]> Git Repo - linux.git/blob - include/linux/filter.h
Merge tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf...
[linux.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26
27 #include <net/sch_generic.h>
28
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1    BPF_REG_1
47 #define BPF_REG_ARG2    BPF_REG_2
48 #define BPF_REG_ARG3    BPF_REG_3
49 #define BPF_REG_ARG4    BPF_REG_4
50 #define BPF_REG_ARG5    BPF_REG_5
51 #define BPF_REG_CTX     BPF_REG_6
52 #define BPF_REG_FP      BPF_REG_10
53
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A       BPF_REG_0
56 #define BPF_REG_X       BPF_REG_7
57 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
58 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
59 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
60
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX              MAX_BPF_REG
63 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
65
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL   0xf0
68
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM   0x20
71
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX 0x40
74
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32 0xa0
77
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS   0xe0
83
84 /* unused opcode to mark speculation barrier for mitigating
85  * Speculative Store Bypass
86  */
87 #define BPF_NOSPEC      0xc0
88
89 /* As per nm, we expose JITed images as text (code) section for
90  * kallsyms. That way, tools like perf can find it to match
91  * addresses.
92  */
93 #define BPF_SYM_ELF_TYPE        't'
94
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK   512
97
98 /* Helper macros for filter block array initializers. */
99
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)                    \
103         ((struct bpf_insn) {                                    \
104                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
105                 .dst_reg = DST,                                 \
106                 .src_reg = SRC,                                 \
107                 .off   = OFF,                                   \
108                 .imm   = 0 })
109
110 #define BPF_ALU64_REG(OP, DST, SRC)                             \
111         BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)                    \
114         ((struct bpf_insn) {                                    \
115                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
116                 .dst_reg = DST,                                 \
117                 .src_reg = SRC,                                 \
118                 .off   = OFF,                                   \
119                 .imm   = 0 })
120
121 #define BPF_ALU32_REG(OP, DST, SRC)                             \
122         BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)                    \
127         ((struct bpf_insn) {                                    \
128                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
129                 .dst_reg = DST,                                 \
130                 .src_reg = 0,                                   \
131                 .off   = OFF,                                   \
132                 .imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
134         BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)                    \
137         ((struct bpf_insn) {                                    \
138                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
139                 .dst_reg = DST,                                 \
140                 .src_reg = 0,                                   \
141                 .off   = OFF,                                   \
142                 .imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
144         BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147
148 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
149         ((struct bpf_insn) {                                    \
150                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
151                 .dst_reg = DST,                                 \
152                 .src_reg = 0,                                   \
153                 .off   = 0,                                     \
154                 .imm   = LEN })
155
156 /* Byte Swap, bswap16/32/64 */
157
158 #define BPF_BSWAP(DST, LEN)                                     \
159         ((struct bpf_insn) {                                    \
160                 .code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),      \
161                 .dst_reg = DST,                                 \
162                 .src_reg = 0,                                   \
163                 .off   = 0,                                     \
164                 .imm   = LEN })
165
166 /* Short form of mov, dst_reg = src_reg */
167
168 #define BPF_MOV64_REG(DST, SRC)                                 \
169         ((struct bpf_insn) {                                    \
170                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
171                 .dst_reg = DST,                                 \
172                 .src_reg = SRC,                                 \
173                 .off   = 0,                                     \
174                 .imm   = 0 })
175
176 #define BPF_MOV32_REG(DST, SRC)                                 \
177         ((struct bpf_insn) {                                    \
178                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
179                 .dst_reg = DST,                                 \
180                 .src_reg = SRC,                                 \
181                 .off   = 0,                                     \
182                 .imm   = 0 })
183
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU (-1)
189
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)                          \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = BPF_ADDR_PERCPU,                       \
196                 .imm   = 0 })
197
198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200         return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202
203 /* Short form of mov, dst_reg = imm32 */
204
205 #define BPF_MOV64_IMM(DST, IMM)                                 \
206         ((struct bpf_insn) {                                    \
207                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
208                 .dst_reg = DST,                                 \
209                 .src_reg = 0,                                   \
210                 .off   = 0,                                     \
211                 .imm   = IMM })
212
213 #define BPF_MOV32_IMM(DST, IMM)                                 \
214         ((struct bpf_insn) {                                    \
215                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
216                 .dst_reg = DST,                                 \
217                 .src_reg = 0,                                   \
218                 .off   = 0,                                     \
219                 .imm   = IMM })
220
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)                          \
224         ((struct bpf_insn) {                                    \
225                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
226                 .dst_reg = DST,                                 \
227                 .src_reg = SRC,                                 \
228                 .off   = OFF,                                   \
229                 .imm   = 0 })
230
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)                          \
232         ((struct bpf_insn) {                                    \
233                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
234                 .dst_reg = DST,                                 \
235                 .src_reg = SRC,                                 \
236                 .off   = OFF,                                   \
237                 .imm   = 0 })
238
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)                                       \
241         ((struct bpf_insn) {                                    \
242                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
243                 .dst_reg = DST,                                 \
244                 .src_reg = DST,                                 \
245                 .off   = 0,                                     \
246                 .imm   = 1 })
247
248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258         return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259                               insn->off == BPF_ADDR_SPACE_CAST &&
260                               insn->imm == 1U << 16;
261 }
262
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)                                  \
265         BPF_LD_IMM64_RAW(DST, 0, IMM)
266
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
268         ((struct bpf_insn) {                                    \
269                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
270                 .dst_reg = DST,                                 \
271                 .src_reg = SRC,                                 \
272                 .off   = 0,                                     \
273                 .imm   = (__u32) (IMM) }),                      \
