offset;
3047 end = ordered_extent->file_offset + ordered_extent->len - 1;
3048 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3050 /* Drop the cache for the part of the extent we didn't write. */
3051 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3054 * If the ordered extent had an IOERR or something else went
3055 * wrong we need to return the space for this ordered extent
3056 * back to the allocator. We only free the extent in the
3057 * truncated case if we didn't write out the extent at all.
3059 if ((ret || !logical_len) &&
3060 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3061 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3062 btrfs_free_reserved_extent(fs_info,
3063 ordered_extent->start,
3064 ordered_extent->disk_len, 1);
3069 * This needs to be done to make sure anybody waiting knows we are done
3070 * updating everything for this ordered extent.
3072 btrfs_remove_ordered_extent(inode, ordered_extent);
3074 /* for snapshot-aware defrag */
3077 free_sa_defrag_extent(new);
3078 atomic_dec(&fs_info->defrag_running);
3080 relink_file_extents(new);
3085 btrfs_put_ordered_extent(ordered_extent);
3086 /* once for the tree */
3087 btrfs_put_ordered_extent(ordered_extent);
3092 static void finish_ordered_fn(struct btrfs_work *work)
3094 struct btrfs_ordered_extent *ordered_extent;
3095 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3096 btrfs_finish_ordered_io(ordered_extent);
3099 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3100 struct extent_state *state, int uptodate)
3102 struct inode *inode = page->mapping->host;
3103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3104 struct btrfs_ordered_extent *ordered_extent = NULL;
3105 struct btrfs_workqueue *wq;
3106 btrfs_work_func_t func;
3108 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3110 ClearPagePrivate2(page);
3111 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3112 end - start + 1, uptodate))
3115 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3116 wq = fs_info->endio_freespace_worker;
3117 func = btrfs_freespace_write_helper;
3119 wq = fs_info->endio_write_workers;
3120 func = btrfs_endio_write_helper;
3123 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3125 btrfs_queue_work(wq, &ordered_extent->work);
3128 static int __readpage_endio_check(struct inode *inode,
3129 struct btrfs_io_bio *io_bio,
3130 int icsum, struct page *page,
3131 int pgoff, u64 start, size_t len)
3137 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3139 kaddr = kmap_atomic(page);
3140 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3141 btrfs_csum_final(csum, (u8 *)&csum);
3142 if (csum != csum_expected)
3145 kunmap_atomic(kaddr);
3148 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3149 io_bio->mirror_num);
3150 memset(kaddr + pgoff, 1, len);
3151 flush_dcache_page(page);
3152 kunmap_atomic(kaddr);
3153 if (csum_expected == 0)
3159 * when reads are done, we need to check csums to verify the data is correct
3160 * if there's a match, we allow the bio to finish. If not, the code in
3161 * extent_io.c will try to find good copies for us.
3163 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3164 u64 phy_offset, struct page *page,
3165 u64 start, u64 end, int mirror)
3167 size_t offset = start - page_offset(page);
3168 struct inode *inode = page->mapping->host;
3169 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3170 struct btrfs_root *root = BTRFS_I(inode)->root;
3172 if (PageChecked(page)) {
3173 ClearPageChecked(page);
3177 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3180 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3181 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3182 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3186 phy_offset >>= inode->i_sb->s_blocksize_bits;
3187 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3188 start, (size_t)(end - start + 1));
3191 void btrfs_add_delayed_iput(struct inode *inode)
3193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3194 struct btrfs_inode *binode = BTRFS_I(inode);
3196 if (atomic_add_unless(&inode->i_count, -1, 1))
3199 spin_lock(&fs_info->delayed_iput_lock);
3200 if (binode->delayed_iput_count == 0) {
3201 ASSERT(list_empty(&binode->delayed_iput));
3202 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3204 binode->delayed_iput_count++;
3206 spin_unlock(&fs_info->delayed_iput_lock);
3209 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3212 spin_lock(&fs_info->delayed_iput_lock);
3213 while (!list_empty(&fs_info->delayed_iputs)) {
3214 struct btrfs_inode *inode;
3216 inode = list_first_entry(&fs_info->delayed_iputs,
3217 struct btrfs_inode, delayed_iput);
3218 if (inode->delayed_iput_count) {
3219 inode->delayed_iput_count--;
3220 list_move_tail(&inode->delayed_iput,
3221 &fs_info->delayed_iputs);
3223 list_del_init(&inode->delayed_iput);
3225 spin_unlock(&fs_info->delayed_iput_lock);
3226 iput(&inode->vfs_inode);
3227 spin_lock(&fs_info->delayed_iput_lock);
3229 spin_unlock(&fs_info->delayed_iput_lock);
3233 * This is called in transaction commit time. If there are no orphan
3234 * files in the subvolume, it removes orphan item and frees block_rsv
3237 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root)
3240 struct btrfs_fs_info *fs_info = root->fs_info;
3241 struct btrfs_block_rsv *block_rsv;
3244 if (atomic_read(&root->orphan_inodes) ||
3245 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3248 spin_lock(&root->orphan_lock);
3249 if (atomic_read(&root->orphan_inodes)) {
3250 spin_unlock(&root->orphan_lock);
3254 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3255 spin_unlock(&root->orphan_lock);
3259 block_rsv = root->orphan_block_rsv;
3260 root->orphan_block_rsv = NULL;
3261 spin_unlock(&root->orphan_lock);
3263 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3264 btrfs_root_refs(&root->root_item) > 0) {
3265 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3266 root->root_key.objectid);
3268 btrfs_abort_transaction(trans, ret);
3270 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3275 WARN_ON(block_rsv->size > 0);
3276 btrfs_free_block_rsv(fs_info, block_rsv);
3281 * This creates an orphan entry for the given inode in case something goes
3282 * wrong in the middle of an unlink/truncate.
3284 * NOTE: caller of this function should reserve 5 units of metadata for
3287 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3288 struct btrfs_inode *inode)
3290 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3291 struct btrfs_root *root = inode->root;
3292 struct btrfs_block_rsv *block_rsv = NULL;
3297 if (!root->orphan_block_rsv) {
3298 block_rsv = btrfs_alloc_block_rsv(fs_info,
3299 BTRFS_BLOCK_RSV_TEMP);
3304 spin_lock(&root->orphan_lock);
3305 if (!root->orphan_block_rsv) {
3306 root->orphan_block_rsv = block_rsv;
3307 } else if (block_rsv) {
3308 btrfs_free_block_rsv(fs_info, block_rsv);
3312 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313 &inode->runtime_flags)) {
3316 * For proper ENOSPC handling, we should do orphan
3317 * cleanup when mounting. But this introduces backward
3318 * compatibility issue.
3320 if (!xchg(&root->orphan_item_inserted, 1))
3326 atomic_inc(&root->orphan_inodes);
3329 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3330 &inode->runtime_flags))
3332 spin_unlock(&root->orphan_lock);
3334 /* grab metadata reservation from transaction handle */
3336 ret = btrfs_orphan_reserve_metadata(trans, inode);
3339 atomic_dec(&root->orphan_inodes);
3340 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3341 &inode->runtime_flags);
3343 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3344 &inode->runtime_flags);
3349 /* insert an orphan item to track this unlinked/truncated file */
3351 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3353 atomic_dec(&root->orphan_inodes);
3355 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3356 &inode->runtime_flags);
3357 btrfs_orphan_release_metadata(inode);
3359 if (ret != -EEXIST) {
3360 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3361 &inode->runtime_flags);
3362 btrfs_abort_transaction(trans, ret);
3369 /* insert an orphan item to track subvolume contains orphan files */
3371 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3372 root->root_key.objectid);
3373 if (ret && ret != -EEXIST) {
3374 btrfs_abort_transaction(trans, ret);
3382 * We have done the truncate/delete so we can go ahead and remove the orphan
3383 * item for this particular inode.
3385 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3386 struct btrfs_inode *inode)
3388 struct btrfs_root *root = inode->root;
3389 int delete_item = 0;
3390 int release_rsv = 0;
3393 spin_lock(&root->orphan_lock);
3394 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3395 &inode->runtime_flags))
3398 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3399 &inode->runtime_flags))
3401 spin_unlock(&root->orphan_lock);
3404 atomic_dec(&root->orphan_inodes);
3406 ret = btrfs_del_orphan_item(trans, root,
3411 btrfs_orphan_release_metadata(inode);
3417 * this cleans up any orphans that may be left on the list from the last use
3420 int btrfs_orphan_cleanup(struct btrfs_root *root)
3422 struct btrfs_fs_info *fs_info = root->fs_info;
3423 struct btrfs_path *path;
3424 struct extent_buffer *leaf;
3425 struct btrfs_key key, found_key;
3426 struct btrfs_trans_handle *trans;
3427 struct inode *inode;
3428 u64 last_objectid = 0;
3429 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3431 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3434 path = btrfs_alloc_path();
3439 path->reada = READA_BACK;
3441 key.objectid = BTRFS_ORPHAN_OBJECTID;
3442 key.type = BTRFS_ORPHAN_ITEM_KEY;
3443 key.offset = (u64)-1;
3446 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3451 * if ret == 0 means we found what we were searching for, which
3452 * is weird, but possible, so only screw with path if we didn't
3453 * find the key and see if we have stuff that matches
3457 if (path->slots[0] == 0)
3462 /* pull out the item */
3463 leaf = path->nodes[0];
3464 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3466 /* make sure the item matches what we want */
3467 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3469 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3472 /* release the path since we're done with it */
3473 btrfs_release_path(path);
3476 * this is where we are basically btrfs_lookup, without the
3477 * crossing root thing. we store the inode number in the
3478 * offset of the orphan item.
3481 if (found_key.offset == last_objectid) {
3483 "Error removing orphan entry, stopping orphan cleanup");
3488 last_objectid = found_key.offset;
3490 found_key.objectid = found_key.offset;
3491 found_key.type = BTRFS_INODE_ITEM_KEY;
3492 found_key.offset = 0;
3493 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3494 ret = PTR_ERR_OR_ZERO(inode);
3495 if (ret && ret != -ENOENT)
3498 if (ret == -ENOENT && root == fs_info->tree_root) {
3499 struct btrfs_root *dead_root;
3500 struct btrfs_fs_info *fs_info = root->fs_info;
3501 int is_dead_root = 0;
3504 * this is an orphan in the tree root. Currently these
3505 * could come from 2 sources:
3506 * a) a snapshot deletion in progress
3507 * b) a free space cache inode
3508 * We need to distinguish those two, as the snapshot
3509 * orphan must not get deleted.
3510 * find_dead_roots already ran before us, so if this
3511 * is a snapshot deletion, we should find the root
3512 * in the dead_roots list
3514 spin_lock(&fs_info->trans_lock);
3515 list_for_each_entry(dead_root, &fs_info->dead_roots,
3517 if (dead_root->root_key.objectid ==
3518 found_key.objectid) {
3523 spin_unlock(&fs_info->trans_lock);
3525 /* prevent this orphan from being found again */
3526 key.offset = found_key.objectid - 1;
3531 * Inode is already gone but the orphan item is still there,
3532 * kill the orphan item.
3534 if (ret == -ENOENT) {
3535 trans = btrfs_start_transaction(root, 1);
3536 if (IS_ERR(trans)) {
3537 ret = PTR_ERR(trans);
3540 btrfs_debug(fs_info, "auto deleting %Lu",
3541 found_key.objectid);
3542 ret = btrfs_del_orphan_item(trans, root,
3543 found_key.objectid);
3544 btrfs_end_transaction(trans);
3551 * add this inode to the orphan list so btrfs_orphan_del does
3552 * the proper thing when we hit it
3554 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3555 &BTRFS_I(inode)->runtime_flags);
3556 atomic_inc(&root->orphan_inodes);
3558 /* if we have links, this was a truncate, lets do that */
3559 if (inode->i_nlink) {
3560 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3566 /* 1 for the orphan item deletion. */
3567 trans = btrfs_start_transaction(root, 1);
3568 if (IS_ERR(trans)) {
3570 ret = PTR_ERR(trans);
3573 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3574 btrfs_end_transaction(trans);
3580 ret = btrfs_truncate(inode);
3582 btrfs_orphan_del(NULL, BTRFS_I(inode));
3587 /* this will do delete_inode and everything for us */
3592 /* release the path since we're done with it */
3593 btrfs_release_path(path);
3595 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3597 if (root->orphan_block_rsv)
3598 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3601 if (root->orphan_block_rsv ||
3602 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3603 trans = btrfs_join_transaction(root);
3605 btrfs_end_transaction(trans);
3609 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3611 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3615 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3616 btrfs_free_path(path);
3621 * very simple check to peek ahead in the leaf looking for xattrs. If we
3622 * don't find any xattrs, we know there can't be any acls.
3624 * slot is the slot the inode is in, objectid is the objectid of the inode
3626 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3627 int slot, u64 objectid,
3628 int *first_xattr_slot)
3630 u32 nritems = btrfs_header_nritems(leaf);
3631 struct btrfs_key found_key;
3632 static u64 xattr_access = 0;
3633 static u64 xattr_default = 0;
3636 if (!xattr_access) {
3637 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3638 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3639 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3640 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3644 *first_xattr_slot = -1;
3645 while (slot < nritems) {
3646 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3648 /* we found a different objectid, there must not be acls */
3649 if (found_key.objectid != objectid)
3652 /* we found an xattr, assume we've got an acl */
3653 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3654 if (*first_xattr_slot == -1)
3655 *first_xattr_slot = slot;
3656 if (found_key.offset == xattr_access ||
3657 found_key.offset == xattr_default)
3662 * we found a key greater than an xattr key, there can't
3663 * be any acls later on
3665 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3672 * it goes inode, inode backrefs, xattrs, extents,
3673 * so if there are a ton of hard links to an inode there can
3674 * be a lot of backrefs. Don't waste time searching too hard,
3675 * this is just an optimization
3680 /* we hit the end of the leaf before we found an xattr or
3681 * something larger than an xattr. We have to assume the inode
3684 if (*first_xattr_slot == -1)
3685 *first_xattr_slot = slot;
3690 * read an inode from the btree into the in-memory inode
3692 static int btrfs_read_locked_inode(struct inode *inode)
3694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3695 struct btrfs_path *path;
3696 struct extent_buffer *leaf;
3697 struct btrfs_inode_item *inode_item;
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 struct btrfs_key location;
3704 bool filled = false;
3705 int first_xattr_slot;
3707 ret = btrfs_fill_inode(inode, &rdev);
3711 path = btrfs_alloc_path();
3717 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3719 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3726 leaf = path->nodes[0];
3731 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3732 struct btrfs_inode_item);
3733 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3734 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3735 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3736 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3737 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3739 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3740 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3742 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3743 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3745 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3746 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3748 BTRFS_I(inode)->i_otime.tv_sec =
3749 btrfs_timespec_sec(leaf, &inode_item->otime);
3750 BTRFS_I(inode)->i_otime.tv_nsec =
3751 btrfs_timespec_nsec(leaf, &inode_item->otime);
3753 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3754 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3755 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3757 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3758 inode->i_generation = BTRFS_I(inode)->generation;
3760 rdev = btrfs_inode_rdev(leaf, inode_item);
3762 BTRFS_I(inode)->index_cnt = (u64)-1;
3763 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3767 * If we were modified in the current generation and evicted from memory
3768 * and then re-read we need to do a full sync since we don't have any
3769 * idea about which extents were modified before we were evicted from
3772 * This is required for both inode re-read from disk and delayed inode
3773 * in delayed_nodes_tree.
3775 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3776 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3777 &BTRFS_I(inode)->runtime_flags);
3780 * We don't persist the id of the transaction where an unlink operation
3781 * against the inode was last made. So here we assume the inode might
3782 * have been evicted, and therefore the exact value of last_unlink_trans
3783 * lost, and set it to last_trans to avoid metadata inconsistencies
3784 * between the inode and its parent if the inode is fsync'ed and the log
3785 * replayed. For example, in the scenario:
3788 * ln mydir/foo mydir/bar
3791 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3792 * xfs_io -c fsync mydir/foo
3794 * mount fs, triggers fsync log replay
3796 * We must make sure that when we fsync our inode foo we also log its
3797 * parent inode, otherwise after log replay the parent still has the
3798 * dentry with the "bar" name but our inode foo has a link count of 1
3799 * and doesn't have an inode ref with the name "bar" anymore.
3801 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3802 * but it guarantees correctness at the expense of occasional full
3803 * transaction commits on fsync if our inode is a directory, or if our
3804 * inode is not a directory, logging its parent unnecessarily.
3806 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3809 if (inode->i_nlink != 1 ||
3810 path->slots[0] >= btrfs_header_nritems(leaf))
3813 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3814 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3817 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3818 if (location.type == BTRFS_INODE_REF_KEY) {
3819 struct btrfs_inode_ref *ref;
3821 ref = (struct btrfs_inode_ref *)ptr;
3822 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3823 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3824 struct btrfs_inode_extref *extref;
3826 extref = (struct btrfs_inode_extref *)ptr;
3827 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3832 * try to precache a NULL acl entry for files that don't have
3833 * any xattrs or acls
3835 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3836 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3837 if (first_xattr_slot != -1) {
3838 path->slots[0] = first_xattr_slot;
3839 ret = btrfs_load_inode_props(inode, path);
3842 "error loading props for ino %llu (root %llu): %d",
3843 btrfs_ino(BTRFS_I(inode)),
3844 root->root_key.objectid, ret);
3846 btrfs_free_path(path);
3849 cache_no_acl(inode);
3851 switch (inode->i_mode & S_IFMT) {
3853 inode->i_mapping->a_ops = &btrfs_aops;
3854 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3855 inode->i_fop = &btrfs_file_operations;
3856 inode->i_op = &btrfs_file_inode_operations;
3859 inode->i_fop = &btrfs_dir_file_operations;
3860 inode->i_op = &btrfs_dir_inode_operations;
3863 inode->i_op = &btrfs_symlink_inode_operations;
3864 inode_nohighmem(inode);
3865 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3868 inode->i_op = &btrfs_special_inode_operations;
3869 init_special_inode(inode, inode->i_mode, rdev);
3873 btrfs_update_iflags(inode);
3877 btrfs_free_path(path);
3878 make_bad_inode(inode);
3883 * given a leaf and an inode, copy the inode fields into the leaf
3885 static void fill_inode_item(struct btrfs_trans_handle *trans,
3886 struct extent_buffer *leaf,
3887 struct btrfs_inode_item *item,
3888 struct inode *inode)
3890 struct btrfs_map_token token;
3892 btrfs_init_map_token(&token);
3894 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3895 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3896 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3898 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3899 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3901 btrfs_set_token_timespec_sec(leaf, &item->atime,
3902 inode->i_atime.tv_sec, &token);
3903 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3904 inode->i_atime.tv_nsec, &token);
3906 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3907 inode->i_mtime.tv_sec, &token);
3908 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3909 inode->i_mtime.tv_nsec, &token);
3911 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3912 inode->i_ctime.tv_sec, &token);
3913 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3914 inode->i_ctime.tv_nsec, &token);
3916 btrfs_set_token_timespec_sec(leaf, &item->otime,
3917 BTRFS_I(inode)->i_otime.tv_sec, &token);
3918 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3919 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3921 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3923 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3925 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3926 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3927 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3928 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3929 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3933 * copy everything in the in-memory inode into the btree.
3935 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3936 struct btrfs_root *root, struct inode *inode)
3938 struct btrfs_inode_item *inode_item;
3939 struct btrfs_path *path;
3940 struct extent_buffer *leaf;
3943 path = btrfs_alloc_path();
3947 path->leave_spinning = 1;
3948 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3956 leaf = path->nodes[0];
3957 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3958 struct btrfs_inode_item);
3960 fill_inode_item(trans, leaf, inode_item, inode);
3961 btrfs_mark_buffer_dirty(leaf);
3962 btrfs_set_inode_last_trans(trans, inode);
3965 btrfs_free_path(path);
3970 * copy everything in the in-memory inode into the btree.
3972 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3973 struct btrfs_root *root, struct inode *inode)
3975 struct btrfs_fs_info *fs_info = root->fs_info;
3979 * If the inode is a free space inode, we can deadlock during commit
3980 * if we put it into the delayed code.
3982 * The data relocation inode should also be directly updated
3985 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3986 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3987 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3988 btrfs_update_root_times(trans, root);
3990 ret = btrfs_delayed_update_inode(trans, root, inode);
3992 btrfs_set_inode_last_trans(trans, inode);
3996 return btrfs_update_inode_item(trans, root, inode);
3999 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4000 struct btrfs_root *root,
4001 struct inode *inode)
4005 ret = btrfs_update_inode(trans, root, inode);
4007 return btrfs_update_inode_item(trans, root, inode);
4012 * unlink helper that gets used here in inode.c and in the tree logging
4013 * recovery code. It remove a link in a directory with a given name, and
4014 * also drops the back refs in the inode to the directory
4016 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4017 struct btrfs_root *root,
4018 struct btrfs_inode *dir,
4019 struct btrfs_inode *inode,
4020 const char *name, int name_len)
4022 struct btrfs_fs_info *fs_info = root->fs_info;
4023 struct btrfs_path *path;
4025 struct extent_buffer *leaf;
4026 struct btrfs_dir_item *di;
4027 struct btrfs_key key;
4029 u64 ino = btrfs_ino(inode);
4030 u64 dir_ino = btrfs_ino(dir);
4032 path = btrfs_alloc_path();
4038 path->leave_spinning = 1;
4039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4040 name, name_len, -1);
4049 leaf = path->nodes[0];
4050 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4051 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4054 btrfs_release_path(path);
4057 * If we don't have dir index, we have to get it by looking up
4058 * the inode ref, since we get the inode ref, remove it directly,
4059 * it is unnecessary to do delayed deletion.
