]> Git Repo - linux.git/blob - arch/arm64/kvm/sys_regs.c
drivers, usb: convert ffs_data.ref from atomic_t to refcount_t
[linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <[email protected]>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <[email protected]>
8  *          Christoffer Dall <[email protected]>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48  * All of this file is extremly similar to the ARM coproc.c, but the
49  * types are different. My gut feeling is that it should be pretty
50  * easy to merge, but that would be an ABI breakage -- again. VFP
51  * would also need to be abstracted.
52  *
53  * For AArch32, we only take care of what is being trapped. Anything
54  * that has to do with init and userspace access has to go via the
55  * 64bit interface.
56  */
57
58 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59 static u32 cache_levels;
60
61 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
62 #define CSSELR_MAX 12
63
64 /* Which cache CCSIDR represents depends on CSSELR value. */
65 static u32 get_ccsidr(u32 csselr)
66 {
67         u32 ccsidr;
68
69         /* Make sure noone else changes CSSELR during this! */
70         local_irq_disable();
71         write_sysreg(csselr, csselr_el1);
72         isb();
73         ccsidr = read_sysreg(ccsidr_el1);
74         local_irq_enable();
75
76         return ccsidr;
77 }
78
79 /*
80  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
81  */
82 static bool access_dcsw(struct kvm_vcpu *vcpu,
83                         struct sys_reg_params *p,
84                         const struct sys_reg_desc *r)
85 {
86         if (!p->is_write)
87                 return read_from_write_only(vcpu, p);
88
89         kvm_set_way_flush(vcpu);
90         return true;
91 }
92
93 /*
94  * Generic accessor for VM registers. Only called as long as HCR_TVM
95  * is set. If the guest enables the MMU, we stop trapping the VM
96  * sys_regs and leave it in complete control of the caches.
97  */
98 static bool access_vm_reg(struct kvm_vcpu *vcpu,
99                           struct sys_reg_params *p,
100                           const struct sys_reg_desc *r)
101 {
102         bool was_enabled = vcpu_has_cache_enabled(vcpu);
103
104         BUG_ON(!p->is_write);
105
106         if (!p->is_aarch32) {
107                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
108         } else {
109                 if (!p->is_32bit)
110                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112         }
113
114         kvm_toggle_cache(vcpu, was_enabled);
115         return true;
116 }
117
118 /*
119  * Trap handler for the GICv3 SGI generation system register.
120  * Forward the request to the VGIC emulation.
121  * The cp15_64 code makes sure this automatically works
122  * for both AArch64 and AArch32 accesses.
123  */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125                            struct sys_reg_params *p,
126                            const struct sys_reg_desc *r)
127 {
128         if (!p->is_write)
129                 return read_from_write_only(vcpu, p);
130
131         vgic_v3_dispatch_sgi(vcpu, p->regval);
132
133         return true;
134 }
135
136 static bool access_gic_sre(struct kvm_vcpu *vcpu,
137                            struct sys_reg_params *p,
138                            const struct sys_reg_desc *r)
139 {
140         if (p->is_write)
141                 return ignore_write(vcpu, p);
142
143         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
144         return true;
145 }
146
147 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148                         struct sys_reg_params *p,
149                         const struct sys_reg_desc *r)
150 {
151         if (p->is_write)
152                 return ignore_write(vcpu, p);
153         else
154                 return read_zero(vcpu, p);
155 }
156
157 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158                            struct sys_reg_params *p,
159                            const struct sys_reg_desc *r)
160 {
161         if (p->is_write) {
162                 return ignore_write(vcpu, p);
163         } else {
164                 p->regval = (1 << 3);
165                 return true;
166         }
167 }
168
169 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170                                    struct sys_reg_params *p,
171                                    const struct sys_reg_desc *r)
172 {
173         if (p->is_write) {
174                 return ignore_write(vcpu, p);
175         } else {
176                 p->regval = read_sysreg(dbgauthstatus_el1);
177                 return true;
178         }
179 }
180
181 /*
182  * We want to avoid world-switching all the DBG registers all the
183  * time:
184  * 
185  * - If we've touched any debug register, it is likely that we're
186  *   going to touch more of them. It then makes sense to disable the
187  *   traps and start doing the save/restore dance
188  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189  *   then mandatory to save/restore the registers, as the guest
190  *   depends on them.