274         ((struct bpf_insn) {                                    \
275                 .code  = 0, /* zero is reserved opcode */       \
276                 .dst_reg = 0,                                   \
277                 .src_reg = 0,                                   \
278                 .off   = 0,                                     \
279                 .imm   = ((__u64) (IMM)) >> 32 })
280
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
283         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
288         ((struct bpf_insn) {                                    \
289                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
290                 .dst_reg = DST,                                 \
291                 .src_reg = SRC,                                 \
292                 .off   = 0,                                     \
293                 .imm   = IMM })
294
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = SRC,                                 \
300                 .off   = 0,                                     \
301                 .imm   = IMM })
302
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304
305 #define BPF_LD_ABS(SIZE, IMM)                                   \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
308                 .dst_reg = 0,                                   \
309                 .src_reg = 0,                                   \
310                 .off   = 0,                                     \
311                 .imm   = IMM })
312
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314
315 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
318                 .dst_reg = 0,                                   \
319                 .src_reg = SRC,                                 \
320                 .off   = 0,                                     \
321                 .imm   = IMM })
322
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)                      \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,  \
338                 .dst_reg = DST,                                 \
339                 .src_reg = SRC,                                 \
340                 .off   = OFF,                                   \
341                 .imm   = 0 })
342
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
348                 .dst_reg = DST,                                 \
349                 .src_reg = SRC,                                 \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352
353
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
370         ((struct bpf_insn) {                                    \
371                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
372                 .dst_reg = DST,                                 \
373                 .src_reg = SRC,                                 \
374                 .off   = OFF,                                   \
375                 .imm   = OP })
376
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
383         ((struct bpf_insn) {                                    \
384                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
385                 .dst_reg = DST,                                 \
386                 .src_reg = 0,                                   \
387                 .off   = OFF,                                   \
388                 .imm   = IMM })
389
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
393         ((struct bpf_insn) {                                    \
394                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
395                 .dst_reg = DST,                                 \
396                 .src_reg = SRC,                                 \
397                 .off   = OFF,                                   \
398                 .imm   = 0 })
399
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
403         ((struct bpf_insn) {                                    \
404                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
405                 .dst_reg = DST,                                 \
406                 .src_reg = 0,                                   \
407                 .off   = OFF,                                   \
408                 .imm   = IMM })
409
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
413         ((struct bpf_insn) {                                    \
414                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
415                 .dst_reg = DST,                                 \
416                 .src_reg = SRC,                                 \
417                 .off   = OFF,                                   \
418                 .imm   = 0 })
419
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
423         ((struct bpf_insn) {                                    \
424                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
425                 .dst_reg = DST,                                 \
426                 .src_reg = 0,                                   \
427                 .off   = OFF,                                   \
428                 .imm   = IMM })
429
430 /* Unconditional jumps, goto pc + off16 */
431
432 #define BPF_JMP_A(OFF)                                          \
433         ((struct bpf_insn) {                                    \
434                 .code  = BPF_JMP | BPF_JA,                      \
435                 .dst_reg = 0,                                   \
436                 .src_reg = 0,                                   \
437                 .off   = OFF,                                   \
438                 .imm   = 0 })
439
440 /* Unconditional jumps, gotol pc + imm32 */
441
442 #define BPF_JMP32_A(IMM)                                        \
443         ((struct bpf_insn) {                                    \
444                 .code  = BPF_JMP32 | BPF_JA,                    \
445                 .dst_reg = 0,                                   \
446                 .src_reg = 0,                                   \
447                 .off   = 0,                                     \
448                 .imm   = IMM })
449
450 /* Relative call */
451
452 #define BPF_CALL_REL(TGT)                                       \
453         ((struct bpf_insn) {                                    \
454                 .code  = BPF_JMP | BPF_CALL,                    \
455                 .dst_reg = 0,                                   \
456                 .src_reg = BPF_PSEUDO_CALL,                     \
457                 .off   = 0,                                     \
458                 .imm   = TGT })
459
460 /* Convert function address to BPF immediate */
461
462 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
463
464 #define BPF_EMIT_CALL(FUNC)                                     \
465         ((struct bpf_insn) {                                    \
466                 .code  = BPF_JMP | BPF_CALL,                    \
467                 .dst_reg = 0,                                   \
468                 .src_reg = 0,                                   \
469                 .off   = 0,                                     \
470                 .imm   = BPF_CALL_IMM(FUNC) })
471
472 /* Raw code statement block */
473
474 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
475         ((struct bpf_insn) {                                    \
476                 .code  = CODE,                                  \
477                 .dst_reg = DST,                                 \
478                 .src_reg = SRC,                                 \
479                 .off   = OFF,                                   \
480                 .imm   = IMM })
481
482 /* Program exit */
483
484 #define BPF_EXIT_INSN()                                         \
485         ((struct bpf_insn) {                                    \
486                 .code  = BPF_JMP | BPF_EXIT,                    \
487                 .dst_reg = 0,                                   \
488                 .src_reg = 0,                                   \
489                 .off   = 0,                                     \
490                 .imm   = 0 })
491
492 /* Speculation barrier */
493
494 #define BPF_ST_NOSPEC()                                         \
495         ((struct bpf_insn) {                                    \
496                 .code  = BPF_ST | BPF_NOSPEC,                   \
497                 .dst_reg = 0,                                   \
498                 .src_reg = 0,                                   \
499                 .off   = 0,                                     \
500                 .imm   = 0 })
501
502 /* Internal classic blocks for direct assignment */
503
504 #define __BPF_STMT(CODE, K)                                     \
505         ((struct sock_filter) BPF_STMT(CODE, K))
506
507 #define __BPF_JUMP(CODE, K, JT, JF)                             \
508         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
509
510 #define bytes_to_bpf_size(bytes)                                \
511 ({                                                              \
512         int bpf_size = -EINVAL;                                 \
513                                                                 \
514         if (bytes == sizeof(u8))                                \
515                 bpf_size = BPF_B;                               \
516         else if (bytes == sizeof(u16))                          \