4061 * But if we have dir index, needn't search inode ref to get it.
4062 * Since the inode ref is close to the inode item, it is better
4063 * that we delay to delete it, and just do this deletion when
4064 * we update the inode item.
4066 if (inode->dir_index) {
4067 ret = btrfs_delayed_delete_inode_ref(inode);
4069 index = inode->dir_index;
4074 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4078 "failed to delete reference to %.*s, inode %llu parent %llu",
4079 name_len, name, ino, dir_ino);
4080 btrfs_abort_transaction(trans, ret);
4084 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4086 btrfs_abort_transaction(trans, ret);
4090 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4092 if (ret != 0 && ret != -ENOENT) {
4093 btrfs_abort_transaction(trans, ret);
4097 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4102 btrfs_abort_transaction(trans, ret);
4104 btrfs_free_path(path);
4108 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4109 inode_inc_iversion(&inode->vfs_inode);
4110 inode_inc_iversion(&dir->vfs_inode);
4111 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4112 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4113 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4118 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4119 struct btrfs_root *root,
4120 struct btrfs_inode *dir, struct btrfs_inode *inode,
4121 const char *name, int name_len)
4124 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4126 drop_nlink(&inode->vfs_inode);
4127 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4133 * helper to start transaction for unlink and rmdir.
4135 * unlink and rmdir are special in btrfs, they do not always free space, so
4136 * if we cannot make our reservations the normal way try and see if there is
4137 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4138 * allow the unlink to occur.
4140 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4142 struct btrfs_root *root = BTRFS_I(dir)->root;
4145 * 1 for the possible orphan item
4146 * 1 for the dir item
4147 * 1 for the dir index
4148 * 1 for the inode ref
4151 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4154 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4156 struct btrfs_root *root = BTRFS_I(dir)->root;
4157 struct btrfs_trans_handle *trans;
4158 struct inode *inode = d_inode(dentry);
4161 trans = __unlink_start_trans(dir);
4163 return PTR_ERR(trans);
4165 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4168 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4169 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4170 dentry->d_name.len);
4174 if (inode->i_nlink == 0) {
4175 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4181 btrfs_end_transaction(trans);
4182 btrfs_btree_balance_dirty(root->fs_info);
4186 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4187 struct btrfs_root *root,
4188 struct inode *dir, u64 objectid,
4189 const char *name, int name_len)
4191 struct btrfs_fs_info *fs_info = root->fs_info;
4192 struct btrfs_path *path;
4193 struct extent_buffer *leaf;
4194 struct btrfs_dir_item *di;
4195 struct btrfs_key key;
4198 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4200 path = btrfs_alloc_path();
4204 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4205 name, name_len, -1);
4206 if (IS_ERR_OR_NULL(di)) {
4214 leaf = path->nodes[0];
4215 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4216 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4217 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4219 btrfs_abort_transaction(trans, ret);
4222 btrfs_release_path(path);
4224 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4225 root->root_key.objectid, dir_ino,
4226 &index, name, name_len);
4228 if (ret != -ENOENT) {
4229 btrfs_abort_transaction(trans, ret);
4232 di = btrfs_search_dir_index_item(root, path, dir_ino,
4234 if (IS_ERR_OR_NULL(di)) {
4239 btrfs_abort_transaction(trans, ret);
4243 leaf = path->nodes[0];
4244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4245 btrfs_release_path(path);
4248 btrfs_release_path(path);
4250 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4252 btrfs_abort_transaction(trans, ret);
4256 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4257 inode_inc_iversion(dir);
4258 dir->i_mtime = dir->i_ctime = current_time(dir);
4259 ret = btrfs_update_inode_fallback(trans, root, dir);
4261 btrfs_abort_transaction(trans, ret);
4263 btrfs_free_path(path);
4267 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4269 struct inode *inode = d_inode(dentry);
4271 struct btrfs_root *root = BTRFS_I(dir)->root;
4272 struct btrfs_trans_handle *trans;
4273 u64 last_unlink_trans;
4275 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4277 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4280 trans = __unlink_start_trans(dir);
4282 return PTR_ERR(trans);
4284 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4285 err = btrfs_unlink_subvol(trans, root, dir,
4286 BTRFS_I(inode)->location.objectid,
4287 dentry->d_name.name,
4288 dentry->d_name.len);
4292 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4296 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4298 /* now the directory is empty */
4299 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4300 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4301 dentry->d_name.len);
4303 btrfs_i_size_write(BTRFS_I(inode), 0);
4305 * Propagate the last_unlink_trans value of the deleted dir to
4306 * its parent directory. This is to prevent an unrecoverable
4307 * log tree in the case we do something like this:
4309 * 2) create snapshot under dir foo
4310 * 3) delete the snapshot
4313 * 6) fsync foo or some file inside foo
4315 if (last_unlink_trans >= trans->transid)
4316 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4319 btrfs_end_transaction(trans);
4320 btrfs_btree_balance_dirty(root->fs_info);
4325 static int truncate_space_check(struct btrfs_trans_handle *trans,
4326 struct btrfs_root *root,
4329 struct btrfs_fs_info *fs_info = root->fs_info;
4333 * This is only used to apply pressure to the enospc system, we don't
4334 * intend to use this reservation at all.
4336 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4337 bytes_deleted *= fs_info->nodesize;
4338 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4339 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4341 trace_btrfs_space_reservation(fs_info, "transaction",
4344 trans->bytes_reserved += bytes_deleted;
4350 static int truncate_inline_extent(struct inode *inode,
4351 struct btrfs_path *path,
4352 struct btrfs_key *found_key,
4356 struct extent_buffer *leaf = path->nodes[0];
4357 int slot = path->slots[0];
4358 struct btrfs_file_extent_item *fi;
4359 u32 size = (u32)(new_size - found_key->offset);
4360 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4364 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4365 loff_t offset = new_size;
4366 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4369 * Zero out the remaining of the last page of our inline extent,
4370 * instead of directly truncating our inline extent here - that
4371 * would be much more complex (decompressing all the data, then
4372 * compressing the truncated data, which might be bigger than
4373 * the size of the inline extent, resize the extent, etc).
4374 * We release the path because to get the page we might need to
4375 * read the extent item from disk (data not in the page cache).
4377 btrfs_release_path(path);
4378 return btrfs_truncate_block(inode, offset, page_end - offset,
4382 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4383 size = btrfs_file_extent_calc_inline_size(size);
4384 btrfs_truncate_item(root->fs_info, path, size, 1);
4386 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4387 inode_sub_bytes(inode, item_end + 1 - new_size);
4393 * this can truncate away extent items, csum items and directory items.
4394 * It starts at a high offset and removes keys until it can't find
4395 * any higher than new_size
4397 * csum items that cross the new i_size are truncated to the new size
4400 * min_type is the minimum key type to truncate down to. If set to 0, this
4401 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4403 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4405 struct inode *inode,
4406 u64 new_size, u32 min_type)
4408 struct btrfs_fs_info *fs_info = root->fs_info;
4409 struct btrfs_path *path;
4410 struct extent_buffer *leaf;
4411 struct btrfs_file_extent_item *fi;
4412 struct btrfs_key key;
4413 struct btrfs_key found_key;
4414 u64 extent_start = 0;
4415 u64 extent_num_bytes = 0;
4416 u64 extent_offset = 0;
4418 u64 last_size = new_size;
4419 u32 found_type = (u8)-1;
4422 int pending_del_nr = 0;
4423 int pending_del_slot = 0;
4424 int extent_type = -1;
4427 u64 ino = btrfs_ino(BTRFS_I(inode));
4428 u64 bytes_deleted = 0;
4430 bool should_throttle = 0;
4431 bool should_end = 0;
4433 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4436 * for non-free space inodes and ref cows, we want to back off from
4439 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4440 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4443 path = btrfs_alloc_path();
4446 path->reada = READA_BACK;
4449 * We want to drop from the next block forward in case this new size is
4450 * not block aligned since we will be keeping the last block of the
4451 * extent just the way it is.
4453 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4454 root == fs_info->tree_root)
4455 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4456 fs_info->sectorsize),
4460 * This function is also used to drop the items in the log tree before
4461 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4462 * it is used to drop the loged items. So we shouldn't kill the delayed
4465 if (min_type == 0 && root == BTRFS_I(inode)->root)
4466 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4469 key.offset = (u64)-1;
4474 * with a 16K leaf size and 128MB extents, you can actually queue
4475 * up a huge file in a single leaf. Most of the time that
4476 * bytes_deleted is > 0, it will be huge by the time we get here
4478 if (be_nice && bytes_deleted > SZ_32M) {
4479 if (btrfs_should_end_transaction(trans)) {
4486 path->leave_spinning = 1;
4487 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4494 /* there are no items in the tree for us to truncate, we're
4497 if (path->slots[0] == 0)
4504 leaf = path->nodes[0];
4505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4506 found_type = found_key.type;
4508 if (found_key.objectid != ino)
4511 if (found_type < min_type)
4514 item_end = found_key.offset;
4515 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4516 fi = btrfs_item_ptr(leaf, path->slots[0],
4517 struct btrfs_file_extent_item);
4518 extent_type = btrfs_file_extent_type(leaf, fi);
4519 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4521 btrfs_file_extent_num_bytes(leaf, fi);
4523 trace_btrfs_truncate_show_fi_regular(
4524 BTRFS_I(inode), leaf, fi,
4526 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4527 item_end += btrfs_file_extent_inline_len(leaf,
4528 path->slots[0], fi);
4530 trace_btrfs_truncate_show_fi_inline(
4531 BTRFS_I(inode), leaf, fi, path->slots[0],
4536 if (found_type > min_type) {
4539 if (item_end < new_size)
4541 if (found_key.offset >= new_size)
4547 /* FIXME, shrink the extent if the ref count is only 1 */
4548 if (found_type != BTRFS_EXTENT_DATA_KEY)
4552 last_size = found_key.offset;
4554 last_size = new_size;
4556 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4558 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4560 u64 orig_num_bytes =
4561 btrfs_file_extent_num_bytes(leaf, fi);
4562 extent_num_bytes = ALIGN(new_size -
4564 fs_info->sectorsize);
4565 btrfs_set_file_extent_num_bytes(leaf, fi,
4567 num_dec = (orig_num_bytes -
4569 if (test_bit(BTRFS_ROOT_REF_COWS,
4572 inode_sub_bytes(inode, num_dec);
4573 btrfs_mark_buffer_dirty(leaf);
4576 btrfs_file_extent_disk_num_bytes(leaf,
4578 extent_offset = found_key.offset -
4579 btrfs_file_extent_offset(leaf, fi);
4581 /* FIXME blocksize != 4096 */
4582 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4583 if (extent_start != 0) {
4585 if (test_bit(BTRFS_ROOT_REF_COWS,
4587 inode_sub_bytes(inode, num_dec);
4590 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4592 * we can't truncate inline items that have had
4596 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4597 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4600 * Need to release path in order to truncate a
4601 * compressed extent. So delete any accumulated
4602 * extent items so far.
4604 if (btrfs_file_extent_compression(leaf, fi) !=
4605 BTRFS_COMPRESS_NONE && pending_del_nr) {
4606 err = btrfs_del_items(trans, root, path,
4610 btrfs_abort_transaction(trans,
4617 err = truncate_inline_extent(inode, path,
4622 btrfs_abort_transaction(trans, err);
4625 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4627 inode_sub_bytes(inode, item_end + 1 - new_size);
4632 if (!pending_del_nr) {
4633 /* no pending yet, add ourselves */
4634 pending_del_slot = path->slots[0];
4636 } else if (pending_del_nr &&
4637 path->slots[0] + 1 == pending_del_slot) {
4638 /* hop on the pending chunk */
4640 pending_del_slot = path->slots[0];
4647 should_throttle = 0;
4650 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4651 root == fs_info->tree_root)) {
4652 btrfs_set_path_blocking(path);
4653 bytes_deleted += extent_num_bytes;
4654 ret = btrfs_free_extent(trans, fs_info, extent_start,
4655 extent_num_bytes, 0,
4656 btrfs_header_owner(leaf),
4657 ino, extent_offset);
4659 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4660 btrfs_async_run_delayed_refs(fs_info,
4661 trans->delayed_ref_updates * 2,
4664 if (truncate_space_check(trans, root,
4665 extent_num_bytes)) {
4668 if (btrfs_should_throttle_delayed_refs(trans,
4670 should_throttle = 1;
4674 if (found_type == BTRFS_INODE_ITEM_KEY)
4677 if (path->slots[0] == 0 ||
4678 path->slots[0] != pending_del_slot ||
4679 should_throttle || should_end) {
4680 if (pending_del_nr) {
4681 ret = btrfs_del_items(trans, root, path,
4685 btrfs_abort_transaction(trans, ret);
4690 btrfs_release_path(path);
4691 if (should_throttle) {
4692 unsigned long updates = trans->delayed_ref_updates;
4694 trans->delayed_ref_updates = 0;
4695 ret = btrfs_run_delayed_refs(trans,
4703 * if we failed to refill our space rsv, bail out
4704 * and let the transaction restart
4716 if (pending_del_nr) {
4717 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4720 btrfs_abort_transaction(trans, ret);
4723 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4724 ASSERT(last_size >= new_size);
4725 if (!err && last_size > new_size)
4726 last_size = new_size;
4727 btrfs_ordered_update_i_size(inode, last_size, NULL);
4730 btrfs_free_path(path);
4732 if (be_nice && bytes_deleted > SZ_32M) {
4733 unsigned long updates = trans->delayed_ref_updates;
4735 trans->delayed_ref_updates = 0;
4736 ret = btrfs_run_delayed_refs(trans, fs_info,
4746 * btrfs_truncate_block - read, zero a chunk and write a block
4747 * @inode - inode that we're zeroing
4748 * @from - the offset to start zeroing
4749 * @len - the length to zero, 0 to zero the entire range respective to the
4751 * @front - zero up to the offset instead of from the offset on
4753 * This will find the block for the "from" offset and cow the block and zero the
4754 * part we want to zero. This is used with truncate and hole punching.
4756 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4760 struct address_space *mapping = inode->i_mapping;
4761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4762 struct btrfs_ordered_extent *ordered;
4763 struct extent_state *cached_state = NULL;
4765 u32 blocksize = fs_info->sectorsize;
4766 pgoff_t index = from >> PAGE_SHIFT;
4767 unsigned offset = from & (blocksize - 1);
4769 gfp_t mask = btrfs_alloc_write_mask(mapping);
4774 if ((offset & (blocksize - 1)) == 0 &&
4775 (!len || ((len & (blocksize - 1)) == 0)))
4778 ret = btrfs_delalloc_reserve_space(inode,
4779 round_down(from, blocksize), blocksize);
4784 page = find_or_create_page(mapping, index, mask);
4786 btrfs_delalloc_release_space(inode,
4787 round_down(from, blocksize),
4793 block_start = round_down(from, blocksize);
4794 block_end = block_start + blocksize - 1;
4796 if (!PageUptodate(page)) {
4797 ret = btrfs_readpage(NULL, page);
4799 if (page->mapping != mapping) {
4804 if (!PageUptodate(page)) {
4809 wait_on_page_writeback(page);
4811 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4812 set_page_extent_mapped(page);
4814 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4816 unlock_extent_cached(io_tree, block_start, block_end,
4817 &cached_state, GFP_NOFS);
4820 btrfs_start_ordered_extent(inode, ordered, 1);
4821 btrfs_put_ordered_extent(ordered);
4825 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4826 EXTENT_DIRTY | EXTENT_DELALLOC |
4827 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4828 0, 0, &cached_state, GFP_NOFS);
4830 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4833 unlock_extent_cached(io_tree, block_start, block_end,
4834 &cached_state, GFP_NOFS);
4838 if (offset != blocksize) {
4840 len = blocksize - offset;
4843 memset(kaddr + (block_start - page_offset(page)),
4846 memset(kaddr + (block_start - page_offset(page)) + offset,
4848 flush_dcache_page(page);
4851 ClearPageChecked(page);
4852 set_page_dirty(page);
4853 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4858 btrfs_delalloc_release_space(inode, block_start,
4866 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4867 u64 offset, u64 len)
4869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4870 struct btrfs_trans_handle *trans;
4874 * Still need to make sure the inode looks like it's been updated so
4875 * that any holes get logged if we fsync.
4877 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4878 BTRFS_I(inode)->last_trans = fs_info->generation;
4879 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4880 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4885 * 1 - for the one we're dropping
4886 * 1 - for the one we're adding
4887 * 1 - for updating the inode.
4889 trans = btrfs_start_transaction(root, 3);
4891 return PTR_ERR(trans);
4893 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4895 btrfs_abort_transaction(trans, ret);
4896 btrfs_end_transaction(trans);
4900 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4901 offset, 0, 0, len, 0, len, 0, 0, 0);
4903 btrfs_abort_transaction(trans, ret);
4905 btrfs_update_inode(trans, root, inode);
4906 btrfs_end_transaction(trans);
4911 * This function puts in dummy file extents for the area we're creating a hole
4912 * for. So if we are truncating this file to a larger size we need to insert
4913 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4914 * the range between oldsize and size
4916 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4919 struct btrfs_root *root = BTRFS_I(inode)->root;
4920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4921 struct extent_map *em = NULL;
4922 struct extent_state *cached_state = NULL;
4923 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4924 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4925 u64 block_end = ALIGN(size, fs_info->sectorsize);
4932 * If our size started in the middle of a block we need to zero out the
4933 * rest of the block before we expand the i_size, otherwise we could
4934 * expose stale data.
4936 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4940 if (size <= hole_start)
4944 struct btrfs_ordered_extent *ordered;
4946 lock_extent_bits(io_tree, hole_start, block_end - 1,
4948 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4949 block_end - hole_start);
4952 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4953 &cached_state, GFP_NOFS);
4954 btrfs_start_ordered_extent(inode, ordered, 1);
4955 btrfs_put_ordered_extent(ordered);
4958 cur_offset = hole_start;
4960 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4961 block_end - cur_offset, 0);
4967 last_byte = min(extent_map_end(em), block_end);
4968 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4969 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4970 struct extent_map *hole_em;
4971 hole_size = last_byte - cur_offset;
4973 err = maybe_insert_hole(root, inode, cur_offset,
4977 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4978 cur_offset + hole_size - 1, 0);
4979 hole_em = alloc_extent_map();
4981 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4982 &BTRFS_I(inode)->runtime_flags);
4985 hole_em->start = cur_offset;
4986 hole_em->len = hole_size;
4987 hole_em->orig_start = cur_offset;
4989 hole_em->block_start = EXTENT_MAP_HOLE;
4990 hole_em->block_len = 0;
4991 hole_em->orig_block_len = 0;
4992 hole_em->ram_bytes = hole_size;
4993 hole_em->bdev = fs_info->fs_devices->latest_bdev;
4994 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4995 hole_em->generation = fs_info->generation;
4998 write_lock(&em_tree->lock);
4999 err = add_extent_mapping(em_tree, hole_em, 1);
5000 write_unlock(&em_tree->lock);
5003 btrfs_drop_extent_cache(BTRFS_I(inode),
5008 free_extent_map(hole_em);
5011 free_extent_map(em);
5013 cur_offset = last_byte;
5014 if (cur_offset >= block_end)
5017 free_extent_map(em);
5018 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5023 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5025 struct btrfs_root *root = BTRFS_I(inode)->root;
5026 struct btrfs_trans_handle *trans;
5027 loff_t oldsize = i_size_read(inode);
5028 loff_t newsize = attr->ia_size;
5029 int mask = attr->ia_valid;
5033 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5034 * special case where we need to update the times despite not having
5035 * these flags set. For all other operations the VFS set these flags
5036 * explicitly if it wants a timestamp update.
5038 if (newsize != oldsize) {
5039 inode_inc_iversion(inode);
5040 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5041 inode->i_ctime = inode->i_mtime =
5042 current_time(inode);
5045 if (newsize > oldsize) {
5047 * Don't do an expanding truncate while snapshoting is ongoing.
5048 * This is to ensure the snapshot captures a fully consistent
5049 * state of this file - if the snapshot captures this expanding
5050 * truncation, it must capture all writes that happened before
5053 btrfs_wait_for_snapshot_creation(root);
5054 ret = btrfs_cont_expand(inode, oldsize, newsize);
5056 btrfs_end_write_no_snapshoting(root);
5060 trans = btrfs_start_transaction(root, 1);
5061 if (IS_ERR(trans)) {
5062 btrfs_end_write_no_snapshoting(root);
5063 return PTR_ERR(trans);
5066 i_size_write(inode, newsize);
5067 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5068 pagecache_isize_extended(inode, oldsize, newsize);
5069 ret = btrfs_update_inode(trans, root, inode);
5070 btrfs_end_write_no_snapshoting(root);
5071 btrfs_end_transaction(trans);
5075 * We're truncating a file that used to have good data down to
5076 * zero. Make sure it gets into the ordered flush list so that
5077 * any new writes get down to disk quickly.
5080 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5081 &BTRFS_I(inode)->runtime_flags);
5084 * 1 for the orphan item we're going to add
5085 * 1 for the orphan item deletion.
