2 * Copyright (C) 2012,2013 - ARM Ltd
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
26 #include <linux/uaccess.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
41 #include <trace/events/kvm.h>
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
58 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59 static u32 cache_levels;
61 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
64 /* Which cache CCSIDR represents depends on CSSELR value. */
65 static u32 get_ccsidr(u32 csselr)
69 /* Make sure noone else changes CSSELR during this! */
71 write_sysreg(csselr, csselr_el1);
73 ccsidr = read_sysreg(ccsidr_el1);
80 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82 static bool access_dcsw(struct kvm_vcpu *vcpu,
83 struct sys_reg_params *p,
84 const struct sys_reg_desc *r)
87 return read_from_write_only(vcpu, p);
89 kvm_set_way_flush(vcpu);
94 * Generic accessor for VM registers. Only called as long as HCR_TVM
95 * is set. If the guest enables the MMU, we stop trapping the VM
96 * sys_regs and leave it in complete control of the caches.
98 static bool access_vm_reg(struct kvm_vcpu *vcpu,
99 struct sys_reg_params *p,
100 const struct sys_reg_desc *r)
102 bool was_enabled = vcpu_has_cache_enabled(vcpu);
104 BUG_ON(!p->is_write);
106 if (!p->is_aarch32) {
107 vcpu_sys_reg(vcpu, r->reg) = p->regval;
110 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
114 kvm_toggle_cache(vcpu, was_enabled);
119 * Trap handler for the GICv3 SGI generation system register.
120 * Forward the request to the VGIC emulation.
121 * The cp15_64 code makes sure this automatically works
122 * for both AArch64 and AArch32 accesses.
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125 struct sys_reg_params *p,
126 const struct sys_reg_desc *r)
129 return read_from_write_only(vcpu, p);
131 vgic_v3_dispatch_sgi(vcpu, p->regval);
136 static bool access_gic_sre(struct kvm_vcpu *vcpu,
137 struct sys_reg_params *p,
138 const struct sys_reg_desc *r)
141 return ignore_write(vcpu, p);
143 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
147 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148 struct sys_reg_params *p,
149 const struct sys_reg_desc *r)
152 return ignore_write(vcpu, p);
154 return read_zero(vcpu, p);
157 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158 struct sys_reg_params *p,
159 const struct sys_reg_desc *r)
162 return ignore_write(vcpu, p);
164 p->regval = (1 << 3);
169 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170 struct sys_reg_params *p,
171 const struct sys_reg_desc *r)
174 return ignore_write(vcpu, p);
176 p->regval = read_sysreg(dbgauthstatus_el1);
182 * We want to avoid world-switching all the DBG registers all the
185 * - If we've touched any debug register, it is likely that we're
186 * going to touch more of them. It then makes sense to disable the
187 * traps and start doing the save/restore dance
188 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189 * then mandatory to save/restore the registers, as the guest
192 * For this, we use a DIRTY bit, indicating the guest has modified the
193 * debug registers, used as follow:
196 * - If the dirty bit is set (because we're coming back from trapping),
197 * disable the traps, save host registers, restore guest registers.
198 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199 * set the dirty bit, disable the traps, save host registers,
200 * restore guest registers.
201 * - Otherwise, enable the traps
204 * - If the dirty bit is set, save guest registers, restore host
205 * registers and clear the dirty bit. This ensure that the host can
206 * now use the debug registers.
208 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209 struct sys_reg_params *p,
210 const struct sys_reg_desc *r)
213 vcpu_sys_reg(vcpu, r->reg) = p->regval;
214 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
216 p->regval = vcpu_sys_reg(vcpu, r->reg);
219 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
225 * reg_to_dbg/dbg_to_reg
227 * A 32 bit write to a debug register leave top bits alone
228 * A 32 bit read from a debug register only returns the bottom bits
230 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231 * hyp.S code switches between host and guest values in future.
233 static void reg_to_dbg(struct kvm_vcpu *vcpu,
234 struct sys_reg_params *p,
241 val |= ((*dbg_reg >> 32) << 32);
245 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
248 static void dbg_to_reg(struct kvm_vcpu *vcpu,
249 struct sys_reg_params *p,
252 p->regval = *dbg_reg;
254 p->regval &= 0xffffffffUL;
257 static bool trap_bvr(struct kvm_vcpu *vcpu,
258 struct sys_reg_params *p,
259 const struct sys_reg_desc *rd)
261 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
264 reg_to_dbg(vcpu, p, dbg_reg);
266 dbg_to_reg(vcpu, p, dbg_reg);
268 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
273 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 const struct kvm_one_reg *reg, void __user *uaddr)
276 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
278 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
283 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284 const struct kvm_one_reg *reg, void __user *uaddr)
286 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
288 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
293 static void reset_bvr(struct kvm_vcpu *vcpu,
294 const struct sys_reg_desc *rd)
296 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
299 static bool trap_bcr(struct kvm_vcpu *vcpu,
300 struct sys_reg_params *p,
301 const struct sys_reg_desc *rd)
303 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
306 reg_to_dbg(vcpu, p, dbg_reg);
308 dbg_to_reg(vcpu, p, dbg_reg);
310 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
315 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316 const struct kvm_one_reg *reg, void __user *uaddr)
318 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
320 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
326 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327 const struct kvm_one_reg *reg, void __user *uaddr)
329 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
331 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
336 static void reset_bcr(struct kvm_vcpu *vcpu,
337 const struct sys_reg_desc *rd)
339 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
342 static bool trap_wvr(struct kvm_vcpu *vcpu,
343 struct sys_reg_params *p,
344 const struct sys_reg_desc *rd)
346 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
349 reg_to_dbg(vcpu, p, dbg_reg);
351 dbg_to_reg(vcpu, p, dbg_reg);
353 trace_trap_reg(__func__, rd->reg, p->is_write,
354 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
359 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 const struct kvm_one_reg *reg, void __user *uaddr)
362 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
364 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
369 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370 const struct kvm_one_reg *reg, void __user *uaddr)
372 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
374 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
379 static void reset_wvr(struct kvm_vcpu *vcpu,
380 const struct sys_reg_desc *rd)
382 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
385 static bool trap_wcr(struct kvm_vcpu *vcpu,
386 struct sys_reg_params *p,
387 const struct sys_reg_desc *rd)
389 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
392 reg_to_dbg(vcpu, p, dbg_reg);
394 dbg_to_reg(vcpu, p, dbg_reg);
396 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
401 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 const struct kvm_one_reg *reg, void __user *uaddr)
404 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
406 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
411 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412 const struct kvm_one_reg *reg, void __user *uaddr)
414 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
416 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
421 static void reset_wcr(struct kvm_vcpu *vcpu,
422 const struct sys_reg_desc *rd)
424 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
427 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
429 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
437 * Map the vcpu_id into the first three affinity level fields of
438 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 * of the GICv3 to be able to address each CPU directly when
443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
449 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
453 pmcr = read_sysreg(pmcr_el0);
455 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456 * except PMCR.E resetting to zero.