517                 bpf_size = BPF_H;                               \
518         else if (bytes == sizeof(u32))                          \
519                 bpf_size = BPF_W;                               \
520         else if (bytes == sizeof(u64))                          \
521                 bpf_size = BPF_DW;                              \
522                                                                 \
523         bpf_size;                                               \
524 })
525
526 #define bpf_size_to_bytes(bpf_size)                             \
527 ({                                                              \
528         int bytes = -EINVAL;                                    \
529                                                                 \
530         if (bpf_size == BPF_B)                                  \
531                 bytes = sizeof(u8);                             \
532         else if (bpf_size == BPF_H)                             \
533                 bytes = sizeof(u16);                            \
534         else if (bpf_size == BPF_W)                             \
535                 bytes = sizeof(u32);                            \
536         else if (bpf_size == BPF_DW)                            \
537                 bytes = sizeof(u64);                            \
538                                                                 \
539         bytes;                                                  \
540 })
541
542 #define BPF_SIZEOF(type)                                        \
543         ({                                                      \
544                 const int __size = bytes_to_bpf_size(sizeof(type)); \
545                 BUILD_BUG_ON(__size < 0);                       \
546                 __size;                                         \
547         })
548
549 #define BPF_FIELD_SIZEOF(type, field)                           \
550         ({                                                      \
551                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
552                 BUILD_BUG_ON(__size < 0);                       \
553                 __size;                                         \
554         })
555
556 #define BPF_LDST_BYTES(insn)                                    \
557         ({                                                      \
558                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
559                 WARN_ON(__size < 0);                            \
560                 __size;                                         \
561         })
562
563 #define __BPF_MAP_0(m, v, ...) v
564 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
565 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
566 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
567 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
568 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
569
570 #define __BPF_REG_0(...) __BPF_PAD(5)
571 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
572 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
573 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
574 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
575 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
576
577 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
578 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
579
580 #define __BPF_CAST(t, a)                                                       \
581         (__force t)                                                            \
582         (__force                                                               \
583          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
584                                       (unsigned long)0, (t)0))) a
585 #define __BPF_V void
586 #define __BPF_N
587
588 #define __BPF_DECL_ARGS(t, a) t   a
589 #define __BPF_DECL_REGS(t, a) u64 a
590
591 #define __BPF_PAD(n)                                                           \
592         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
593                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
594
595 #define BPF_CALL_x(x, attr, name, ...)                                         \
596         static __always_inline                                                 \
597         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
598         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
599         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
600         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
601         {                                                                      \
602                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
603         }                                                                      \
604         static __always_inline                                                 \
605         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
606
607 #define __NOATTR
608 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
609 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
610 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
611 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
612 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
613 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
614
615 #define NOTRACE_BPF_CALL_1(name, ...)   BPF_CALL_x(1, notrace, name, __VA_ARGS__)
616
617 #define bpf_ctx_range(TYPE, MEMBER)                                             \
618         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
619 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
620         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
621 #if BITS_PER_LONG == 64
622 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
623         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
624 #else
625 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
626         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
627 #endif /* BITS_PER_LONG == 64 */
628
629 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
630         ({                                                                      \
631                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
632                 *(PTR_SIZE) = (SIZE);                                           \
633                 offsetof(TYPE, MEMBER);                                         \
634         })
635
636 /* A struct sock_filter is architecture independent. */
637 struct compat_sock_fprog {
638         u16             len;
639         compat_uptr_t   filter; /* struct sock_filter * */
640 };
641
642 struct sock_fprog_kern {
643         u16                     len;
644         struct sock_filter      *filter;
645 };
646
647 /* Some arches need doubleword alignment for their instructions and/or data */
648 #define BPF_IMAGE_ALIGNMENT 8
649
650 struct bpf_binary_header {
651         u32 size;
652         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
653 };
654
655 struct bpf_prog_stats {
656         u64_stats_t cnt;
657         u64_stats_t nsecs;
658         u64_stats_t misses;
659         struct u64_stats_sync syncp;
660 } __aligned(2 * sizeof(u64));
661
662 struct sk_filter {
663         refcount_t      refcnt;
664         struct rcu_head rcu;
665         struct bpf_prog *prog;
666 };
667
668 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
669
670 extern struct mutex nf_conn_btf_access_lock;
671 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
672                                      const struct bpf_reg_state *reg,
673                                      int off, int size);
674
675 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
676                                           const struct bpf_insn *insnsi,
677                                           unsigned int (*bpf_func)(const void *,
678                                                                    const struct bpf_insn *));
679
680 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
681                                           const void *ctx,
682                                           bpf_dispatcher_fn dfunc)
683 {
684         u32 ret;
685
686         cant_migrate();
687         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
688                 struct bpf_prog_stats *stats;
689                 u64 duration, start = sched_clock();
690                 unsigned long flags;
691
692                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
693
694                 duration = sched_clock() - start;
695                 stats = this_cpu_ptr(prog->stats);
696                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
697                 u64_stats_inc(&stats->cnt);
698                 u64_stats_add(&stats->nsecs, duration);
699                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
700         } else {
701                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
702         }
703         return ret;
704 }
705
706 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
707 {
708         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
709 }
710
711 /*
712  * Use in preemptible and therefore migratable context to make sure that
713  * the execution of the BPF program runs on one CPU.
714  *
715  * This uses migrate_disable/enable() explicitly to document that the
716  * invocation of a BPF program does not require reentrancy protection
717  * against a BPF program which is invoked from a preempting task.