5087 trans = btrfs_start_transaction(root, 2);
5089 return PTR_ERR(trans);
5092 * We need to do this in case we fail at _any_ point during the
5093 * actual truncate. Once we do the truncate_setsize we could
5094 * invalidate pages which forces any outstanding ordered io to
5095 * be instantly completed which will give us extents that need
5096 * to be truncated. If we fail to get an orphan inode down we
5097 * could have left over extents that were never meant to live,
5098 * so we need to guarantee from this point on that everything
5099 * will be consistent.
5101 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5102 btrfs_end_transaction(trans);
5106 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5107 truncate_setsize(inode, newsize);
5109 /* Disable nonlocked read DIO to avoid the end less truncate */
5110 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5111 inode_dio_wait(inode);
5112 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5114 ret = btrfs_truncate(inode);
5115 if (ret && inode->i_nlink) {
5118 /* To get a stable disk_i_size */
5119 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5121 btrfs_orphan_del(NULL, BTRFS_I(inode));
5126 * failed to truncate, disk_i_size is only adjusted down
5127 * as we remove extents, so it should represent the true
5128 * size of the inode, so reset the in memory size and
5129 * delete our orphan entry.
5131 trans = btrfs_join_transaction(root);
5132 if (IS_ERR(trans)) {
5133 btrfs_orphan_del(NULL, BTRFS_I(inode));
5136 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5137 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5139 btrfs_abort_transaction(trans, err);
5140 btrfs_end_transaction(trans);
5147 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5149 struct inode *inode = d_inode(dentry);
5150 struct btrfs_root *root = BTRFS_I(inode)->root;
5153 if (btrfs_root_readonly(root))
5156 err = setattr_prepare(dentry, attr);
5160 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5161 err = btrfs_setsize(inode, attr);
5166 if (attr->ia_valid) {
5167 setattr_copy(inode, attr);
5168 inode_inc_iversion(inode);
5169 err = btrfs_dirty_inode(inode);
5171 if (!err && attr->ia_valid & ATTR_MODE)
5172 err = posix_acl_chmod(inode, inode->i_mode);
5179 * While truncating the inode pages during eviction, we get the VFS calling
5180 * btrfs_invalidatepage() against each page of the inode. This is slow because
5181 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5182 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5183 * extent_state structures over and over, wasting lots of time.
5185 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5186 * those expensive operations on a per page basis and do only the ordered io
5187 * finishing, while we release here the extent_map and extent_state structures,
5188 * without the excessive merging and splitting.
5190 static void evict_inode_truncate_pages(struct inode *inode)
5192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5193 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5194 struct rb_node *node;
5196 ASSERT(inode->i_state & I_FREEING);
5197 truncate_inode_pages_final(&inode->i_data);
5199 write_lock(&map_tree->lock);
5200 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5201 struct extent_map *em;
5203 node = rb_first(&map_tree->map);
5204 em = rb_entry(node, struct extent_map, rb_node);
5205 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5206 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5207 remove_extent_mapping(map_tree, em);
5208 free_extent_map(em);
5209 if (need_resched()) {
5210 write_unlock(&map_tree->lock);
5212 write_lock(&map_tree->lock);
5215 write_unlock(&map_tree->lock);
5218 * Keep looping until we have no more ranges in the io tree.
5219 * We can have ongoing bios started by readpages (called from readahead)
5220 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5221 * still in progress (unlocked the pages in the bio but did not yet
5222 * unlocked the ranges in the io tree). Therefore this means some
5223 * ranges can still be locked and eviction started because before
5224 * submitting those bios, which are executed by a separate task (work
5225 * queue kthread), inode references (inode->i_count) were not taken
5226 * (which would be dropped in the end io callback of each bio).
5227 * Therefore here we effectively end up waiting for those bios and
5228 * anyone else holding locked ranges without having bumped the inode's
5229 * reference count - if we don't do it, when they access the inode's
5230 * io_tree to unlock a range it may be too late, leading to an
5231 * use-after-free issue.
5233 spin_lock(&io_tree->lock);
5234 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5235 struct extent_state *state;
5236 struct extent_state *cached_state = NULL;
5240 node = rb_first(&io_tree->state);
5241 state = rb_entry(node, struct extent_state, rb_node);
5242 start = state->start;
5244 spin_unlock(&io_tree->lock);
5246 lock_extent_bits(io_tree, start, end, &cached_state);
5249 * If still has DELALLOC flag, the extent didn't reach disk,
5250 * and its reserved space won't be freed by delayed_ref.
5251 * So we need to free its reserved space here.
5252 * (Refer to comment in btrfs_invalidatepage, case 2)
5254 * Note, end is the bytenr of last byte, so we need + 1 here.
5256 if (state->state & EXTENT_DELALLOC)
5257 btrfs_qgroup_free_data(inode, start, end - start + 1);
5259 clear_extent_bit(io_tree, start, end,
5260 EXTENT_LOCKED | EXTENT_DIRTY |
5261 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5262 EXTENT_DEFRAG, 1, 1,
5263 &cached_state, GFP_NOFS);
5266 spin_lock(&io_tree->lock);
5268 spin_unlock(&io_tree->lock);
5271 void btrfs_evict_inode(struct inode *inode)
5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5274 struct btrfs_trans_handle *trans;
5275 struct btrfs_root *root = BTRFS_I(inode)->root;
5276 struct btrfs_block_rsv *rsv, *global_rsv;
5277 int steal_from_global = 0;
5281 trace_btrfs_inode_evict(inode);
5284 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5288 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5290 evict_inode_truncate_pages(inode);
5292 if (inode->i_nlink &&
5293 ((btrfs_root_refs(&root->root_item) != 0 &&
5294 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5295 btrfs_is_free_space_inode(BTRFS_I(inode))))
5298 if (is_bad_inode(inode)) {
5299 btrfs_orphan_del(NULL, BTRFS_I(inode));
5302 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5303 if (!special_file(inode->i_mode))
5304 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5306 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5308 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5309 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5310 &BTRFS_I(inode)->runtime_flags));
5314 if (inode->i_nlink > 0) {
5315 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5316 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5320 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5322 btrfs_orphan_del(NULL, BTRFS_I(inode));
5326 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5328 btrfs_orphan_del(NULL, BTRFS_I(inode));
5331 rsv->size = min_size;
5333 global_rsv = &fs_info->global_block_rsv;
5335 btrfs_i_size_write(BTRFS_I(inode), 0);
5338 * This is a bit simpler than btrfs_truncate since we've already
5339 * reserved our space for our orphan item in the unlink, so we just
5340 * need to reserve some slack space in case we add bytes and update
5341 * inode item when doing the truncate.
5344 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5345 BTRFS_RESERVE_FLUSH_LIMIT);
5348 * Try and steal from the global reserve since we will
5349 * likely not use this space anyway, we want to try as
5350 * hard as possible to get this to work.
5353 steal_from_global++;
5355 steal_from_global = 0;
5359 * steal_from_global == 0: we reserved stuff, hooray!
5360 * steal_from_global == 1: we didn't reserve stuff, boo!
5361 * steal_from_global == 2: we've committed, still not a lot of
5362 * room but maybe we'll have room in the global reserve this
5364 * steal_from_global == 3: abandon all hope!
5366 if (steal_from_global > 2) {
5368 "Could not get space for a delete, will truncate on mount %d",
5370 btrfs_orphan_del(NULL, BTRFS_I(inode));
5371 btrfs_free_block_rsv(fs_info, rsv);
5375 trans = btrfs_join_transaction(root);
5376 if (IS_ERR(trans)) {
5377 btrfs_orphan_del(NULL, BTRFS_I(inode));
5378 btrfs_free_block_rsv(fs_info, rsv);
5383 * We can't just steal from the global reserve, we need to make
5384 * sure there is room to do it, if not we need to commit and try
5387 if (steal_from_global) {
5388 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5389 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5396 * Couldn't steal from the global reserve, we have too much
5397 * pending stuff built up, commit the transaction and try it
5401 ret = btrfs_commit_transaction(trans);
5403 btrfs_orphan_del(NULL, BTRFS_I(inode));
5404 btrfs_free_block_rsv(fs_info, rsv);
5409 steal_from_global = 0;
5412 trans->block_rsv = rsv;
5414 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5415 if (ret != -ENOSPC && ret != -EAGAIN)
5418 trans->block_rsv = &fs_info->trans_block_rsv;
5419 btrfs_end_transaction(trans);
5421 btrfs_btree_balance_dirty(fs_info);
5424 btrfs_free_block_rsv(fs_info, rsv);
5427 * Errors here aren't a big deal, it just means we leave orphan items
5428 * in the tree. They will be cleaned up on the next mount.
5431 trans->block_rsv = root->orphan_block_rsv;
5432 btrfs_orphan_del(trans, BTRFS_I(inode));
5434 btrfs_orphan_del(NULL, BTRFS_I(inode));
5437 trans->block_rsv = &fs_info->trans_block_rsv;
5438 if (!(root == fs_info->tree_root ||
5439 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5440 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5442 btrfs_end_transaction(trans);
5443 btrfs_btree_balance_dirty(fs_info);
5445 btrfs_remove_delayed_node(BTRFS_I(inode));
5450 * this returns the key found in the dir entry in the location pointer.
5451 * If no dir entries were found, location->objectid is 0.
5453 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5454 struct btrfs_key *location)
5456 const char *name = dentry->d_name.name;
5457 int namelen = dentry->d_name.len;
5458 struct btrfs_dir_item *di;
5459 struct btrfs_path *path;
5460 struct btrfs_root *root = BTRFS_I(dir)->root;
5463 path = btrfs_alloc_path();
5467 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5472 if (IS_ERR_OR_NULL(di))
5475 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5477 btrfs_free_path(path);
5480 location->objectid = 0;
5485 * when we hit a tree root in a directory, the btrfs part of the inode
5486 * needs to be changed to reflect the root directory of the tree root. This
5487 * is kind of like crossing a mount point.
5489 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5491 struct dentry *dentry,
5492 struct btrfs_key *location,
5493 struct btrfs_root **sub_root)
5495 struct btrfs_path *path;
5496 struct btrfs_root *new_root;
5497 struct btrfs_root_ref *ref;
5498 struct extent_buffer *leaf;
5499 struct btrfs_key key;
5503 path = btrfs_alloc_path();
5510 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5511 key.type = BTRFS_ROOT_REF_KEY;
5512 key.offset = location->objectid;
5514 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5521 leaf = path->nodes[0];
5522 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5523 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5524 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5527 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5528 (unsigned long)(ref + 1),
5529 dentry->d_name.len);
5533 btrfs_release_path(path);
5535 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5536 if (IS_ERR(new_root)) {
5537 err = PTR_ERR(new_root);
5541 *sub_root = new_root;
5542 location->objectid = btrfs_root_dirid(&new_root->root_item);
5543 location->type = BTRFS_INODE_ITEM_KEY;
5544 location->offset = 0;
5547 btrfs_free_path(path);
5551 static void inode_tree_add(struct inode *inode)
5553 struct btrfs_root *root = BTRFS_I(inode)->root;
5554 struct btrfs_inode *entry;
5556 struct rb_node *parent;
5557 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5558 u64 ino = btrfs_ino(BTRFS_I(inode));
5560 if (inode_unhashed(inode))
5563 spin_lock(&root->inode_lock);
5564 p = &root->inode_tree.rb_node;
5567 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5569 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5570 p = &parent->rb_left;
5571 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5572 p = &parent->rb_right;
5574 WARN_ON(!(entry->vfs_inode.i_state &
5575 (I_WILL_FREE | I_FREEING)));
5576 rb_replace_node(parent, new, &root->inode_tree);
5577 RB_CLEAR_NODE(parent);
5578 spin_unlock(&root->inode_lock);
5582 rb_link_node(new, parent, p);
5583 rb_insert_color(new, &root->inode_tree);
5584 spin_unlock(&root->inode_lock);
5587 static void inode_tree_del(struct inode *inode)
5589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5590 struct btrfs_root *root = BTRFS_I(inode)->root;
5593 spin_lock(&root->inode_lock);
5594 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5595 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5596 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5597 empty = RB_EMPTY_ROOT(&root->inode_tree);
5599 spin_unlock(&root->inode_lock);
5601 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5602 synchronize_srcu(&fs_info->subvol_srcu);
5603 spin_lock(&root->inode_lock);
5604 empty = RB_EMPTY_ROOT(&root->inode_tree);
5605 spin_unlock(&root->inode_lock);
5607 btrfs_add_dead_root(root);
5611 void btrfs_invalidate_inodes(struct btrfs_root *root)
5613 struct btrfs_fs_info *fs_info = root->fs_info;
5614 struct rb_node *node;
5615 struct rb_node *prev;
5616 struct btrfs_inode *entry;
5617 struct inode *inode;
5620 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5621 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5623 spin_lock(&root->inode_lock);
5625 node = root->inode_tree.rb_node;
5629 entry = rb_entry(node, struct btrfs_inode, rb_node);
5631 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5632 node = node->rb_left;
5633 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5634 node = node->rb_right;
5640 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5641 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5645 prev = rb_next(prev);
5649 entry = rb_entry(node, struct btrfs_inode, rb_node);
5650 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5651 inode = igrab(&entry->vfs_inode);
5653 spin_unlock(&root->inode_lock);
5654 if (atomic_read(&inode->i_count) > 1)
5655 d_prune_aliases(inode);
5657 * btrfs_drop_inode will have it removed from
5658 * the inode cache when its usage count
5663 spin_lock(&root->inode_lock);
5667 if (cond_resched_lock(&root->inode_lock))
5670 node = rb_next(node);
5672 spin_unlock(&root->inode_lock);
5675 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5677 struct btrfs_iget_args *args = p;
5678 inode->i_ino = args->location->objectid;
5679 memcpy(&BTRFS_I(inode)->location, args->location,
5680 sizeof(*args->location));
5681 BTRFS_I(inode)->root = args->root;
5685 static int btrfs_find_actor(struct inode *inode, void *opaque)
5687 struct btrfs_iget_args *args = opaque;
5688 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5689 args->root == BTRFS_I(inode)->root;
5692 static struct inode *btrfs_iget_locked(struct super_block *s,
5693 struct btrfs_key *location,
5694 struct btrfs_root *root)
5696 struct inode *inode;
5697 struct btrfs_iget_args args;
5698 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5700 args.location = location;
5703 inode = iget5_locked(s, hashval, btrfs_find_actor,
5704 btrfs_init_locked_inode,
5709 /* Get an inode object given its location and corresponding root.
5710 * Returns in *is_new if the inode was read from disk
5712 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5713 struct btrfs_root *root, int *new)
5715 struct inode *inode;
5717 inode = btrfs_iget_locked(s, location, root);
5719 return ERR_PTR(-ENOMEM);
5721 if (inode->i_state & I_NEW) {
5724 ret = btrfs_read_locked_inode(inode);
5725 if (!is_bad_inode(inode)) {
5726 inode_tree_add(inode);
5727 unlock_new_inode(inode);
5731 unlock_new_inode(inode);
5734 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5741 static struct inode *new_simple_dir(struct super_block *s,
5742 struct btrfs_key *key,
5743 struct btrfs_root *root)
5745 struct inode *inode = new_inode(s);
5748 return ERR_PTR(-ENOMEM);
5750 BTRFS_I(inode)->root = root;
5751 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5752 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5754 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5755 inode->i_op = &btrfs_dir_ro_inode_operations;
5756 inode->i_opflags &= ~IOP_XATTR;
5757 inode->i_fop = &simple_dir_operations;
5758 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5759 inode->i_mtime = current_time(inode);
5760 inode->i_atime = inode->i_mtime;
5761 inode->i_ctime = inode->i_mtime;
5762 BTRFS_I(inode)->i_otime = inode->i_mtime;
5767 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5769 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5770 struct inode *inode;
5771 struct btrfs_root *root = BTRFS_I(dir)->root;
5772 struct btrfs_root *sub_root = root;
5773 struct btrfs_key location;
5777 if (dentry->d_name.len > BTRFS_NAME_LEN)
5778 return ERR_PTR(-ENAMETOOLONG);
5780 ret = btrfs_inode_by_name(dir, dentry, &location);
5782 return ERR_PTR(ret);
5784 if (location.objectid == 0)
5785 return ERR_PTR(-ENOENT);
5787 if (location.type == BTRFS_INODE_ITEM_KEY) {
5788 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5792 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5794 index = srcu_read_lock(&fs_info->subvol_srcu);
5795 ret = fixup_tree_root_location(fs_info, dir, dentry,
5796 &location, &sub_root);
5799 inode = ERR_PTR(ret);
5801 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5803 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5805 srcu_read_unlock(&fs_info->subvol_srcu, index);
5807 if (!IS_ERR(inode) && root != sub_root) {
5808 down_read(&fs_info->cleanup_work_sem);
5809 if (!(inode->i_sb->s_flags & MS_RDONLY))
5810 ret = btrfs_orphan_cleanup(sub_root);
5811 up_read(&fs_info->cleanup_work_sem);
5814 inode = ERR_PTR(ret);
5821 static int btrfs_dentry_delete(const struct dentry *dentry)
5823 struct btrfs_root *root;
5824 struct inode *inode = d_inode(dentry);
5826 if (!inode && !IS_ROOT(dentry))
5827 inode = d_inode(dentry->d_parent);
5830 root = BTRFS_I(inode)->root;
5831 if (btrfs_root_refs(&root->root_item) == 0)
5834 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5840 static void btrfs_dentry_release(struct dentry *dentry)
5842 kfree(dentry->d_fsdata);
5845 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5848 struct inode *inode;
5850 inode = btrfs_lookup_dentry(dir, dentry);
5851 if (IS_ERR(inode)) {
5852 if (PTR_ERR(inode) == -ENOENT)
5855 return ERR_CAST(inode);
5858 return d_splice_alias(inode, dentry);
5861 unsigned char btrfs_filetype_table[] = {
5862 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5865 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5867 struct inode *inode = file_inode(file);
5868 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5869 struct btrfs_root *root = BTRFS_I(inode)->root;
5870 struct btrfs_item *item;
5871 struct btrfs_dir_item *di;
5872 struct btrfs_key key;
5873 struct btrfs_key found_key;
5874 struct btrfs_path *path;
5875 struct list_head ins_list;
5876 struct list_head del_list;
5878 struct extent_buffer *leaf;
5880 unsigned char d_type;
5886 struct btrfs_key location;
5888 if (!dir_emit_dots(file, ctx))
5891 path = btrfs_alloc_path();
5895 path->reada = READA_FORWARD;
5897 INIT_LIST_HEAD(&ins_list);
5898 INIT_LIST_HEAD(&del_list);
5899 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5901 key.type = BTRFS_DIR_INDEX_KEY;
5902 key.offset = ctx->pos;
5903 key.objectid = btrfs_ino(BTRFS_I(inode));
5905 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5910 leaf = path->nodes[0];
5911 slot = path->slots[0];
5912 if (slot >= btrfs_header_nritems(leaf)) {
5913 ret = btrfs_next_leaf(root, path);
5921 item = btrfs_item_nr(slot);
5922 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5924 if (found_key.objectid != key.objectid)
5926 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5928 if (found_key.offset < ctx->pos)
5930 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5933 ctx->pos = found_key.offset;
5935 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5936 if (verify_dir_item(fs_info, leaf, di))
5939 name_len = btrfs_dir_name_len(leaf, di);
5940 if (name_len <= sizeof(tmp_name)) {
5941 name_ptr = tmp_name;
5943 name_ptr = kmalloc(name_len, GFP_KERNEL);
5949 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5952 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5953 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5955 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5958 if (name_ptr != tmp_name)
5968 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5973 * Stop new entries from being returned after we return the last
5976 * New directory entries are assigned a strictly increasing
5977 * offset. This means that new entries created during readdir
5978 * are *guaranteed* to be seen in the future by that readdir.
5979 * This has broken buggy programs which operate on names as
5980 * they're returned by readdir. Until we re-use freed offsets
5981 * we have this hack to stop new entries from being returned
5982 * under the assumption that they'll never reach this huge
5985 * This is being careful not to overflow 32bit loff_t unless the
5986 * last entry requires it because doing so has broken 32bit apps
5989 if (ctx->pos >= INT_MAX)
5990 ctx->pos = LLONG_MAX;
5997 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5998 btrfs_free_path(path);
6002 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6004 struct btrfs_root *root = BTRFS_I(inode)->root;
6005 struct btrfs_trans_handle *trans;
6007 bool nolock = false;
6009 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6012 if (btrfs_fs_closing(root->fs_info) &&
6013 btrfs_is_free_space_inode(BTRFS_I(inode)))
6016 if (wbc->sync_mode == WB_SYNC_ALL) {
6018 trans = btrfs_join_transaction_nolock(root);
6020 trans = btrfs_join_transaction(root);
6022 return PTR_ERR(trans);
6023 ret = btrfs_commit_transaction(trans);
6029 * This is somewhat expensive, updating the tree every time the
6030 * inode changes. But, it is most likely to find the inode in cache.
6031 * FIXME, needs more benchmarking...there are no reasons other than performance
6032 * to keep or drop this code.
6034 static int btrfs_dirty_inode(struct inode *inode)
6036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6037 struct btrfs_root *root = BTRFS_I(inode)->root;
6038 struct btrfs_trans_handle *trans;
6041 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6044 trans = btrfs_join_transaction(root);
6046 return PTR_ERR(trans);
6048 ret = btrfs_update_inode(trans, root, inode);
6049 if (ret && ret == -ENOSPC) {
6050 /* whoops, lets try again with the full transaction */
6051 btrfs_end_transaction(trans);
6052 trans = btrfs_start_transaction(root, 1);
6054 return PTR_ERR(trans);
6056 ret = btrfs_update_inode(trans, root, inode);
6058 btrfs_end_transaction(trans);
6059 if (BTRFS_I(inode)->delayed_node)
6060 btrfs_balance_delayed_items(fs_info);
6066 * This is a copy of file_update_time. We need this so we can return error on
6067 * ENOSPC for updating the inode in the case of file write and mmap writes.
