4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 #include <uapi/linux/mount.h>
34 /* Maximum number of mounts in a mount namespace */
35 unsigned int sysctl_mount_max __read_mostly = 100000;
37 static unsigned int m_hash_mask __read_mostly;
38 static unsigned int m_hash_shift __read_mostly;
39 static unsigned int mp_hash_mask __read_mostly;
40 static unsigned int mp_hash_shift __read_mostly;
42 static __initdata unsigned long mhash_entries;
43 static int __init set_mhash_entries(char *str)
47 mhash_entries = simple_strtoul(str, &str, 0);
50 __setup("mhash_entries=", set_mhash_entries);
52 static __initdata unsigned long mphash_entries;
53 static int __init set_mphash_entries(char *str)
57 mphash_entries = simple_strtoul(str, &str, 0);
60 __setup("mphash_entries=", set_mphash_entries);
63 static DEFINE_IDA(mnt_id_ida);
64 static DEFINE_IDA(mnt_group_ida);
66 static struct hlist_head *mount_hashtable __read_mostly;
67 static struct hlist_head *mountpoint_hashtable __read_mostly;
68 static struct kmem_cache *mnt_cache __read_mostly;
69 static DECLARE_RWSEM(namespace_sem);
72 struct kobject *fs_kobj;
73 EXPORT_SYMBOL_GPL(fs_kobj);
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
93 static inline struct hlist_head *mp_hash(struct dentry *dentry)
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 static int mnt_alloc_id(struct mount *mnt)
102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
110 static void mnt_free_id(struct mount *mnt)
112 ida_free(&mnt_id_ida, mnt->mnt_id);
116 * Allocate a new peer group ID
118 static int mnt_alloc_group_id(struct mount *mnt)
120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
124 mnt->mnt_group_id = res;
129 * Release a peer group ID
131 void mnt_release_group_id(struct mount *mnt)
133 ida_free(&mnt_group_ida, mnt->mnt_group_id);
134 mnt->mnt_group_id = 0;
138 * vfsmount lock must be held for read
140 static inline void mnt_add_count(struct mount *mnt, int n)
143 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
152 * vfsmount lock must be held for write
154 unsigned int mnt_get_count(struct mount *mnt)
157 unsigned int count = 0;
160 for_each_possible_cpu(cpu) {
161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 return mnt->mnt_count;
170 static void drop_mountpoint(struct fs_pin *p)
172 struct mount *m = container_of(p, struct mount, mnt_umount);
173 dput(m->mnt_ex_mountpoint);
178 static struct mount *alloc_vfsmnt(const char *name)
180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
184 err = mnt_alloc_id(mnt);
189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
190 if (!mnt->mnt_devname)
195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
197 goto out_free_devname;
199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
202 mnt->mnt_writers = 0;
205 INIT_HLIST_NODE(&mnt->mnt_hash);
206 INIT_LIST_HEAD(&mnt->mnt_child);
207 INIT_LIST_HEAD(&mnt->mnt_mounts);
208 INIT_LIST_HEAD(&mnt->mnt_list);
209 INIT_LIST_HEAD(&mnt->mnt_expire);
210 INIT_LIST_HEAD(&mnt->mnt_share);
211 INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 INIT_LIST_HEAD(&mnt->mnt_slave);
213 INIT_HLIST_NODE(&mnt->mnt_mp_list);
214 INIT_LIST_HEAD(&mnt->mnt_umounting);
215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
221 kfree_const(mnt->mnt_devname);
226 kmem_cache_free(mnt_cache, mnt);
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
249 bool __mnt_is_readonly(struct vfsmount *mnt)
251 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255 static inline void mnt_inc_writers(struct mount *mnt)
258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
264 static inline void mnt_dec_writers(struct mount *mnt)
267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
273 static unsigned int mnt_get_writers(struct mount *mnt)
276 unsigned int count = 0;
279 for_each_possible_cpu(cpu) {
280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
285 return mnt->mnt_writers;
289 static int mnt_is_readonly(struct vfsmount *mnt)
291 if (mnt->mnt_sb->s_readonly_remount)
293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
295 return __mnt_is_readonly(mnt);
299 * Most r/o & frozen checks on a fs are for operations that take discrete
300 * amounts of time, like a write() or unlink(). We must keep track of when
301 * those operations start (for permission checks) and when they end, so that we
302 * can determine when writes are able to occur to a filesystem.
305 * __mnt_want_write - get write access to a mount without freeze protection
306 * @m: the mount on which to take a write
308 * This tells the low-level filesystem that a write is about to be performed to
309 * it, and makes sure that writes are allowed (mnt it read-write) before
310 * returning success. This operation does not protect against filesystem being
311 * frozen. When the write operation is finished, __mnt_drop_write() must be
312 * called. This is effectively a refcount.
314 int __mnt_want_write(struct vfsmount *m)
316 struct mount *mnt = real_mount(m);
320 mnt_inc_writers(mnt);
322 * The store to mnt_inc_writers must be visible before we pass
323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 * incremented count after it has set MNT_WRITE_HOLD.
327 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 * be set to match its requirements. So we must not load that until
332 * MNT_WRITE_HOLD is cleared.
335 if (mnt_is_readonly(m)) {
336 mnt_dec_writers(mnt);
345 * mnt_want_write - get write access to a mount
346 * @m: the mount on which to take a write
348 * This tells the low-level filesystem that a write is about to be performed to
349 * it, and makes sure that writes are allowed (mount is read-write, filesystem
350 * is not frozen) before returning success. When the write operation is
351 * finished, mnt_drop_write() must be called. This is effectively a refcount.
353 int mnt_want_write(struct vfsmount *m)
357 sb_start_write(m->mnt_sb);
358 ret = __mnt_want_write(m);
360 sb_end_write(m->mnt_sb);
363 EXPORT_SYMBOL_GPL(mnt_want_write);
366 * mnt_clone_write - get write access to a mount
367 * @mnt: the mount on which to take a write
369 * This is effectively like mnt_want_write, except
370 * it must only be used to take an extra write reference
371 * on a mountpoint that we already know has a write reference
372 * on it. This allows some optimisation.
374 * After finished, mnt_drop_write must be called as usual to
375 * drop the reference.
377 int mnt_clone_write(struct vfsmount *mnt)
379 /* superblock may be r/o */
380 if (__mnt_is_readonly(mnt))
383 mnt_inc_writers(real_mount(mnt));
387 EXPORT_SYMBOL_GPL(mnt_clone_write);
390 * __mnt_want_write_file - get write access to a file's mount
391 * @file: the file who's mount on which to take a write
393 * This is like __mnt_want_write, but it takes a file and can
394 * do some optimisations if the file is open for write already
396 int __mnt_want_write_file(struct file *file)
398 if (!(file->f_mode & FMODE_WRITER))
399 return __mnt_want_write(file->f_path.mnt);
401 return mnt_clone_write(file->f_path.mnt);
405 * mnt_want_write_file - get write access to a file's mount
406 * @file: the file who's mount on which to take a write
408 * This is like mnt_want_write, but it takes a file and can
409 * do some optimisations if the file is open for write already
411 int mnt_want_write_file(struct file *file)
415 sb_start_write(file_inode(file)->i_sb);
416 ret = __mnt_want_write_file(file);
418 sb_end_write(file_inode(file)->i_sb);
421 EXPORT_SYMBOL_GPL(mnt_want_write_file);
424 * __mnt_drop_write - give up write access to a mount
425 * @mnt: the mount on which to give up write access
427 * Tells the low-level filesystem that we are done
428 * performing writes to it. Must be matched with
429 * __mnt_want_write() call above.
431 void __mnt_drop_write(struct vfsmount *mnt)
434 mnt_dec_writers(real_mount(mnt));
439 * mnt_drop_write - give up write access to a mount
440 * @mnt: the mount on which to give up write access
442 * Tells the low-level filesystem that we are done performing writes to it and
443 * also allows filesystem to be frozen again. Must be matched with
444 * mnt_want_write() call above.
446 void mnt_drop_write(struct vfsmount *mnt)
448 __mnt_drop_write(mnt);
449 sb_end_write(mnt->mnt_sb);
451 EXPORT_SYMBOL_GPL(mnt_drop_write);
453 void __mnt_drop_write_file(struct file *file)
455 __mnt_drop_write(file->f_path.mnt);
458 void mnt_drop_write_file(struct file *file)
460 __mnt_drop_write_file(file);
461 sb_end_write(file_inode(file)->i_sb);
463 EXPORT_SYMBOL(mnt_drop_write_file);
465 static int mnt_make_readonly(struct mount *mnt)
470 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 * should be visible before we do.
478 * With writers on hold, if this value is zero, then there are
479 * definitely no active writers (although held writers may subsequently
480 * increment the count, they'll have to wait, and decrement it after
481 * seeing MNT_READONLY).
483 * It is OK to have counter incremented on one CPU and decremented on
484 * another: the sum will add up correctly. The danger would be when we
485 * sum up each counter, if we read a counter before it is incremented,
486 * but then read another CPU's count which it has been subsequently
487 * decremented from -- we would see more decrements than we should.