718  */
719 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
720                                           const void *ctx)
721 {
722         u32 ret;
723
724         migrate_disable();
725         ret = bpf_prog_run(prog, ctx);
726         migrate_enable();
727         return ret;
728 }
729
730 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
731
732 struct bpf_skb_data_end {
733         struct qdisc_skb_cb qdisc_cb;
734         void *data_meta;
735         void *data_end;
736 };
737
738 struct bpf_nh_params {
739         u32 nh_family;
740         union {
741                 u32 ipv4_nh;
742                 struct in6_addr ipv6_nh;
743         };
744 };
745
746 /* flags for bpf_redirect_info kern_flags */
747 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
748 #define BPF_RI_F_RI_INIT        BIT(1)
749 #define BPF_RI_F_CPU_MAP_INIT   BIT(2)
750 #define BPF_RI_F_DEV_MAP_INIT   BIT(3)
751 #define BPF_RI_F_XSK_MAP_INIT   BIT(4)
752
753 struct bpf_redirect_info {
754         u64 tgt_index;
755         void *tgt_value;
756         struct bpf_map *map;
757         u32 flags;
758         u32 map_id;
759         enum bpf_map_type map_type;
760         struct bpf_nh_params nh;
761         u32 kern_flags;
762 };
763
764 struct bpf_net_context {
765         struct bpf_redirect_info ri;
766         struct list_head cpu_map_flush_list;
767         struct list_head dev_map_flush_list;
768         struct list_head xskmap_map_flush_list;
769 };
770
771 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
772 {
773         struct task_struct *tsk = current;
774
775         if (tsk->bpf_net_context != NULL)
776                 return NULL;
777         bpf_net_ctx->ri.kern_flags = 0;
778
779         tsk->bpf_net_context = bpf_net_ctx;
780         return bpf_net_ctx;
781 }
782
783 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
784 {
785         if (bpf_net_ctx)
786                 current->bpf_net_context = NULL;
787 }
788
789 static inline struct bpf_net_context *bpf_net_ctx_get(void)
790 {
791         return current->bpf_net_context;
792 }
793
794 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
795 {
796         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
797
798         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
799                 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
800                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
801         }
802
803         return &bpf_net_ctx->ri;
804 }
805
806 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
807 {
808         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
809
810         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
811                 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
812                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
813         }
814
815         return &bpf_net_ctx->cpu_map_flush_list;
816 }
817
818 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
819 {
820         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
821
822         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
823                 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
824                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
825         }
826
827         return &bpf_net_ctx->dev_map_flush_list;
828 }
829
830 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
831 {
832         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
833
834         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
835                 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
836                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
837         }
838
839         return &bpf_net_ctx->xskmap_map_flush_list;
840 }
841
842 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
843                                                         struct list_head **lh_dev,
844                                                         struct list_head **lh_xsk)
845 {
846         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
847         u32 kern_flags = bpf_net_ctx->ri.kern_flags;
848         struct list_head *lh;
849
850         *lh_map = *lh_dev = *lh_xsk = NULL;
851
852         if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
853                 return;
854
855         lh = &bpf_net_ctx->dev_map_flush_list;
856         if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
857                 *lh_dev = lh;
858
859         lh = &bpf_net_ctx->cpu_map_flush_list;
860         if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
861                 *lh_map = lh;
862
863         lh = &bpf_net_ctx->xskmap_map_flush_list;
864         if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
865             kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
866                 *lh_xsk = lh;
867 }
868
869 /* Compute the linear packet data range [data, data_end) which
870  * will be accessed by various program types (cls_bpf, act_bpf,
871  * lwt, ...). Subsystems allowing direct data access must (!)
872  * ensure that cb[] area can be written to when BPF program is
873  * invoked (otherwise cb[] save/restore is necessary).
874  */
875 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
876 {
877         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
878
879         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
880         cb->data_meta = skb->data - skb_metadata_len(skb);
881         cb->data_end  = skb->data + skb_headlen(skb);
882 }
883
884 /* Similar to bpf_compute_data_pointers(), except that save orginal
885  * data in cb->data and cb->meta_data for restore.
886  */
887 static inline void bpf_compute_and_save_data_end(
888         struct sk_buff *skb, void **saved_data_end)
889 {
890         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
891
892         *saved_data_end = cb->data_end;
893         cb->data_end  = skb->data + skb_headlen(skb);
894 }
895
896 /* Restore data saved by bpf_compute_and_save_data_end(). */
897 static inline void bpf_restore_data_end(
898         struct sk_buff *skb, void *saved_data_end)
899 {
900         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
901
902         cb->data_end = saved_data_end;
903 }
904
905 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
906 {
907         /* eBPF programs may read/write skb->cb[] area to transfer meta
908          * data between tail calls. Since this also needs to work with
909          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
910          *
911          * In some socket filter cases, the cb unfortunately needs to be
912          * saved/restored so that protocol specific skb->cb[] data won't
913          * be lost. In any case, due to unpriviledged eBPF programs
914          * attached to sockets, we need to clear the bpf_skb_cb() area
915          * to not leak previous contents to user space.
916          */
917         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
918         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
919                      sizeof_field(struct qdisc_skb_cb, data));
920
921         return qdisc_skb_cb(skb)->data;
922 }
923
924 /* Must be invoked with migration disabled */
925 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
926                                          const void *ctx)
927 {
928         const struct sk_buff *skb = ctx;
929         u8 *cb_data = bpf_skb_cb(skb);
930         u8 cb_saved[BPF_SKB_CB_LEN];
931         u32 res;
932
933         if (unlikely(prog->cb_access)) {
934                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
935                 memset(cb_data, 0, sizeof(cb_saved));
936         }
937
938         res = bpf_prog_run(prog, skb);
939
940         if (unlikely(prog->cb_access))
941                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
942
943         return res;
944 }
945
946 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
947                                        struct sk_buff *skb)
948 {
949         u32 res;
950
951         migrate_disable();
952         res = __bpf_prog_run_save_cb(prog, skb);
953         migrate_enable();
954         return res;
955 }
956
957 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
958                                         struct sk_buff *skb)
959 {
960         u8 *cb_data = bpf_skb_cb(skb);
961         u32 res;
962
963         if (unlikely(prog->cb_access))
964                 memset(cb_data, 0, BPF_SKB_CB_LEN);
965
966         res = bpf_prog_run_pin_on_cpu(prog, skb);
967         return res;
968 }
969
970 DECLARE_BPF_DISPATCHER(xdp)
971
972 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
973
974 u32 xdp_master_redirect(struct xdp_buff *xdp);
975
976 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
977
978 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
979 {
980         return prog->len * sizeof(struct bpf_insn);
981 }
982
983 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
984 {
985         return round_up(bpf_prog_insn_size(prog) +
986                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
987 }
988
989 static inline unsigned int bpf_prog_size(unsigned int proglen)
990 {
991         return max(sizeof(struct bpf_prog),
992                    offsetof(struct bpf_prog, insns[proglen]));
993 }
994
995 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
996 {
997         /* When classic BPF programs have been loaded and the arch
998          * does not have a classic BPF JIT (anymore), they have been
999          * converted via bpf_migrate_filter() to eBPF and thus always
1000          * have an unspec program type.