6069 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6072 struct btrfs_root *root = BTRFS_I(inode)->root;
6074 if (btrfs_root_readonly(root))
6077 if (flags & S_VERSION)
6078 inode_inc_iversion(inode);
6079 if (flags & S_CTIME)
6080 inode->i_ctime = *now;
6081 if (flags & S_MTIME)
6082 inode->i_mtime = *now;
6083 if (flags & S_ATIME)
6084 inode->i_atime = *now;
6085 return btrfs_dirty_inode(inode);
6089 * find the highest existing sequence number in a directory
6090 * and then set the in-memory index_cnt variable to reflect
6091 * free sequence numbers
6093 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6095 struct btrfs_root *root = inode->root;
6096 struct btrfs_key key, found_key;
6097 struct btrfs_path *path;
6098 struct extent_buffer *leaf;
6101 key.objectid = btrfs_ino(inode);
6102 key.type = BTRFS_DIR_INDEX_KEY;
6103 key.offset = (u64)-1;
6105 path = btrfs_alloc_path();
6109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6112 /* FIXME: we should be able to handle this */
6118 * MAGIC NUMBER EXPLANATION:
6119 * since we search a directory based on f_pos we have to start at 2
6120 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6121 * else has to start at 2
6123 if (path->slots[0] == 0) {
6124 inode->index_cnt = 2;
6130 leaf = path->nodes[0];
6131 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6133 if (found_key.objectid != btrfs_ino(inode) ||
6134 found_key.type != BTRFS_DIR_INDEX_KEY) {
6135 inode->index_cnt = 2;
6139 inode->index_cnt = found_key.offset + 1;
6141 btrfs_free_path(path);
6146 * helper to find a free sequence number in a given directory. This current
6147 * code is very simple, later versions will do smarter things in the btree
6149 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6153 if (dir->index_cnt == (u64)-1) {
6154 ret = btrfs_inode_delayed_dir_index_count(dir);
6156 ret = btrfs_set_inode_index_count(dir);
6162 *index = dir->index_cnt;
6168 static int btrfs_insert_inode_locked(struct inode *inode)
6170 struct btrfs_iget_args args;
6171 args.location = &BTRFS_I(inode)->location;
6172 args.root = BTRFS_I(inode)->root;
6174 return insert_inode_locked4(inode,
6175 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6176 btrfs_find_actor, &args);
6179 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6180 struct btrfs_root *root,
6182 const char *name, int name_len,
6183 u64 ref_objectid, u64 objectid,
6184 umode_t mode, u64 *index)
6186 struct btrfs_fs_info *fs_info = root->fs_info;
6187 struct inode *inode;
6188 struct btrfs_inode_item *inode_item;
6189 struct btrfs_key *location;
6190 struct btrfs_path *path;
6191 struct btrfs_inode_ref *ref;
6192 struct btrfs_key key[2];
6194 int nitems = name ? 2 : 1;
6198 path = btrfs_alloc_path();
6200 return ERR_PTR(-ENOMEM);
6202 inode = new_inode(fs_info->sb);
6204 btrfs_free_path(path);
6205 return ERR_PTR(-ENOMEM);
6209 * O_TMPFILE, set link count to 0, so that after this point,
6210 * we fill in an inode item with the correct link count.
6213 set_nlink(inode, 0);
6216 * we have to initialize this early, so we can reclaim the inode
6217 * number if we fail afterwards in this function.
6219 inode->i_ino = objectid;
6222 trace_btrfs_inode_request(dir);
6224 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6226 btrfs_free_path(path);
6228 return ERR_PTR(ret);
6234 * index_cnt is ignored for everything but a dir,
6235 * btrfs_get_inode_index_count has an explanation for the magic
6238 BTRFS_I(inode)->index_cnt = 2;
6239 BTRFS_I(inode)->dir_index = *index;
6240 BTRFS_I(inode)->root = root;
6241 BTRFS_I(inode)->generation = trans->transid;
6242 inode->i_generation = BTRFS_I(inode)->generation;
6245 * We could have gotten an inode number from somebody who was fsynced
6246 * and then removed in this same transaction, so let's just set full
6247 * sync since it will be a full sync anyway and this will blow away the
6248 * old info in the log.
6250 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6252 key[0].objectid = objectid;
6253 key[0].type = BTRFS_INODE_ITEM_KEY;
6256 sizes[0] = sizeof(struct btrfs_inode_item);
6260 * Start new inodes with an inode_ref. This is slightly more
6261 * efficient for small numbers of hard links since they will
6262 * be packed into one item. Extended refs will kick in if we
6263 * add more hard links than can fit in the ref item.
6265 key[1].objectid = objectid;
6266 key[1].type = BTRFS_INODE_REF_KEY;
6267 key[1].offset = ref_objectid;
6269 sizes[1] = name_len + sizeof(*ref);
6272 location = &BTRFS_I(inode)->location;
6273 location->objectid = objectid;
6274 location->offset = 0;
6275 location->type = BTRFS_INODE_ITEM_KEY;
6277 ret = btrfs_insert_inode_locked(inode);
6281 path->leave_spinning = 1;
6282 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6286 inode_init_owner(inode, dir, mode);
6287 inode_set_bytes(inode, 0);
6289 inode->i_mtime = current_time(inode);
6290 inode->i_atime = inode->i_mtime;
6291 inode->i_ctime = inode->i_mtime;
6292 BTRFS_I(inode)->i_otime = inode->i_mtime;
6294 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6295 struct btrfs_inode_item);
6296 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6297 sizeof(*inode_item));
6298 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6301 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6302 struct btrfs_inode_ref);
6303 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6304 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6305 ptr = (unsigned long)(ref + 1);
6306 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6309 btrfs_mark_buffer_dirty(path->nodes[0]);
6310 btrfs_free_path(path);
6312 btrfs_inherit_iflags(inode, dir);
6314 if (S_ISREG(mode)) {
6315 if (btrfs_test_opt(fs_info, NODATASUM))
6316 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6317 if (btrfs_test_opt(fs_info, NODATACOW))
6318 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6319 BTRFS_INODE_NODATASUM;
6322 inode_tree_add(inode);
6324 trace_btrfs_inode_new(inode);
6325 btrfs_set_inode_last_trans(trans, inode);
6327 btrfs_update_root_times(trans, root);
6329 ret = btrfs_inode_inherit_props(trans, inode, dir);
6332 "error inheriting props for ino %llu (root %llu): %d",
6333 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6338 unlock_new_inode(inode);
6341 BTRFS_I(dir)->index_cnt--;
6342 btrfs_free_path(path);
6344 return ERR_PTR(ret);
6347 static inline u8 btrfs_inode_type(struct inode *inode)
6349 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6353 * utility function to add 'inode' into 'parent_inode' with
6354 * a give name and a given sequence number.
6355 * if 'add_backref' is true, also insert a backref from the
6356 * inode to the parent directory.
6358 int btrfs_add_link(struct btrfs_trans_handle *trans,
6359 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6360 const char *name, int name_len, int add_backref, u64 index)
6362 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6364 struct btrfs_key key;
6365 struct btrfs_root *root = parent_inode->root;
6366 u64 ino = btrfs_ino(inode);
6367 u64 parent_ino = btrfs_ino(parent_inode);
6369 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6370 memcpy(&key, &inode->root->root_key, sizeof(key));
6373 key.type = BTRFS_INODE_ITEM_KEY;
6377 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6378 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6379 root->root_key.objectid, parent_ino,
6380 index, name, name_len);
6381 } else if (add_backref) {
6382 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6386 /* Nothing to clean up yet */
6390 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6392 btrfs_inode_type(&inode->vfs_inode), index);
6393 if (ret == -EEXIST || ret == -EOVERFLOW)
6396 btrfs_abort_transaction(trans, ret);
6400 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6402 inode_inc_iversion(&parent_inode->vfs_inode);
6403 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6404 current_time(&parent_inode->vfs_inode);
6405 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6407 btrfs_abort_transaction(trans, ret);
6411 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6414 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6415 root->root_key.objectid, parent_ino,
6416 &local_index, name, name_len);
6418 } else if (add_backref) {
6422 err = btrfs_del_inode_ref(trans, root, name, name_len,
6423 ino, parent_ino, &local_index);
6428 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6429 struct btrfs_inode *dir, struct dentry *dentry,
6430 struct btrfs_inode *inode, int backref, u64 index)
6432 int err = btrfs_add_link(trans, dir, inode,
6433 dentry->d_name.name, dentry->d_name.len,
6440 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6441 umode_t mode, dev_t rdev)
6443 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6444 struct btrfs_trans_handle *trans;
6445 struct btrfs_root *root = BTRFS_I(dir)->root;
6446 struct inode *inode = NULL;
6453 * 2 for inode item and ref
6455 * 1 for xattr if selinux is on
6457 trans = btrfs_start_transaction(root, 5);
6459 return PTR_ERR(trans);
6461 err = btrfs_find_free_ino(root, &objectid);
6465 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6466 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6468 if (IS_ERR(inode)) {
6469 err = PTR_ERR(inode);
6474 * If the active LSM wants to access the inode during
6475 * d_instantiate it needs these. Smack checks to see
6476 * if the filesystem supports xattrs by looking at the
6479 inode->i_op = &btrfs_special_inode_operations;
6480 init_special_inode(inode, inode->i_mode, rdev);
6482 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6484 goto out_unlock_inode;
6486 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6489 goto out_unlock_inode;
6491 btrfs_update_inode(trans, root, inode);
6492 unlock_new_inode(inode);
6493 d_instantiate(dentry, inode);
6497 btrfs_end_transaction(trans);
6498 btrfs_balance_delayed_items(fs_info);
6499 btrfs_btree_balance_dirty(fs_info);
6501 inode_dec_link_count(inode);
6508 unlock_new_inode(inode);
6513 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6514 umode_t mode, bool excl)
6516 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6517 struct btrfs_trans_handle *trans;
6518 struct btrfs_root *root = BTRFS_I(dir)->root;
6519 struct inode *inode = NULL;
6520 int drop_inode_on_err = 0;
6526 * 2 for inode item and ref
6528 * 1 for xattr if selinux is on
6530 trans = btrfs_start_transaction(root, 5);
6532 return PTR_ERR(trans);
6534 err = btrfs_find_free_ino(root, &objectid);
6538 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6539 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6541 if (IS_ERR(inode)) {
6542 err = PTR_ERR(inode);
6545 drop_inode_on_err = 1;
6547 * If the active LSM wants to access the inode during
6548 * d_instantiate it needs these. Smack checks to see
6549 * if the filesystem supports xattrs by looking at the
6552 inode->i_fop = &btrfs_file_operations;
6553 inode->i_op = &btrfs_file_inode_operations;
6554 inode->i_mapping->a_ops = &btrfs_aops;
6556 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6558 goto out_unlock_inode;
6560 err = btrfs_update_inode(trans, root, inode);
6562 goto out_unlock_inode;
6564 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6567 goto out_unlock_inode;
6569 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6570 unlock_new_inode(inode);
6571 d_instantiate(dentry, inode);
6574 btrfs_end_transaction(trans);
6575 if (err && drop_inode_on_err) {
6576 inode_dec_link_count(inode);
6579 btrfs_balance_delayed_items(fs_info);
6580 btrfs_btree_balance_dirty(fs_info);
6584 unlock_new_inode(inode);
6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 struct dentry *dentry)
6592 struct btrfs_trans_handle *trans = NULL;
6593 struct btrfs_root *root = BTRFS_I(dir)->root;
6594 struct inode *inode = d_inode(old_dentry);
6595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6600 /* do not allow sys_link's with other subvols of the same device */
6601 if (root->objectid != BTRFS_I(inode)->root->objectid)
6604 if (inode->i_nlink >= BTRFS_LINK_MAX)
6607 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6612 * 2 items for inode and inode ref
6613 * 2 items for dir items
6614 * 1 item for parent inode
6616 trans = btrfs_start_transaction(root, 5);
6617 if (IS_ERR(trans)) {
6618 err = PTR_ERR(trans);
6623 /* There are several dir indexes for this inode, clear the cache. */
6624 BTRFS_I(inode)->dir_index = 0ULL;
6626 inode_inc_iversion(inode);
6627 inode->i_ctime = current_time(inode);
6629 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6631 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6637 struct dentry *parent = dentry->d_parent;
6638 err = btrfs_update_inode(trans, root, inode);
6641 if (inode->i_nlink == 1) {
6643 * If new hard link count is 1, it's a file created
6644 * with open(2) O_TMPFILE flag.
6646 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6650 d_instantiate(dentry, inode);
6651 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6654 btrfs_balance_delayed_items(fs_info);
6657 btrfs_end_transaction(trans);
6659 inode_dec_link_count(inode);
6662 btrfs_btree_balance_dirty(fs_info);
6666 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6668 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6669 struct inode *inode = NULL;
6670 struct btrfs_trans_handle *trans;
6671 struct btrfs_root *root = BTRFS_I(dir)->root;
6673 int drop_on_err = 0;
6678 * 2 items for inode and ref
6679 * 2 items for dir items
6680 * 1 for xattr if selinux is on
6682 trans = btrfs_start_transaction(root, 5);
6684 return PTR_ERR(trans);
6686 err = btrfs_find_free_ino(root, &objectid);
6690 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6691 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6692 S_IFDIR | mode, &index);
6693 if (IS_ERR(inode)) {
6694 err = PTR_ERR(inode);
6699 /* these must be set before we unlock the inode */
6700 inode->i_op = &btrfs_dir_inode_operations;
6701 inode->i_fop = &btrfs_dir_file_operations;
6703 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6705 goto out_fail_inode;
6707 btrfs_i_size_write(BTRFS_I(inode), 0);
6708 err = btrfs_update_inode(trans, root, inode);
6710 goto out_fail_inode;
6712 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6713 dentry->d_name.name,
6714 dentry->d_name.len, 0, index);
6716 goto out_fail_inode;
6718 d_instantiate(dentry, inode);
6720 * mkdir is special. We're unlocking after we call d_instantiate
6721 * to avoid a race with nfsd calling d_instantiate.
6723 unlock_new_inode(inode);
6727 btrfs_end_transaction(trans);
6729 inode_dec_link_count(inode);
6732 btrfs_balance_delayed_items(fs_info);
6733 btrfs_btree_balance_dirty(fs_info);
6737 unlock_new_inode(inode);
6741 /* Find next extent map of a given extent map, caller needs to ensure locks */
6742 static struct extent_map *next_extent_map(struct extent_map *em)
6744 struct rb_node *next;
6746 next = rb_next(&em->rb_node);
6749 return container_of(next, struct extent_map, rb_node);
6752 static struct extent_map *prev_extent_map(struct extent_map *em)
6754 struct rb_node *prev;
6756 prev = rb_prev(&em->rb_node);
6759 return container_of(prev, struct extent_map, rb_node);
6762 /* helper for btfs_get_extent. Given an existing extent in the tree,
6763 * the existing extent is the nearest extent to map_start,
6764 * and an extent that you want to insert, deal with overlap and insert
6765 * the best fitted new extent into the tree.
6767 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6768 struct extent_map *existing,
6769 struct extent_map *em,
6772 struct extent_map *prev;
6773 struct extent_map *next;
6778 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6780 if (existing->start > map_start) {
6782 prev = prev_extent_map(next);
6785 next = next_extent_map(prev);
6788 start = prev ? extent_map_end(prev) : em->start;
6789 start = max_t(u64, start, em->start);
6790 end = next ? next->start : extent_map_end(em);
6791 end = min_t(u64, end, extent_map_end(em));
6792 start_diff = start - em->start;
6794 em->len = end - start;
6795 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6796 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6797 em->block_start += start_diff;
6798 em->block_len -= start_diff;
6800 return add_extent_mapping(em_tree, em, 0);
6803 static noinline int uncompress_inline(struct btrfs_path *path,
6805 size_t pg_offset, u64 extent_offset,
6806 struct btrfs_file_extent_item *item)
6809 struct extent_buffer *leaf = path->nodes[0];
6812 unsigned long inline_size;
6816 WARN_ON(pg_offset != 0);
6817 compress_type = btrfs_file_extent_compression(leaf, item);
6818 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6819 inline_size = btrfs_file_extent_inline_item_len(leaf,
6820 btrfs_item_nr(path->slots[0]));
6821 tmp = kmalloc(inline_size, GFP_NOFS);
6824 ptr = btrfs_file_extent_inline_start(item);
6826 read_extent_buffer(leaf, tmp, ptr, inline_size);
6828 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6829 ret = btrfs_decompress(compress_type, tmp, page,
6830 extent_offset, inline_size, max_size);
6833 * decompression code contains a memset to fill in any space between the end
6834 * of the uncompressed data and the end of max_size in case the decompressed
6835 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6836 * the end of an inline extent and the beginning of the next block, so we
6837 * cover that region here.
6840 if (max_size + pg_offset < PAGE_SIZE) {
6841 char *map = kmap(page);
6842 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6850 * a bit scary, this does extent mapping from logical file offset to the disk.
6851 * the ugly parts come from merging extents from the disk with the in-ram
6852 * representation. This gets more complex because of the data=ordered code,
6853 * where the in-ram extents might be locked pending data=ordered completion.
6855 * This also copies inline extents directly into the page.
6857 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6859 size_t pg_offset, u64 start, u64 len,
6862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6865 u64 extent_start = 0;
6867 u64 objectid = btrfs_ino(inode);
6869 struct btrfs_path *path = NULL;
6870 struct btrfs_root *root = inode->root;
6871 struct btrfs_file_extent_item *item;
6872 struct extent_buffer *leaf;
6873 struct btrfs_key found_key;
6874 struct extent_map *em = NULL;
6875 struct extent_map_tree *em_tree = &inode->extent_tree;
6876 struct extent_io_tree *io_tree = &inode->io_tree;
6877 struct btrfs_trans_handle *trans = NULL;
6878 const bool new_inline = !page || create;
6881 read_lock(&em_tree->lock);
6882 em = lookup_extent_mapping(em_tree, start, len);
6884 em->bdev = fs_info->fs_devices->latest_bdev;
6885 read_unlock(&em_tree->lock);
6888 if (em->start > start || em->start + em->len <= start)
6889 free_extent_map(em);
6890 else if (em->block_start == EXTENT_MAP_INLINE && page)
6891 free_extent_map(em);
6895 em = alloc_extent_map();
6900 em->bdev = fs_info->fs_devices->latest_bdev;
6901 em->start = EXTENT_MAP_HOLE;
6902 em->orig_start = EXTENT_MAP_HOLE;
6904 em->block_len = (u64)-1;
6907 path = btrfs_alloc_path();
6913 * Chances are we'll be called again, so go ahead and do
6916 path->reada = READA_FORWARD;
6919 ret = btrfs_lookup_file_extent(trans, root, path,
6920 objectid, start, trans != NULL);
6927 if (path->slots[0] == 0)
6932 leaf = path->nodes[0];
6933 item = btrfs_item_ptr(leaf, path->slots[0],
6934 struct btrfs_file_extent_item);
6935 /* are we inside the extent that was found? */
6936 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6937 found_type = found_key.type;
6938 if (found_key.objectid != objectid ||
6939 found_type != BTRFS_EXTENT_DATA_KEY) {
6941 * If we backup past the first extent we want to move forward
6942 * and see if there is an extent in front of us, otherwise we'll
6943 * say there is a hole for our whole search range which can
6950 found_type = btrfs_file_extent_type(leaf, item);
6951 extent_start = found_key.offset;
6952 if (found_type == BTRFS_FILE_EXTENT_REG ||
6953 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6954 extent_end = extent_start +
6955 btrfs_file_extent_num_bytes(leaf, item);
6957 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6959 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6961 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6962 extent_end = ALIGN(extent_start + size,
6963 fs_info->sectorsize);
6965 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6970 if (start >= extent_end) {
6972 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6973 ret = btrfs_next_leaf(root, path);
6980 leaf = path->nodes[0];
6982 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6983 if (found_key.objectid != objectid ||
6984 found_key.type != BTRFS_EXTENT_DATA_KEY)
6986 if (start + len <= found_key.offset)
6988 if (start > found_key.offset)
6991 em->orig_start = start;
6992 em->len = found_key.offset - start;
6996 btrfs_extent_item_to_extent_map(inode, path, item,
6999 if (found_type == BTRFS_FILE_EXTENT_REG ||
7000 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7002 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7006 size_t extent_offset;
7012 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7013 extent_offset = page_offset(page) + pg_offset - extent_start;
7014 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7015 size - extent_offset);
7016 em->start = extent_start + extent_offset;
7017 em->len = ALIGN(copy_size, fs_info->sectorsize);
7018 em->orig_block_len = em->len;
7019 em->orig_start = em->start;
7020 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7021 if (create == 0 && !PageUptodate(page)) {
7022 if (btrfs_file_extent_compression(leaf, item) !=
7023 BTRFS_COMPRESS_NONE) {
7024 ret = uncompress_inline(path, page, pg_offset,
7025 extent_offset, item);
7032 read_extent_buffer(leaf, map + pg_offset, ptr,
7034 if (pg_offset + copy_size < PAGE_SIZE) {
7035 memset(map + pg_offset + copy_size, 0,
7036 PAGE_SIZE - pg_offset -
7041 flush_dcache_page(page);
7042 } else if (create && PageUptodate(page)) {
7046 free_extent_map(em);
7049 btrfs_release_path(path);
7050 trans = btrfs_join_transaction(root);
7053 return ERR_CAST(trans);
7057 write_extent_buffer(leaf, map + pg_offset, ptr,
7060 btrfs_mark_buffer_dirty(leaf);
7062 set_extent_uptodate(io_tree, em->start,
7063 extent_map_end(em) - 1, NULL, GFP_NOFS);
7068 em->orig_start = start;
7071 em->block_start = EXTENT_MAP_HOLE;
7072 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7074 btrfs_release_path(path);
7075 if (em->start > start || extent_map_end(em) <= start) {
7077 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7078 em->start, em->len, start, len);
7084 write_lock(&em_tree->lock);
7085 ret = add_extent_mapping(em_tree, em, 0);
7086 /* it is possible that someone inserted the extent into the tree
7087 * while we had the lock dropped. It is also possible that
7088 * an overlapping map exists in the tree
7090 if (ret == -EEXIST) {
7091 struct extent_map *existing;
7095 existing = search_extent_mapping(em_tree, start, len);
7097 * existing will always be non-NULL, since there must be
7098 * extent causing the -EEXIST.