191  * 
192  * For this, we use a DIRTY bit, indicating the guest has modified the
193  * debug registers, used as follow:
194  *
195  * On guest entry:
196  * - If the dirty bit is set (because we're coming back from trapping),
197  *   disable the traps, save host registers, restore guest registers.
198  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199  *   set the dirty bit, disable the traps, save host registers,
200  *   restore guest registers.
201  * - Otherwise, enable the traps
202  *
203  * On guest exit:
204  * - If the dirty bit is set, save guest registers, restore host
205  *   registers and clear the dirty bit. This ensure that the host can
206  *   now use the debug registers.
207  */
208 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209                             struct sys_reg_params *p,
210                             const struct sys_reg_desc *r)
211 {
212         if (p->is_write) {
213                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
214                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
215         } else {
216                 p->regval = vcpu_sys_reg(vcpu, r->reg);
217         }
218
219         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
220
221         return true;
222 }
223
224 /*
225  * reg_to_dbg/dbg_to_reg
226  *
227  * A 32 bit write to a debug register leave top bits alone
228  * A 32 bit read from a debug register only returns the bottom bits
229  *
230  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231  * hyp.S code switches between host and guest values in future.
232  */
233 static void reg_to_dbg(struct kvm_vcpu *vcpu,
234                        struct sys_reg_params *p,
235                        u64 *dbg_reg)
236 {
237         u64 val = p->regval;
238
239         if (p->is_32bit) {
240                 val &= 0xffffffffUL;
241                 val |= ((*dbg_reg >> 32) << 32);
242         }
243
244         *dbg_reg = val;
245         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
246 }
247
248 static void dbg_to_reg(struct kvm_vcpu *vcpu,
249                        struct sys_reg_params *p,
250                        u64 *dbg_reg)
251 {
252         p->regval = *dbg_reg;
253         if (p->is_32bit)
254                 p->regval &= 0xffffffffUL;
255 }
256
257 static bool trap_bvr(struct kvm_vcpu *vcpu,
258                      struct sys_reg_params *p,
259                      const struct sys_reg_desc *rd)
260 {
261         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
262
263         if (p->is_write)
264                 reg_to_dbg(vcpu, p, dbg_reg);
265         else
266                 dbg_to_reg(vcpu, p, dbg_reg);
267
268         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
269
270         return true;
271 }
272
273 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274                 const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
279                 return -EFAULT;
280         return 0;
281 }
282
283 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284         const struct kvm_one_reg *reg, void __user *uaddr)
285 {
286         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287
288         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
289                 return -EFAULT;
290         return 0;
291 }
292
293 static void reset_bvr(struct kvm_vcpu *vcpu,
294                       const struct sys_reg_desc *rd)
295 {
296         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
297 }
298
299 static bool trap_bcr(struct kvm_vcpu *vcpu,
300                      struct sys_reg_params *p,
301                      const struct sys_reg_desc *rd)
302 {
303         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
304
305         if (p->is_write)
306                 reg_to_dbg(vcpu, p, dbg_reg);
307         else
308                 dbg_to_reg(vcpu, p, dbg_reg);
309
310         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
311
312         return true;
313 }
314
315 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316                 const struct kvm_one_reg *reg, void __user *uaddr)
317 {
318         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
320         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
321                 return -EFAULT;
322
323         return 0;
324 }
325
326 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327         const struct kvm_one_reg *reg, void __user *uaddr)
328 {
329         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
330
331         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
332                 return -EFAULT;
333         return 0;
334 }
335
336 static void reset_bcr(struct kvm_vcpu *vcpu,
337                       const struct sys_reg_desc *rd)
338 {
339         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
340 }
341
342 static bool trap_wvr(struct kvm_vcpu *vcpu,
343                      struct sys_reg_params *p,
344                      const struct sys_reg_desc *rd)
345 {
346         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
347
348         if (p->is_write)
349                 reg_to_dbg(vcpu, p, dbg_reg);
350         else
351                 dbg_to_reg(vcpu, p, dbg_reg);
352
353         trace_trap_reg(__func__, rd->reg, p->is_write,
354                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
355
356         return true;
357 }
358
359 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360                 const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
365                 return -EFAULT;
366         return 0;
367 }
368
369 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370         const struct kvm_one_reg *reg, void __user *uaddr)
371 {
372         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373