1001          */
1002         return prog->type == BPF_PROG_TYPE_UNSPEC;
1003 }
1004
1005 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1006 {
1007         const u32 size_machine = sizeof(unsigned long);
1008
1009         if (size > size_machine && size % size_machine == 0)
1010                 size = size_machine;
1011
1012         return size;
1013 }
1014
1015 static inline bool
1016 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1017 {
1018         return size <= size_default && (size & (size - 1)) == 0;
1019 }
1020
1021 static inline u8
1022 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1023 {
1024         u8 access_off = off & (size_default - 1);
1025
1026 #ifdef __LITTLE_ENDIAN
1027         return access_off;
1028 #else
1029         return size_default - (access_off + size);
1030 #endif
1031 }
1032
1033 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
1034         (size == sizeof(__u64) &&                                       \
1035         off >= offsetof(type, field) &&                                 \
1036         off + sizeof(__u64) <= offsetofend(type, field) &&              \
1037         off % sizeof(__u64) == 0)
1038
1039 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1040
1041 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1042 {
1043 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1044         if (!fp->jited) {
1045                 set_vm_flush_reset_perms(fp);
1046                 return set_memory_ro((unsigned long)fp, fp->pages);
1047         }
1048 #endif
1049         return 0;
1050 }
1051
1052 static inline int __must_check
1053 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1054 {
1055         set_vm_flush_reset_perms(hdr);
1056         return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1057 }
1058
1059 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
1060 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1061 {
1062         return sk_filter_trim_cap(sk, skb, 1);
1063 }
1064
1065 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1066 void bpf_prog_free(struct bpf_prog *fp);
1067
1068 bool bpf_opcode_in_insntable(u8 code);
1069
1070 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1071                                const u32 *insn_to_jit_off);
1072 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1073 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1074
1075 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1076 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1077 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1078                                   gfp_t gfp_extra_flags);
1079 void __bpf_prog_free(struct bpf_prog *fp);
1080
1081 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1082 {
1083         __bpf_prog_free(fp);
1084 }
1085
1086 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1087                                        unsigned int flen);
1088
1089 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1090 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1091                               bpf_aux_classic_check_t trans, bool save_orig);
1092 void bpf_prog_destroy(struct bpf_prog *fp);
1093
1094 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1095 int sk_attach_bpf(u32 ufd, struct sock *sk);
1096 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1097 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1098 void sk_reuseport_prog_free(struct bpf_prog *prog);
1099 int sk_detach_filter(struct sock *sk);
1100 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1101
1102 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1103 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1104
1105 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1106 #define __bpf_call_base_args \
1107         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1108          (void *)__bpf_call_base)
1109
1110 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1111 void bpf_jit_compile(struct bpf_prog *prog);
1112 bool bpf_jit_needs_zext(void);
1113 bool bpf_jit_inlines_helper_call(s32 imm);
1114 bool bpf_jit_supports_subprog_tailcalls(void);
1115 bool bpf_jit_supports_percpu_insn(void);
1116 bool bpf_jit_supports_kfunc_call(void);
1117 bool bpf_jit_supports_far_kfunc_call(void);
1118 bool bpf_jit_supports_exceptions(void);
1119 bool bpf_jit_supports_ptr_xchg(void);
1120 bool bpf_jit_supports_arena(void);
1121 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1122 u64 bpf_arch_uaddress_limit(void);
1123 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1124 bool bpf_helper_changes_pkt_data(void *func);
1125
1126 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1127 {
1128         /* Reconstruction of call-sites is dependent on kallsyms,
1129          * thus make dump the same restriction.
1130          */
1131         return kallsyms_show_value(cred);
1132 }
1133
1134 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1135                                        const struct bpf_insn *patch, u32 len);
1136 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1137
1138 static inline bool xdp_return_frame_no_direct(void)
1139 {
1140         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1141
1142         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1143 }
1144
1145 static inline void xdp_set_return_frame_no_direct(void)
1146 {
1147         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1148
1149         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1150 }
1151
1152 static inline void xdp_clear_return_frame_no_direct(void)
1153 {
1154         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1155
1156         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1157 }
1158
1159 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1160                                  unsigned int pktlen)
1161 {
1162         unsigned int len;
1163
1164         if (unlikely(!(fwd->flags & IFF_UP)))
1165                 return -ENETDOWN;
1166
1167         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1168         if (pktlen > len)
1169                 return -EMSGSIZE;
1170
1171         return 0;
1172 }
1173
1174 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1175  * same cpu context. Further for best results no more than a single map
1176  * for the do_redirect/do_flush pair should be used. This limitation is
1177  * because we only track one map and force a flush when the map changes.
1178  * This does not appear to be a real limitation for existing software.