7100 if (existing->start == em->start &&
7101 extent_map_end(existing) >= extent_map_end(em) &&
7102 em->block_start == existing->block_start) {
7104 * The existing extent map already encompasses the
7105 * entire extent map we tried to add.
7107 free_extent_map(em);
7111 } else if (start >= extent_map_end(existing) ||
7112 start <= existing->start) {
7114 * The existing extent map is the one nearest to
7115 * the [start, start + len) range which overlaps
7117 err = merge_extent_mapping(em_tree, existing,
7119 free_extent_map(existing);
7121 free_extent_map(em);
7125 free_extent_map(em);
7130 write_unlock(&em_tree->lock);
7133 trace_btrfs_get_extent(root, inode, em);
7135 btrfs_free_path(path);
7137 ret = btrfs_end_transaction(trans);
7142 free_extent_map(em);
7143 return ERR_PTR(err);
7145 BUG_ON(!em); /* Error is always set */
7149 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7151 size_t pg_offset, u64 start, u64 len,
7154 struct extent_map *em;
7155 struct extent_map *hole_em = NULL;
7156 u64 range_start = start;
7162 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7166 * If our em maps to:
7168 * - a pre-alloc extent,
7169 * there might actually be delalloc bytes behind it.
7171 if (em->block_start != EXTENT_MAP_HOLE &&
7172 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7177 /* check to see if we've wrapped (len == -1 or similar) */
7186 /* ok, we didn't find anything, lets look for delalloc */
7187 found = count_range_bits(&inode->io_tree, &range_start,
7188 end, len, EXTENT_DELALLOC, 1);
7189 found_end = range_start + found;
7190 if (found_end < range_start)
7191 found_end = (u64)-1;
7194 * we didn't find anything useful, return
7195 * the original results from get_extent()
7197 if (range_start > end || found_end <= start) {
7203 /* adjust the range_start to make sure it doesn't
7204 * go backwards from the start they passed in
7206 range_start = max(start, range_start);
7207 found = found_end - range_start;
7210 u64 hole_start = start;
7213 em = alloc_extent_map();
7219 * when btrfs_get_extent can't find anything it
7220 * returns one huge hole
7222 * make sure what it found really fits our range, and
7223 * adjust to make sure it is based on the start from
7227 u64 calc_end = extent_map_end(hole_em);
7229 if (calc_end <= start || (hole_em->start > end)) {
7230 free_extent_map(hole_em);
7233 hole_start = max(hole_em->start, start);
7234 hole_len = calc_end - hole_start;
7238 if (hole_em && range_start > hole_start) {
7239 /* our hole starts before our delalloc, so we
7240 * have to return just the parts of the hole
7241 * that go until the delalloc starts
7243 em->len = min(hole_len,
7244 range_start - hole_start);
7245 em->start = hole_start;
7246 em->orig_start = hole_start;
7248 * don't adjust block start at all,
7249 * it is fixed at EXTENT_MAP_HOLE
7251 em->block_start = hole_em->block_start;
7252 em->block_len = hole_len;
7253 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7254 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7256 em->start = range_start;
7258 em->orig_start = range_start;
7259 em->block_start = EXTENT_MAP_DELALLOC;
7260 em->block_len = found;
7262 } else if (hole_em) {
7267 free_extent_map(hole_em);
7269 free_extent_map(em);
7270 return ERR_PTR(err);
7275 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7278 const u64 orig_start,
7279 const u64 block_start,
7280 const u64 block_len,
7281 const u64 orig_block_len,
7282 const u64 ram_bytes,
7285 struct extent_map *em = NULL;
7288 if (type != BTRFS_ORDERED_NOCOW) {
7289 em = create_io_em(inode, start, len, orig_start,
7290 block_start, block_len, orig_block_len,
7292 BTRFS_COMPRESS_NONE, /* compress_type */
7297 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7298 len, block_len, type);
7301 free_extent_map(em);
7302 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7303 start + len - 1, 0);
7312 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7316 struct btrfs_root *root = BTRFS_I(inode)->root;
7317 struct extent_map *em;
7318 struct btrfs_key ins;
7322 alloc_hint = get_extent_allocation_hint(inode, start, len);
7323 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7324 0, alloc_hint, &ins, 1, 1);
7326 return ERR_PTR(ret);
7328 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7329 ins.objectid, ins.offset, ins.offset,
7330 ins.offset, BTRFS_ORDERED_REGULAR);
7331 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7333 btrfs_free_reserved_extent(fs_info, ins.objectid,
7340 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7341 * block must be cow'd
7343 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7344 u64 *orig_start, u64 *orig_block_len,
7347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7348 struct btrfs_path *path;
7350 struct extent_buffer *leaf;
7351 struct btrfs_root *root = BTRFS_I(inode)->root;
7352 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7353 struct btrfs_file_extent_item *fi;
7354 struct btrfs_key key;
7361 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7363 path = btrfs_alloc_path();
7367 ret = btrfs_lookup_file_extent(NULL, root, path,
7368 btrfs_ino(BTRFS_I(inode)), offset, 0);
7372 slot = path->slots[0];
7375 /* can't find the item, must cow */
7382 leaf = path->nodes[0];
7383 btrfs_item_key_to_cpu(leaf, &key, slot);
7384 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7385 key.type != BTRFS_EXTENT_DATA_KEY) {
7386 /* not our file or wrong item type, must cow */
7390 if (key.offset > offset) {
7391 /* Wrong offset, must cow */
7395 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7396 found_type = btrfs_file_extent_type(leaf, fi);
7397 if (found_type != BTRFS_FILE_EXTENT_REG &&
7398 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7399 /* not a regular extent, must cow */
7403 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7406 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7407 if (extent_end <= offset)
7410 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7411 if (disk_bytenr == 0)
7414 if (btrfs_file_extent_compression(leaf, fi) ||
7415 btrfs_file_extent_encryption(leaf, fi) ||
7416 btrfs_file_extent_other_encoding(leaf, fi))
7419 backref_offset = btrfs_file_extent_offset(leaf, fi);
7422 *orig_start = key.offset - backref_offset;
7423 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7424 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7427 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7430 num_bytes = min(offset + *len, extent_end) - offset;
7431 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7434 range_end = round_up(offset + num_bytes,
7435 root->fs_info->sectorsize) - 1;
7436 ret = test_range_bit(io_tree, offset, range_end,
7437 EXTENT_DELALLOC, 0, NULL);
7444 btrfs_release_path(path);
7447 * look for other files referencing this extent, if we
7448 * find any we must cow
7451 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7452 key.offset - backref_offset, disk_bytenr);
7459 * adjust disk_bytenr and num_bytes to cover just the bytes
7460 * in this extent we are about to write. If there
7461 * are any csums in that range we have to cow in order
7462 * to keep the csums correct
7464 disk_bytenr += backref_offset;
7465 disk_bytenr += offset - key.offset;
7466 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7469 * all of the above have passed, it is safe to overwrite this extent
7475 btrfs_free_path(path);
7479 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7481 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7483 void **pagep = NULL;
7484 struct page *page = NULL;
7485 unsigned long start_idx;
7486 unsigned long end_idx;
7488 start_idx = start >> PAGE_SHIFT;
7491 * end is the last byte in the last page. end == start is legal
7493 end_idx = end >> PAGE_SHIFT;
7497 /* Most of the code in this while loop is lifted from
7498 * find_get_page. It's been modified to begin searching from a
7499 * page and return just the first page found in that range. If the
7500 * found idx is less than or equal to the end idx then we know that
7501 * a page exists. If no pages are found or if those pages are
7502 * outside of the range then we're fine (yay!) */
7503 while (page == NULL &&
7504 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7505 page = radix_tree_deref_slot(pagep);
7506 if (unlikely(!page))
7509 if (radix_tree_exception(page)) {
7510 if (radix_tree_deref_retry(page)) {
7515 * Otherwise, shmem/tmpfs must be storing a swap entry
7516 * here as an exceptional entry: so return it without
7517 * attempting to raise page count.
7520 break; /* TODO: Is this relevant for this use case? */
7523 if (!page_cache_get_speculative(page)) {
7529 * Has the page moved?
7530 * This is part of the lockless pagecache protocol. See
7531 * include/linux/pagemap.h for details.
7533 if (unlikely(page != *pagep)) {
7540 if (page->index <= end_idx)
7549 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7550 struct extent_state **cached_state, int writing)
7552 struct btrfs_ordered_extent *ordered;
7556 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7559 * We're concerned with the entire range that we're going to be
7560 * doing DIO to, so we need to make sure there's no ordered
7561 * extents in this range.
7563 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7564 lockend - lockstart + 1);
7567 * We need to make sure there are no buffered pages in this
7568 * range either, we could have raced between the invalidate in
7569 * generic_file_direct_write and locking the extent. The
7570 * invalidate needs to happen so that reads after a write do not
7575 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7579 cached_state, GFP_NOFS);
7583 * If we are doing a DIO read and the ordered extent we
7584 * found is for a buffered write, we can not wait for it
7585 * to complete and retry, because if we do so we can
7586 * deadlock with concurrent buffered writes on page
7587 * locks. This happens only if our DIO read covers more
7588 * than one extent map, if at this point has already
7589 * created an ordered extent for a previous extent map
7590 * and locked its range in the inode's io tree, and a
7591 * concurrent write against that previous extent map's
7592 * range and this range started (we unlock the ranges
7593 * in the io tree only when the bios complete and
7594 * buffered writes always lock pages before attempting
7595 * to lock range in the io tree).
7598 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7599 btrfs_start_ordered_extent(inode, ordered, 1);
7602 btrfs_put_ordered_extent(ordered);
7605 * We could trigger writeback for this range (and wait
7606 * for it to complete) and then invalidate the pages for
7607 * this range (through invalidate_inode_pages2_range()),
7608 * but that can lead us to a deadlock with a concurrent
7609 * call to readpages() (a buffered read or a defrag call
7610 * triggered a readahead) on a page lock due to an
7611 * ordered dio extent we created before but did not have
7612 * yet a corresponding bio submitted (whence it can not
7613 * complete), which makes readpages() wait for that
7614 * ordered extent to complete while holding a lock on
7629 /* The callers of this must take lock_extent() */
7630 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7631 u64 orig_start, u64 block_start,
7632 u64 block_len, u64 orig_block_len,
7633 u64 ram_bytes, int compress_type,
7636 struct extent_map_tree *em_tree;
7637 struct extent_map *em;
7638 struct btrfs_root *root = BTRFS_I(inode)->root;
7641 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7642 type == BTRFS_ORDERED_COMPRESSED ||
7643 type == BTRFS_ORDERED_NOCOW ||
7644 type == BTRFS_ORDERED_REGULAR);
7646 em_tree = &BTRFS_I(inode)->extent_tree;
7647 em = alloc_extent_map();
7649 return ERR_PTR(-ENOMEM);
7652 em->orig_start = orig_start;
7654 em->block_len = block_len;
7655 em->block_start = block_start;
7656 em->bdev = root->fs_info->fs_devices->latest_bdev;
7657 em->orig_block_len = orig_block_len;
7658 em->ram_bytes = ram_bytes;
7659 em->generation = -1;
7660 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7661 if (type == BTRFS_ORDERED_PREALLOC) {
7662 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7663 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7664 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7665 em->compress_type = compress_type;
7669 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7670 em->start + em->len - 1, 0);
7671 write_lock(&em_tree->lock);
7672 ret = add_extent_mapping(em_tree, em, 1);
7673 write_unlock(&em_tree->lock);
7675 * The caller has taken lock_extent(), who could race with us
7678 } while (ret == -EEXIST);
7681 free_extent_map(em);
7682 return ERR_PTR(ret);
7685 /* em got 2 refs now, callers needs to do free_extent_map once. */
7689 static void adjust_dio_outstanding_extents(struct inode *inode,
7690 struct btrfs_dio_data *dio_data,
7693 unsigned num_extents = count_max_extents(len);
7696 * If we have an outstanding_extents count still set then we're
7697 * within our reservation, otherwise we need to adjust our inode
7698 * counter appropriately.
7700 if (dio_data->outstanding_extents >= num_extents) {
7701 dio_data->outstanding_extents -= num_extents;
7704 * If dio write length has been split due to no large enough
7705 * contiguous space, we need to compensate our inode counter
7708 u64 num_needed = num_extents - dio_data->outstanding_extents;
7710 spin_lock(&BTRFS_I(inode)->lock);
7711 BTRFS_I(inode)->outstanding_extents += num_needed;
7712 spin_unlock(&BTRFS_I(inode)->lock);
7716 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7717 struct buffer_head *bh_result, int create)
7719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7720 struct extent_map *em;
7721 struct extent_state *cached_state = NULL;
7722 struct btrfs_dio_data *dio_data = NULL;
7723 u64 start = iblock << inode->i_blkbits;
7724 u64 lockstart, lockend;
7725 u64 len = bh_result->b_size;
7726 int unlock_bits = EXTENT_LOCKED;
7730 unlock_bits |= EXTENT_DIRTY;
7732 len = min_t(u64, len, fs_info->sectorsize);
7735 lockend = start + len - 1;
7737 if (current->journal_info) {
7739 * Need to pull our outstanding extents and set journal_info to NULL so
7740 * that anything that needs to check if there's a transaction doesn't get
7743 dio_data = current->journal_info;
7744 current->journal_info = NULL;
7748 * If this errors out it's because we couldn't invalidate pagecache for
7749 * this range and we need to fallback to buffered.
7751 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7757 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7764 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7765 * io. INLINE is special, and we could probably kludge it in here, but
7766 * it's still buffered so for safety lets just fall back to the generic
7769 * For COMPRESSED we _have_ to read the entire extent in so we can
7770 * decompress it, so there will be buffering required no matter what we
7771 * do, so go ahead and fallback to buffered.
7773 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7774 * to buffered IO. Don't blame me, this is the price we pay for using
7777 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7778 em->block_start == EXTENT_MAP_INLINE) {
7779 free_extent_map(em);
7784 /* Just a good old fashioned hole, return */
7785 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7786 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7787 free_extent_map(em);
7792 * We don't allocate a new extent in the following cases
7794 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7796 * 2) The extent is marked as PREALLOC. We're good to go here and can
7797 * just use the extent.
7801 len = min(len, em->len - (start - em->start));
7802 lockstart = start + len;
7806 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7807 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7808 em->block_start != EXTENT_MAP_HOLE)) {
7810 u64 block_start, orig_start, orig_block_len, ram_bytes;
7812 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7813 type = BTRFS_ORDERED_PREALLOC;
7815 type = BTRFS_ORDERED_NOCOW;
7816 len = min(len, em->len - (start - em->start));
7817 block_start = em->block_start + (start - em->start);
7819 if (can_nocow_extent(inode, start, &len, &orig_start,
7820 &orig_block_len, &ram_bytes) == 1 &&
7821 btrfs_inc_nocow_writers(fs_info, block_start)) {
7822 struct extent_map *em2;
7824 em2 = btrfs_create_dio_extent(inode, start, len,
7825 orig_start, block_start,
7826 len, orig_block_len,
7828 btrfs_dec_nocow_writers(fs_info, block_start);
7829 if (type == BTRFS_ORDERED_PREALLOC) {
7830 free_extent_map(em);
7833 if (em2 && IS_ERR(em2)) {
7838 * For inode marked NODATACOW or extent marked PREALLOC,
7839 * use the existing or preallocated extent, so does not
7840 * need to adjust btrfs_space_info's bytes_may_use.
7842 btrfs_free_reserved_data_space_noquota(inode,
7849 * this will cow the extent, reset the len in case we changed
7852 len = bh_result->b_size;
7853 free_extent_map(em);
7854 em = btrfs_new_extent_direct(inode, start, len);
7859 len = min(len, em->len - (start - em->start));
7861 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7863 bh_result->b_size = len;
7864 bh_result->b_bdev = em->bdev;
7865 set_buffer_mapped(bh_result);
7867 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7868 set_buffer_new(bh_result);
7871 * Need to update the i_size under the extent lock so buffered
7872 * readers will get the updated i_size when we unlock.
7874 if (!dio_data->overwrite && start + len > i_size_read(inode))
7875 i_size_write(inode, start + len);
7877 adjust_dio_outstanding_extents(inode, dio_data, len);
7878 WARN_ON(dio_data->reserve < len);
7879 dio_data->reserve -= len;
7880 dio_data->unsubmitted_oe_range_end = start + len;
7881 current->journal_info = dio_data;
7885 * In the case of write we need to clear and unlock the entire range,
7886 * in the case of read we need to unlock only the end area that we
7887 * aren't using if there is any left over space.
7889 if (lockstart < lockend) {
7890 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7891 lockend, unlock_bits, 1, 0,
7892 &cached_state, GFP_NOFS);
7894 free_extent_state(cached_state);
7897 free_extent_map(em);
7902 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7903 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7906 current->journal_info = dio_data;
7908 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7909 * write less data then expected, so that we don't underflow our inode's
7910 * outstanding extents counter.
7912 if (create && dio_data)
7913 adjust_dio_outstanding_extents(inode, dio_data, len);
7918 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7924 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7928 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7932 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7938 static int btrfs_check_dio_repairable(struct inode *inode,
7939 struct bio *failed_bio,
7940 struct io_failure_record *failrec,
7943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7946 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7947 if (num_copies == 1) {
7949 * we only have a single copy of the data, so don't bother with
7950 * all the retry and error correction code that follows. no
7951 * matter what the error is, it is very likely to persist.