488 * MNT_WRITE_HOLD protects against this scenario, because
489 * mnt_want_write first increments count, then smp_mb, then spins on
490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 * we're counting up here.
493 if (mnt_get_writers(mnt) > 0)
496 mnt->mnt.mnt_flags |= MNT_READONLY;
498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 * that become unheld will see MNT_READONLY.
502 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
507 static int __mnt_unmake_readonly(struct mount *mnt)
510 mnt->mnt.mnt_flags &= ~MNT_READONLY;
515 int sb_prepare_remount_readonly(struct super_block *sb)
520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
521 if (atomic_long_read(&sb->s_remove_count))
525 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
526 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
527 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
529 if (mnt_get_writers(mnt) > 0) {
535 if (!err && atomic_long_read(&sb->s_remove_count))
539 sb->s_readonly_remount = 1;
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
544 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
551 static void free_vfsmnt(struct mount *mnt)
553 kfree_const(mnt->mnt_devname);
555 free_percpu(mnt->mnt_pcp);
557 kmem_cache_free(mnt_cache, mnt);
560 static void delayed_free_vfsmnt(struct rcu_head *head)
562 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 /* call under rcu_read_lock */
566 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 if (read_seqretry(&mount_lock, seq))
573 mnt = real_mount(bastard);
574 mnt_add_count(mnt, 1);
575 smp_mb(); // see mntput_no_expire()
576 if (likely(!read_seqretry(&mount_lock, seq)))
578 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
579 mnt_add_count(mnt, -1);
583 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
584 mnt_add_count(mnt, -1);
589 /* caller will mntput() */
593 /* call under rcu_read_lock */
594 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596 int res = __legitimize_mnt(bastard, seq);
599 if (unlikely(res < 0)) {
608 * find the first mount at @dentry on vfsmount @mnt.
609 * call under rcu_read_lock()
611 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
613 struct hlist_head *head = m_hash(mnt, dentry);
616 hlist_for_each_entry_rcu(p, head, mnt_hash)
617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
623 * lookup_mnt - Return the first child mount mounted at path
625 * "First" means first mounted chronologically. If you create the
628 * mount /dev/sda1 /mnt
629 * mount /dev/sda2 /mnt
630 * mount /dev/sda3 /mnt
632 * Then lookup_mnt() on the base /mnt dentry in the root mount will
633 * return successively the root dentry and vfsmount of /dev/sda1, then
634 * /dev/sda2, then /dev/sda3, then NULL.
636 * lookup_mnt takes a reference to the found vfsmount.
638 struct vfsmount *lookup_mnt(const struct path *path)
640 struct mount *child_mnt;
646 seq = read_seqbegin(&mount_lock);
647 child_mnt = __lookup_mnt(path->mnt, path->dentry);
648 m = child_mnt ? &child_mnt->mnt : NULL;
649 } while (!legitimize_mnt(m, seq));
655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656 * current mount namespace.
658 * The common case is dentries are not mountpoints at all and that
659 * test is handled inline. For the slow case when we are actually
660 * dealing with a mountpoint of some kind, walk through all of the
661 * mounts in the current mount namespace and test to see if the dentry
664 * The mount_hashtable is not usable in the context because we
665 * need to identify all mounts that may be in the current mount
666 * namespace not just a mount that happens to have some specified
669 bool __is_local_mountpoint(struct dentry *dentry)
671 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
673 bool is_covered = false;
675 if (!d_mountpoint(dentry))
678 down_read(&namespace_sem);
679 list_for_each_entry(mnt, &ns->list, mnt_list) {
680 is_covered = (mnt->mnt_mountpoint == dentry);
684 up_read(&namespace_sem);
689 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
691 struct hlist_head *chain = mp_hash(dentry);
692 struct mountpoint *mp;
694 hlist_for_each_entry(mp, chain, m_hash) {
695 if (mp->m_dentry == dentry) {
696 /* might be worth a WARN_ON() */
697 if (d_unlinked(dentry))
698 return ERR_PTR(-ENOENT);
706 static struct mountpoint *get_mountpoint(struct dentry *dentry)
708 struct mountpoint *mp, *new = NULL;
711 if (d_mountpoint(dentry)) {
713 read_seqlock_excl(&mount_lock);
714 mp = lookup_mountpoint(dentry);
715 read_sequnlock_excl(&mount_lock);
721 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
723 return ERR_PTR(-ENOMEM);
726 /* Exactly one processes may set d_mounted */
727 ret = d_set_mounted(dentry);
729 /* Someone else set d_mounted? */
733 /* The dentry is not available as a mountpoint? */
738 /* Add the new mountpoint to the hash table */
739 read_seqlock_excl(&mount_lock);
740 new->m_dentry = dentry;
742 hlist_add_head(&new->m_hash, mp_hash(dentry));
743 INIT_HLIST_HEAD(&new->m_list);
744 read_sequnlock_excl(&mount_lock);
753 static void put_mountpoint(struct mountpoint *mp)
755 if (!--mp->m_count) {
756 struct dentry *dentry = mp->m_dentry;
757 BUG_ON(!hlist_empty(&mp->m_list));
758 spin_lock(&dentry->d_lock);
759 dentry->d_flags &= ~DCACHE_MOUNTED;
760 spin_unlock(&dentry->d_lock);
761 hlist_del(&mp->m_hash);
766 static inline int check_mnt(struct mount *mnt)
768 return mnt->mnt_ns == current->nsproxy->mnt_ns;
772 * vfsmount lock must be held for write
774 static void touch_mnt_namespace(struct mnt_namespace *ns)
778 wake_up_interruptible(&ns->poll);
783 * vfsmount lock must be held for write
785 static void __touch_mnt_namespace(struct mnt_namespace *ns)
787 if (ns && ns->event != event) {
789 wake_up_interruptible(&ns->poll);
794 * vfsmount lock must be held for write
796 static void unhash_mnt(struct mount *mnt)
798 mnt->mnt_parent = mnt;
799 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
800 list_del_init(&mnt->mnt_child);
801 hlist_del_init_rcu(&mnt->mnt_hash);
802 hlist_del_init(&mnt->mnt_mp_list);
803 put_mountpoint(mnt->mnt_mp);
808 * vfsmount lock must be held for write
810 static void detach_mnt(struct mount *mnt, struct path *old_path)
812 old_path->dentry = mnt->mnt_mountpoint;
813 old_path->mnt = &mnt->mnt_parent->mnt;
818 * vfsmount lock must be held for write
820 static void umount_mnt(struct mount *mnt)
822 /* old mountpoint will be dropped when we can do that */
823 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
828 * vfsmount lock must be held for write
830 void mnt_set_mountpoint(struct mount *mnt,
831 struct mountpoint *mp,
832 struct mount *child_mnt)
835 mnt_add_count(mnt, 1); /* essentially, that's mntget */
836 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
837 child_mnt->mnt_parent = mnt;
838 child_mnt->mnt_mp = mp;
839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 static void __attach_mnt(struct mount *mnt, struct mount *parent)
844 hlist_add_head_rcu(&mnt->mnt_hash,
845 m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
850 * vfsmount lock must be held for write
852 static void attach_mnt(struct mount *mnt,
853 struct mount *parent,
854 struct mountpoint *mp)
856 mnt_set_mountpoint(parent, mp, mnt);
857 __attach_mnt(mnt, parent);
860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
862 struct mountpoint *old_mp = mnt->mnt_mp;
863 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
864 struct mount *old_parent = mnt->mnt_parent;
866 list_del_init(&mnt->mnt_child);
867 hlist_del_init(&mnt->mnt_mp_list);
868 hlist_del_init_rcu(&mnt->mnt_hash);
870 attach_mnt(mnt, parent, mp);
872 put_mountpoint(old_mp);
875 * Safely avoid even the suggestion this code might sleep or
876 * lock the mount hash by taking advantage of the knowledge that
877 * mnt_change_mountpoint will not release the final reference
880 * During mounting, the mount passed in as the parent mount will
881 * continue to use the old mountpoint and during unmounting, the
882 * old mountpoint will continue to exist until namespace_unlock,
883 * which happens well after mnt_change_mountpoint.