458 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
463 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
465 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
467 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
470 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
472 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
474 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475 || vcpu_mode_priv(vcpu));
478 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
480 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
482 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483 || vcpu_mode_priv(vcpu));
486 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
488 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
490 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491 || vcpu_mode_priv(vcpu));
494 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495 const struct sys_reg_desc *r)
499 if (!kvm_arm_pmu_v3_ready(vcpu))
500 return trap_raz_wi(vcpu, p, r);
502 if (pmu_access_el0_disabled(vcpu))
506 /* Only update writeable bits of PMCR */
507 val = vcpu_sys_reg(vcpu, PMCR_EL0);
508 val &= ~ARMV8_PMU_PMCR_MASK;
509 val |= p->regval & ARMV8_PMU_PMCR_MASK;
510 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
511 kvm_pmu_handle_pmcr(vcpu, val);
513 /* PMCR.P & PMCR.C are RAZ */
514 val = vcpu_sys_reg(vcpu, PMCR_EL0)
515 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
522 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523 const struct sys_reg_desc *r)
525 if (!kvm_arm_pmu_v3_ready(vcpu))
526 return trap_raz_wi(vcpu, p, r);
528 if (pmu_access_event_counter_el0_disabled(vcpu))
532 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
534 /* return PMSELR.SEL field */
535 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536 & ARMV8_PMU_COUNTER_MASK;
541 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542 const struct sys_reg_desc *r)
546 if (!kvm_arm_pmu_v3_ready(vcpu))
547 return trap_raz_wi(vcpu, p, r);
551 if (pmu_access_el0_disabled(vcpu))
555 pmceid = read_sysreg(pmceid0_el0);
557 pmceid = read_sysreg(pmceid1_el0);
564 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
568 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
576 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577 struct sys_reg_params *p,
578 const struct sys_reg_desc *r)
582 if (!kvm_arm_pmu_v3_ready(vcpu))
583 return trap_raz_wi(vcpu, p, r);
585 if (r->CRn == 9 && r->CRm == 13) {
588 if (pmu_access_event_counter_el0_disabled(vcpu))
591 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592 & ARMV8_PMU_COUNTER_MASK;
593 } else if (r->Op2 == 0) {
595 if (pmu_access_cycle_counter_el0_disabled(vcpu))
598 idx = ARMV8_PMU_CYCLE_IDX;
602 } else if (r->CRn == 0 && r->CRm == 9) {
604 if (pmu_access_event_counter_el0_disabled(vcpu))
607 idx = ARMV8_PMU_CYCLE_IDX;
608 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
610 if (pmu_access_event_counter_el0_disabled(vcpu))
613 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
618 if (!pmu_counter_idx_valid(vcpu, idx))
622 if (pmu_access_el0_disabled(vcpu))
625 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
627 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
633 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
634 const struct sys_reg_desc *r)
638 if (!kvm_arm_pmu_v3_ready(vcpu))
639 return trap_raz_wi(vcpu, p, r);
641 if (pmu_access_el0_disabled(vcpu))
644 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
646 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
647 reg = PMEVTYPER0_EL0 + idx;
648 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
649 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
650 if (idx == ARMV8_PMU_CYCLE_IDX)
654 reg = PMEVTYPER0_EL0 + idx;
659 if (!pmu_counter_idx_valid(vcpu, idx))
663 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
664 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
666 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
672 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
673 const struct sys_reg_desc *r)
677 if (!kvm_arm_pmu_v3_ready(vcpu))
678 return trap_raz_wi(vcpu, p, r);
680 if (pmu_access_el0_disabled(vcpu))
683 mask = kvm_pmu_valid_counter_mask(vcpu);
685 val = p->regval & mask;
687 /* accessing PMCNTENSET_EL0 */
688 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
689 kvm_pmu_enable_counter(vcpu, val);
691 /* accessing PMCNTENCLR_EL0 */
692 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
693 kvm_pmu_disable_counter(vcpu, val);
696 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
702 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703 const struct sys_reg_desc *r)
705 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
707 if (!kvm_arm_pmu_v3_ready(vcpu))
708 return trap_raz_wi(vcpu, p, r);
710 if (!vcpu_mode_priv(vcpu))
714 u64 val = p->regval & mask;
717 /* accessing PMINTENSET_EL1 */
718 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
720 /* accessing PMINTENCLR_EL1 */
721 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
723 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
729 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
730 const struct sys_reg_desc *r)
732 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
734 if (!kvm_arm_pmu_v3_ready(vcpu))
735 return trap_raz_wi(vcpu, p, r);
737 if (pmu_access_el0_disabled(vcpu))
742 /* accessing PMOVSSET_EL0 */
743 kvm_pmu_overflow_set(vcpu, p->regval & mask);
745 /* accessing PMOVSCLR_EL0 */
746 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
748 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
754 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