7953 btrfs_debug(fs_info,
7954 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7955 num_copies, failrec->this_mirror, failed_mirror);
7959 failrec->failed_mirror = failed_mirror;
7960 failrec->this_mirror++;
7961 if (failrec->this_mirror == failed_mirror)
7962 failrec->this_mirror++;
7964 if (failrec->this_mirror > num_copies) {
7965 btrfs_debug(fs_info,
7966 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7967 num_copies, failrec->this_mirror, failed_mirror);
7974 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7975 struct page *page, unsigned int pgoff,
7976 u64 start, u64 end, int failed_mirror,
7977 bio_end_io_t *repair_endio, void *repair_arg)
7979 struct io_failure_record *failrec;
7985 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7987 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7991 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7994 free_io_failure(BTRFS_I(inode), failrec);
7998 if ((failed_bio->bi_vcnt > 1)
7999 || (failed_bio->bi_io_vec->bv_len
8000 > btrfs_inode_sectorsize(inode)))
8001 read_mode |= REQ_FAILFAST_DEV;
8003 isector = start - btrfs_io_bio(failed_bio)->logical;
8004 isector >>= inode->i_sb->s_blocksize_bits;
8005 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8006 pgoff, isector, repair_endio, repair_arg);
8008 free_io_failure(BTRFS_I(inode), failrec);
8011 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8013 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8014 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8015 read_mode, failrec->this_mirror, failrec->in_validation);
8017 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8019 free_io_failure(BTRFS_I(inode), failrec);
8026 struct btrfs_retry_complete {
8027 struct completion done;
8028 struct inode *inode;
8033 static void btrfs_retry_endio_nocsum(struct bio *bio)
8035 struct btrfs_retry_complete *done = bio->bi_private;
8036 struct bio_vec *bvec;
8042 ASSERT(bio->bi_vcnt == 1);
8043 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8046 bio_for_each_segment_all(bvec, bio, i)
8047 clean_io_failure(BTRFS_I(done->inode), done->start,
8050 complete(&done->done);
8054 static int __btrfs_correct_data_nocsum(struct inode *inode,
8055 struct btrfs_io_bio *io_bio)
8057 struct btrfs_fs_info *fs_info;
8058 struct bio_vec *bvec;
8059 struct btrfs_retry_complete done;
8067 fs_info = BTRFS_I(inode)->root->fs_info;
8068 sectorsize = fs_info->sectorsize;
8070 start = io_bio->logical;
8073 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8074 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8075 pgoff = bvec->bv_offset;
8077 next_block_or_try_again:
8080 init_completion(&done.done);
8082 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8083 pgoff, start, start + sectorsize - 1,
8085 btrfs_retry_endio_nocsum, &done);
8089 wait_for_completion(&done.done);
8091 if (!done.uptodate) {
8092 /* We might have another mirror, so try again */
8093 goto next_block_or_try_again;
8096 start += sectorsize;
8100 pgoff += sectorsize;
8101 ASSERT(pgoff < PAGE_SIZE);
8102 goto next_block_or_try_again;
8109 static void btrfs_retry_endio(struct bio *bio)
8111 struct btrfs_retry_complete *done = bio->bi_private;
8112 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8113 struct bio_vec *bvec;
8123 ASSERT(bio->bi_vcnt == 1);
8124 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8126 bio_for_each_segment_all(bvec, bio, i) {
8127 ret = __readpage_endio_check(done->inode, io_bio, i,
8128 bvec->bv_page, bvec->bv_offset,
8129 done->start, bvec->bv_len);
8131 clean_io_failure(BTRFS_I(done->inode), done->start,
8132 bvec->bv_page, bvec->bv_offset);
8137 done->uptodate = uptodate;
8139 complete(&done->done);
8143 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8144 struct btrfs_io_bio *io_bio, blk_status_t err)
8146 struct btrfs_fs_info *fs_info;
8147 struct bio_vec *bvec;
8148 struct btrfs_retry_complete done;
8158 fs_info = BTRFS_I(inode)->root->fs_info;
8159 sectorsize = fs_info->sectorsize;
8162 start = io_bio->logical;
8165 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8166 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8168 pgoff = bvec->bv_offset;
8170 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8171 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8172 bvec->bv_page, pgoff, start,
8179 init_completion(&done.done);
8181 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8182 pgoff, start, start + sectorsize - 1,
8184 btrfs_retry_endio, &done);
8186 err = errno_to_blk_status(ret);
8190 wait_for_completion(&done.done);
8192 if (!done.uptodate) {
8193 /* We might have another mirror, so try again */
8197 offset += sectorsize;
8198 start += sectorsize;
8204 pgoff += sectorsize;
8205 ASSERT(pgoff < PAGE_SIZE);
8213 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8214 struct btrfs_io_bio *io_bio, blk_status_t err)
8216 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8220 return __btrfs_correct_data_nocsum(inode, io_bio);
8224 return __btrfs_subio_endio_read(inode, io_bio, err);
8228 static void btrfs_endio_direct_read(struct bio *bio)
8230 struct btrfs_dio_private *dip = bio->bi_private;
8231 struct inode *inode = dip->inode;
8232 struct bio *dio_bio;
8233 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8234 blk_status_t err = bio->bi_status;
8236 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8237 err = btrfs_subio_endio_read(inode, io_bio, err);
8239 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8240 dip->logical_offset + dip->bytes - 1);
8241 dio_bio = dip->dio_bio;
8245 dio_bio->bi_status = bio->bi_status;
8246 dio_end_io(dio_bio);
8249 io_bio->end_io(io_bio, blk_status_to_errno(err));
8253 static void __endio_write_update_ordered(struct inode *inode,
8254 const u64 offset, const u64 bytes,
8255 const bool uptodate)
8257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8258 struct btrfs_ordered_extent *ordered = NULL;
8259 struct btrfs_workqueue *wq;
8260 btrfs_work_func_t func;
8261 u64 ordered_offset = offset;
8262 u64 ordered_bytes = bytes;
8265 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8266 wq = fs_info->endio_freespace_worker;
8267 func = btrfs_freespace_write_helper;
8269 wq = fs_info->endio_write_workers;
8270 func = btrfs_endio_write_helper;
8274 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8281 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8282 btrfs_queue_work(wq, &ordered->work);
8285 * our bio might span multiple ordered extents. If we haven't
8286 * completed the accounting for the whole dio, go back and try again
8288 if (ordered_offset < offset + bytes) {
8289 ordered_bytes = offset + bytes - ordered_offset;
8295 static void btrfs_endio_direct_write(struct bio *bio)
8297 struct btrfs_dio_private *dip = bio->bi_private;
8298 struct bio *dio_bio = dip->dio_bio;
8300 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8301 dip->bytes, !bio->bi_status);
8305 dio_bio->bi_status = bio->bi_status;
8306 dio_end_io(dio_bio);
8310 static blk_status_t __btrfs_submit_bio_start_direct_io(struct inode *inode,
8311 struct bio *bio, int mirror_num,
8312 unsigned long bio_flags, u64 offset)
8315 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8316 BUG_ON(ret); /* -ENOMEM */
8320 static void btrfs_end_dio_bio(struct bio *bio)
8322 struct btrfs_dio_private *dip = bio->bi_private;
8323 blk_status_t err = bio->bi_status;
8326 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8327 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8328 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8330 (unsigned long long)bio->bi_iter.bi_sector,
8331 bio->bi_iter.bi_size, err);
8333 if (dip->subio_endio)
8334 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8340 * before atomic variable goto zero, we must make sure
8341 * dip->errors is perceived to be set.
8343 smp_mb__before_atomic();
8346 /* if there are more bios still pending for this dio, just exit */
8347 if (!atomic_dec_and_test(&dip->pending_bios))
8351 bio_io_error(dip->orig_bio);
8353 dip->dio_bio->bi_status = 0;
8354 bio_endio(dip->orig_bio);
8360 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8361 u64 first_sector, gfp_t gfp_flags)
8364 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8366 bio_associate_current(bio);
8370 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8371 struct btrfs_dio_private *dip,
8375 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8376 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8380 * We load all the csum data we need when we submit
8381 * the first bio to reduce the csum tree search and
8384 if (dip->logical_offset == file_offset) {
8385 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8391 if (bio == dip->orig_bio)
8394 file_offset -= dip->logical_offset;
8395 file_offset >>= inode->i_sb->s_blocksize_bits;
8396 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8401 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8402 u64 file_offset, int skip_sum,
8405 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8406 struct btrfs_dio_private *dip = bio->bi_private;
8407 bool write = bio_op(bio) == REQ_OP_WRITE;
8411 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8416 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8424 if (write && async_submit) {
8425 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8427 __btrfs_submit_bio_start_direct_io,
8428 __btrfs_submit_bio_done);
8432 * If we aren't doing async submit, calculate the csum of the
8435 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8439 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8445 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8451 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8454 struct inode *inode = dip->inode;
8455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8456 struct btrfs_root *root = BTRFS_I(inode)->root;
8458 struct bio *orig_bio = dip->orig_bio;
8459 struct bio_vec *bvec;
8460 u64 start_sector = orig_bio->bi_iter.bi_sector;
8461 u64 file_offset = dip->logical_offset;
8464 u32 blocksize = fs_info->sectorsize;
8465 int async_submit = 0;
8470 map_length = orig_bio->bi_iter.bi_size;
8471 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8472 &map_length, NULL, 0);
8476 if (map_length >= orig_bio->bi_iter.bi_size) {
8478 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8482 /* async crcs make it difficult to collect full stripe writes. */
8483 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8488 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8492 bio->bi_opf = orig_bio->bi_opf;
8493 bio->bi_private = dip;
8494 bio->bi_end_io = btrfs_end_dio_bio;
8495 btrfs_io_bio(bio)->logical = file_offset;
8496 atomic_inc(&dip->pending_bios);
8498 bio_for_each_segment_all(bvec, orig_bio, j) {
8499 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8502 if (unlikely(map_length < submit_len + blocksize ||
8503 bio_add_page(bio, bvec->bv_page, blocksize,
8504 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8506 * inc the count before we submit the bio so
8507 * we know the end IO handler won't happen before
8508 * we inc the count. Otherwise, the dip might get freed
8509 * before we're done setting it up
8511 atomic_inc(&dip->pending_bios);
8512 ret = __btrfs_submit_dio_bio(bio, inode,
8513 file_offset, skip_sum,
8517 atomic_dec(&dip->pending_bios);
8521 start_sector += submit_len >> 9;
8522 file_offset += submit_len;
8526 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8527 start_sector, GFP_NOFS);
8530 bio->bi_opf = orig_bio->bi_opf;
8531 bio->bi_private = dip;
8532 bio->bi_end_io = btrfs_end_dio_bio;
8533 btrfs_io_bio(bio)->logical = file_offset;
8535 map_length = orig_bio->bi_iter.bi_size;
8536 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8538 &map_length, NULL, 0);
8546 submit_len += blocksize;
8555 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8564 * before atomic variable goto zero, we must
8565 * make sure dip->errors is perceived to be set.
8567 smp_mb__before_atomic();
8568 if (atomic_dec_and_test(&dip->pending_bios))
8569 bio_io_error(dip->orig_bio);
8571 /* bio_end_io() will handle error, so we needn't return it */
8575 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8578 struct btrfs_dio_private *dip = NULL;
8579 struct bio *io_bio = NULL;
8580 struct btrfs_io_bio *btrfs_bio;
8582 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8585 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8587 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8593 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8599 dip->private = dio_bio->bi_private;
8601 dip->logical_offset = file_offset;
8602 dip->bytes = dio_bio->bi_iter.bi_size;
8603 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8604 io_bio->bi_private = dip;
8605 dip->orig_bio = io_bio;
8606 dip->dio_bio = dio_bio;
8607 atomic_set(&dip->pending_bios, 0);
8608 btrfs_bio = btrfs_io_bio(io_bio);
8609 btrfs_bio->logical = file_offset;
8612 io_bio->bi_end_io = btrfs_endio_direct_write;
8614 io_bio->bi_end_io = btrfs_endio_direct_read;
8615 dip->subio_endio = btrfs_subio_endio_read;
8619 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8620 * even if we fail to submit a bio, because in such case we do the
8621 * corresponding error handling below and it must not be done a second
8622 * time by btrfs_direct_IO().
8625 struct btrfs_dio_data *dio_data = current->journal_info;
8627 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8629 dio_data->unsubmitted_oe_range_start =
8630 dio_data->unsubmitted_oe_range_end;
8633 ret = btrfs_submit_direct_hook(dip, skip_sum);
8637 if (btrfs_bio->end_io)
8638 btrfs_bio->end_io(btrfs_bio, ret);
8642 * If we arrived here it means either we failed to submit the dip
8643 * or we either failed to clone the dio_bio or failed to allocate the
8644 * dip. If we cloned the dio_bio and allocated the dip, we can just
8645 * call bio_endio against our io_bio so that we get proper resource
8646 * cleanup if we fail to submit the dip, otherwise, we must do the
8647 * same as btrfs_endio_direct_[write|read] because we can't call these
8648 * callbacks - they require an allocated dip and a clone of dio_bio.
8650 if (io_bio && dip) {
8651 io_bio->bi_status = BLK_STS_IOERR;
8654 * The end io callbacks free our dip, do the final put on io_bio
8655 * and all the cleanup and final put for dio_bio (through
8662 __endio_write_update_ordered(inode,
8664 dio_bio->bi_iter.bi_size,
8667 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8668 file_offset + dio_bio->bi_iter.bi_size - 1);
8670 dio_bio->bi_status = BLK_STS_IOERR;
8672 * Releases and cleans up our dio_bio, no need to bio_put()
8673 * nor bio_endio()/bio_io_error() against dio_bio.
8675 dio_end_io(dio_bio);
8682 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8684 const struct iov_iter *iter, loff_t offset)
8688 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8689 ssize_t retval = -EINVAL;
8691 if (offset & blocksize_mask)
8694 if (iov_iter_alignment(iter) & blocksize_mask)
8697 /* If this is a write we don't need to check anymore */
8698 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8701 * Check to make sure we don't have duplicate iov_base's in this
8702 * iovec, if so return EINVAL, otherwise we'll get csum errors
8703 * when reading back.
8705 for (seg = 0; seg < iter->nr_segs; seg++) {
8706 for (i = seg + 1; i < iter->nr_segs; i++) {
8707 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8716 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8718 struct file *file = iocb->ki_filp;
8719 struct inode *inode = file->f_mapping->host;
8720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8721 struct btrfs_dio_data dio_data = { 0 };
8722 loff_t offset = iocb->ki_pos;
8726 bool relock = false;
8729 if (check_direct_IO(fs_info, iocb, iter, offset))
8732 inode_dio_begin(inode);
8733 smp_mb__after_atomic();
8736 * The generic stuff only does filemap_write_and_wait_range, which
8737 * isn't enough if we've written compressed pages to this area, so
8738 * we need to flush the dirty pages again to make absolutely sure
8739 * that any outstanding dirty pages are on disk.
8741 count = iov_iter_count(iter);
8742 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8743 &BTRFS_I(inode)->runtime_flags))
8744 filemap_fdatawrite_range(inode->i_mapping, offset,
8745 offset + count - 1);
8747 if (iov_iter_rw(iter) == WRITE) {
8749 * If the write DIO is beyond the EOF, we need update
8750 * the isize, but it is protected by i_mutex. So we can
8751 * not unlock the i_mutex at this case.
8753 if (offset + count <= inode->i_size) {
8754 dio_data.overwrite = 1;
8755 inode_unlock(inode);
8757 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8761 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8764 dio_data.outstanding_extents = count_max_extents(count);
8767 * We need to know how many extents we reserved so that we can
8768 * do the accounting properly if we go over the number we
8769 * originally calculated. Abuse current->journal_info for this.
8771 dio_data.reserve = round_up(count,
8772 fs_info->sectorsize);
8773 dio_data.unsubmitted_oe_range_start = (u64)offset;
8774 dio_data.unsubmitted_oe_range_end = (u64)offset;
8775 current->journal_info = &dio_data;
8776 down_read(&BTRFS_I(inode)->dio_sem);
8777 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8778 &BTRFS_I(inode)->runtime_flags)) {
8779 inode_dio_end(inode);
8780 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8784 ret = __blockdev_direct_IO(iocb, inode,
8785 fs_info->fs_devices->latest_bdev,
8786 iter, btrfs_get_blocks_direct, NULL,
8787 btrfs_submit_direct, flags);
8788 if (iov_iter_rw(iter) == WRITE) {
8789 up_read(&BTRFS_I(inode)->dio_sem);
8790 current->journal_info = NULL;
8791 if (ret < 0 && ret != -EIOCBQUEUED) {
8792 if (dio_data.reserve)
8793 btrfs_delalloc_release_space(inode, offset,
8796 * On error we might have left some ordered extents
8797 * without submitting corresponding bios for them, so
8798 * cleanup them up to avoid other tasks getting them
8799 * and waiting for them to complete forever.
8801 if (dio_data.unsubmitted_oe_range_start <
8802 dio_data.unsubmitted_oe_range_end)
8803 __endio_write_update_ordered(inode,
8804 dio_data.unsubmitted_oe_range_start,
8805 dio_data.unsubmitted_oe_range_end -
8806 dio_data.unsubmitted_oe_range_start,
8808 } else if (ret >= 0 && (size_t)ret < count)
8809 btrfs_delalloc_release_space(inode, offset,
8810 count - (size_t)ret);
8814 inode_dio_end(inode);
8821 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8823 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8824 __u64 start, __u64 len)
8828 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8832 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8835 int btrfs_readpage(struct file *file, struct page *page)
8837 struct extent_io_tree *tree;
8838 tree = &BTRFS_I(page->mapping->host)->io_tree;
8839 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8842 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8844 struct extent_io_tree *tree;
8845 struct inode *inode = page->mapping->host;
8848 if (current->flags & PF_MEMALLOC) {
8849 redirty_page_for_writepage(wbc, page);
8855 * If we are under memory pressure we will call this directly from the
8856 * VM, we need to make sure we have the inode referenced for the ordered
8857 * extent. If not just return like we didn't do anything.
8859 if (!igrab(inode)) {
8860 redirty_page_for_writepage(wbc, page);
8861 return AOP_WRITEPAGE_ACTIVATE;
8863 tree = &BTRFS_I(page->mapping->host)->io_tree;
8864 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8865 btrfs_add_delayed_iput(inode);
8869 static int btrfs_writepages(struct address_space *mapping,
8870 struct writeback_control *wbc)
8872 struct extent_io_tree *tree;
8874 tree = &BTRFS_I(mapping->host)->io_tree;
8875 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8879 btrfs_readpages(struct file *file, struct address_space *mapping,
8880 struct list_head *pages, unsigned nr_pages)
8882 struct extent_io_tree *tree;
8883 tree = &BTRFS_I(mapping->host)->io_tree;
8884 return extent_readpages(tree, mapping, pages, nr_pages,
8887 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8889 struct extent_io_tree *tree;
8890 struct extent_map_tree *map;
8893 tree = &BTRFS_I(page->mapping->host)->io_tree;
8894 map = &BTRFS_I(page->mapping->host)->extent_tree;
8895 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8897 ClearPagePrivate(page);
8898 set_page_private(page, 0);
8904 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8906 if (PageWriteback(page) || PageDirty(page))
8908 return __btrfs_releasepage(page, gfp_flags);
8911 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8912 unsigned int length)
8914 struct inode *inode = page->mapping->host;
8915 struct extent_io_tree *tree;
8916 struct btrfs_ordered_extent *ordered;
8917 struct extent_state *cached_state = NULL;
8918 u64 page_start = page_offset(page);
8919 u64 page_end = page_start + PAGE_SIZE - 1;
8922 int inode_evicting = inode->i_state & I_FREEING;
8925 * we have the page locked, so new writeback can't start,
8926 * and the dirty bit won't be cleared while we are here.
8928 * Wait for IO on this page so that we can safely clear
8929 * the PagePrivate2 bit and do ordered accounting
8931 wait_on_page_writeback(page);
8933 tree = &BTRFS_I(inode)->io_tree;
8935 btrfs_releasepage(page, GFP_NOFS);
8939 if (!inode_evicting)
8940 lock_extent_bits(tree, page_start, page_end, &cached_state);
8943 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8944 page_end - start + 1);
8946 end = min(page_end, ordered->file_offset + ordered->len - 1);
8948 * IO on this page will never be started, so we need
8949 * to account for any ordered extents now
8951 if (!inode_evicting)
8952 clear_extent_bit(tree, start, end,
8953 EXTENT_DIRTY | EXTENT_DELALLOC |
8954 EXTENT_DELALLOC_NEW |
8955 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8956 EXTENT_DEFRAG, 1, 0, &cached_state,
8959 * whoever cleared the private bit is responsible
8960 * for the finish_ordered_io
8962 if (TestClearPagePrivate2(page)) {
8963 struct btrfs_ordered_inode_tree *tree;
8966 tree = &BTRFS_I(inode)->ordered_tree;
8968 spin_lock_irq(&tree->lock);
8969 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8970 new_len = start - ordered->file_offset;
8971 if (new_len < ordered->truncated_len)
8972 ordered->truncated_len = new_len;
8973 spin_unlock_irq(&tree->lock);
8975 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8977 end - start + 1, 1))
8978 btrfs_finish_ordered_io(ordered);
8980 btrfs_put_ordered_extent(ordered);
8981 if (!inode_evicting) {
8982 cached_state = NULL;
8983 lock_extent_bits(tree, start, end,
8988 if (start < page_end)
8993 * Qgroup reserved space handler
8994 * Page here will be either
8995 * 1) Already written to disk
8996 * In this case, its reserved space is released from data rsv map
8997 * and will be freed by delayed_ref handler finally.
8998 * So even we call qgroup_free_data(), it won't decrease reserved
9000 * 2) Not written to disk
9001 * This means the reserved space should be freed here. However,
9002 * if a truncate invalidates the page (by clearing PageDirty)
9003 * and the page is accounted for while allocating extent
9004 * in btrfs_check_data_free_space() we let delayed_ref to
9005 * free the entire extent.
9007 if (PageDirty(page))
9008 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
9009 if (!inode_evicting) {
9010 clear_extent_bit(tree, page_start, page_end,
9011 EXTENT_LOCKED | EXTENT_DIRTY |
9012 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9013 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9014 &cached_state, GFP_NOFS);
9016 __btrfs_releasepage(page, GFP_NOFS);
9019 ClearPageChecked(page);
9020 if (PagePrivate(page)) {
9021 ClearPagePrivate(page);
9022 set_page_private(page, 0);
9028 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9029 * called from a page fault handler when a page is first dirtied. Hence we must
9030 * be careful to check for EOF conditions here. We set the page up correctly
9031 * for a written page which means we get ENOSPC checking when writing into
9032 * holes and correct delalloc and unwritten extent mapping on filesystems that
9033 * support these features.
9035 * We are not allowed to take the i_mutex here so we have to play games to
9036 * protect against truncate races as the page could now be beyond EOF. Because
9037 * vmtruncate() writes the inode size before removing pages, once we have the
9038 * page lock we can determine safely if the page is beyond EOF. If it is not
9039 * beyond EOF, then the page is guaranteed safe against truncation until we
9042 int btrfs_page_mkwrite(struct vm_fault *vmf)
9044 struct page *page = vmf->page;
9045 struct inode *inode = file_inode(vmf->vma->vm_file);
9046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9047 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9048 struct btrfs_ordered_extent *ordered;
9049 struct extent_state *cached_state = NULL;
9051 unsigned long zero_start;
9060 reserved_space = PAGE_SIZE;
9062 sb_start_pagefault(inode->i_sb);
9063 page_start = page_offset(page);
9064 page_end = page_start + PAGE_SIZE - 1;
9068 * Reserving delalloc space after obtaining the page lock can lead to
9069 * deadlock. For example, if a dirty page is locked by this function
9070 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9071 * dirty page write out, then the btrfs_writepage() function could
9072 * end up waiting indefinitely to get a lock on the page currently
9073 * being processed by btrfs_page_mkwrite() function.