885 spin_lock(&old_mountpoint->d_lock);
886 old_mountpoint->d_lockref.count--;
887 spin_unlock(&old_mountpoint->d_lock);
889 mnt_add_count(old_parent, -1);
893 * vfsmount lock must be held for write
895 static void commit_tree(struct mount *mnt)
897 struct mount *parent = mnt->mnt_parent;
900 struct mnt_namespace *n = parent->mnt_ns;
902 BUG_ON(parent == mnt);
904 list_add_tail(&head, &mnt->mnt_list);
905 list_for_each_entry(m, &head, mnt_list)
908 list_splice(&head, n->list.prev);
910 n->mounts += n->pending_mounts;
911 n->pending_mounts = 0;
913 __attach_mnt(mnt, parent);
914 touch_mnt_namespace(n);
917 static struct mount *next_mnt(struct mount *p, struct mount *root)
919 struct list_head *next = p->mnt_mounts.next;
920 if (next == &p->mnt_mounts) {
924 next = p->mnt_child.next;
925 if (next != &p->mnt_parent->mnt_mounts)
930 return list_entry(next, struct mount, mnt_child);
933 static struct mount *skip_mnt_tree(struct mount *p)
935 struct list_head *prev = p->mnt_mounts.prev;
936 while (prev != &p->mnt_mounts) {
937 p = list_entry(prev, struct mount, mnt_child);
938 prev = p->mnt_mounts.prev;
944 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
950 return ERR_PTR(-ENODEV);
952 mnt = alloc_vfsmnt(name);
954 return ERR_PTR(-ENOMEM);
956 if (flags & SB_KERNMOUNT)
957 mnt->mnt.mnt_flags = MNT_INTERNAL;
959 root = mount_fs(type, flags, name, data);
963 return ERR_CAST(root);
966 mnt->mnt.mnt_root = root;
967 mnt->mnt.mnt_sb = root->d_sb;
968 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
969 mnt->mnt_parent = mnt;
971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
975 EXPORT_SYMBOL_GPL(vfs_kern_mount);
978 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
979 const char *name, void *data)
981 /* Until it is worked out how to pass the user namespace
982 * through from the parent mount to the submount don't support
983 * unprivileged mounts with submounts.
985 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
986 return ERR_PTR(-EPERM);
988 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
990 EXPORT_SYMBOL_GPL(vfs_submount);
992 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
995 struct super_block *sb = old->mnt.mnt_sb;
999 mnt = alloc_vfsmnt(old->mnt_devname);
1001 return ERR_PTR(-ENOMEM);
1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1004 mnt->mnt_group_id = 0; /* not a peer of original */
1006 mnt->mnt_group_id = old->mnt_group_id;
1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 err = mnt_alloc_group_id(mnt);
1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1015 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1016 /* Don't allow unprivileged users to change mount flags */
1017 if (flag & CL_UNPRIVILEGED) {
1018 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1020 if (mnt->mnt.mnt_flags & MNT_READONLY)
1021 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1023 if (mnt->mnt.mnt_flags & MNT_NODEV)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1026 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1029 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033 /* Don't allow unprivileged users to reveal what is under a mount */
1034 if ((flag & CL_UNPRIVILEGED) &&
1035 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1036 mnt->mnt.mnt_flags |= MNT_LOCKED;
1038 atomic_inc(&sb->s_active);
1039 mnt->mnt.mnt_sb = sb;
1040 mnt->mnt.mnt_root = dget(root);
1041 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1042 mnt->mnt_parent = mnt;
1044 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1045 unlock_mount_hash();
1047 if ((flag & CL_SLAVE) ||
1048 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1049 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1050 mnt->mnt_master = old;
1051 CLEAR_MNT_SHARED(mnt);
1052 } else if (!(flag & CL_PRIVATE)) {
1053 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1054 list_add(&mnt->mnt_share, &old->mnt_share);
1055 if (IS_MNT_SLAVE(old))
1056 list_add(&mnt->mnt_slave, &old->mnt_slave);
1057 mnt->mnt_master = old->mnt_master;
1059 CLEAR_MNT_SHARED(mnt);
1061 if (flag & CL_MAKE_SHARED)
1062 set_mnt_shared(mnt);
1064 /* stick the duplicate mount on the same expiry list
1065 * as the original if that was on one */
1066 if (flag & CL_EXPIRE) {
1067 if (!list_empty(&old->mnt_expire))
1068 list_add(&mnt->mnt_expire, &old->mnt_expire);
1076 return ERR_PTR(err);
1079 static void cleanup_mnt(struct mount *mnt)
1082 * This probably indicates that somebody messed
1083 * up a mnt_want/drop_write() pair. If this
1084 * happens, the filesystem was probably unable
1085 * to make r/w->r/o transitions.
1088 * The locking used to deal with mnt_count decrement provides barriers,
1089 * so mnt_get_writers() below is safe.
1091 WARN_ON(mnt_get_writers(mnt));
1092 if (unlikely(mnt->mnt_pins.first))
1094 fsnotify_vfsmount_delete(&mnt->mnt);
1095 dput(mnt->mnt.mnt_root);
1096 deactivate_super(mnt->mnt.mnt_sb);
1098 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101 static void __cleanup_mnt(struct rcu_head *head)
1103 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106 static LLIST_HEAD(delayed_mntput_list);
1107 static void delayed_mntput(struct work_struct *unused)
1109 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1110 struct mount *m, *t;
1112 llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1117 static void mntput_no_expire(struct mount *mnt)
1120 if (likely(READ_ONCE(mnt->mnt_ns))) {
1122 * Since we don't do lock_mount_hash() here,
1123 * ->mnt_ns can change under us. However, if it's
1124 * non-NULL, then there's a reference that won't
1125 * be dropped until after an RCU delay done after
1126 * turning ->mnt_ns NULL. So if we observe it
1127 * non-NULL under rcu_read_lock(), the reference
1128 * we are dropping is not the final one.
1130 mnt_add_count(mnt, -1);
1136 * make sure that if __legitimize_mnt() has not seen us grab
1137 * mount_lock, we'll see their refcount increment here.
1140 mnt_add_count(mnt, -1);
1141 if (mnt_get_count(mnt)) {
1143 unlock_mount_hash();
1146 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1148 unlock_mount_hash();
1151 mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 list_del(&mnt->mnt_instance);
1156 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1157 struct mount *p, *tmp;
1158 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1162 unlock_mount_hash();
1164 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1165 struct task_struct *task = current;
1166 if (likely(!(task->flags & PF_KTHREAD))) {
1167 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1168 if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1172 schedule_delayed_work(&delayed_mntput_work, 1);
1178 void mntput(struct vfsmount *mnt)
1181 struct mount *m = real_mount(mnt);
1182 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1183 if (unlikely(m->mnt_expiry_mark))
1184 m->mnt_expiry_mark = 0;
1185 mntput_no_expire(m);
1188 EXPORT_SYMBOL(mntput);
1190 struct vfsmount *mntget(struct vfsmount *mnt)
1193 mnt_add_count(real_mount(mnt), 1);
1196 EXPORT_SYMBOL(mntget);
1198 /* path_is_mountpoint() - Check if path is a mount in the current
1201 * d_mountpoint() can only be used reliably to establish if a dentry is
1202 * not mounted in any namespace and that common case is handled inline.
1203 * d_mountpoint() isn't aware of the possibility there may be multiple
1204 * mounts using a given dentry in a different namespace. This function
1205 * checks if the passed in path is a mountpoint rather than the dentry
1208 bool path_is_mountpoint(const struct path *path)
1213 if (!d_mountpoint(path->dentry))
1218 seq = read_seqbegin(&mount_lock);
1219 res = __path_is_mountpoint(path);
1220 } while (read_seqretry(&mount_lock, seq));
1225 EXPORT_SYMBOL(path_is_mountpoint);
1227 struct vfsmount *mnt_clone_internal(const struct path *path)
1230 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 p->mnt.mnt_flags |= MNT_INTERNAL;
1237 #ifdef CONFIG_PROC_FS
1238 /* iterator; we want it to have access to namespace_sem, thus here... */
1239 static void *m_start(struct seq_file *m, loff_t *pos)
1241 struct proc_mounts *p = m->private;
1243 down_read(&namespace_sem);
1244 if (p->cached_event == p->ns->event) {
1245 void *v = p->cached_mount;
1246 if (*pos == p->cached_index)
1248 if (*pos == p->cached_index + 1) {
1249 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1250 return p->cached_mount = v;
1254 p->cached_event = p->ns->event;
1255 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1256 p->cached_index = *pos;
1257 return p->cached_mount;
1260 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1262 struct proc_mounts *p = m->private;
1264 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1265 p->cached_index = *pos;
1266 return p->cached_mount;
1269 static void m_stop(struct seq_file *m, void *v)
1271 up_read(&namespace_sem);
1274 static int m_show(struct seq_file *m, void *v)
1276 struct proc_mounts *p = m->private;
1277 struct mount *r = list_entry(v, struct mount, mnt_list);
1278 return p->show(m, &r->mnt);
1281 const struct seq_operations mounts_op = {
1287 #endif /* CONFIG_PROC_FS */
1290 * may_umount_tree - check if a mount tree is busy
1291 * @mnt: root of mount tree
1293 * This is called to check if a tree of mounts has any
1294 * open files, pwds, chroots or sub mounts that are
1297 int may_umount_tree(struct vfsmount *m)
1299 struct mount *mnt = real_mount(m);
1300 int actual_refs = 0;
1301 int minimum_refs = 0;
1305 /* write lock needed for mnt_get_count */
1307 for (p = mnt; p; p = next_mnt(p, mnt)) {
1308 actual_refs += mnt_get_count(p);
1311 unlock_mount_hash();
1313 if (actual_refs > minimum_refs)
1319 EXPORT_SYMBOL(may_umount_tree);
1322 * may_umount - check if a mount point is busy
1323 * @mnt: root of mount
1325 * This is called to check if a mount point has any
1326 * open files, pwds, chroots or sub mounts. If the
1327 * mount has sub mounts this will return busy
1328 * regardless of whether the sub mounts are busy.