374         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
375                 return -EFAULT;
376         return 0;
377 }
378
379 static void reset_wvr(struct kvm_vcpu *vcpu,
380                       const struct sys_reg_desc *rd)
381 {
382         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
383 }
384
385 static bool trap_wcr(struct kvm_vcpu *vcpu,
386                      struct sys_reg_params *p,
387                      const struct sys_reg_desc *rd)
388 {
389         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
390
391         if (p->is_write)
392                 reg_to_dbg(vcpu, p, dbg_reg);
393         else
394                 dbg_to_reg(vcpu, p, dbg_reg);
395
396         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
397
398         return true;
399 }
400
401 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402                 const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
407                 return -EFAULT;
408         return 0;
409 }
410
411 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412         const struct kvm_one_reg *reg, void __user *uaddr)
413 {
414         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415
416         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
417                 return -EFAULT;
418         return 0;
419 }
420
421 static void reset_wcr(struct kvm_vcpu *vcpu,
422                       const struct sys_reg_desc *rd)
423 {
424         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
425 }
426
427 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429         vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434         u64 mpidr;
435
436         /*
437          * Map the vcpu_id into the first three affinity level fields of
438          * the MPIDR. We limit the number of VCPUs in level 0 due to a
439          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440          * of the GICv3 to be able to address each CPU directly when
441          * sending IPIs.
442          */
443         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
450 {
451         u64 pmcr, val;
452
453         pmcr = read_sysreg(pmcr_el0);
454         /*
455          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456          * except PMCR.E resetting to zero.
457          */
458         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
461 }
462
463 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
464 {
465         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466
467         return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
468 }
469
470 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
471 {
472         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
473
474         return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475                  || vcpu_mode_priv(vcpu));
476 }
477
478 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
479 {
480         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
481
482         return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483                  || vcpu_mode_priv(vcpu));
484 }
485
486 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
487 {
488         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
489
490         return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491                  || vcpu_mode_priv(vcpu));
492 }
493
494 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495                         const struct sys_reg_desc *r)
496 {
497         u64 val;
498
499         if (!kvm_arm_pmu_v3_ready(vcpu))
500                 return trap_raz_wi(vcpu, p, r);
501
502         if (pmu_access_el0_disabled(vcpu))
503                 return false;
504
505         if (p->is_write) {
506                 /* Only update writeable bits of PMCR */
507                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
508                 val &= ~ARMV8_PMU_PMCR_MASK;
509                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
510                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
511                 kvm_pmu_handle_pmcr(vcpu, val);
512         } else {
513                 /* PMCR.P & PMCR.C are RAZ */
514                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
515                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
516                 p->regval = val;
517         }
518
519         return true;
520 }
521
522 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523                           const struct sys_reg_desc *r)
524 {
525         if (!kvm_arm_pmu_v3_ready(vcpu))
526                 return trap_raz_wi(vcpu, p, r);
527
528         if (pmu_access_event_counter_el0_disabled(vcpu))
529                 return false;
530
531         if (p->is_write)
532                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
533         else
534                 /* return PMSELR.SEL field */
535                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536                             & ARMV8_PMU_COUNTER_MASK;
537
538         return true;
539 }
540
541 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542                           const struct sys_reg_desc *r)
543 {
544         u64 pmceid;
545
546         if (!kvm_arm_pmu_v3_ready(vcpu))
547                 return trap_raz_wi(vcpu, p, r);
548
549         BUG_ON(p->is_write);
550
551         if (pmu_access_el0_disabled(vcpu))
552                 return false;
553
554         if (!(p->Op2 & 1))
555                 pmceid = read_sysreg(pmceid0_el0);
556         else
557                 pmceid = read_sysreg(pmceid1_el0);
558
559         p->regval = pmceid;
560
561         return true;
562 }
563
564 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
565 {
566         u64 pmcr, val;
567