1179  */
1180 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1181                             struct xdp_buff *xdp, struct bpf_prog *prog);
1182 int xdp_do_redirect(struct net_device *dev,
1183                     struct xdp_buff *xdp,
1184                     struct bpf_prog *prog);
1185 int xdp_do_redirect_frame(struct net_device *dev,
1186                           struct xdp_buff *xdp,
1187                           struct xdp_frame *xdpf,
1188                           struct bpf_prog *prog);
1189 void xdp_do_flush(void);
1190
1191 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1192
1193 #ifdef CONFIG_INET
1194 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1195                                   struct bpf_prog *prog, struct sk_buff *skb,
1196                                   struct sock *migrating_sk,
1197                                   u32 hash);
1198 #else
1199 static inline struct sock *
1200 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1201                      struct bpf_prog *prog, struct sk_buff *skb,
1202                      struct sock *migrating_sk,
1203                      u32 hash)
1204 {
1205         return NULL;
1206 }
1207 #endif
1208
1209 #ifdef CONFIG_BPF_JIT
1210 extern int bpf_jit_enable;
1211 extern int bpf_jit_harden;
1212 extern int bpf_jit_kallsyms;
1213 extern long bpf_jit_limit;
1214 extern long bpf_jit_limit_max;
1215
1216 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1217
1218 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1219
1220 struct bpf_binary_header *
1221 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1222                      unsigned int alignment,
1223                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1224 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1225 u64 bpf_jit_alloc_exec_limit(void);
1226 void *bpf_jit_alloc_exec(unsigned long size);
1227 void bpf_jit_free_exec(void *addr);
1228 void bpf_jit_free(struct bpf_prog *fp);
1229 struct bpf_binary_header *
1230 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1231
1232 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1233 void bpf_prog_pack_free(void *ptr, u32 size);
1234
1235 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1236 {
1237         return list_empty(&fp->aux->ksym.lnode) ||
1238                fp->aux->ksym.lnode.prev == LIST_POISON2;
1239 }
1240
1241 struct bpf_binary_header *
1242 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1243                           unsigned int alignment,
1244                           struct bpf_binary_header **rw_hdr,
1245                           u8 **rw_image,
1246                           bpf_jit_fill_hole_t bpf_fill_ill_insns);
1247 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1248                                  struct bpf_binary_header *rw_header);
1249 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1250                               struct bpf_binary_header *rw_header);
1251
1252 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1253                                 struct bpf_jit_poke_descriptor *poke);
1254
1255 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1256                           const struct bpf_insn *insn, bool extra_pass,
1257                           u64 *func_addr, bool *func_addr_fixed);
1258
1259 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1260 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1261
1262 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1263                                 u32 pass, void *image)
1264 {
1265         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1266                proglen, pass, image, current->comm, task_pid_nr(current));
1267
1268         if (image)
1269                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1270                                16, 1, image, proglen, false);
1271 }
1272
1273 static inline bool bpf_jit_is_ebpf(void)
1274 {
1275 # ifdef CONFIG_HAVE_EBPF_JIT
1276         return true;
1277 # else
1278         return false;
1279 # endif
1280 }
1281
1282 static inline bool ebpf_jit_enabled(void)
1283 {
1284         return bpf_jit_enable && bpf_jit_is_ebpf();
1285 }
1286
1287 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1288 {
1289         return fp->jited && bpf_jit_is_ebpf();
1290 }
1291
1292 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1293 {
1294         /* These are the prerequisites, should someone ever have the
1295          * idea to call blinding outside of them, we make sure to
1296          * bail out.
1297          */
1298         if (!bpf_jit_is_ebpf())
1299                 return false;
1300         if (!prog->jit_requested)
1301                 return false;
1302         if (!bpf_jit_harden)
1303                 return false;
1304         if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1305                 return false;
1306
1307         return true;
1308 }
1309
1310 static inline bool bpf_jit_kallsyms_enabled(void)
1311 {
1312         /* There are a couple of corner cases where kallsyms should
1313          * not be enabled f.e. on hardening.
1314          */
1315         if (bpf_jit_harden)
1316                 return false;
1317         if (!bpf_jit_kallsyms)
1318                 return false;
1319         if (bpf_jit_kallsyms == 1)
1320                 return true;
1321
1322         return false;
1323 }
1324
1325 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1326                                  unsigned long *off, char *sym);
1327 bool is_bpf_text_address(unsigned long addr);
1328 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1329                     char *sym);
1330 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1331
1332 static inline int
1333 bpf_address_lookup(unsigned long addr, unsigned long *size,
1334                    unsigned long *off, char **modname, char *sym)
1335 {
1336         int ret = __bpf_address_lookup(addr, size, off, sym);
1337
1338         if (ret && modname)
1339                 *modname = NULL;
1340         return ret;
1341 }
1342
1343 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1344 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1345
1346 #else /* CONFIG_BPF_JIT */
1347
1348 static inline bool ebpf_jit_enabled(void)
1349 {
1350         return false;
1351 }
1352
1353 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1354 {
1355         return false;
1356 }
1357
1358 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1359 {
1360         return false;
1361 }
1362
1363 static inline int
1364 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1365                             struct bpf_jit_poke_descriptor *poke)
1366 {
1367         return -ENOTSUPP;
1368 }
1369
1370 static inline void bpf_jit_free(struct bpf_prog *fp)
1371 {
1372         bpf_prog_unlock_free(fp);
1373 }
1374
1375 static inline bool bpf_jit_kallsyms_enabled(void)
1376 {
1377         return false;
1378 }
1379
1380 static inline int
1381 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1382                      unsigned long *off, char *sym)
1383 {
1384         return 0;
1385 }
1386
1387 static inline bool is_bpf_text_address(unsigned long addr)
1388 {
1389         return false;
1390 }
1391