1330 * Doesn't take quota and stuff into account. IOW, in some cases it will
1331 * give false negatives. The main reason why it's here is that we need
1332 * a non-destructive way to look for easily umountable filesystems.
1334 int may_umount(struct vfsmount *mnt)
1337 down_read(&namespace_sem);
1339 if (propagate_mount_busy(real_mount(mnt), 2))
1341 unlock_mount_hash();
1342 up_read(&namespace_sem);
1346 EXPORT_SYMBOL(may_umount);
1348 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1350 static void namespace_unlock(void)
1352 struct hlist_head head;
1354 hlist_move_list(&unmounted, &head);
1356 up_write(&namespace_sem);
1358 if (likely(hlist_empty(&head)))
1363 group_pin_kill(&head);
1366 static inline void namespace_lock(void)
1368 down_write(&namespace_sem);
1371 enum umount_tree_flags {
1373 UMOUNT_PROPAGATE = 2,
1374 UMOUNT_CONNECTED = 4,
1377 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1379 /* Leaving mounts connected is only valid for lazy umounts */
1380 if (how & UMOUNT_SYNC)
1383 /* A mount without a parent has nothing to be connected to */
1384 if (!mnt_has_parent(mnt))
1387 /* Because the reference counting rules change when mounts are
1388 * unmounted and connected, umounted mounts may not be
1389 * connected to mounted mounts.
1391 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 /* Has it been requested that the mount remain connected? */
1395 if (how & UMOUNT_CONNECTED)
1398 /* Is the mount locked such that it needs to remain connected? */
1399 if (IS_MNT_LOCKED(mnt))
1402 /* By default disconnect the mount */
1407 * mount_lock must be held
1408 * namespace_sem must be held for write
1410 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1412 LIST_HEAD(tmp_list);
1415 if (how & UMOUNT_PROPAGATE)
1416 propagate_mount_unlock(mnt);
1418 /* Gather the mounts to umount */
1419 for (p = mnt; p; p = next_mnt(p, mnt)) {
1420 p->mnt.mnt_flags |= MNT_UMOUNT;
1421 list_move(&p->mnt_list, &tmp_list);
1424 /* Hide the mounts from mnt_mounts */
1425 list_for_each_entry(p, &tmp_list, mnt_list) {
1426 list_del_init(&p->mnt_child);
1429 /* Add propogated mounts to the tmp_list */
1430 if (how & UMOUNT_PROPAGATE)
1431 propagate_umount(&tmp_list);
1433 while (!list_empty(&tmp_list)) {
1434 struct mnt_namespace *ns;
1436 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1437 list_del_init(&p->mnt_expire);
1438 list_del_init(&p->mnt_list);
1442 __touch_mnt_namespace(ns);
1445 if (how & UMOUNT_SYNC)
1446 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1448 disconnect = disconnect_mount(p, how);
1450 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1451 disconnect ? &unmounted : NULL);
1452 if (mnt_has_parent(p)) {
1453 mnt_add_count(p->mnt_parent, -1);
1455 /* Don't forget about p */
1456 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1461 change_mnt_propagation(p, MS_PRIVATE);
1465 static void shrink_submounts(struct mount *mnt);
1467 static int do_umount(struct mount *mnt, int flags)
1469 struct super_block *sb = mnt->mnt.mnt_sb;
1472 retval = security_sb_umount(&mnt->mnt, flags);
1477 * Allow userspace to request a mountpoint be expired rather than
1478 * unmounting unconditionally. Unmount only happens if:
1479 * (1) the mark is already set (the mark is cleared by mntput())
1480 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1482 if (flags & MNT_EXPIRE) {
1483 if (&mnt->mnt == current->fs->root.mnt ||
1484 flags & (MNT_FORCE | MNT_DETACH))
1488 * probably don't strictly need the lock here if we examined
1489 * all race cases, but it's a slowpath.
1492 if (mnt_get_count(mnt) != 2) {
1493 unlock_mount_hash();
1496 unlock_mount_hash();
1498 if (!xchg(&mnt->mnt_expiry_mark, 1))
1503 * If we may have to abort operations to get out of this
1504 * mount, and they will themselves hold resources we must
1505 * allow the fs to do things. In the Unix tradition of
1506 * 'Gee thats tricky lets do it in userspace' the umount_begin
1507 * might fail to complete on the first run through as other tasks
1508 * must return, and the like. Thats for the mount program to worry
1509 * about for the moment.
1512 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1513 sb->s_op->umount_begin(sb);
1517 * No sense to grab the lock for this test, but test itself looks
1518 * somewhat bogus. Suggestions for better replacement?
1519 * Ho-hum... In principle, we might treat that as umount + switch
1520 * to rootfs. GC would eventually take care of the old vfsmount.
1521 * Actually it makes sense, especially if rootfs would contain a
1522 * /reboot - static binary that would close all descriptors and
1523 * call reboot(9). Then init(8) could umount root and exec /reboot.
1525 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1527 * Special case for "unmounting" root ...
1528 * we just try to remount it readonly.
1530 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1532 down_write(&sb->s_umount);
1534 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1535 up_write(&sb->s_umount);
1543 if (flags & MNT_DETACH) {
1544 if (!list_empty(&mnt->mnt_list))
1545 umount_tree(mnt, UMOUNT_PROPAGATE);
1548 shrink_submounts(mnt);
1550 if (!propagate_mount_busy(mnt, 2)) {
1551 if (!list_empty(&mnt->mnt_list))
1552 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1556 unlock_mount_hash();
1562 * __detach_mounts - lazily unmount all mounts on the specified dentry
1564 * During unlink, rmdir, and d_drop it is possible to loose the path
1565 * to an existing mountpoint, and wind up leaking the mount.
1566 * detach_mounts allows lazily unmounting those mounts instead of
1569 * The caller may hold dentry->d_inode->i_mutex.
1571 void __detach_mounts(struct dentry *dentry)
1573 struct mountpoint *mp;
1578 mp = lookup_mountpoint(dentry);
1579 if (IS_ERR_OR_NULL(mp))
1583 while (!hlist_empty(&mp->m_list)) {
1584 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1585 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1586 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1589 else umount_tree(mnt, UMOUNT_CONNECTED);
1593 unlock_mount_hash();
1598 * Is the caller allowed to modify his namespace?
1600 static inline bool may_mount(void)
1602 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1605 static inline bool may_mandlock(void)
1607 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1610 return capable(CAP_SYS_ADMIN);
1614 * Now umount can handle mount points as well as block devices.
1615 * This is important for filesystems which use unnamed block devices.
1617 * We now support a flag for forced unmount like the other 'big iron'
1618 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1621 int ksys_umount(char __user *name, int flags)
1626 int lookup_flags = 0;
1628 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1634 if (!(flags & UMOUNT_NOFOLLOW))
1635 lookup_flags |= LOOKUP_FOLLOW;
1637 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1640 mnt = real_mount(path.mnt);
1642 if (path.dentry != path.mnt->mnt_root)
1644 if (!check_mnt(mnt))
1646 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1649 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1652 retval = do_umount(mnt, flags);
1654 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1656 mntput_no_expire(mnt);
1661 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1663 return ksys_umount(name, flags);
1666 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1669 * The 2.0 compatible umount. No flags.
1671 SYSCALL_DEFINE1(oldumount, char __user *, name)
1673 return ksys_umount(name, 0);
1678 static bool is_mnt_ns_file(struct dentry *dentry)
1680 /* Is this a proxy for a mount namespace? */
1681 return dentry->d_op == &ns_dentry_operations &&
1682 dentry->d_fsdata == &mntns_operations;
1685 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1687 return container_of(ns, struct mnt_namespace, ns);
1690 static bool mnt_ns_loop(struct dentry *dentry)
1692 /* Could bind mounting the mount namespace inode cause a
1693 * mount namespace loop?