755 const struct sys_reg_desc *r)
759 if (!kvm_arm_pmu_v3_ready(vcpu))
760 return trap_raz_wi(vcpu, p, r);
762 if (pmu_write_swinc_el0_disabled(vcpu))
766 mask = kvm_pmu_valid_counter_mask(vcpu);
767 kvm_pmu_software_increment(vcpu, p->regval & mask);
774 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
775 const struct sys_reg_desc *r)
777 if (!kvm_arm_pmu_v3_ready(vcpu))
778 return trap_raz_wi(vcpu, p, r);
781 if (!vcpu_mode_priv(vcpu))
784 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
785 & ARMV8_PMU_USERENR_MASK;
787 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
788 & ARMV8_PMU_USERENR_MASK;
794 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
795 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
797 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
798 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
800 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
801 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
803 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
804 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
806 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
807 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
809 /* Macro to expand the PMEVCNTRn_EL0 register */
810 #define PMU_PMEVCNTR_EL0(n) \
811 /* PMEVCNTRn_EL0 */ \
812 { Op0(0b11), Op1(0b011), CRn(0b1110), \
813 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
814 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
816 /* Macro to expand the PMEVTYPERn_EL0 register */
817 #define PMU_PMEVTYPER_EL0(n) \
818 /* PMEVTYPERn_EL0 */ \
819 { Op0(0b11), Op1(0b011), CRn(0b1110), \
820 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
821 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
823 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
824 struct sys_reg_params *p,
825 const struct sys_reg_desc *r)
827 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
828 u64 now = kvm_phys_timer_read();
831 ptimer->cnt_cval = p->regval + now;
833 p->regval = ptimer->cnt_cval - now;
838 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
839 struct sys_reg_params *p,
840 const struct sys_reg_desc *r)
842 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
845 /* ISTATUS bit is read-only */
846 ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
848 u64 now = kvm_phys_timer_read();
850 p->regval = ptimer->cnt_ctl;
852 * Set ISTATUS bit if it's expired.
853 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
854 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
855 * regardless of ENABLE bit for our implementation convenience.
857 if (ptimer->cnt_cval <= now)
858 p->regval |= ARCH_TIMER_CTRL_IT_STAT;
864 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
865 struct sys_reg_params *p,
866 const struct sys_reg_desc *r)
868 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
871 ptimer->cnt_cval = p->regval;
873 p->regval = ptimer->cnt_cval;
879 * Architected system registers.
880 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
882 * Debug handling: We do trap most, if not all debug related system
883 * registers. The implementation is good enough to ensure that a guest
884 * can use these with minimal performance degradation. The drawback is
885 * that we don't implement any of the external debug, none of the
886 * OSlock protocol. This should be revisited if we ever encounter a
887 * more demanding guest...
889 static const struct sys_reg_desc sys_reg_descs[] = {
891 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
894 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
897 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
900 DBG_BCR_BVR_WCR_WVR_EL1(0),
901 DBG_BCR_BVR_WCR_WVR_EL1(1),
903 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
904 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
906 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
907 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
908 DBG_BCR_BVR_WCR_WVR_EL1(2),
909 DBG_BCR_BVR_WCR_WVR_EL1(3),
910 DBG_BCR_BVR_WCR_WVR_EL1(4),
911 DBG_BCR_BVR_WCR_WVR_EL1(5),
912 DBG_BCR_BVR_WCR_WVR_EL1(6),
913 DBG_BCR_BVR_WCR_WVR_EL1(7),
914 DBG_BCR_BVR_WCR_WVR_EL1(8),
915 DBG_BCR_BVR_WCR_WVR_EL1(9),
916 DBG_BCR_BVR_WCR_WVR_EL1(10),
917 DBG_BCR_BVR_WCR_WVR_EL1(11),
918 DBG_BCR_BVR_WCR_WVR_EL1(12),
919 DBG_BCR_BVR_WCR_WVR_EL1(13),
920 DBG_BCR_BVR_WCR_WVR_EL1(14),
921 DBG_BCR_BVR_WCR_WVR_EL1(15),
924 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
927 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
930 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
933 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
936 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
938 /* DBGCLAIMSET_EL1 */
939 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
941 /* DBGCLAIMCLR_EL1 */
942 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
944 /* DBGAUTHSTATUS_EL1 */
945 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
946 trap_dbgauthstatus_el1 },
949 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
952 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
954 /* DBGDTR[TR]X_EL0 */
955 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
959 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
960 NULL, reset_val, DBGVCR32_EL2, 0 },
963 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
964 NULL, reset_mpidr, MPIDR_EL1 },
966 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
967 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
969 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
970 NULL, reset_val, CPACR_EL1, 0 },
972 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