1392 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1393                                   char *type, char *sym)
1394 {
1395         return -ERANGE;
1396 }
1397
1398 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1399 {
1400         return NULL;
1401 }
1402
1403 static inline int
1404 bpf_address_lookup(unsigned long addr, unsigned long *size,
1405                    unsigned long *off, char **modname, char *sym)
1406 {
1407         return 0;
1408 }
1409
1410 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1411 {
1412 }
1413
1414 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1415 {
1416 }
1417
1418 #endif /* CONFIG_BPF_JIT */
1419
1420 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1421
1422 #define BPF_ANC         BIT(15)
1423
1424 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1425 {
1426         switch (first->code) {
1427         case BPF_RET | BPF_K:
1428         case BPF_LD | BPF_W | BPF_LEN:
1429                 return false;
1430
1431         case BPF_LD | BPF_W | BPF_ABS:
1432         case BPF_LD | BPF_H | BPF_ABS:
1433         case BPF_LD | BPF_B | BPF_ABS:
1434                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1435                         return true;
1436                 return false;
1437
1438         default:
1439                 return true;
1440         }
1441 }
1442
1443 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1444 {
1445         BUG_ON(ftest->code & BPF_ANC);
1446
1447         switch (ftest->code) {
1448         case BPF_LD | BPF_W | BPF_ABS:
1449         case BPF_LD | BPF_H | BPF_ABS:
1450         case BPF_LD | BPF_B | BPF_ABS:
1451 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1452                                 return BPF_ANC | SKF_AD_##CODE
1453                 switch (ftest->k) {
1454                 BPF_ANCILLARY(PROTOCOL);
1455                 BPF_ANCILLARY(PKTTYPE);
1456                 BPF_ANCILLARY(IFINDEX);
1457                 BPF_ANCILLARY(NLATTR);
1458                 BPF_ANCILLARY(NLATTR_NEST);
1459                 BPF_ANCILLARY(MARK);
1460                 BPF_ANCILLARY(QUEUE);
1461                 BPF_ANCILLARY(HATYPE);
1462                 BPF_ANCILLARY(RXHASH);
1463                 BPF_ANCILLARY(CPU);
1464                 BPF_ANCILLARY(ALU_XOR_X);
1465                 BPF_ANCILLARY(VLAN_TAG);
1466                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1467                 BPF_ANCILLARY(PAY_OFFSET);
1468                 BPF_ANCILLARY(RANDOM);
1469                 BPF_ANCILLARY(VLAN_TPID);
1470                 }
1471                 fallthrough;
1472         default:
1473                 return ftest->code;
1474         }
1475 }
1476
1477 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1478                                            int k, unsigned int size);
1479
1480 static inline int bpf_tell_extensions(void)
1481 {
1482         return SKF_AD_MAX;
1483 }
1484
1485 struct bpf_sock_addr_kern {
1486         struct sock *sk;
1487         struct sockaddr *uaddr;
1488         /* Temporary "register" to make indirect stores to nested structures
1489          * defined above. We need three registers to make such a store, but
1490          * only two (src and dst) are available at convert_ctx_access time
1491          */
1492         u64 tmp_reg;
1493         void *t_ctx;    /* Attach type specific context. */
1494         u32 uaddrlen;
1495 };
1496
1497 struct bpf_sock_ops_kern {
1498         struct  sock *sk;
1499         union {
1500                 u32 args[4];
1501                 u32 reply;
1502                 u32 replylong[4];
1503         };
1504         struct sk_buff  *syn_skb;
1505         struct sk_buff  *skb;
1506         void    *skb_data_end;
1507         u8      op;
1508         u8      is_fullsock;
1509         u8      remaining_opt_len;
1510         u64     temp;                   /* temp and everything after is not
1511                                          * initialized to 0 before calling
1512                                          * the BPF program. New fields that
1513                                          * should be initialized to 0 should
1514                                          * be inserted before temp.
1515                                          * temp is scratch storage used by
1516                                          * sock_ops_convert_ctx_access
1517                                          * as temporary storage of a register.
1518                                          */
1519 };
1520
1521 struct bpf_sysctl_kern {
1522         struct ctl_table_header *head;
1523         const struct ctl_table *table;
1524         void *cur_val;
1525         size_t cur_len;
1526         void *new_val;
1527         size_t new_len;
1528         int new_updated;
1529         int write;
1530         loff_t *ppos;
1531         /* Temporary "register" for indirect stores to ppos. */
1532         u64 tmp_reg;
1533 };
1534
1535 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1536 struct bpf_sockopt_buf {
1537         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1538 };
1539
1540 struct bpf_sockopt_kern {
1541         struct sock     *sk;
1542         u8              *optval;
1543         u8              *optval_end;
1544         s32             level;
1545         s32             optname;
1546         s32             optlen;
1547         /* for retval in struct bpf_cg_run_ctx */
1548         struct task_struct *current_task;
1549         /* Temporary "register" for indirect stores to ppos. */
1550         u64             tmp_reg;
1551 };
1552
1553 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1554
1555 struct bpf_sk_lookup_kern {
1556         u16             family;
1557         u16             protocol;
1558         __be16          sport;
1559         u16             dport;
1560         struct {
1561                 __be32 saddr;
1562                 __be32 daddr;
1563         } v4;
1564         struct {
1565                 const struct in6_addr *saddr;
1566                 const struct in6_addr *daddr;
1567         } v6;
1568         struct sock     *selected_sk;
1569         u32             ingress_ifindex;
1570         bool            no_reuseport;
1571 };
1572
1573 extern struct static_key_false bpf_sk_lookup_enabled;
1574
1575 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1576  *
1577  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1578  * SK_DROP. Their meaning is as follows:
1579  *
1580  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1581  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1582  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1583  *
1584  * This macro aggregates return values and selected sockets from
1585  * multiple BPF programs according to following rules in order:
1586  *
1587  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1588  *     macro result is SK_PASS and last ctx.selected_sk is used.
1589  *  2. If any program returned SK_DROP return value,
1590  *     macro result is SK_DROP.
1591  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1592  *
1593  * Caller must ensure that the prog array is non-NULL, and that the
1594  * array as well as the programs it contains remain valid.