1695 struct mnt_namespace *mnt_ns;
1696 if (!is_mnt_ns_file(dentry))
1699 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1700 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1703 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1706 struct mount *res, *p, *q, *r, *parent;
1708 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1709 return ERR_PTR(-EINVAL);
1711 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1712 return ERR_PTR(-EINVAL);
1714 res = q = clone_mnt(mnt, dentry, flag);
1718 q->mnt_mountpoint = mnt->mnt_mountpoint;
1721 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1723 if (!is_subdir(r->mnt_mountpoint, dentry))
1726 for (s = r; s; s = next_mnt(s, r)) {
1727 if (!(flag & CL_COPY_UNBINDABLE) &&
1728 IS_MNT_UNBINDABLE(s)) {
1729 s = skip_mnt_tree(s);
1732 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1733 is_mnt_ns_file(s->mnt.mnt_root)) {
1734 s = skip_mnt_tree(s);
1737 while (p != s->mnt_parent) {
1743 q = clone_mnt(p, p->mnt.mnt_root, flag);
1747 list_add_tail(&q->mnt_list, &res->mnt_list);
1748 attach_mnt(q, parent, p->mnt_mp);
1749 unlock_mount_hash();
1756 umount_tree(res, UMOUNT_SYNC);
1757 unlock_mount_hash();
1762 /* Caller should check returned pointer for errors */
1764 struct vfsmount *collect_mounts(const struct path *path)
1768 if (!check_mnt(real_mount(path->mnt)))
1769 tree = ERR_PTR(-EINVAL);
1771 tree = copy_tree(real_mount(path->mnt), path->dentry,
1772 CL_COPY_ALL | CL_PRIVATE);
1775 return ERR_CAST(tree);
1779 void drop_collected_mounts(struct vfsmount *mnt)
1783 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1784 unlock_mount_hash();
1789 * clone_private_mount - create a private clone of a path
1791 * This creates a new vfsmount, which will be the clone of @path. The new will
1792 * not be attached anywhere in the namespace and will be private (i.e. changes
1793 * to the originating mount won't be propagated into this).
1795 * Release with mntput().
1797 struct vfsmount *clone_private_mount(const struct path *path)
1799 struct mount *old_mnt = real_mount(path->mnt);
1800 struct mount *new_mnt;
1802 if (IS_MNT_UNBINDABLE(old_mnt))
1803 return ERR_PTR(-EINVAL);
1805 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1806 if (IS_ERR(new_mnt))
1807 return ERR_CAST(new_mnt);
1809 return &new_mnt->mnt;
1811 EXPORT_SYMBOL_GPL(clone_private_mount);
1813 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1814 struct vfsmount *root)
1817 int res = f(root, arg);
1820 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1821 res = f(&mnt->mnt, arg);
1828 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1832 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1833 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1834 mnt_release_group_id(p);
1838 static int invent_group_ids(struct mount *mnt, bool recurse)
1842 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1843 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1844 int err = mnt_alloc_group_id(p);
1846 cleanup_group_ids(mnt, p);
1855 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1857 unsigned int max = READ_ONCE(sysctl_mount_max);
1858 unsigned int mounts = 0, old, pending, sum;
1861 for (p = mnt; p; p = next_mnt(p, mnt))
1865 pending = ns->pending_mounts;
1866 sum = old + pending;
1870 (mounts > (max - sum)))
1873 ns->pending_mounts = pending + mounts;
1878 * @source_mnt : mount tree to be attached
1879 * @nd : place the mount tree @source_mnt is attached
1880 * @parent_nd : if non-null, detach the source_mnt from its parent and
1881 * store the parent mount and mountpoint dentry.
1882 * (done when source_mnt is moved)
1884 * NOTE: in the table below explains the semantics when a source mount
1885 * of a given type is attached to a destination mount of a given type.
1886 * ---------------------------------------------------------------------------
1887 * | BIND MOUNT OPERATION |
1888 * |**************************************************************************
1889 * | source-->| shared | private | slave | unbindable |
1893 * |**************************************************************************
1894 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1896 * |non-shared| shared (+) | private | slave (*) | invalid |
1897 * ***************************************************************************
1898 * A bind operation clones the source mount and mounts the clone on the
1899 * destination mount.
1901 * (++) the cloned mount is propagated to all the mounts in the propagation
1902 * tree of the destination mount and the cloned mount is added to
1903 * the peer group of the source mount.
1904 * (+) the cloned mount is created under the destination mount and is marked
1905 * as shared. The cloned mount is added to the peer group of the source
1907 * (+++) the mount is propagated to all the mounts in the propagation tree
1908 * of the destination mount and the cloned mount is made slave
1909 * of the same master as that of the source mount. The cloned mount
1910 * is marked as 'shared and slave'.
1911 * (*) the cloned mount is made a slave of the same master as that of the
1914 * ---------------------------------------------------------------------------
1915 * | MOVE MOUNT OPERATION |
1916 * |**************************************************************************
1917 * | source-->| shared | private | slave | unbindable |
1921 * |**************************************************************************
1922 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1924 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1925 * ***************************************************************************
1927 * (+) the mount is moved to the destination. And is then propagated to
1928 * all the mounts in the propagation tree of the destination mount.
1929 * (+*) the mount is moved to the destination.
1930 * (+++) the mount is moved to the destination and is then propagated to
1931 * all the mounts belonging to the destination mount's propagation tree.
1932 * the mount is marked as 'shared and slave'.
1933 * (*) the mount continues to be a slave at the new location.
1935 * if the source mount is a tree, the operations explained above is
1936 * applied to each mount in the tree.
1937 * Must be called without spinlocks held, since this function can sleep
1940 static int attach_recursive_mnt(struct mount *source_mnt,
1941 struct mount *dest_mnt,
1942 struct mountpoint *dest_mp,
1943 struct path *parent_path)
1945 HLIST_HEAD(tree_list);
1946 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1947 struct mountpoint *smp;
1948 struct mount *child, *p;
1949 struct hlist_node *n;
1952 /* Preallocate a mountpoint in case the new mounts need
1953 * to be tucked under other mounts.
1955 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1957 return PTR_ERR(smp);
1959 /* Is there space to add these mounts to the mount namespace? */
1961 err = count_mounts(ns, source_mnt);
1966 if (IS_MNT_SHARED(dest_mnt)) {
1967 err = invent_group_ids(source_mnt, true);
1970 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1973 goto out_cleanup_ids;
1974 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1980 detach_mnt(source_mnt, parent_path);
1981 attach_mnt(source_mnt, dest_mnt, dest_mp);
1982 touch_mnt_namespace(source_mnt->mnt_ns);
1984 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1985 commit_tree(source_mnt);
1988 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1990 hlist_del_init(&child->mnt_hash);
1991 q = __lookup_mnt(&child->mnt_parent->mnt,
1992 child->mnt_mountpoint);
1994 mnt_change_mountpoint(child, smp, q);
1997 put_mountpoint(smp);
1998 unlock_mount_hash();
2003 while (!hlist_empty(&tree_list)) {
2004 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2005 child->mnt_parent->mnt_ns->pending_mounts = 0;
2006 umount_tree(child, UMOUNT_SYNC);
2008 unlock_mount_hash();
2009 cleanup_group_ids(source_mnt, NULL);
2011 ns->pending_mounts = 0;
2013 read_seqlock_excl(&mount_lock);
2014 put_mountpoint(smp);
2015 read_sequnlock_excl(&mount_lock);
2020 static struct mountpoint *lock_mount(struct path *path)
2022 struct vfsmount *mnt;
2023 struct dentry *dentry = path->dentry;
2025 inode_lock(dentry->d_inode);
2026 if (unlikely(cant_mount(dentry))) {
2027 inode_unlock(dentry->d_inode);
2028 return ERR_PTR(-ENOENT);
2031 mnt = lookup_mnt(path);
2033 struct mountpoint *mp = get_mountpoint(dentry);
2036 inode_unlock(dentry->d_inode);
2042 inode_unlock(path->dentry->d_inode);
2045 dentry = path->dentry = dget(mnt->mnt_root);
2049 static void unlock_mount(struct mountpoint *where)
2051 struct dentry *dentry = where->m_dentry;
2053 read_seqlock_excl(&mount_lock);
2054 put_mountpoint(where);
2055 read_sequnlock_excl(&mount_lock);
2058 inode_unlock(dentry->d_inode);
2061 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2063 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2066 if (d_is_dir(mp->m_dentry) !=
2067 d_is_dir(mnt->mnt.mnt_root))
2070 return attach_recursive_mnt(mnt, p, mp, NULL);
2074 * Sanity check the flags to change_mnt_propagation.
2077 static int flags_to_propagation_type(int ms_flags)
2079 int type = ms_flags & ~(MS_REC | MS_SILENT);
2081 /* Fail if any non-propagation flags are set */
2082 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2084 /* Only one propagation flag should be set */
2085 if (!is_power_of_2(type))
2091 * recursively change the type of the mountpoint.
2093 static int do_change_type(struct path *path, int ms_flags)
2096 struct mount *mnt = real_mount(path->mnt);
2097 int recurse = ms_flags & MS_REC;
2101 if (path->dentry != path->mnt->mnt_root)
2104 type = flags_to_propagation_type(ms_flags);
2109 if (type == MS_SHARED) {
2110 err = invent_group_ids(mnt, recurse);
2116 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2117 change_mnt_propagation(m, type);
2118 unlock_mount_hash();
2125 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2127 struct mount *child;
2128 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2129 if (!is_subdir(child->mnt_mountpoint, dentry))
2132 if (child->mnt.mnt_flags & MNT_LOCKED)
2139 * do loopback mount.