973 access_vm_reg, reset_unknown, TTBR0_EL1 },
975 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
976 access_vm_reg, reset_unknown, TTBR1_EL1 },
978 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
979 access_vm_reg, reset_val, TCR_EL1, 0 },
982 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
983 access_vm_reg, reset_unknown, AFSR0_EL1 },
985 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
986 access_vm_reg, reset_unknown, AFSR1_EL1 },
988 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
989 access_vm_reg, reset_unknown, ESR_EL1 },
991 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
992 access_vm_reg, reset_unknown, FAR_EL1 },
994 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
995 NULL, reset_unknown, PAR_EL1 },
998 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
999 access_pminten, reset_unknown, PMINTENSET_EL1 },
1000 /* PMINTENCLR_EL1 */
1001 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
1002 access_pminten, NULL, PMINTENSET_EL1 },
1005 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
1006 access_vm_reg, reset_unknown, MAIR_EL1 },
1008 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
1009 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1012 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
1013 NULL, reset_val, VBAR_EL1, 0 },
1016 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
1019 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
1022 /* CONTEXTIDR_EL1 */
1023 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
1024 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1026 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
1027 NULL, reset_unknown, TPIDR_EL1 },
1030 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
1031 NULL, reset_val, CNTKCTL_EL1, 0},
1034 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
1035 NULL, reset_unknown, CSSELR_EL1 },
1038 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
1039 access_pmcr, reset_pmcr, },
1040 /* PMCNTENSET_EL0 */
1041 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
1042 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1043 /* PMCNTENCLR_EL0 */
1044 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
1045 access_pmcnten, NULL, PMCNTENSET_EL0 },
1047 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1048 access_pmovs, NULL, PMOVSSET_EL0 },
1050 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1051 access_pmswinc, reset_unknown, PMSWINC_EL0 },
1053 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1054 access_pmselr, reset_unknown, PMSELR_EL0 },
1056 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1059 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1062 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1063 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1064 /* PMXEVTYPER_EL0 */
1065 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1066 access_pmu_evtyper },
1068 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1069 access_pmu_evcntr },
1071 * This register resets as unknown in 64bit mode while it resets as zero
1072 * in 32bit mode. Here we choose to reset it as zero for consistency.
1074 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1075 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1077 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1078 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1081 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1082 NULL, reset_unknown, TPIDR_EL0 },
1084 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1085 NULL, reset_unknown, TPIDRRO_EL0 },
1088 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b000),
1091 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b001),
1094 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b010),
1098 PMU_PMEVCNTR_EL0(0),
1099 PMU_PMEVCNTR_EL0(1),
1100 PMU_PMEVCNTR_EL0(2),
1101 PMU_PMEVCNTR_EL0(3),
1102 PMU_PMEVCNTR_EL0(4),
1103 PMU_PMEVCNTR_EL0(5),
1104 PMU_PMEVCNTR_EL0(6),
1105 PMU_PMEVCNTR_EL0(7),
1106 PMU_PMEVCNTR_EL0(8),
1107 PMU_PMEVCNTR_EL0(9),
1108 PMU_PMEVCNTR_EL0(10),
1109 PMU_PMEVCNTR_EL0(11),
1110 PMU_PMEVCNTR_EL0(12),
1111 PMU_PMEVCNTR_EL0(13),
1112 PMU_PMEVCNTR_EL0(14),
1113 PMU_PMEVCNTR_EL0(15),
1114 PMU_PMEVCNTR_EL0(16),
1115 PMU_PMEVCNTR_EL0(17),
1116 PMU_PMEVCNTR_EL0(18),
1117 PMU_PMEVCNTR_EL0(19),
1118 PMU_PMEVCNTR_EL0(20),
1119 PMU_PMEVCNTR_EL0(21),
1120 PMU_PMEVCNTR_EL0(22),
1121 PMU_PMEVCNTR_EL0(23),
1122 PMU_PMEVCNTR_EL0(24),
1123 PMU_PMEVCNTR_EL0(25),
1124 PMU_PMEVCNTR_EL0(26),
1125 PMU_PMEVCNTR_EL0(27),
1126 PMU_PMEVCNTR_EL0(28),
1127 PMU_PMEVCNTR_EL0(29),
1128 PMU_PMEVCNTR_EL0(30),
1129 /* PMEVTYPERn_EL0 */
1130 PMU_PMEVTYPER_EL0(0),
1131 PMU_PMEVTYPER_EL0(1),
1132 PMU_PMEVTYPER_EL0(2),
1133 PMU_PMEVTYPER_EL0(3),
1134 PMU_PMEVTYPER_EL0(4),
1135 PMU_PMEVTYPER_EL0(5),
1136 PMU_PMEVTYPER_EL0(6),
1137 PMU_PMEVTYPER_EL0(7),
1138 PMU_PMEVTYPER_EL0(8),
1139 PMU_PMEVTYPER_EL0(9),
1140 PMU_PMEVTYPER_EL0(10),
1141 PMU_PMEVTYPER_EL0(11),
1142 PMU_PMEVTYPER_EL0(12),
1143 PMU_PMEVTYPER_EL0(13),
1144 PMU_PMEVTYPER_EL0(14),
1145 PMU_PMEVTYPER_EL0(15),
1146 PMU_PMEVTYPER_EL0(16),
1147 PMU_PMEVTYPER_EL0(17),
1148 PMU_PMEVTYPER_EL0(18),
1149 PMU_PMEVTYPER_EL0(19),
1150 PMU_PMEVTYPER_EL0(20),
1151 PMU_PMEVTYPER_EL0(21),
1152 PMU_PMEVTYPER_EL0(22),
1153 PMU_PMEVTYPER_EL0(23),
1154 PMU_PMEVTYPER_EL0(24),
1155 PMU_PMEVTYPER_EL0(25),
1156 PMU_PMEVTYPER_EL0(26),
1157 PMU_PMEVTYPER_EL0(27),
1158 PMU_PMEVTYPER_EL0(28),
1159 PMU_PMEVTYPER_EL0(29),
1160 PMU_PMEVTYPER_EL0(30),
1162 * This register resets as unknown in 64bit mode while it resets as zero
1163 * in 32bit mode. Here we choose to reset it as zero for consistency.