1595  */
1596 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1597         ({                                                              \
1598                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1599                 struct bpf_prog_array_item *_item;                      \
1600                 struct sock *_selected_sk = NULL;                       \
1601                 bool _no_reuseport = false;                             \
1602                 struct bpf_prog *_prog;                                 \
1603                 bool _all_pass = true;                                  \
1604                 u32 _ret;                                               \
1605                                                                         \
1606                 migrate_disable();                                      \
1607                 _item = &(array)->items[0];                             \
1608                 while ((_prog = READ_ONCE(_item->prog))) {              \
1609                         /* restore most recent selection */             \
1610                         _ctx->selected_sk = _selected_sk;               \
1611                         _ctx->no_reuseport = _no_reuseport;             \
1612                                                                         \
1613                         _ret = func(_prog, _ctx);                       \
1614                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1615                                 /* remember last non-NULL socket */     \
1616                                 _selected_sk = _ctx->selected_sk;       \
1617                                 _no_reuseport = _ctx->no_reuseport;     \
1618                         } else if (_ret == SK_DROP && _all_pass) {      \
1619                                 _all_pass = false;                      \
1620                         }                                               \
1621                         _item++;                                        \
1622                 }                                                       \
1623                 _ctx->selected_sk = _selected_sk;                       \
1624                 _ctx->no_reuseport = _no_reuseport;                     \
1625                 migrate_enable();                                       \
1626                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1627          })
1628
1629 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1630                                         const __be32 saddr, const __be16 sport,
1631                                         const __be32 daddr, const u16 dport,
1632                                         const int ifindex, struct sock **psk)
1633 {
1634         struct bpf_prog_array *run_array;
1635         struct sock *selected_sk = NULL;
1636         bool no_reuseport = false;
1637
1638         rcu_read_lock();
1639         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1640         if (run_array) {
1641                 struct bpf_sk_lookup_kern ctx = {
1642                         .family         = AF_INET,
1643                         .protocol       = protocol,
1644                         .v4.saddr       = saddr,
1645                         .v4.daddr       = daddr,
1646                         .sport          = sport,
1647                         .dport          = dport,
1648                         .ingress_ifindex        = ifindex,
1649                 };
1650                 u32 act;
1651
1652                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1653                 if (act == SK_PASS) {
1654                         selected_sk = ctx.selected_sk;
1655                         no_reuseport = ctx.no_reuseport;
1656                 } else {
1657                         selected_sk = ERR_PTR(-ECONNREFUSED);
1658                 }
1659         }
1660         rcu_read_unlock();
1661         *psk = selected_sk;
1662         return no_reuseport;
1663 }
1664
1665 #if IS_ENABLED(CONFIG_IPV6)
1666 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1667                                         const struct in6_addr *saddr,
1668                                         const __be16 sport,
1669                                         const struct in6_addr *daddr,
1670                                         const u16 dport,
1671                                         const int ifindex, struct sock **psk)
1672 {
1673         struct bpf_prog_array *run_array;
1674         struct sock *selected_sk = NULL;
1675         bool no_reuseport = false;
1676
1677         rcu_read_lock();
1678         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1679         if (run_array) {
1680                 struct bpf_sk_lookup_kern ctx = {
1681                         .family         = AF_INET6,
1682                         .protocol       = protocol,
1683                         .v6.saddr       = saddr,
1684                         .v6.daddr       = daddr,
1685                         .sport          = sport,
1686                         .dport          = dport,
1687                         .ingress_ifindex        = ifindex,
1688                 };
1689                 u32 act;
1690
1691                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1692                 if (act == SK_PASS) {
1693                         selected_sk = ctx.selected_sk;
1694                         no_reuseport = ctx.no_reuseport;
1695                 } else {
1696                         selected_sk = ERR_PTR(-ECONNREFUSED);
1697                 }
1698         }
1699         rcu_read_unlock();
1700         *psk = selected_sk;
1701         return no_reuseport;
1702 }
1703 #endif /* IS_ENABLED(CONFIG_IPV6) */
1704
1705 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1706                                                    u64 flags, const u64 flag_mask,
1707                                                    void *lookup_elem(struct bpf_map *map, u32 key))
1708 {
1709         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1710         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1711
1712         /* Lower bits of the flags are used as return code on lookup failure */
1713         if (unlikely(flags & ~(action_mask | flag_mask)))
1714                 return XDP_ABORTED;
1715
1716         ri->tgt_value = lookup_elem(map, index);
1717         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1718                 /* If the lookup fails we want to clear out the state in the
1719                  * redirect_info struct completely, so that if an eBPF program
1720                  * performs multiple lookups, the last one always takes
1721                  * precedence.
1722                  */
1723                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1724                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1725                 return flags & action_mask;
1726         }
1727
1728         ri->tgt_index = index;
1729         ri->map_id = map->id;
1730         ri->map_type = map->map_type;
1731
1732         if (flags & BPF_F_BROADCAST) {
1733                 WRITE_ONCE(ri->map, map);
1734                 ri->flags = flags;
1735         } else {
1736                 WRITE_ONCE(ri->map, NULL);
1737                 ri->flags = 0;
1738         }
1739
1740         return XDP_REDIRECT;
1741 }
1742
1743 #ifdef CONFIG_NET
1744 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1745 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1746                           u32 len, u64 flags);
1747 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1748 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1749 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1750 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1751                       void *buf, unsigned long len, bool flush);
1752 #else /* CONFIG_NET */
1753 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1754                                        void *to, u32 len)
1755 {
1756         return -EOPNOTSUPP;
1757 }
1758
1759 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1760                                         const void *from, u32 len, u64 flags)
1761 {
1762         return -EOPNOTSUPP;
1763 }
1764
1765 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1766                                        void *buf, u32 len)
1767 {
1768         return -EOPNOTSUPP;
1769 }
1770
1771 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1772                                         void *buf, u32 len)
1773 {
1774         return -EOPNOTSUPP;
1775 }
1776
1777 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1778 {
1779         return NULL;
1780 }
1781
1782 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1783                                     unsigned long len, bool flush)
1784 {
1785 }
1786 #endif /* CONFIG_NET */
1787
1788 #endif /* __LINUX_FILTER_H__ */
This page took 0.13854 seconds and 4 git commands to generate.