2141 static int do_loopback(struct path *path, const char *old_name,
2144 struct path old_path;
2145 struct mount *mnt = NULL, *old, *parent;
2146 struct mountpoint *mp;
2148 if (!old_name || !*old_name)
2150 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2155 if (mnt_ns_loop(old_path.dentry))
2158 mp = lock_mount(path);
2163 old = real_mount(old_path.mnt);
2164 parent = real_mount(path->mnt);
2167 if (IS_MNT_UNBINDABLE(old))
2170 if (!check_mnt(parent))
2173 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2176 if (!recurse && has_locked_children(old, old_path.dentry))
2180 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2182 mnt = clone_mnt(old, old_path.dentry, 0);
2189 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2191 err = graft_tree(mnt, parent, mp);
2194 umount_tree(mnt, UMOUNT_SYNC);
2195 unlock_mount_hash();
2200 path_put(&old_path);
2205 * Don't allow locked mount flags to be cleared.
2207 * No locks need to be held here while testing the various MNT_LOCK
2208 * flags because those flags can never be cleared once they are set.
2210 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2212 unsigned int fl = mnt->mnt.mnt_flags;
2214 if ((fl & MNT_LOCK_READONLY) &&
2215 !(mnt_flags & MNT_READONLY))
2218 if ((fl & MNT_LOCK_NODEV) &&
2219 !(mnt_flags & MNT_NODEV))
2222 if ((fl & MNT_LOCK_NOSUID) &&
2223 !(mnt_flags & MNT_NOSUID))
2226 if ((fl & MNT_LOCK_NOEXEC) &&
2227 !(mnt_flags & MNT_NOEXEC))
2230 if ((fl & MNT_LOCK_ATIME) &&
2231 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2237 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2239 bool readonly_request = (mnt_flags & MNT_READONLY);
2241 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2244 if (readonly_request)
2245 return mnt_make_readonly(mnt);
2247 return __mnt_unmake_readonly(mnt);
2251 * Update the user-settable attributes on a mount. The caller must hold
2252 * sb->s_umount for writing.
2254 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2257 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2258 mnt->mnt.mnt_flags = mnt_flags;
2259 touch_mnt_namespace(mnt->mnt_ns);
2260 unlock_mount_hash();
2264 * Handle reconfiguration of the mountpoint only without alteration of the
2265 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2268 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2270 struct super_block *sb = path->mnt->mnt_sb;
2271 struct mount *mnt = real_mount(path->mnt);
2274 if (!check_mnt(mnt))
2277 if (path->dentry != mnt->mnt.mnt_root)
2280 if (!can_change_locked_flags(mnt, mnt_flags))
2283 down_write(&sb->s_umount);
2284 ret = change_mount_ro_state(mnt, mnt_flags);
2286 set_mount_attributes(mnt, mnt_flags);
2287 up_write(&sb->s_umount);
2292 * change filesystem flags. dir should be a physical root of filesystem.
2293 * If you've mounted a non-root directory somewhere and want to do remount
2294 * on it - tough luck.
2296 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2297 int mnt_flags, void *data)
2300 struct super_block *sb = path->mnt->mnt_sb;
2301 struct mount *mnt = real_mount(path->mnt);
2303 if (!check_mnt(mnt))
2306 if (path->dentry != path->mnt->mnt_root)
2309 if (!can_change_locked_flags(mnt, mnt_flags))
2312 err = security_sb_remount(sb, data);
2316 down_write(&sb->s_umount);
2318 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2319 err = do_remount_sb(sb, sb_flags, data, 0);
2321 set_mount_attributes(mnt, mnt_flags);
2323 up_write(&sb->s_umount);
2327 static inline int tree_contains_unbindable(struct mount *mnt)
2330 for (p = mnt; p; p = next_mnt(p, mnt)) {
2331 if (IS_MNT_UNBINDABLE(p))
2337 static int do_move_mount(struct path *path, const char *old_name)
2339 struct path old_path, parent_path;
2342 struct mountpoint *mp;
2344 if (!old_name || !*old_name)
2346 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2350 mp = lock_mount(path);
2355 old = real_mount(old_path.mnt);
2356 p = real_mount(path->mnt);
2359 if (!check_mnt(p) || !check_mnt(old))
2362 if (old->mnt.mnt_flags & MNT_LOCKED)
2366 if (old_path.dentry != old_path.mnt->mnt_root)
2369 if (!mnt_has_parent(old))
2372 if (d_is_dir(path->dentry) !=
2373 d_is_dir(old_path.dentry))
2376 * Don't move a mount residing in a shared parent.
2378 if (IS_MNT_SHARED(old->mnt_parent))
2381 * Don't move a mount tree containing unbindable mounts to a destination
2382 * mount which is shared.
2384 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2387 for (; mnt_has_parent(p); p = p->mnt_parent)
2391 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2395 /* if the mount is moved, it should no longer be expire
2397 list_del_init(&old->mnt_expire);
2402 path_put(&parent_path);
2403 path_put(&old_path);
2407 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2410 const char *subtype = strchr(fstype, '.');
2419 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2421 if (!mnt->mnt_sb->s_subtype)
2427 return ERR_PTR(err);
2431 * add a mount into a namespace's mount tree
2433 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2435 struct mountpoint *mp;
2436 struct mount *parent;
2439 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2441 mp = lock_mount(path);
2445 parent = real_mount(path->mnt);
2447 if (unlikely(!check_mnt(parent))) {
2448 /* that's acceptable only for automounts done in private ns */
2449 if (!(mnt_flags & MNT_SHRINKABLE))
2451 /* ... and for those we'd better have mountpoint still alive */
2452 if (!parent->mnt_ns)
2456 /* Refuse the same filesystem on the same mount point */
2458 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2459 path->mnt->mnt_root == path->dentry)
2463 if (d_is_symlink(newmnt->mnt.mnt_root))
2466 newmnt->mnt.mnt_flags = mnt_flags;
2467 err = graft_tree(newmnt, parent, mp);
2474 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2477 * create a new mount for userspace and request it to be added into the
2480 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2481 int mnt_flags, const char *name, void *data)
2483 struct file_system_type *type;
2484 struct vfsmount *mnt;
2490 type = get_fs_type(fstype);
2494 mnt = vfs_kern_mount(type, sb_flags, name, data);
2495 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2496 !mnt->mnt_sb->s_subtype)
2497 mnt = fs_set_subtype(mnt, fstype);
2499 put_filesystem(type);
2501 return PTR_ERR(mnt);
2503 if (mount_too_revealing(mnt, &mnt_flags)) {
2508 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2514 int finish_automount(struct vfsmount *m, struct path *path)
2516 struct mount *mnt = real_mount(m);
2518 /* The new mount record should have at least 2 refs to prevent it being
2519 * expired before we get a chance to add it
2521 BUG_ON(mnt_get_count(mnt) < 2);
2523 if (m->mnt_sb == path->mnt->mnt_sb &&
2524 m->mnt_root == path->dentry) {
2529 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2533 /* remove m from any expiration list it may be on */
2534 if (!list_empty(&mnt->mnt_expire)) {
2536 list_del_init(&mnt->mnt_expire);
2545 * mnt_set_expiry - Put a mount on an expiration list
2546 * @mnt: The mount to list.
2547 * @expiry_list: The list to add the mount to.
2549 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2553 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2557 EXPORT_SYMBOL(mnt_set_expiry);
2560 * process a list of expirable mountpoints with the intent of discarding any
2561 * mountpoints that aren't in use and haven't been touched since last we came
2564 void mark_mounts_for_expiry(struct list_head *mounts)
2566 struct mount *mnt, *next;
2567 LIST_HEAD(graveyard);
2569 if (list_empty(mounts))
2575 /* extract from the expiration list every vfsmount that matches the
2576 * following criteria:
2577 * - only referenced by its parent vfsmount
2578 * - still marked for expiry (marked on the last call here; marks are
2579 * cleared by mntput())
2581 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2582 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2583 propagate_mount_busy(mnt, 1))
2585 list_move(&mnt->mnt_expire, &graveyard);
2587 while (!list_empty(&graveyard)) {
2588 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2589 touch_mnt_namespace(mnt->mnt_ns);
2590 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2592 unlock_mount_hash();
2596 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2599 * Ripoff of 'select_parent()'
2601 * search the list of submounts for a given mountpoint, and move any
2602 * shrinkable submounts to the 'graveyard' list.
2604 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2606 struct mount *this_parent = parent;
2607 struct list_head *next;
2611 next = this_parent->mnt_mounts.next;
2613 while (next != &this_parent->mnt_mounts) {
2614 struct list_head *tmp = next;
2615 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2618 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2621 * Descend a level if the d_mounts list is non-empty.
2623 if (!list_empty(&mnt->mnt_mounts)) {
2628 if (!propagate_mount_busy(mnt, 1)) {
2629 list_move_tail(&mnt->mnt_expire, graveyard);
2634 * All done at this level ... ascend and resume the search
2636 if (this_parent != parent) {
2637 next = this_parent->mnt_child.next;
2638 this_parent = this_parent->mnt_parent;
2645 * process a list of expirable mountpoints with the intent of discarding any
2646 * submounts of a specific parent mountpoint
2648 * mount_lock must be held for write
2650 static void shrink_submounts(struct mount *mnt)
2652 LIST_HEAD(graveyard);
2655 /* extract submounts of 'mountpoint' from the expiration list */
2656 while (select_submounts(mnt, &graveyard)) {
2657 while (!list_empty(&graveyard)) {
2658 m = list_first_entry(&graveyard, struct mount,
2660 touch_mnt_namespace(m->mnt_ns);
2661 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2667 * Some copy_from_user() implementations do not return the exact number of
2668 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2669 * Note that this function differs from copy_from_user() in that it will oops
2670 * on bad values of `to', rather than returning a short copy.