568         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
571                 return false;
572
573         return true;
574 }
575
576 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577                               struct sys_reg_params *p,
578                               const struct sys_reg_desc *r)
579 {
580         u64 idx;
581
582         if (!kvm_arm_pmu_v3_ready(vcpu))
583                 return trap_raz_wi(vcpu, p, r);
584
585         if (r->CRn == 9 && r->CRm == 13) {
586                 if (r->Op2 == 2) {
587                         /* PMXEVCNTR_EL0 */
588                         if (pmu_access_event_counter_el0_disabled(vcpu))
589                                 return false;
590
591                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592                               & ARMV8_PMU_COUNTER_MASK;
593                 } else if (r->Op2 == 0) {
594                         /* PMCCNTR_EL0 */
595                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
596                                 return false;
597
598                         idx = ARMV8_PMU_CYCLE_IDX;
599                 } else {
600                         return false;
601                 }
602         } else if (r->CRn == 0 && r->CRm == 9) {
603                 /* PMCCNTR */
604                 if (pmu_access_event_counter_el0_disabled(vcpu))
605                         return false;
606
607                 idx = ARMV8_PMU_CYCLE_IDX;
608         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
609                 /* PMEVCNTRn_EL0 */
610                 if (pmu_access_event_counter_el0_disabled(vcpu))
611                         return false;
612
613                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
614         } else {
615                 return false;
616         }
617
618         if (!pmu_counter_idx_valid(vcpu, idx))
619                 return false;
620
621         if (p->is_write) {
622                 if (pmu_access_el0_disabled(vcpu))
623                         return false;
624
625                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
626         } else {
627                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
628         }
629
630         return true;
631 }
632
633 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
634                                const struct sys_reg_desc *r)
635 {
636         u64 idx, reg;
637
638         if (!kvm_arm_pmu_v3_ready(vcpu))
639                 return trap_raz_wi(vcpu, p, r);
640
641         if (pmu_access_el0_disabled(vcpu))
642                 return false;
643
644         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
645                 /* PMXEVTYPER_EL0 */
646                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
647                 reg = PMEVTYPER0_EL0 + idx;
648         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
649                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
650                 if (idx == ARMV8_PMU_CYCLE_IDX)
651                         reg = PMCCFILTR_EL0;
652                 else
653                         /* PMEVTYPERn_EL0 */
654                         reg = PMEVTYPER0_EL0 + idx;
655         } else {
656                 BUG();
657         }
658
659         if (!pmu_counter_idx_valid(vcpu, idx))
660                 return false;
661
662         if (p->is_write) {
663                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
664                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
665         } else {
666                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
667         }
668
669         return true;
670 }
671
672 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
673                            const struct sys_reg_desc *r)
674 {
675         u64 val, mask;
676
677         if (!kvm_arm_pmu_v3_ready(vcpu))
678                 return trap_raz_wi(vcpu, p, r);
679
680         if (pmu_access_el0_disabled(vcpu))
681                 return false;
682
683         mask = kvm_pmu_valid_counter_mask(vcpu);
684         if (p->is_write) {
685                 val = p->regval & mask;
686                 if (r->Op2 & 0x1) {
687                         /* accessing PMCNTENSET_EL0 */
688                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
689                         kvm_pmu_enable_counter(vcpu, val);
690                 } else {
691                         /* accessing PMCNTENCLR_EL0 */
692                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
693                         kvm_pmu_disable_counter(vcpu, val);
694                 }
695         } else {
696                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
697         }
698
699         return true;
700 }
701
702 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703                            const struct sys_reg_desc *r)
704 {
705         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
706
707         if (!kvm_arm_pmu_v3_ready(vcpu))
708                 return trap_raz_wi(vcpu, p, r);
709
710         if (!vcpu_mode_priv(vcpu))
711                 return false;
712
713         if (p->is_write) {
714                 u64 val = p->regval & mask;
715
716                 if (r->Op2 & 0x1)
717                         /* accessing PMINTENSET_EL1 */
718                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
719                 else
720                         /* accessing PMINTENCLR_EL1 */
721                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
722         } else {
723                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
724         }
725
726         return true;
727 }
728
729 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
730                          const struct sys_reg_desc *r)