1165 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1166 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1169 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1170 NULL, reset_unknown, DACR32_EL2 },
1172 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1173 NULL, reset_unknown, IFSR32_EL2 },
1175 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1176 NULL, reset_val, FPEXC32_EL2, 0x70 },
1179 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1180 struct sys_reg_params *p,
1181 const struct sys_reg_desc *r)
1184 return ignore_write(vcpu, p);
1186 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1187 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1188 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1190 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1191 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1192 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1193 | (6 << 16) | (el3 << 14) | (el3 << 12));
1198 static bool trap_debug32(struct kvm_vcpu *vcpu,
1199 struct sys_reg_params *p,
1200 const struct sys_reg_desc *r)
1203 vcpu_cp14(vcpu, r->reg) = p->regval;
1204 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1206 p->regval = vcpu_cp14(vcpu, r->reg);
1212 /* AArch32 debug register mappings
1214 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1215 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1217 * All control registers and watchpoint value registers are mapped to
1218 * the lower 32 bits of their AArch64 equivalents. We share the trap
1219 * handlers with the above AArch64 code which checks what mode the
1223 static bool trap_xvr(struct kvm_vcpu *vcpu,
1224 struct sys_reg_params *p,
1225 const struct sys_reg_desc *rd)
1227 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1232 val &= 0xffffffffUL;
1233 val |= p->regval << 32;
1236 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1238 p->regval = *dbg_reg >> 32;
1241 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1246 #define DBG_BCR_BVR_WCR_WVR(n) \
1248 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1250 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1252 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1254 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1256 #define DBGBXVR(n) \
1257 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1260 * Trapped cp14 registers. We generally ignore most of the external
1261 * debug, on the principle that they don't really make sense to a
1262 * guest. Revisit this one day, would this principle change.
1264 static const struct sys_reg_desc cp14_regs[] = {
1266 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1268 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1270 DBG_BCR_BVR_WCR_WVR(0),
1272 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1273 DBG_BCR_BVR_WCR_WVR(1),
1275 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1277 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1278 DBG_BCR_BVR_WCR_WVR(2),
1279 /* DBGDTR[RT]Xint */
1280 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1281 /* DBGDTR[RT]Xext */
1282 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1283 DBG_BCR_BVR_WCR_WVR(3),
1284 DBG_BCR_BVR_WCR_WVR(4),
1285 DBG_BCR_BVR_WCR_WVR(5),
1287 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1289 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1290 DBG_BCR_BVR_WCR_WVR(6),
1292 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1293 DBG_BCR_BVR_WCR_WVR(7),
1294 DBG_BCR_BVR_WCR_WVR(8),
1295 DBG_BCR_BVR_WCR_WVR(9),
1296 DBG_BCR_BVR_WCR_WVR(10),
1297 DBG_BCR_BVR_WCR_WVR(11),
1298 DBG_BCR_BVR_WCR_WVR(12),
1299 DBG_BCR_BVR_WCR_WVR(13),
1300 DBG_BCR_BVR_WCR_WVR(14),
1301 DBG_BCR_BVR_WCR_WVR(15),
1303 /* DBGDRAR (32bit) */
1304 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1308 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1311 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1315 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1318 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1331 /* DBGDSAR (32bit) */
1332 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1335 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1337 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1339 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1341 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1343 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1345 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1348 /* Trapped cp14 64bit registers */
1349 static const struct sys_reg_desc cp14_64_regs[] = {
1350 /* DBGDRAR (64bit) */
1351 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1353 /* DBGDSAR (64bit) */
1354 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1357 /* Macro to expand the PMEVCNTRn register */
1358 #define PMU_PMEVCNTR(n) \
1360 { Op1(0), CRn(0b1110), \
1361 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1364 /* Macro to expand the PMEVTYPERn register */
1365 #define PMU_PMEVTYPER(n) \
1367 { Op1(0), CRn(0b1110), \
1368 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1369 access_pmu_evtyper }
1372 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1373 * depending on the way they are accessed (as a 32bit or a 64bit
1376 static const struct sys_reg_desc cp15_regs[] = {
1377 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1379 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1380 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1381 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1382 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1383 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1384 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1385 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1386 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1387 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1388 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1389 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1392 * DC{C,I,CI}SW operations:
1394 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1395 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1396 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1399 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1400 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1401 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1402 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1403 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1404 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1405 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1406 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1407 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1408 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1409 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1410 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1411 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1412 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1413 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1415 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1416 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1417 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1418 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1421 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1423 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1490 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1493 static const struct sys_reg_desc cp15_64_regs[] = {
1494 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1495 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1496 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1497 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1500 /* Target specific emulation tables */
1501 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1503 void kvm_register_target_sys_reg_table(unsigned int target,
1504 struct kvm_sys_reg_target_table *table)
1506 target_tables[target] = table;
1509 /* Get specific register table for this target. */
1510 static const struct sys_reg_desc *get_target_table(unsigned target,
1514 struct kvm_sys_reg_target_table *table;
1516 table = target_tables[target];
1518 *num = table->table64.num;
1519 return table->table64.table;
1521 *num = table->table32.num;
1522 return table->table32.table;
1526 #define reg_to_match_value(x) \
1528 unsigned long val; \
1529 val = (x)->Op0 << 14; \
1530 val |= (x)->Op1 << 11; \
1531 val |= (x)->CRn << 7; \
1532 val |= (x)->CRm << 3; \
1537 static int match_sys_reg(const void *key, const void *elt)
1539 const unsigned long pval = (unsigned long)key;
1540 const struct sys_reg_desc *r = elt;
1542 return pval - reg_to_match_value(r);
1545 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1546 const struct sys_reg_desc table[],
1549 unsigned long pval = reg_to_match_value(params);
1551 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1554 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1556 kvm_inject_undefined(vcpu);
1561 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1562 * call the corresponding trap handler.