2672 static long exact_copy_from_user(void *to, const void __user * from,
2676 const char __user *f = from;
2679 if (!access_ok(VERIFY_READ, from, n))
2682 current->kernel_uaccess_faults_ok++;
2684 if (__get_user(c, f)) {
2692 current->kernel_uaccess_faults_ok--;
2696 void *copy_mount_options(const void __user * data)
2705 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2707 return ERR_PTR(-ENOMEM);
2709 /* We only care that *some* data at the address the user
2710 * gave us is valid. Just in case, we'll zero
2711 * the remainder of the page.
2713 /* copy_from_user cannot cross TASK_SIZE ! */
2714 size = TASK_SIZE - (unsigned long)data;
2715 if (size > PAGE_SIZE)
2718 i = size - exact_copy_from_user(copy, data, size);
2721 return ERR_PTR(-EFAULT);
2724 memset(copy + i, 0, PAGE_SIZE - i);
2728 char *copy_mount_string(const void __user *data)
2730 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2734 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2735 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2737 * data is a (void *) that can point to any structure up to
2738 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2739 * information (or be NULL).
2741 * Pre-0.97 versions of mount() didn't have a flags word.
2742 * When the flags word was introduced its top half was required
2743 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2744 * Therefore, if this magic number is present, it carries no information
2745 * and must be discarded.
2747 long do_mount(const char *dev_name, const char __user *dir_name,
2748 const char *type_page, unsigned long flags, void *data_page)
2751 unsigned int mnt_flags = 0, sb_flags;
2755 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2756 flags &= ~MS_MGC_MSK;
2758 /* Basic sanity checks */
2760 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2762 if (flags & MS_NOUSER)
2765 /* ... and get the mountpoint */
2766 retval = user_path(dir_name, &path);
2770 retval = security_sb_mount(dev_name, &path,
2771 type_page, flags, data_page);
2772 if (!retval && !may_mount())
2774 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2779 /* Default to relatime unless overriden */
2780 if (!(flags & MS_NOATIME))
2781 mnt_flags |= MNT_RELATIME;
2783 /* Separate the per-mountpoint flags */
2784 if (flags & MS_NOSUID)
2785 mnt_flags |= MNT_NOSUID;
2786 if (flags & MS_NODEV)
2787 mnt_flags |= MNT_NODEV;
2788 if (flags & MS_NOEXEC)
2789 mnt_flags |= MNT_NOEXEC;
2790 if (flags & MS_NOATIME)
2791 mnt_flags |= MNT_NOATIME;
2792 if (flags & MS_NODIRATIME)
2793 mnt_flags |= MNT_NODIRATIME;
2794 if (flags & MS_STRICTATIME)
2795 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2796 if (flags & MS_RDONLY)
2797 mnt_flags |= MNT_READONLY;
2799 /* The default atime for remount is preservation */
2800 if ((flags & MS_REMOUNT) &&
2801 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2802 MS_STRICTATIME)) == 0)) {
2803 mnt_flags &= ~MNT_ATIME_MASK;
2804 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2807 sb_flags = flags & (SB_RDONLY |
2816 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2817 retval = do_reconfigure_mnt(&path, mnt_flags);
2818 else if (flags & MS_REMOUNT)
2819 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2821 else if (flags & MS_BIND)
2822 retval = do_loopback(&path, dev_name, flags & MS_REC);
2823 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2824 retval = do_change_type(&path, flags);
2825 else if (flags & MS_MOVE)
2826 retval = do_move_mount(&path, dev_name);
2828 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2829 dev_name, data_page);
2835 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2837 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2840 static void dec_mnt_namespaces(struct ucounts *ucounts)
2842 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2845 static void free_mnt_ns(struct mnt_namespace *ns)
2847 ns_free_inum(&ns->ns);
2848 dec_mnt_namespaces(ns->ucounts);
2849 put_user_ns(ns->user_ns);
2854 * Assign a sequence number so we can detect when we attempt to bind
2855 * mount a reference to an older mount namespace into the current
2856 * mount namespace, preventing reference counting loops. A 64bit
2857 * number incrementing at 10Ghz will take 12,427 years to wrap which
2858 * is effectively never, so we can ignore the possibility.
2860 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2862 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2864 struct mnt_namespace *new_ns;
2865 struct ucounts *ucounts;
2868 ucounts = inc_mnt_namespaces(user_ns);
2870 return ERR_PTR(-ENOSPC);
2872 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2874 dec_mnt_namespaces(ucounts);
2875 return ERR_PTR(-ENOMEM);
2877 ret = ns_alloc_inum(&new_ns->ns);
2880 dec_mnt_namespaces(ucounts);
2881 return ERR_PTR(ret);
2883 new_ns->ns.ops = &mntns_operations;
2884 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2885 atomic_set(&new_ns->count, 1);
2886 new_ns->root = NULL;
2887 INIT_LIST_HEAD(&new_ns->list);
2888 init_waitqueue_head(&new_ns->poll);
2890 new_ns->user_ns = get_user_ns(user_ns);
2891 new_ns->ucounts = ucounts;
2893 new_ns->pending_mounts = 0;
2898 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2899 struct user_namespace *user_ns, struct fs_struct *new_fs)
2901 struct mnt_namespace *new_ns;
2902 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2903 struct mount *p, *q;
2910 if (likely(!(flags & CLONE_NEWNS))) {
2917 new_ns = alloc_mnt_ns(user_ns);
2922 /* First pass: copy the tree topology */
2923 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2924 if (user_ns != ns->user_ns)
2925 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2926 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2929 free_mnt_ns(new_ns);
2930 return ERR_CAST(new);
2933 list_add_tail(&new_ns->list, &new->mnt_list);
2936 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2937 * as belonging to new namespace. We have already acquired a private
2938 * fs_struct, so tsk->fs->lock is not needed.
2946 if (&p->mnt == new_fs->root.mnt) {
2947 new_fs->root.mnt = mntget(&q->mnt);
2950 if (&p->mnt == new_fs->pwd.mnt) {
2951 new_fs->pwd.mnt = mntget(&q->mnt);
2955 p = next_mnt(p, old);
2956 q = next_mnt(q, new);
2959 while (p->mnt.mnt_root != q->mnt.mnt_root)
2960 p = next_mnt(p, old);
2973 * create_mnt_ns - creates a private namespace and adds a root filesystem
2974 * @mnt: pointer to the new root filesystem mountpoint
2976 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2978 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2979 if (!IS_ERR(new_ns)) {
2980 struct mount *mnt = real_mount(m);
2981 mnt->mnt_ns = new_ns;
2984 list_add(&mnt->mnt_list, &new_ns->list);
2991 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2993 struct mnt_namespace *ns;
2994 struct super_block *s;
2998 ns = create_mnt_ns(mnt);
3000 return ERR_CAST(ns);
3002 err = vfs_path_lookup(mnt->mnt_root, mnt,
3003 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3008 return ERR_PTR(err);
3010 /* trade a vfsmount reference for active sb one */
3011 s = path.mnt->mnt_sb;
3012 atomic_inc(&s->s_active);
3014 /* lock the sucker */
3015 down_write(&s->s_umount);
3016 /* ... and return the root of (sub)tree on it */
3019 EXPORT_SYMBOL(mount_subtree);
3021 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3022 unsigned long flags, void __user *data)
3029 kernel_type = copy_mount_string(type);
3030 ret = PTR_ERR(kernel_type);
3031 if (IS_ERR(kernel_type))
3034 kernel_dev = copy_mount_string(dev_name);
3035 ret = PTR_ERR(kernel_dev);
3036 if (IS_ERR(kernel_dev))
3039 options = copy_mount_options(data);
3040 ret = PTR_ERR(options);
3041 if (IS_ERR(options))
3044 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3055 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3056 char __user *, type, unsigned long, flags, void __user *, data)
3058 return ksys_mount(dev_name, dir_name, type, flags, data);
3062 * Return true if path is reachable from root
3064 * namespace_sem or mount_lock is held
3066 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3067 const struct path *root)
3069 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3070 dentry = mnt->mnt_mountpoint;
3071 mnt = mnt->mnt_parent;
3073 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3076 bool path_is_under(const struct path *path1, const struct path *path2)
3079 read_seqlock_excl(&mount_lock);
3080 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3081 read_sequnlock_excl(&mount_lock);
3084 EXPORT_SYMBOL(path_is_under);
3087 * pivot_root Semantics:
3088 * Moves the root file system of the current process to the directory put_old,
3089 * makes new_root as the new root file system of the current process, and sets
3090 * root/cwd of all processes which had them on the current root to new_root.