731 {
732         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
733
734         if (!kvm_arm_pmu_v3_ready(vcpu))
735                 return trap_raz_wi(vcpu, p, r);
736
737         if (pmu_access_el0_disabled(vcpu))
738                 return false;
739
740         if (p->is_write) {
741                 if (r->CRm & 0x2)
742                         /* accessing PMOVSSET_EL0 */
743                         kvm_pmu_overflow_set(vcpu, p->regval & mask);
744                 else
745                         /* accessing PMOVSCLR_EL0 */
746                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
747         } else {
748                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
749         }
750
751         return true;
752 }
753
754 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
755                            const struct sys_reg_desc *r)
756 {
757         u64 mask;
758
759         if (!kvm_arm_pmu_v3_ready(vcpu))
760                 return trap_raz_wi(vcpu, p, r);
761
762         if (pmu_write_swinc_el0_disabled(vcpu))
763                 return false;
764
765         if (p->is_write) {
766                 mask = kvm_pmu_valid_counter_mask(vcpu);
767                 kvm_pmu_software_increment(vcpu, p->regval & mask);
768                 return true;
769         }
770
771         return false;
772 }
773
774 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
775                              const struct sys_reg_desc *r)
776 {
777         if (!kvm_arm_pmu_v3_ready(vcpu))
778                 return trap_raz_wi(vcpu, p, r);
779
780         if (p->is_write) {
781                 if (!vcpu_mode_priv(vcpu))
782                         return false;
783
784                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
785                                                     & ARMV8_PMU_USERENR_MASK;
786         } else {
787                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
788                             & ARMV8_PMU_USERENR_MASK;
789         }
790
791         return true;
792 }
793
794 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
795 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
796         /* DBGBVRn_EL1 */                                               \
797         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
798           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
799         /* DBGBCRn_EL1 */                                               \
800         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
801           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
802         /* DBGWVRn_EL1 */                                               \
803         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
804           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
805         /* DBGWCRn_EL1 */                                               \
806         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
807           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
808
809 /* Macro to expand the PMEVCNTRn_EL0 register */
810 #define PMU_PMEVCNTR_EL0(n)                                             \
811         /* PMEVCNTRn_EL0 */                                             \
812         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
813           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
814           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
815
816 /* Macro to expand the PMEVTYPERn_EL0 register */
817 #define PMU_PMEVTYPER_EL0(n)                                            \
818         /* PMEVTYPERn_EL0 */                                            \
819         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
820           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
821           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
822
823 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
824                 struct sys_reg_params *p,
825                 const struct sys_reg_desc *r)
826 {
827         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
828         u64 now = kvm_phys_timer_read();
829
830         if (p->is_write)
831                 ptimer->cnt_cval = p->regval + now;
832         else
833                 p->regval = ptimer->cnt_cval - now;
834
835         return true;
836 }
837
838 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
839                 struct sys_reg_params *p,
840                 const struct sys_reg_desc *r)
841 {
842         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
843
844         if (p->is_write) {
845                 /* ISTATUS bit is read-only */
846                 ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
847         } else {
848                 u64 now = kvm_phys_timer_read();
849
850                 p->regval = ptimer->cnt_ctl;
851                 /*
852                  * Set ISTATUS bit if it's expired.
853                  * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
854                  * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
855                  * regardless of ENABLE bit for our implementation convenience.
856                  */
857                 if (ptimer->cnt_cval <= now)
858                         p->regval |= ARCH_TIMER_CTRL_IT_STAT;
859         }
860
861         return true;
862 }
863
864 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
865                 struct sys_reg_params *p,
866                 const struct sys_reg_desc *r)
867 {
868         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
869
870         if (p->is_write)
871                 ptimer->cnt_cval = p->regval;
872         else
873                 p->regval = ptimer->cnt_cval;
874
875         return true;
876 }
877
878 /*
879  * Architected system registers.