9075 ret = btrfs_delalloc_reserve_space(inode, page_start,
9078 ret = file_update_time(vmf->vma->vm_file);
9084 else /* -ENOSPC, -EIO, etc */
9085 ret = VM_FAULT_SIGBUS;
9091 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9094 size = i_size_read(inode);
9096 if ((page->mapping != inode->i_mapping) ||
9097 (page_start >= size)) {
9098 /* page got truncated out from underneath us */
9101 wait_on_page_writeback(page);
9103 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9104 set_page_extent_mapped(page);
9107 * we can't set the delalloc bits if there are pending ordered
9108 * extents. Drop our locks and wait for them to finish
9110 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9113 unlock_extent_cached(io_tree, page_start, page_end,
9114 &cached_state, GFP_NOFS);
9116 btrfs_start_ordered_extent(inode, ordered, 1);
9117 btrfs_put_ordered_extent(ordered);
9121 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9122 reserved_space = round_up(size - page_start,
9123 fs_info->sectorsize);
9124 if (reserved_space < PAGE_SIZE) {
9125 end = page_start + reserved_space - 1;
9126 spin_lock(&BTRFS_I(inode)->lock);
9127 BTRFS_I(inode)->outstanding_extents++;
9128 spin_unlock(&BTRFS_I(inode)->lock);
9129 btrfs_delalloc_release_space(inode, page_start,
9130 PAGE_SIZE - reserved_space);
9135 * page_mkwrite gets called when the page is firstly dirtied after it's
9136 * faulted in, but write(2) could also dirty a page and set delalloc
9137 * bits, thus in this case for space account reason, we still need to
9138 * clear any delalloc bits within this page range since we have to
9139 * reserve data&meta space before lock_page() (see above comments).
9141 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9142 EXTENT_DIRTY | EXTENT_DELALLOC |
9143 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9144 0, 0, &cached_state, GFP_NOFS);
9146 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9149 unlock_extent_cached(io_tree, page_start, page_end,
9150 &cached_state, GFP_NOFS);
9151 ret = VM_FAULT_SIGBUS;
9156 /* page is wholly or partially inside EOF */
9157 if (page_start + PAGE_SIZE > size)
9158 zero_start = size & ~PAGE_MASK;
9160 zero_start = PAGE_SIZE;
9162 if (zero_start != PAGE_SIZE) {
9164 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9165 flush_dcache_page(page);
9168 ClearPageChecked(page);
9169 set_page_dirty(page);
9170 SetPageUptodate(page);
9172 BTRFS_I(inode)->last_trans = fs_info->generation;
9173 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9174 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9176 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9180 sb_end_pagefault(inode->i_sb);
9181 return VM_FAULT_LOCKED;
9185 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9187 sb_end_pagefault(inode->i_sb);
9191 static int btrfs_truncate(struct inode *inode)
9193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9194 struct btrfs_root *root = BTRFS_I(inode)->root;
9195 struct btrfs_block_rsv *rsv;
9198 struct btrfs_trans_handle *trans;
9199 u64 mask = fs_info->sectorsize - 1;
9200 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9202 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9208 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9209 * 3 things going on here
9211 * 1) We need to reserve space for our orphan item and the space to
9212 * delete our orphan item. Lord knows we don't want to have a dangling
9213 * orphan item because we didn't reserve space to remove it.
9215 * 2) We need to reserve space to update our inode.
9217 * 3) We need to have something to cache all the space that is going to
9218 * be free'd up by the truncate operation, but also have some slack
9219 * space reserved in case it uses space during the truncate (thank you
9220 * very much snapshotting).
9222 * And we need these to all be separate. The fact is we can use a lot of
9223 * space doing the truncate, and we have no earthly idea how much space
9224 * we will use, so we need the truncate reservation to be separate so it
9225 * doesn't end up using space reserved for updating the inode or
9226 * removing the orphan item. We also need to be able to stop the
9227 * transaction and start a new one, which means we need to be able to
9228 * update the inode several times, and we have no idea of knowing how
9229 * many times that will be, so we can't just reserve 1 item for the
9230 * entirety of the operation, so that has to be done separately as well.
9231 * Then there is the orphan item, which does indeed need to be held on
9232 * to for the whole operation, and we need nobody to touch this reserved
9233 * space except the orphan code.
9235 * So that leaves us with
9237 * 1) root->orphan_block_rsv - for the orphan deletion.
9238 * 2) rsv - for the truncate reservation, which we will steal from the
9239 * transaction reservation.
9240 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9241 * updating the inode.
9243 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9246 rsv->size = min_size;
9250 * 1 for the truncate slack space
9251 * 1 for updating the inode.
9253 trans = btrfs_start_transaction(root, 2);
9254 if (IS_ERR(trans)) {
9255 err = PTR_ERR(trans);
9259 /* Migrate the slack space for the truncate to our reserve */
9260 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9265 * So if we truncate and then write and fsync we normally would just
9266 * write the extents that changed, which is a problem if we need to
9267 * first truncate that entire inode. So set this flag so we write out
9268 * all of the extents in the inode to the sync log so we're completely
9271 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9272 trans->block_rsv = rsv;
9275 ret = btrfs_truncate_inode_items(trans, root, inode,
9277 BTRFS_EXTENT_DATA_KEY);
9278 if (ret != -ENOSPC && ret != -EAGAIN) {
9283 trans->block_rsv = &fs_info->trans_block_rsv;
9284 ret = btrfs_update_inode(trans, root, inode);
9290 btrfs_end_transaction(trans);
9291 btrfs_btree_balance_dirty(fs_info);
9293 trans = btrfs_start_transaction(root, 2);
9294 if (IS_ERR(trans)) {
9295 ret = err = PTR_ERR(trans);
9300 btrfs_block_rsv_release(fs_info, rsv, -1);
9301 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9303 BUG_ON(ret); /* shouldn't happen */
9304 trans->block_rsv = rsv;
9307 if (ret == 0 && inode->i_nlink > 0) {
9308 trans->block_rsv = root->orphan_block_rsv;
9309 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9315 trans->block_rsv = &fs_info->trans_block_rsv;
9316 ret = btrfs_update_inode(trans, root, inode);
9320 ret = btrfs_end_transaction(trans);
9321 btrfs_btree_balance_dirty(fs_info);
9324 btrfs_free_block_rsv(fs_info, rsv);
9333 * create a new subvolume directory/inode (helper for the ioctl).
9335 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9336 struct btrfs_root *new_root,
9337 struct btrfs_root *parent_root,
9340 struct inode *inode;
9344 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9345 new_dirid, new_dirid,
9346 S_IFDIR | (~current_umask() & S_IRWXUGO),
9349 return PTR_ERR(inode);
9350 inode->i_op = &btrfs_dir_inode_operations;
9351 inode->i_fop = &btrfs_dir_file_operations;
9353 set_nlink(inode, 1);
9354 btrfs_i_size_write(BTRFS_I(inode), 0);
9355 unlock_new_inode(inode);
9357 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9359 btrfs_err(new_root->fs_info,
9360 "error inheriting subvolume %llu properties: %d",
9361 new_root->root_key.objectid, err);
9363 err = btrfs_update_inode(trans, new_root, inode);
9369 struct inode *btrfs_alloc_inode(struct super_block *sb)
9371 struct btrfs_inode *ei;
9372 struct inode *inode;
9374 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9381 ei->last_sub_trans = 0;
9382 ei->logged_trans = 0;
9383 ei->delalloc_bytes = 0;
9384 ei->new_delalloc_bytes = 0;
9385 ei->defrag_bytes = 0;
9386 ei->disk_i_size = 0;
9389 ei->index_cnt = (u64)-1;
9391 ei->last_unlink_trans = 0;
9392 ei->last_log_commit = 0;
9393 ei->delayed_iput_count = 0;
9395 spin_lock_init(&ei->lock);
9396 ei->outstanding_extents = 0;
9397 ei->reserved_extents = 0;
9399 ei->runtime_flags = 0;
9400 ei->force_compress = BTRFS_COMPRESS_NONE;
9402 ei->delayed_node = NULL;
9404 ei->i_otime.tv_sec = 0;
9405 ei->i_otime.tv_nsec = 0;
9407 inode = &ei->vfs_inode;
9408 extent_map_tree_init(&ei->extent_tree);
9409 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9410 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9411 ei->io_tree.track_uptodate = 1;
9412 ei->io_failure_tree.track_uptodate = 1;
9413 atomic_set(&ei->sync_writers, 0);
9414 mutex_init(&ei->log_mutex);
9415 mutex_init(&ei->delalloc_mutex);
9416 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9417 INIT_LIST_HEAD(&ei->delalloc_inodes);
9418 INIT_LIST_HEAD(&ei->delayed_iput);
9419 RB_CLEAR_NODE(&ei->rb_node);
9420 init_rwsem(&ei->dio_sem);
9425 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9426 void btrfs_test_destroy_inode(struct inode *inode)
9428 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9429 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9433 static void btrfs_i_callback(struct rcu_head *head)
9435 struct inode *inode = container_of(head, struct inode, i_rcu);
9436 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9439 void btrfs_destroy_inode(struct inode *inode)
9441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9442 struct btrfs_ordered_extent *ordered;
9443 struct btrfs_root *root = BTRFS_I(inode)->root;
9445 WARN_ON(!hlist_empty(&inode->i_dentry));
9446 WARN_ON(inode->i_data.nrpages);
9447 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9448 WARN_ON(BTRFS_I(inode)->reserved_extents);
9449 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9450 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9451 WARN_ON(BTRFS_I(inode)->csum_bytes);
9452 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9455 * This can happen where we create an inode, but somebody else also
9456 * created the same inode and we need to destroy the one we already
9462 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9463 &BTRFS_I(inode)->runtime_flags)) {
9464 btrfs_info(fs_info, "inode %llu still on the orphan list",
9465 btrfs_ino(BTRFS_I(inode)));
9466 atomic_dec(&root->orphan_inodes);
9470 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9475 "found ordered extent %llu %llu on inode cleanup",
9476 ordered->file_offset, ordered->len);
9477 btrfs_remove_ordered_extent(inode, ordered);
9478 btrfs_put_ordered_extent(ordered);
9479 btrfs_put_ordered_extent(ordered);
9482 btrfs_qgroup_check_reserved_leak(inode);
9483 inode_tree_del(inode);
9484 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9486 call_rcu(&inode->i_rcu, btrfs_i_callback);
9489 int btrfs_drop_inode(struct inode *inode)
9491 struct btrfs_root *root = BTRFS_I(inode)->root;
9496 /* the snap/subvol tree is on deleting */
9497 if (btrfs_root_refs(&root->root_item) == 0)
9500 return generic_drop_inode(inode);
9503 static void init_once(void *foo)
9505 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9507 inode_init_once(&ei->vfs_inode);
9510 void btrfs_destroy_cachep(void)
9513 * Make sure all delayed rcu free inodes are flushed before we
9517 kmem_cache_destroy(btrfs_inode_cachep);
9518 kmem_cache_destroy(btrfs_trans_handle_cachep);
9519 kmem_cache_destroy(btrfs_transaction_cachep);
9520 kmem_cache_destroy(btrfs_path_cachep);
9521 kmem_cache_destroy(btrfs_free_space_cachep);
9524 int btrfs_init_cachep(void)
9526 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9527 sizeof(struct btrfs_inode), 0,
9528 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9530 if (!btrfs_inode_cachep)
9533 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9534 sizeof(struct btrfs_trans_handle), 0,
9535 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9536 if (!btrfs_trans_handle_cachep)
9539 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9540 sizeof(struct btrfs_transaction), 0,
9541 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9542 if (!btrfs_transaction_cachep)
9545 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9546 sizeof(struct btrfs_path), 0,
9547 SLAB_MEM_SPREAD, NULL);
9548 if (!btrfs_path_cachep)
9551 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9552 sizeof(struct btrfs_free_space), 0,
9553 SLAB_MEM_SPREAD, NULL);
9554 if (!btrfs_free_space_cachep)
9559 btrfs_destroy_cachep();
9563 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9564 u32 request_mask, unsigned int flags)
9567 struct inode *inode = d_inode(path->dentry);
9568 u32 blocksize = inode->i_sb->s_blocksize;
9570 generic_fillattr(inode, stat);
9571 stat->dev = BTRFS_I(inode)->root->anon_dev;
9573 spin_lock(&BTRFS_I(inode)->lock);
9574 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9575 spin_unlock(&BTRFS_I(inode)->lock);
9576 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9577 ALIGN(delalloc_bytes, blocksize)) >> 9;
9581 static int btrfs_rename_exchange(struct inode *old_dir,
9582 struct dentry *old_dentry,
9583 struct inode *new_dir,
9584 struct dentry *new_dentry)
9586 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9587 struct btrfs_trans_handle *trans;
9588 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9589 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9590 struct inode *new_inode = new_dentry->d_inode;
9591 struct inode *old_inode = old_dentry->d_inode;
9592 struct timespec ctime = current_time(old_inode);
9593 struct dentry *parent;
9594 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9595 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9600 bool root_log_pinned = false;
9601 bool dest_log_pinned = false;
9603 /* we only allow rename subvolume link between subvolumes */
9604 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9607 /* close the race window with snapshot create/destroy ioctl */
9608 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9609 down_read(&fs_info->subvol_sem);
9610 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9611 down_read(&fs_info->subvol_sem);
9614 * We want to reserve the absolute worst case amount of items. So if
9615 * both inodes are subvols and we need to unlink them then that would
9616 * require 4 item modifications, but if they are both normal inodes it
9617 * would require 5 item modifications, so we'll assume their normal
9618 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9619 * should cover the worst case number of items we'll modify.
9621 trans = btrfs_start_transaction(root, 12);
9622 if (IS_ERR(trans)) {
9623 ret = PTR_ERR(trans);
9628 * We need to find a free sequence number both in the source and
9629 * in the destination directory for the exchange.
9631 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9634 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9638 BTRFS_I(old_inode)->dir_index = 0ULL;
9639 BTRFS_I(new_inode)->dir_index = 0ULL;
9641 /* Reference for the source. */
9642 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9643 /* force full log commit if subvolume involved. */
9644 btrfs_set_log_full_commit(fs_info, trans);
9646 btrfs_pin_log_trans(root);
9647 root_log_pinned = true;
9648 ret = btrfs_insert_inode_ref(trans, dest,
9649 new_dentry->d_name.name,
9650 new_dentry->d_name.len,
9652 btrfs_ino(BTRFS_I(new_dir)),
9658 /* And now for the dest. */
9659 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9660 /* force full log commit if subvolume involved. */
9661 btrfs_set_log_full_commit(fs_info, trans);
9663 btrfs_pin_log_trans(dest);
9664 dest_log_pinned = true;
9665 ret = btrfs_insert_inode_ref(trans, root,
9666 old_dentry->d_name.name,
9667 old_dentry->d_name.len,
9669 btrfs_ino(BTRFS_I(old_dir)),
9675 /* Update inode version and ctime/mtime. */
9676 inode_inc_iversion(old_dir);
9677 inode_inc_iversion(new_dir);
9678 inode_inc_iversion(old_inode);
9679 inode_inc_iversion(new_inode);
9680 old_dir->i_ctime = old_dir->i_mtime = ctime;
9681 new_dir->i_ctime = new_dir->i_mtime = ctime;
9682 old_inode->i_ctime = ctime;
9683 new_inode->i_ctime = ctime;
9685 if (old_dentry->d_parent != new_dentry->d_parent) {
9686 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9687 BTRFS_I(old_inode), 1);
9688 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9689 BTRFS_I(new_inode), 1);
9692 /* src is a subvolume */
9693 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9694 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9695 ret = btrfs_unlink_subvol(trans, root, old_dir,
9697 old_dentry->d_name.name,
9698 old_dentry->d_name.len);
9699 } else { /* src is an inode */
9700 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9701 BTRFS_I(old_dentry->d_inode),
9702 old_dentry->d_name.name,
9703 old_dentry->d_name.len);
9705 ret = btrfs_update_inode(trans, root, old_inode);
9708 btrfs_abort_transaction(trans, ret);
9712 /* dest is a subvolume */
9713 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9714 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9715 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9717 new_dentry->d_name.name,
9718 new_dentry->d_name.len);
9719 } else { /* dest is an inode */
9720 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9721 BTRFS_I(new_dentry->d_inode),
9722 new_dentry->d_name.name,
9723 new_dentry->d_name.len);
9725 ret = btrfs_update_inode(trans, dest, new_inode);
9728 btrfs_abort_transaction(trans, ret);
9732 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9733 new_dentry->d_name.name,
9734 new_dentry->d_name.len, 0, old_idx);
9736 btrfs_abort_transaction(trans, ret);
9740 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9741 old_dentry->d_name.name,
9742 old_dentry->d_name.len, 0, new_idx);
9744 btrfs_abort_transaction(trans, ret);
9748 if (old_inode->i_nlink == 1)
9749 BTRFS_I(old_inode)->dir_index = old_idx;
9750 if (new_inode->i_nlink == 1)
9751 BTRFS_I(new_inode)->dir_index = new_idx;
9753 if (root_log_pinned) {
9754 parent = new_dentry->d_parent;
9755 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9757 btrfs_end_log_trans(root);
9758 root_log_pinned = false;
9760 if (dest_log_pinned) {
9761 parent = old_dentry->d_parent;
9762 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9764 btrfs_end_log_trans(dest);
9765 dest_log_pinned = false;
9769 * If we have pinned a log and an error happened, we unpin tasks
9770 * trying to sync the log and force them to fallback to a transaction
9771 * commit if the log currently contains any of the inodes involved in
9772 * this rename operation (to ensure we do not persist a log with an
9773 * inconsistent state for any of these inodes or leading to any
9774 * inconsistencies when replayed). If the transaction was aborted, the
9775 * abortion reason is propagated to userspace when attempting to commit
9776 * the transaction. If the log does not contain any of these inodes, we
9777 * allow the tasks to sync it.
9779 if (ret && (root_log_pinned || dest_log_pinned)) {
9780 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9781 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9782 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9784 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9785 btrfs_set_log_full_commit(fs_info, trans);
9787 if (root_log_pinned) {
9788 btrfs_end_log_trans(root);
9789 root_log_pinned = false;
9791 if (dest_log_pinned) {
9792 btrfs_end_log_trans(dest);
9793 dest_log_pinned = false;
9796 ret = btrfs_end_transaction(trans);
9798 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9799 up_read(&fs_info->subvol_sem);
9800 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9801 up_read(&fs_info->subvol_sem);
9806 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9807 struct btrfs_root *root,
9809 struct dentry *dentry)
9812 struct inode *inode;
9816 ret = btrfs_find_free_ino(root, &objectid);
9820 inode = btrfs_new_inode(trans, root, dir,
9821 dentry->d_name.name,
9823 btrfs_ino(BTRFS_I(dir)),
9825 S_IFCHR | WHITEOUT_MODE,
9828 if (IS_ERR(inode)) {
9829 ret = PTR_ERR(inode);
9833 inode->i_op = &btrfs_special_inode_operations;
9834 init_special_inode(inode, inode->i_mode,
9837 ret = btrfs_init_inode_security(trans, inode, dir,
9842 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9843 BTRFS_I(inode), 0, index);
9847 ret = btrfs_update_inode(trans, root, inode);
9849 unlock_new_inode(inode);
9851 inode_dec_link_count(inode);
9857 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9858 struct inode *new_dir, struct dentry *new_dentry,
9861 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9862 struct btrfs_trans_handle *trans;
9863 unsigned int trans_num_items;
9864 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9865 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9866 struct inode *new_inode = d_inode(new_dentry);
9867 struct inode *old_inode = d_inode(old_dentry);
9871 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9872 bool log_pinned = false;
9874 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9877 /* we only allow rename subvolume link between subvolumes */
9878 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9881 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9882 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9885 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9886 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9890 /* check for collisions, even if the name isn't there */
9891 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9892 new_dentry->d_name.name,
9893 new_dentry->d_name.len);
9896 if (ret == -EEXIST) {
9898 * eexist without a new_inode */
9899 if (WARN_ON(!new_inode)) {
9903 /* maybe -EOVERFLOW */
9910 * we're using rename to replace one file with another. Start IO on it
9911 * now so we don't add too much work to the end of the transaction
9913 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9914 filemap_flush(old_inode->i_mapping);
9916 /* close the racy window with snapshot create/destroy ioctl */
9917 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9918 down_read(&fs_info->subvol_sem);
9920 * We want to reserve the absolute worst case amount of items. So if
9921 * both inodes are subvols and we need to unlink them then that would
9922 * require 4 item modifications, but if they are both normal inodes it
9923 * would require 5 item modifications, so we'll assume they are normal
9924 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9925 * should cover the worst case number of items we'll modify.
9926 * If our rename has the whiteout flag, we need more 5 units for the
9927 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9928 * when selinux is enabled).