3093 * The new_root and put_old must be directories, and must not be on the
3094 * same file system as the current process root. The put_old must be
3095 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3096 * pointed to by put_old must yield the same directory as new_root. No other
3097 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3099 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3100 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3101 * in this situation.
3104 * - we don't move root/cwd if they are not at the root (reason: if something
3105 * cared enough to change them, it's probably wrong to force them elsewhere)
3106 * - it's okay to pick a root that isn't the root of a file system, e.g.
3107 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3108 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3111 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3112 const char __user *, put_old)
3114 struct path new, old, parent_path, root_parent, root;
3115 struct mount *new_mnt, *root_mnt, *old_mnt;
3116 struct mountpoint *old_mp, *root_mp;
3122 error = user_path_dir(new_root, &new);
3126 error = user_path_dir(put_old, &old);
3130 error = security_sb_pivotroot(&old, &new);
3134 get_fs_root(current->fs, &root);
3135 old_mp = lock_mount(&old);
3136 error = PTR_ERR(old_mp);
3141 new_mnt = real_mount(new.mnt);
3142 root_mnt = real_mount(root.mnt);
3143 old_mnt = real_mount(old.mnt);
3144 if (IS_MNT_SHARED(old_mnt) ||
3145 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3146 IS_MNT_SHARED(root_mnt->mnt_parent))
3148 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3150 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3153 if (d_unlinked(new.dentry))
3156 if (new_mnt == root_mnt || old_mnt == root_mnt)
3157 goto out4; /* loop, on the same file system */
3159 if (root.mnt->mnt_root != root.dentry)
3160 goto out4; /* not a mountpoint */
3161 if (!mnt_has_parent(root_mnt))
3162 goto out4; /* not attached */
3163 root_mp = root_mnt->mnt_mp;
3164 if (new.mnt->mnt_root != new.dentry)
3165 goto out4; /* not a mountpoint */
3166 if (!mnt_has_parent(new_mnt))
3167 goto out4; /* not attached */
3168 /* make sure we can reach put_old from new_root */
3169 if (!is_path_reachable(old_mnt, old.dentry, &new))
3171 /* make certain new is below the root */
3172 if (!is_path_reachable(new_mnt, new.dentry, &root))
3174 root_mp->m_count++; /* pin it so it won't go away */
3176 detach_mnt(new_mnt, &parent_path);
3177 detach_mnt(root_mnt, &root_parent);
3178 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3179 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3180 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3182 /* mount old root on put_old */
3183 attach_mnt(root_mnt, old_mnt, old_mp);
3184 /* mount new_root on / */
3185 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3186 touch_mnt_namespace(current->nsproxy->mnt_ns);
3187 /* A moved mount should not expire automatically */
3188 list_del_init(&new_mnt->mnt_expire);
3189 put_mountpoint(root_mp);
3190 unlock_mount_hash();
3191 chroot_fs_refs(&root, &new);
3194 unlock_mount(old_mp);
3196 path_put(&root_parent);
3197 path_put(&parent_path);
3209 static void __init init_mount_tree(void)
3211 struct vfsmount *mnt;
3212 struct mnt_namespace *ns;
3214 struct file_system_type *type;
3216 type = get_fs_type("rootfs");
3218 panic("Can't find rootfs type");
3219 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3220 put_filesystem(type);
3222 panic("Can't create rootfs");
3224 ns = create_mnt_ns(mnt);
3226 panic("Can't allocate initial namespace");
3228 init_task.nsproxy->mnt_ns = ns;
3232 root.dentry = mnt->mnt_root;
3233 mnt->mnt_flags |= MNT_LOCKED;
3235 set_fs_pwd(current->fs, &root);
3236 set_fs_root(current->fs, &root);
3239 void __init mnt_init(void)
3243 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3244 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3246 mount_hashtable = alloc_large_system_hash("Mount-cache",
3247 sizeof(struct hlist_head),
3250 &m_hash_shift, &m_hash_mask, 0, 0);
3251 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3252 sizeof(struct hlist_head),
3255 &mp_hash_shift, &mp_hash_mask, 0, 0);
3257 if (!mount_hashtable || !mountpoint_hashtable)
3258 panic("Failed to allocate mount hash table\n");
3264 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3266 fs_kobj = kobject_create_and_add("fs", NULL);
3268 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3273 void put_mnt_ns(struct mnt_namespace *ns)
3275 if (!atomic_dec_and_test(&ns->count))
3277 drop_collected_mounts(&ns->root->mnt);
3281 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3283 struct vfsmount *mnt;
3284 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3287 * it is a longterm mount, don't release mnt until
3288 * we unmount before file sys is unregistered
3290 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3294 EXPORT_SYMBOL_GPL(kern_mount_data);
3296 void kern_unmount(struct vfsmount *mnt)
3298 /* release long term mount so mount point can be released */
3299 if (!IS_ERR_OR_NULL(mnt)) {
3300 real_mount(mnt)->mnt_ns = NULL;
3301 synchronize_rcu(); /* yecchhh... */
3305 EXPORT_SYMBOL(kern_unmount);
3307 bool our_mnt(struct vfsmount *mnt)
3309 return check_mnt(real_mount(mnt));
3312 bool current_chrooted(void)
3314 /* Does the current process have a non-standard root */
3315 struct path ns_root;
3316 struct path fs_root;
3319 /* Find the namespace root */
3320 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3321 ns_root.dentry = ns_root.mnt->mnt_root;
3323 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3326 get_fs_root(current->fs, &fs_root);
3328 chrooted = !path_equal(&fs_root, &ns_root);
3336 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3339 int new_flags = *new_mnt_flags;
3341 bool visible = false;
3343 down_read(&namespace_sem);
3344 list_for_each_entry(mnt, &ns->list, mnt_list) {
3345 struct mount *child;
3348 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3351 /* This mount is not fully visible if it's root directory
3352 * is not the root directory of the filesystem.
3354 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3357 /* A local view of the mount flags */
3358 mnt_flags = mnt->mnt.mnt_flags;
3360 /* Don't miss readonly hidden in the superblock flags */
3361 if (sb_rdonly(mnt->mnt.mnt_sb))
3362 mnt_flags |= MNT_LOCK_READONLY;
3364 /* Verify the mount flags are equal to or more permissive
3365 * than the proposed new mount.
3367 if ((mnt_flags & MNT_LOCK_READONLY) &&
3368 !(new_flags & MNT_READONLY))
3370 if ((mnt_flags & MNT_LOCK_ATIME) &&
3371 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3374 /* This mount is not fully visible if there are any
3375 * locked child mounts that cover anything except for
3376 * empty directories.
3378 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3379 struct inode *inode = child->mnt_mountpoint->d_inode;
3380 /* Only worry about locked mounts */
3381 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3383 /* Is the directory permanetly empty? */
3384 if (!is_empty_dir_inode(inode))
3387 /* Preserve the locked attributes */
3388 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3395 up_read(&namespace_sem);
3399 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3401 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3402 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3403 unsigned long s_iflags;
3405 if (ns->user_ns == &init_user_ns)
3408 /* Can this filesystem be too revealing? */
3409 s_iflags = mnt->mnt_sb->s_iflags;
3410 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3413 if ((s_iflags & required_iflags) != required_iflags) {
3414 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3419 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3422 bool mnt_may_suid(struct vfsmount *mnt)
3425 * Foreign mounts (accessed via fchdir or through /proc
3426 * symlinks) are always treated as if they are nosuid. This
3427 * prevents namespaces from trusting potentially unsafe
3428 * suid/sgid bits, file caps, or security labels that originate
3429 * in other namespaces.
3431 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3432 current_in_userns(mnt->mnt_sb->s_user_ns);
3435 static struct ns_common *mntns_get(struct task_struct *task)
3437 struct ns_common *ns = NULL;
3438 struct nsproxy *nsproxy;
3441 nsproxy = task->nsproxy;
3443 ns = &nsproxy->mnt_ns->ns;
3444 get_mnt_ns(to_mnt_ns(ns));
3451 static void mntns_put(struct ns_common *ns)
3453 put_mnt_ns(to_mnt_ns(ns));
3456 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3458 struct fs_struct *fs = current->fs;
3459 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3463 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3464 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3465 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3472 old_mnt_ns = nsproxy->mnt_ns;
3473 nsproxy->mnt_ns = mnt_ns;
3476 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3477 "/", LOOKUP_DOWN, &root);
3479 /* revert to old namespace */
3480 nsproxy->mnt_ns = old_mnt_ns;
3485 put_mnt_ns(old_mnt_ns);
3487 /* Update the pwd and root */
3488 set_fs_pwd(fs, &root);
3489 set_fs_root(fs, &root);
3495 static struct user_namespace *mntns_owner(struct ns_common *ns)
3497 return to_mnt_ns(ns)->user_ns;
3500 const struct proc_ns_operations mntns_operations = {
3502 .type = CLONE_NEWNS,
3505 .install = mntns_install,
3506 .owner = mntns_owner,