880  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
881  *
882  * Debug handling: We do trap most, if not all debug related system
883  * registers. The implementation is good enough to ensure that a guest
884  * can use these with minimal performance degradation. The drawback is
885  * that we don't implement any of the external debug, none of the
886  * OSlock protocol. This should be revisited if we ever encounter a
887  * more demanding guest...
888  */
889 static const struct sys_reg_desc sys_reg_descs[] = {
890         /* DC ISW */
891         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
892           access_dcsw },
893         /* DC CSW */
894         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
895           access_dcsw },
896         /* DC CISW */
897         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
898           access_dcsw },
899
900         DBG_BCR_BVR_WCR_WVR_EL1(0),
901         DBG_BCR_BVR_WCR_WVR_EL1(1),
902         /* MDCCINT_EL1 */
903         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
904           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
905         /* MDSCR_EL1 */
906         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
907           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
908         DBG_BCR_BVR_WCR_WVR_EL1(2),
909         DBG_BCR_BVR_WCR_WVR_EL1(3),
910         DBG_BCR_BVR_WCR_WVR_EL1(4),
911         DBG_BCR_BVR_WCR_WVR_EL1(5),
912         DBG_BCR_BVR_WCR_WVR_EL1(6),
913         DBG_BCR_BVR_WCR_WVR_EL1(7),
914         DBG_BCR_BVR_WCR_WVR_EL1(8),
915         DBG_BCR_BVR_WCR_WVR_EL1(9),
916         DBG_BCR_BVR_WCR_WVR_EL1(10),
917         DBG_BCR_BVR_WCR_WVR_EL1(11),
918         DBG_BCR_BVR_WCR_WVR_EL1(12),
919         DBG_BCR_BVR_WCR_WVR_EL1(13),
920         DBG_BCR_BVR_WCR_WVR_EL1(14),
921         DBG_BCR_BVR_WCR_WVR_EL1(15),
922
923         /* MDRAR_EL1 */
924         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
925           trap_raz_wi },
926         /* OSLAR_EL1 */
927         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
928           trap_raz_wi },
929         /* OSLSR_EL1 */
930         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
931           trap_oslsr_el1 },
932         /* OSDLR_EL1 */
933         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
934           trap_raz_wi },
935         /* DBGPRCR_EL1 */
936         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
937           trap_raz_wi },
938         /* DBGCLAIMSET_EL1 */
939         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
940           trap_raz_wi },
941         /* DBGCLAIMCLR_EL1 */
942         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
943           trap_raz_wi },
944         /* DBGAUTHSTATUS_EL1 */
945         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
946           trap_dbgauthstatus_el1 },
947
948         /* MDCCSR_EL1 */
949         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
950           trap_raz_wi },
951         /* DBGDTR_EL0 */
952         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
953           trap_raz_wi },
954         /* DBGDTR[TR]X_EL0 */
955         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
956           trap_raz_wi },
957
958         /* DBGVCR32_EL2 */
959         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
960           NULL, reset_val, DBGVCR32_EL2, 0 },
961
962         /* MPIDR_EL1 */
963         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
964           NULL, reset_mpidr, MPIDR_EL1 },
965         /* SCTLR_EL1 */
966         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
967           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
968         /* CPACR_EL1 */
969         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
970           NULL, reset_val, CPACR_EL1, 0 },
971         /* TTBR0_EL1 */
972         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
973           access_vm_reg, reset_unknown, TTBR0_EL1 },
974         /* TTBR1_EL1 */
975         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
976           access_vm_reg, reset_unknown, TTBR1_EL1 },
977         /* TCR_EL1 */
978         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
979           access_vm_reg, reset_val, TCR_EL1, 0 },
980
981         /* AFSR0_EL1 */
982         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
983           access_vm_reg, reset_unknown, AFSR0_EL1 },
984         /* AFSR1_EL1 */
985         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