1564 * @params: pointer to the descriptor of the access
1565 * @table: array of trap descriptors
1566 * @num: size of the trap descriptor array
1568 * Return 0 if the access has been handled, and -1 if not.
1570 static int emulate_cp(struct kvm_vcpu *vcpu,
1571 struct sys_reg_params *params,
1572 const struct sys_reg_desc *table,
1575 const struct sys_reg_desc *r;
1578 return -1; /* Not handled */
1580 r = find_reg(params, table, num);
1584 * Not having an accessor means that we have
1585 * configured a trap that we don't know how to
1586 * handle. This certainly qualifies as a gross bug
1587 * that should be fixed right away.
1591 if (likely(r->access(vcpu, params, r))) {
1592 /* Skip instruction, since it was emulated */
1593 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1603 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1604 struct sys_reg_params *params)
1606 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1610 case ESR_ELx_EC_CP15_32:
1611 case ESR_ELx_EC_CP15_64:
1614 case ESR_ELx_EC_CP14_MR:
1615 case ESR_ELx_EC_CP14_64:
1622 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1623 cp, *vcpu_pc(vcpu));
1624 print_sys_reg_instr(params);
1625 kvm_inject_undefined(vcpu);
1629 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1630 * @vcpu: The VCPU pointer
1631 * @run: The kvm_run struct
1633 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1634 const struct sys_reg_desc *global,
1636 const struct sys_reg_desc *target_specific,
1639 struct sys_reg_params params;
1640 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1641 int Rt = (hsr >> 5) & 0xf;
1642 int Rt2 = (hsr >> 10) & 0xf;
1644 params.is_aarch32 = true;
1645 params.is_32bit = false;
1646 params.CRm = (hsr >> 1) & 0xf;
1647 params.is_write = ((hsr & 1) == 0);
1650 params.Op1 = (hsr >> 16) & 0xf;
1655 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1656 * backends between AArch32 and AArch64, we get away with it.
1658 if (params.is_write) {
1659 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1660 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1663 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
1665 if (!emulate_cp(vcpu, ¶ms, global, nr_global))
1668 unhandled_cp_access(vcpu, ¶ms);
1671 /* Split up the value between registers for the read side */
1672 if (!params.is_write) {
1673 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1674 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1681 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1682 * @vcpu: The VCPU pointer
1683 * @run: The kvm_run struct
1685 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1686 const struct sys_reg_desc *global,
1688 const struct sys_reg_desc *target_specific,
1691 struct sys_reg_params params;
1692 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1693 int Rt = (hsr >> 5) & 0xf;
1695 params.is_aarch32 = true;
1696 params.is_32bit = true;
1697 params.CRm = (hsr >> 1) & 0xf;
1698 params.regval = vcpu_get_reg(vcpu, Rt);
1699 params.is_write = ((hsr & 1) == 0);
1700 params.CRn = (hsr >> 10) & 0xf;
1702 params.Op1 = (hsr >> 14) & 0x7;
1703 params.Op2 = (hsr >> 17) & 0x7;
1705 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
1706 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
1707 if (!params.is_write)
1708 vcpu_set_reg(vcpu, Rt, params.regval);
1712 unhandled_cp_access(vcpu, ¶ms);
1716 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1718 const struct sys_reg_desc *target_specific;
1721 target_specific = get_target_table(vcpu->arch.target, false, &num);
1722 return kvm_handle_cp_64(vcpu,
1723 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1724 target_specific, num);
1727 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1729 const struct sys_reg_desc *target_specific;
1732 target_specific = get_target_table(vcpu->arch.target, false, &num);
1733 return kvm_handle_cp_32(vcpu,
1734 cp15_regs, ARRAY_SIZE(cp15_regs),
1735 target_specific, num);
1738 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1740 return kvm_handle_cp_64(vcpu,
1741 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1745 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1747 return kvm_handle_cp_32(vcpu,
1748 cp14_regs, ARRAY_SIZE(cp14_regs),
1752 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1753 struct sys_reg_params *params)
1756 const struct sys_reg_desc *table, *r;
1758 table = get_target_table(vcpu->arch.target, true, &num);
1760 /* Search target-specific then generic table. */
1761 r = find_reg(params, table, num);
1763 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1767 * Not having an accessor means that we have
1768 * configured a trap that we don't know how to
1769 * handle. This certainly qualifies as a gross bug
1770 * that should be fixed right away.