9930 trans_num_items = 11;
9931 if (flags & RENAME_WHITEOUT)
9932 trans_num_items += 5;
9933 trans = btrfs_start_transaction(root, trans_num_items);
9934 if (IS_ERR(trans)) {
9935 ret = PTR_ERR(trans);
9940 btrfs_record_root_in_trans(trans, dest);
9942 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9946 BTRFS_I(old_inode)->dir_index = 0ULL;
9947 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9948 /* force full log commit if subvolume involved. */
9949 btrfs_set_log_full_commit(fs_info, trans);
9951 btrfs_pin_log_trans(root);
9953 ret = btrfs_insert_inode_ref(trans, dest,
9954 new_dentry->d_name.name,
9955 new_dentry->d_name.len,
9957 btrfs_ino(BTRFS_I(new_dir)), index);
9962 inode_inc_iversion(old_dir);
9963 inode_inc_iversion(new_dir);
9964 inode_inc_iversion(old_inode);
9965 old_dir->i_ctime = old_dir->i_mtime =
9966 new_dir->i_ctime = new_dir->i_mtime =
9967 old_inode->i_ctime = current_time(old_dir);
9969 if (old_dentry->d_parent != new_dentry->d_parent)
9970 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9971 BTRFS_I(old_inode), 1);
9973 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9974 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9975 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9976 old_dentry->d_name.name,
9977 old_dentry->d_name.len);
9979 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9980 BTRFS_I(d_inode(old_dentry)),
9981 old_dentry->d_name.name,
9982 old_dentry->d_name.len);
9984 ret = btrfs_update_inode(trans, root, old_inode);
9987 btrfs_abort_transaction(trans, ret);
9992 inode_inc_iversion(new_inode);
9993 new_inode->i_ctime = current_time(new_inode);
9994 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9995 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9996 root_objectid = BTRFS_I(new_inode)->location.objectid;
9997 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9999 new_dentry->d_name.name,
10000 new_dentry->d_name.len);
10001 BUG_ON(new_inode->i_nlink == 0);
10003 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10004 BTRFS_I(d_inode(new_dentry)),
10005 new_dentry->d_name.name,
10006 new_dentry->d_name.len);
10008 if (!ret && new_inode->i_nlink == 0)
10009 ret = btrfs_orphan_add(trans,
10010 BTRFS_I(d_inode(new_dentry)));
10012 btrfs_abort_transaction(trans, ret);
10017 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10018 new_dentry->d_name.name,
10019 new_dentry->d_name.len, 0, index);
10021 btrfs_abort_transaction(trans, ret);
10025 if (old_inode->i_nlink == 1)
10026 BTRFS_I(old_inode)->dir_index = index;
10029 struct dentry *parent = new_dentry->d_parent;
10031 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10033 btrfs_end_log_trans(root);
10034 log_pinned = false;
10037 if (flags & RENAME_WHITEOUT) {
10038 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10042 btrfs_abort_transaction(trans, ret);
10048 * If we have pinned the log and an error happened, we unpin tasks
10049 * trying to sync the log and force them to fallback to a transaction
10050 * commit if the log currently contains any of the inodes involved in
10051 * this rename operation (to ensure we do not persist a log with an
10052 * inconsistent state for any of these inodes or leading to any
10053 * inconsistencies when replayed). If the transaction was aborted, the
10054 * abortion reason is propagated to userspace when attempting to commit
10055 * the transaction. If the log does not contain any of these inodes, we
10056 * allow the tasks to sync it.
10058 if (ret && log_pinned) {
10059 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10060 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10061 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10063 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10064 btrfs_set_log_full_commit(fs_info, trans);
10066 btrfs_end_log_trans(root);
10067 log_pinned = false;
10069 btrfs_end_transaction(trans);
10071 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10072 up_read(&fs_info->subvol_sem);
10077 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10078 struct inode *new_dir, struct dentry *new_dentry,
10079 unsigned int flags)
10081 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10084 if (flags & RENAME_EXCHANGE)
10085 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10088 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10091 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10093 struct btrfs_delalloc_work *delalloc_work;
10094 struct inode *inode;
10096 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10098 inode = delalloc_work->inode;
10099 filemap_flush(inode->i_mapping);
10100 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10101 &BTRFS_I(inode)->runtime_flags))
10102 filemap_flush(inode->i_mapping);
10104 if (delalloc_work->delay_iput)
10105 btrfs_add_delayed_iput(inode);
10108 complete(&delalloc_work->completion);
10111 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10114 struct btrfs_delalloc_work *work;
10116 work = kmalloc(sizeof(*work), GFP_NOFS);
10120 init_completion(&work->completion);
10121 INIT_LIST_HEAD(&work->list);
10122 work->inode = inode;
10123 work->delay_iput = delay_iput;
10124 WARN_ON_ONCE(!inode);
10125 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10126 btrfs_run_delalloc_work, NULL, NULL);
10131 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10133 wait_for_completion(&work->completion);
10138 * some fairly slow code that needs optimization. This walks the list
10139 * of all the inodes with pending delalloc and forces them to disk.
10141 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10144 struct btrfs_inode *binode;
10145 struct inode *inode;
10146 struct btrfs_delalloc_work *work, *next;
10147 struct list_head works;
10148 struct list_head splice;
10151 INIT_LIST_HEAD(&works);
10152 INIT_LIST_HEAD(&splice);
10154 mutex_lock(&root->delalloc_mutex);
10155 spin_lock(&root->delalloc_lock);
10156 list_splice_init(&root->delalloc_inodes, &splice);
10157 while (!list_empty(&splice)) {
10158 binode = list_entry(splice.next, struct btrfs_inode,
10161 list_move_tail(&binode->delalloc_inodes,
10162 &root->delalloc_inodes);
10163 inode = igrab(&binode->vfs_inode);
10165 cond_resched_lock(&root->delalloc_lock);
10168 spin_unlock(&root->delalloc_lock);
10170 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10173 btrfs_add_delayed_iput(inode);
10179 list_add_tail(&work->list, &works);
10180 btrfs_queue_work(root->fs_info->flush_workers,
10183 if (nr != -1 && ret >= nr)
10186 spin_lock(&root->delalloc_lock);
10188 spin_unlock(&root->delalloc_lock);
10191 list_for_each_entry_safe(work, next, &works, list) {
10192 list_del_init(&work->list);
10193 btrfs_wait_and_free_delalloc_work(work);
10196 if (!list_empty_careful(&splice)) {
10197 spin_lock(&root->delalloc_lock);
10198 list_splice_tail(&splice, &root->delalloc_inodes);
10199 spin_unlock(&root->delalloc_lock);
10201 mutex_unlock(&root->delalloc_mutex);
10205 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10207 struct btrfs_fs_info *fs_info = root->fs_info;
10210 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10213 ret = __start_delalloc_inodes(root, delay_iput, -1);
10217 * the filemap_flush will queue IO into the worker threads, but
10218 * we have to make sure the IO is actually started and that
10219 * ordered extents get created before we return
10221 atomic_inc(&fs_info->async_submit_draining);
10222 while (atomic_read(&fs_info->nr_async_submits) ||
10223 atomic_read(&fs_info->async_delalloc_pages)) {
10224 wait_event(fs_info->async_submit_wait,
10225 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10226 atomic_read(&fs_info->async_delalloc_pages) == 0));
10228 atomic_dec(&fs_info->async_submit_draining);
10232 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10235 struct btrfs_root *root;
10236 struct list_head splice;
10239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10242 INIT_LIST_HEAD(&splice);
10244 mutex_lock(&fs_info->delalloc_root_mutex);
10245 spin_lock(&fs_info->delalloc_root_lock);
10246 list_splice_init(&fs_info->delalloc_roots, &splice);
10247 while (!list_empty(&splice) && nr) {
10248 root = list_first_entry(&splice, struct btrfs_root,
10250 root = btrfs_grab_fs_root(root);
10252 list_move_tail(&root->delalloc_root,
10253 &fs_info->delalloc_roots);
10254 spin_unlock(&fs_info->delalloc_root_lock);
10256 ret = __start_delalloc_inodes(root, delay_iput, nr);
10257 btrfs_put_fs_root(root);
10265 spin_lock(&fs_info->delalloc_root_lock);
10267 spin_unlock(&fs_info->delalloc_root_lock);
10270 atomic_inc(&fs_info->async_submit_draining);
10271 while (atomic_read(&fs_info->nr_async_submits) ||
10272 atomic_read(&fs_info->async_delalloc_pages)) {
10273 wait_event(fs_info->async_submit_wait,
10274 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10275 atomic_read(&fs_info->async_delalloc_pages) == 0));
10277 atomic_dec(&fs_info->async_submit_draining);
10279 if (!list_empty_careful(&splice)) {
10280 spin_lock(&fs_info->delalloc_root_lock);
10281 list_splice_tail(&splice, &fs_info->delalloc_roots);
10282 spin_unlock(&fs_info->delalloc_root_lock);
10284 mutex_unlock(&fs_info->delalloc_root_mutex);
10288 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10289 const char *symname)
10291 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10292 struct btrfs_trans_handle *trans;
10293 struct btrfs_root *root = BTRFS_I(dir)->root;
10294 struct btrfs_path *path;
10295 struct btrfs_key key;
10296 struct inode *inode = NULL;
10298 int drop_inode = 0;
10304 struct btrfs_file_extent_item *ei;
10305 struct extent_buffer *leaf;
10307 name_len = strlen(symname);
10308 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10309 return -ENAMETOOLONG;
10312 * 2 items for inode item and ref
10313 * 2 items for dir items
10314 * 1 item for updating parent inode item
10315 * 1 item for the inline extent item
10316 * 1 item for xattr if selinux is on
10318 trans = btrfs_start_transaction(root, 7);
10320 return PTR_ERR(trans);
10322 err = btrfs_find_free_ino(root, &objectid);
10326 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10327 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10328 objectid, S_IFLNK|S_IRWXUGO, &index);
10329 if (IS_ERR(inode)) {
10330 err = PTR_ERR(inode);
10335 * If the active LSM wants to access the inode during
10336 * d_instantiate it needs these. Smack checks to see
10337 * if the filesystem supports xattrs by looking at the
10340 inode->i_fop = &btrfs_file_operations;
10341 inode->i_op = &btrfs_file_inode_operations;
10342 inode->i_mapping->a_ops = &btrfs_aops;
10343 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10345 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10347 goto out_unlock_inode;
10349 path = btrfs_alloc_path();
10352 goto out_unlock_inode;
10354 key.objectid = btrfs_ino(BTRFS_I(inode));
10356 key.type = BTRFS_EXTENT_DATA_KEY;
10357 datasize = btrfs_file_extent_calc_inline_size(name_len);
10358 err = btrfs_insert_empty_item(trans, root, path, &key,
10361 btrfs_free_path(path);
10362 goto out_unlock_inode;
10364 leaf = path->nodes[0];
10365 ei = btrfs_item_ptr(leaf, path->slots[0],
10366 struct btrfs_file_extent_item);
10367 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10368 btrfs_set_file_extent_type(leaf, ei,
10369 BTRFS_FILE_EXTENT_INLINE);
10370 btrfs_set_file_extent_encryption(leaf, ei, 0);
10371 btrfs_set_file_extent_compression(leaf, ei, 0);
10372 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10373 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10375 ptr = btrfs_file_extent_inline_start(ei);
10376 write_extent_buffer(leaf, symname, ptr, name_len);
10377 btrfs_mark_buffer_dirty(leaf);
10378 btrfs_free_path(path);
10380 inode->i_op = &btrfs_symlink_inode_operations;
10381 inode_nohighmem(inode);
10382 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10383 inode_set_bytes(inode, name_len);
10384 btrfs_i_size_write(BTRFS_I(inode), name_len);
10385 err = btrfs_update_inode(trans, root, inode);
10387 * Last step, add directory indexes for our symlink inode. This is the
10388 * last step to avoid extra cleanup of these indexes if an error happens
10392 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10393 BTRFS_I(inode), 0, index);
10396 goto out_unlock_inode;
10399 unlock_new_inode(inode);
10400 d_instantiate(dentry, inode);
10403 btrfs_end_transaction(trans);
10405 inode_dec_link_count(inode);
10408 btrfs_btree_balance_dirty(fs_info);
10413 unlock_new_inode(inode);
10417 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10418 u64 start, u64 num_bytes, u64 min_size,
10419 loff_t actual_len, u64 *alloc_hint,
10420 struct btrfs_trans_handle *trans)
10422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10423 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10424 struct extent_map *em;
10425 struct btrfs_root *root = BTRFS_I(inode)->root;
10426 struct btrfs_key ins;
10427 u64 cur_offset = start;
10430 u64 last_alloc = (u64)-1;
10432 bool own_trans = true;
10433 u64 end = start + num_bytes - 1;
10437 while (num_bytes > 0) {
10439 trans = btrfs_start_transaction(root, 3);
10440 if (IS_ERR(trans)) {
10441 ret = PTR_ERR(trans);
10446 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10447 cur_bytes = max(cur_bytes, min_size);
10449 * If we are severely fragmented we could end up with really
10450 * small allocations, so if the allocator is returning small
10451 * chunks lets make its job easier by only searching for those
10454 cur_bytes = min(cur_bytes, last_alloc);
10455 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10456 min_size, 0, *alloc_hint, &ins, 1, 0);
10459 btrfs_end_transaction(trans);
10462 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10464 last_alloc = ins.offset;
10465 ret = insert_reserved_file_extent(trans, inode,
10466 cur_offset, ins.objectid,
10467 ins.offset, ins.offset,
10468 ins.offset, 0, 0, 0,
10469 BTRFS_FILE_EXTENT_PREALLOC);
10471 btrfs_free_reserved_extent(fs_info, ins.objectid,
10473 btrfs_abort_transaction(trans, ret);
10475 btrfs_end_transaction(trans);
10479 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10480 cur_offset + ins.offset -1, 0);
10482 em = alloc_extent_map();
10484 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10485 &BTRFS_I(inode)->runtime_flags);
10489 em->start = cur_offset;
10490 em->orig_start = cur_offset;
10491 em->len = ins.offset;
10492 em->block_start = ins.objectid;
10493 em->block_len = ins.offset;
10494 em->orig_block_len = ins.offset;
10495 em->ram_bytes = ins.offset;
10496 em->bdev = fs_info->fs_devices->latest_bdev;
10497 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10498 em->generation = trans->transid;
10501 write_lock(&em_tree->lock);
10502 ret = add_extent_mapping(em_tree, em, 1);
10503 write_unlock(&em_tree->lock);
10504 if (ret != -EEXIST)
10506 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10507 cur_offset + ins.offset - 1,
10510 free_extent_map(em);
10512 num_bytes -= ins.offset;
10513 cur_offset += ins.offset;
10514 *alloc_hint = ins.objectid + ins.offset;
10516 inode_inc_iversion(inode);
10517 inode->i_ctime = current_time(inode);
10518 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10519 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10520 (actual_len > inode->i_size) &&
10521 (cur_offset > inode->i_size)) {
10522 if (cur_offset > actual_len)
10523 i_size = actual_len;
10525 i_size = cur_offset;
10526 i_size_write(inode, i_size);
10527 btrfs_ordered_update_i_size(inode, i_size, NULL);
10530 ret = btrfs_update_inode(trans, root, inode);
10533 btrfs_abort_transaction(trans, ret);
10535 btrfs_end_transaction(trans);
10540 btrfs_end_transaction(trans);
10542 if (cur_offset < end)
10543 btrfs_free_reserved_data_space(inode, cur_offset,
10544 end - cur_offset + 1);
10548 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10549 u64 start, u64 num_bytes, u64 min_size,
10550 loff_t actual_len, u64 *alloc_hint)
10552 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10553 min_size, actual_len, alloc_hint,
10557 int btrfs_prealloc_file_range_trans(struct inode *inode,
10558 struct btrfs_trans_handle *trans, int mode,
10559 u64 start, u64 num_bytes, u64 min_size,
10560 loff_t actual_len, u64 *alloc_hint)
10562 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10563 min_size, actual_len, alloc_hint, trans);
10566 static int btrfs_set_page_dirty(struct page *page)
10568 return __set_page_dirty_nobuffers(page);
10571 static int btrfs_permission(struct inode *inode, int mask)
10573 struct btrfs_root *root = BTRFS_I(inode)->root;
10574 umode_t mode = inode->i_mode;
10576 if (mask & MAY_WRITE &&
10577 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10578 if (btrfs_root_readonly(root))
10580 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10583 return generic_permission(inode, mask);
10586 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10588 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10589 struct btrfs_trans_handle *trans;
10590 struct btrfs_root *root = BTRFS_I(dir)->root;
10591 struct inode *inode = NULL;
10597 * 5 units required for adding orphan entry
10599 trans = btrfs_start_transaction(root, 5);
10601 return PTR_ERR(trans);
10603 ret = btrfs_find_free_ino(root, &objectid);
10607 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10608 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10609 if (IS_ERR(inode)) {
10610 ret = PTR_ERR(inode);
10615 inode->i_fop = &btrfs_file_operations;
10616 inode->i_op = &btrfs_file_inode_operations;
10618 inode->i_mapping->a_ops = &btrfs_aops;
10619 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10621 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10625 ret = btrfs_update_inode(trans, root, inode);
10628 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10633 * We set number of links to 0 in btrfs_new_inode(), and here we set
10634 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10637 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10639 set_nlink(inode, 1);
10640 unlock_new_inode(inode);
10641 d_tmpfile(dentry, inode);
10642 mark_inode_dirty(inode);
10645 btrfs_end_transaction(trans);
10648 btrfs_balance_delayed_items(fs_info);
10649 btrfs_btree_balance_dirty(fs_info);
10653 unlock_new_inode(inode);
10658 __attribute__((const))
10659 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10664 static const struct inode_operations btrfs_dir_inode_operations = {
10665 .getattr = btrfs_getattr,
10666 .lookup = btrfs_lookup,
10667 .create = btrfs_create,
10668 .unlink = btrfs_unlink,
10669 .link = btrfs_link,
10670 .mkdir = btrfs_mkdir,
10671 .rmdir = btrfs_rmdir,
10672 .rename = btrfs_rename2,
10673 .symlink = btrfs_symlink,
10674 .setattr = btrfs_setattr,
10675 .mknod = btrfs_mknod,
10676 .listxattr = btrfs_listxattr,
10677 .permission = btrfs_permission,
10678 .get_acl = btrfs_get_acl,
10679 .set_acl = btrfs_set_acl,
10680 .update_time = btrfs_update_time,
10681 .tmpfile = btrfs_tmpfile,
10683 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10684 .lookup = btrfs_lookup,
10685 .permission = btrfs_permission,
10686 .update_time = btrfs_update_time,
10689 static const struct file_operations btrfs_dir_file_operations = {
10690 .llseek = generic_file_llseek,
10691 .read = generic_read_dir,
10692 .iterate_shared = btrfs_real_readdir,
10693 .unlocked_ioctl = btrfs_ioctl,
10694 #ifdef CONFIG_COMPAT
10695 .compat_ioctl = btrfs_compat_ioctl,
10697 .release = btrfs_release_file,
10698 .fsync = btrfs_sync_file,
10701 static const struct extent_io_ops btrfs_extent_io_ops = {
10702 /* mandatory callbacks */
10703 .submit_bio_hook = btrfs_submit_bio_hook,
10704 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10705 .merge_bio_hook = btrfs_merge_bio_hook,
10706 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10708 /* optional callbacks */
10709 .fill_delalloc = run_delalloc_range,
10710 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10711 .writepage_start_hook = btrfs_writepage_start_hook,
10712 .set_bit_hook = btrfs_set_bit_hook,
10713 .clear_bit_hook = btrfs_clear_bit_hook,
10714 .merge_extent_hook = btrfs_merge_extent_hook,
10715 .split_extent_hook = btrfs_split_extent_hook,
10719 * btrfs doesn't support the bmap operation because swapfiles
10720 * use bmap to make a mapping of extents in the file. They assume
10721 * these extents won't change over the life of the file and they
10722 * use the bmap result to do IO directly to the drive.
10724 * the btrfs bmap call would return logical addresses that aren't
10725 * suitable for IO and they also will change frequently as COW
10726 * operations happen. So, swapfile + btrfs == corruption.
10728 * For now we're avoiding this by dropping bmap.
10730 static const struct address_space_operations btrfs_aops = {
10731 .readpage = btrfs_readpage,
10732 .writepage = btrfs_writepage,
10733 .writepages = btrfs_writepages,
10734 .readpages = btrfs_readpages,
10735 .direct_IO = btrfs_direct_IO,
10736 .invalidatepage = btrfs_invalidatepage,
10737 .releasepage = btrfs_releasepage,
10738 .set_page_dirty = btrfs_set_page_dirty,
10739 .error_remove_page = generic_error_remove_page,
10742 static const struct address_space_operations btrfs_symlink_aops = {
10743 .readpage = btrfs_readpage,
10744 .writepage = btrfs_writepage,
10745 .invalidatepage = btrfs_invalidatepage,
10746 .releasepage = btrfs_releasepage,
10749 static const struct inode_operations btrfs_file_inode_operations = {
10750 .getattr = btrfs_getattr,
10751 .setattr = btrfs_setattr,
10752 .listxattr = btrfs_listxattr,
10753 .permission = btrfs_permission,
10754 .fiemap = btrfs_fiemap,
10755 .get_acl = btrfs_get_acl,
10756 .set_acl = btrfs_set_acl,
10757 .update_time = btrfs_update_time,
10759 static const struct inode_operations btrfs_special_inode_operations = {
10760 .getattr = btrfs_getattr,
10761 .setattr = btrfs_setattr,
10762 .permission = btrfs_permission,
10763 .listxattr = btrfs_listxattr,
10764 .get_acl = btrfs_get_acl,
10765 .set_acl = btrfs_set_acl,
10766 .update_time = btrfs_update_time,
10768 static const struct inode_operations btrfs_symlink_inode_operations = {
10769 .get_link = page_get_link,
10770 .getattr = btrfs_getattr,
10771 .setattr = btrfs_setattr,
10772 .permission = btrfs_permission,
10773 .listxattr = btrfs_listxattr,
10774 .update_time = btrfs_update_time,
10777 const struct dentry_operations btrfs_dentry_operations = {
10778 .d_delete = btrfs_dentry_delete,
10779 .d_release = btrfs_dentry_release,