986           access_vm_reg, reset_unknown, AFSR1_EL1 },
987         /* ESR_EL1 */
988         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
989           access_vm_reg, reset_unknown, ESR_EL1 },
990         /* FAR_EL1 */
991         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
992           access_vm_reg, reset_unknown, FAR_EL1 },
993         /* PAR_EL1 */
994         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
995           NULL, reset_unknown, PAR_EL1 },
996
997         /* PMINTENSET_EL1 */
998         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
999           access_pminten, reset_unknown, PMINTENSET_EL1 },
1000         /* PMINTENCLR_EL1 */
1001         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
1002           access_pminten, NULL, PMINTENSET_EL1 },
1003
1004         /* MAIR_EL1 */
1005         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
1006           access_vm_reg, reset_unknown, MAIR_EL1 },
1007         /* AMAIR_EL1 */
1008         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
1009           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1010
1011         /* VBAR_EL1 */
1012         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
1013           NULL, reset_val, VBAR_EL1, 0 },
1014
1015         /* ICC_SGI1R_EL1 */
1016         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
1017           access_gic_sgi },
1018         /* ICC_SRE_EL1 */
1019         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
1020           access_gic_sre },
1021
1022         /* CONTEXTIDR_EL1 */
1023         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
1024           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1025         /* TPIDR_EL1 */
1026         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
1027           NULL, reset_unknown, TPIDR_EL1 },
1028
1029         /* CNTKCTL_EL1 */
1030         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
1031           NULL, reset_val, CNTKCTL_EL1, 0},
1032
1033         /* CSSELR_EL1 */
1034         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
1035           NULL, reset_unknown, CSSELR_EL1 },
1036
1037         /* PMCR_EL0 */
1038         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
1039           access_pmcr, reset_pmcr, },
1040         /* PMCNTENSET_EL0 */
1041         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
1042           access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1043         /* PMCNTENCLR_EL0 */
1044         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
1045           access_pmcnten, NULL, PMCNTENSET_EL0 },
1046         /* PMOVSCLR_EL0 */
1047         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1048           access_pmovs, NULL, PMOVSSET_EL0 },
1049         /* PMSWINC_EL0 */
1050         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1051           access_pmswinc, reset_unknown, PMSWINC_EL0 },
1052         /* PMSELR_EL0 */
1053         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1054           access_pmselr, reset_unknown, PMSELR_EL0 },
1055         /* PMCEID0_EL0 */
1056         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1057           access_pmceid },
1058         /* PMCEID1_EL0 */
1059         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1060           access_pmceid },
1061         /* PMCCNTR_EL0 */
1062         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1063           access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1064         /* PMXEVTYPER_EL0 */
1065         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1066           access_pmu_evtyper },
1067         /* PMXEVCNTR_EL0 */
1068         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1069           access_pmu_evcntr },
1070         /* PMUSERENR_EL0
1071          * This register resets as unknown in 64bit mode while it resets as zero
1072          * in 32bit mode. Here we choose to reset it as zero for consistency.
1073          */
1074         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1075           access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1076         /* PMOVSSET_EL0 */
1077         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1078           access_pmovs, reset_unknown, PMOVSSET_EL0 },
1079
1080         /* TPIDR_EL0 */
1081         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1082           NULL, reset_unknown, TPIDR_EL0 },
1083         /* TPIDRRO_EL0 */
1084         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1085           NULL, reset_unknown, TPIDRRO_EL0 },