1774 if (likely(r->access(vcpu, params, r))) {
1775 /* Skip instruction, since it was emulated */
1776 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1779 /* If access function fails, it should complain. */
1781 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1783 print_sys_reg_instr(params);
1785 kvm_inject_undefined(vcpu);
1789 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1790 const struct sys_reg_desc *table, size_t num)
1794 for (i = 0; i < num; i++)
1796 table[i].reset(vcpu, &table[i]);
1800 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1801 * @vcpu: The VCPU pointer
1802 * @run: The kvm_run struct
1804 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1806 struct sys_reg_params params;
1807 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1808 int Rt = (esr >> 5) & 0x1f;
1811 trace_kvm_handle_sys_reg(esr);
1813 params.is_aarch32 = false;
1814 params.is_32bit = false;
1815 params.Op0 = (esr >> 20) & 3;
1816 params.Op1 = (esr >> 14) & 0x7;
1817 params.CRn = (esr >> 10) & 0xf;
1818 params.CRm = (esr >> 1) & 0xf;
1819 params.Op2 = (esr >> 17) & 0x7;
1820 params.regval = vcpu_get_reg(vcpu, Rt);
1821 params.is_write = !(esr & 1);
1823 ret = emulate_sys_reg(vcpu, ¶ms);
1825 if (!params.is_write)
1826 vcpu_set_reg(vcpu, Rt, params.regval);
1830 /******************************************************************************
1832 *****************************************************************************/
1834 static bool index_to_params(u64 id, struct sys_reg_params *params)
1836 switch (id & KVM_REG_SIZE_MASK) {
1837 case KVM_REG_SIZE_U64:
1838 /* Any unused index bits means it's not valid. */
1839 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1840 | KVM_REG_ARM_COPROC_MASK
1841 | KVM_REG_ARM64_SYSREG_OP0_MASK
1842 | KVM_REG_ARM64_SYSREG_OP1_MASK
1843 | KVM_REG_ARM64_SYSREG_CRN_MASK
1844 | KVM_REG_ARM64_SYSREG_CRM_MASK
1845 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1847 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1848 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1849 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1850 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1851 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1852 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1853 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1854 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1855 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1856 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1863 const struct sys_reg_desc *find_reg_by_id(u64 id,
1864 struct sys_reg_params *params,
1865 const struct sys_reg_desc table[],
1868 if (!index_to_params(id, params))
1871 return find_reg(params, table, num);
1874 /* Decode an index value, and find the sys_reg_desc entry. */
1875 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1879 const struct sys_reg_desc *table, *r;
1880 struct sys_reg_params params;
1882 /* We only do sys_reg for now. */
1883 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1886 table = get_target_table(vcpu->arch.target, true, &num);
1887 r = find_reg_by_id(id, ¶ms, table, num);
1889 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1891 /* Not saved in the sys_reg array? */
1899 * These are the invariant sys_reg registers: we let the guest see the
1900 * host versions of these, so they're part of the guest state.
1902 * A future CPU may provide a mechanism to present different values to
1903 * the guest, or a future kvm may trap them.
1906 #define FUNCTION_INVARIANT(reg) \
1907 static void get_##reg(struct kvm_vcpu *v, \
1908 const struct sys_reg_desc *r) \
1910 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1913 FUNCTION_INVARIANT(midr_el1)
1914 FUNCTION_INVARIANT(ctr_el0)
1915 FUNCTION_INVARIANT(revidr_el1)
1916 FUNCTION_INVARIANT(id_pfr0_el1)
1917 FUNCTION_INVARIANT(id_pfr1_el1)
1918 FUNCTION_INVARIANT(id_dfr0_el1)
1919 FUNCTION_INVARIANT(id_afr0_el1)
1920 FUNCTION_INVARIANT(id_mmfr0_el1)
1921 FUNCTION_INVARIANT(id_mmfr1_el1)
1922 FUNCTION_INVARIANT(id_mmfr2_el1)
1923 FUNCTION_INVARIANT(id_mmfr3_el1)
1924 FUNCTION_INVARIANT(id_isar0_el1)
1925 FUNCTION_INVARIANT(id_isar1_el1)
1926 FUNCTION_INVARIANT(id_isar2_el1)
1927 FUNCTION_INVARIANT(id_isar3_el1)
1928 FUNCTION_INVARIANT(id_isar4_el1)
1929 FUNCTION_INVARIANT(id_isar5_el1)
1930 FUNCTION_INVARIANT(clidr_el1)
1931 FUNCTION_INVARIANT(aidr_el1)
1933 /* ->val is filled in by kvm_sys_reg_table_init() */
1934 static struct sys_reg_desc invariant_sys_regs[] = {
1935 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1936 NULL, get_midr_el1 },
1937 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1938 NULL, get_revidr_el1 },
1939 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1940 NULL, get_id_pfr0_el1 },
1941 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1942 NULL, get_id_pfr1_el1 },
1943 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1944 NULL, get_id_dfr0_el1 },
1945 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1946 NULL, get_id_afr0_el1 },
1947 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1948 NULL, get_id_mmfr0_el1 },
1949 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1950 NULL, get_id_mmfr1_el1 },
1951 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1952 NULL, get_id_mmfr2_el1 },
1953 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1954 NULL, get_id_mmfr3_el1 },
1955 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1956 NULL, get_id_isar0_el1 },
1957 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1958 NULL, get_id_isar1_el1 },
1959 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1960 NULL, get_id_isar2_el1 },
1961 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1962 NULL, get_id_isar3_el1 },
1963 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1964 NULL, get_id_isar4_el1 },
1965 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1966 NULL, get_id_isar5_el1 },
1967 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1968 NULL, get_clidr_el1 },
1969 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1970 NULL, get_aidr_el1 },
1971 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1972 NULL, get_ctr_el0 },
1975 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1977 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1982 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1984 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1989 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1991 struct sys_reg_params params;
1992 const struct sys_reg_desc *r;
1994 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
1995 ARRAY_SIZE(invariant_sys_regs));
1999 return reg_to_user(uaddr, &r->val, id);
2002 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2004 struct sys_reg_params params;
2005 const struct sys_reg_desc *r;
2007 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2009 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2010 ARRAY_SIZE(invariant_sys_regs));
2014 err = reg_from_user(&val, uaddr, id);
2018 /* This is what we mean by invariant: you can't change it. */
2025 static bool is_valid_cache(u32 val)
2029 if (val >= CSSELR_MAX)
2032 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2034 ctype = (cache_levels >> (level * 3)) & 7;
2037 case 0: /* No cache */
2039 case 1: /* Instruction cache only */
2041 case 2: /* Data cache only */
2042 case 4: /* Unified cache */
2044 case 3: /* Separate instruction and data caches */
2046 default: /* Reserved: we can't know instruction or data. */
2051 static int demux_c15_get(u64 id, void __user *uaddr)
2054 u32 __user *uval = uaddr;
2056 /* Fail if we have unknown bits set. */
2057 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2058 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2061 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2062 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2063 if (KVM_REG_SIZE(id) != 4)
2065 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2066 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2067 if (!is_valid_cache(val))
2070 return put_user(get_ccsidr(val), uval);
2076 static int demux_c15_set(u64 id, void __user *uaddr)
2079 u32 __user *uval = uaddr;
2081 /* Fail if we have unknown bits set. */
2082 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2083 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2086 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2087 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2088 if (KVM_REG_SIZE(id) != 4)
2090 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2091 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2092 if (!is_valid_cache(val))
2095 if (get_user(newval, uval))
2098 /* This is also invariant: you can't change it. */
2099 if (newval != get_ccsidr(val))
2107 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2109 const struct sys_reg_desc *r;
2110 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2112 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2113 return demux_c15_get(reg->id, uaddr);
2115 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2118 r = index_to_sys_reg_desc(vcpu, reg->id);
2120 return get_invariant_sys_reg(reg->id, uaddr);
2123 return (r->get_user)(vcpu, r, reg, uaddr);
2125 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2128 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2130 const struct sys_reg_desc *r;
2131 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2133 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2134 return demux_c15_set(reg->id, uaddr);
2136 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2139 r = index_to_sys_reg_desc(vcpu, reg->id);
2141 return set_invariant_sys_reg(reg->id, uaddr);
2144 return (r->set_user)(vcpu, r, reg, uaddr);
2146 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2149 static unsigned int num_demux_regs(void)
2151 unsigned int i, count = 0;
2153 for (i = 0; i < CSSELR_MAX; i++)
2154 if (is_valid_cache(i))
2160 static int write_demux_regids(u64 __user *uindices)
2162 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2165 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2166 for (i = 0; i < CSSELR_MAX; i++) {
2167 if (!is_valid_cache(i))
2169 if (put_user(val | i, uindices))
2176 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2178 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2179 KVM_REG_ARM64_SYSREG |
2180 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2181 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2182 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2183 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2184 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2187 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2192 if (put_user(sys_reg_to_index(reg), *uind))
2199 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2200 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2202 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2203 unsigned int total = 0;
2206 /* We check for duplicates here, to allow arch-specific overrides. */
2207 i1 = get_target_table(vcpu->arch.target, true, &num);
2210 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2212 BUG_ON(i1 == end1 || i2 == end2);
2214 /* Walk carefully, as both tables may refer to the same register. */
2216 int cmp = cmp_sys_reg(i1, i2);
2217 /* target-specific overrides generic entry. */
2219 /* Ignore registers we trap but don't save. */
2221 if (!copy_reg_to_user(i1, &uind))
2226 /* Ignore registers we trap but don't save. */
2228 if (!copy_reg_to_user(i2, &uind))
2234 if (cmp <= 0 && ++i1 == end1)
2236 if (cmp >= 0 && ++i2 == end2)
2242 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2244 return ARRAY_SIZE(invariant_sys_regs)
2246 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2249 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2254 /* Then give them all the invariant registers' indices. */
2255 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2256 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2261 err = walk_sys_regs(vcpu, uindices);
2266 return write_demux_regids(uindices);
2269 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2273 for (i = 1; i < n; i++) {
2274 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2275 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2283 void kvm_sys_reg_table_init(void)
2286 struct sys_reg_desc clidr;
2288 /* Make sure tables are unique and in order. */
2289 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2290 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2291 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2292 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2293 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2294 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2296 /* We abuse the reset function to overwrite the table itself. */
2297 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2298 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2301 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2303 * If software reads the Cache Type fields from Ctype1
2304 * upwards, once it has seen a value of 0b000, no caches
2305 * exist at further-out levels of the hierarchy. So, for
2306 * example, if Ctype3 is the first Cache Type field with a
2307 * value of 0b000, the values of Ctype4 to Ctype7 must be
2310 get_clidr_el1(NULL, &clidr); /* Ugly... */
2311 cache_levels = clidr.val;
2312 for (i = 0; i < 7; i++)
2313 if (((cache_levels >> (i*3)) & 7) == 0)
2315 /* Clear all higher bits. */
2316 cache_levels &= (1 << (i*3))-1;
2320 * kvm_reset_sys_regs - sets system registers to reset value
2321 * @vcpu: The VCPU pointer
2323 * This function finds the right table above and sets the registers on the
2324 * virtual CPU struct to their architecturally defined reset values.
2326 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2329 const struct sys_reg_desc *table;
2331 /* Catch someone adding a register without putting in reset entry. */
2332 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2334 /* Generic chip reset first (so target could override). */
2335 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2337 table = get_target_table(vcpu->arch.target, true, &num);
2338 reset_sys_reg_descs(vcpu, table, num);
2340 for (num = 1; num < NR_SYS_REGS; num++)
2341 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2342 panic("Didn't reset vcpu_sys_reg(%zi)", num);