1086
1087         /* CNTP_TVAL_EL0 */
1088         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b000),
1089           access_cntp_tval },
1090         /* CNTP_CTL_EL0 */
1091         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b001),
1092           access_cntp_ctl },
1093         /* CNTP_CVAL_EL0 */
1094         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b010),
1095           access_cntp_cval },
1096
1097         /* PMEVCNTRn_EL0 */
1098         PMU_PMEVCNTR_EL0(0),
1099         PMU_PMEVCNTR_EL0(1),
1100         PMU_PMEVCNTR_EL0(2),
1101         PMU_PMEVCNTR_EL0(3),
1102         PMU_PMEVCNTR_EL0(4),
1103         PMU_PMEVCNTR_EL0(5),
1104         PMU_PMEVCNTR_EL0(6),
1105         PMU_PMEVCNTR_EL0(7),
1106         PMU_PMEVCNTR_EL0(8),
1107         PMU_PMEVCNTR_EL0(9),
1108         PMU_PMEVCNTR_EL0(10),
1109         PMU_PMEVCNTR_EL0(11),
1110         PMU_PMEVCNTR_EL0(12),
1111         PMU_PMEVCNTR_EL0(13),
1112         PMU_PMEVCNTR_EL0(14),
1113         PMU_PMEVCNTR_EL0(15),
1114         PMU_PMEVCNTR_EL0(16),
1115         PMU_PMEVCNTR_EL0(17),
1116         PMU_PMEVCNTR_EL0(18),
1117         PMU_PMEVCNTR_EL0(19),
1118         PMU_PMEVCNTR_EL0(20),
1119         PMU_PMEVCNTR_EL0(21),
1120         PMU_PMEVCNTR_EL0(22),
1121         PMU_PMEVCNTR_EL0(23),
1122         PMU_PMEVCNTR_EL0(24),
1123         PMU_PMEVCNTR_EL0(25),
1124         PMU_PMEVCNTR_EL0(26),
1125         PMU_PMEVCNTR_EL0(27),
1126         PMU_PMEVCNTR_EL0(28),
1127         PMU_PMEVCNTR_EL0(29),
1128         PMU_PMEVCNTR_EL0(30),
1129         /* PMEVTYPERn_EL0 */
1130         PMU_PMEVTYPER_EL0(0),
1131         PMU_PMEVTYPER_EL0(1),
1132         PMU_PMEVTYPER_EL0(2),
1133         PMU_PMEVTYPER_EL0(3),
1134         PMU_PMEVTYPER_EL0(4),
1135         PMU_PMEVTYPER_EL0(5),
1136         PMU_PMEVTYPER_EL0(6),
1137         PMU_PMEVTYPER_EL0(7),
1138         PMU_PMEVTYPER_EL0(8),
1139         PMU_PMEVTYPER_EL0(9),
1140         PMU_PMEVTYPER_EL0(10),
1141         PMU_PMEVTYPER_EL0(11),
1142         PMU_PMEVTYPER_EL0(12),
1143         PMU_PMEVTYPER_EL0(13),
1144         PMU_PMEVTYPER_EL0(14),
1145         PMU_PMEVTYPER_EL0(15),
1146         PMU_PMEVTYPER_EL0(16),
1147         PMU_PMEVTYPER_EL0(17),
1148         PMU_PMEVTYPER_EL0(18),
1149         PMU_PMEVTYPER_EL0(19),
1150         PMU_PMEVTYPER_EL0(20),
1151         PMU_PMEVTYPER_EL0(21),
1152         PMU_PMEVTYPER_EL0(22),
1153         PMU_PMEVTYPER_EL0(23),
1154         PMU_PMEVTYPER_EL0(24),
1155         PMU_PMEVTYPER_EL0(25),
1156         PMU_PMEVTYPER_EL0(26),
1157         PMU_PMEVTYPER_EL0(27),
1158         PMU_PMEVTYPER_EL0(28),
1159         PMU_PMEVTYPER_EL0(29),
1160         PMU_PMEVTYPER_EL0(30),
1161         /* PMCCFILTR_EL0
1162          * This register resets as unknown in 64bit mode while it resets as zero
1163          * in 32bit mode. Here we choose to reset it as zero for consistency.
1164          */
1165         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1166           access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1167
1168         /* DACR32_EL2 */
1169         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1170           NULL, reset_unknown, DACR32_EL2 },
1171         /* IFSR32_EL2 */
1172         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1173           NULL, reset_unknown, IFSR32_EL2 },
1174         /* FPEXC32_EL2 */
1175         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1176           NULL, reset_val, FPEXC32_EL2, 0x70 },
1177 };
1178
1179 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1180                         struct sys_reg_params *p,
1181                         const struct sys_reg_desc *r)
1182 {
1183         if (p->is_write) {
1184                 return ignore_write(vcpu, p);
1185         } else {
1186                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1187                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1188                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1189
1190                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1191                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1192                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1193                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1194                 return true;
1195         }
1196 }
1197
1198 static bool trap_debug32(struct kvm_vcpu *vcpu,
1199                          struct sys_reg_params *p,
1200                          const struct sys_reg_desc *r)
1201 {
1202         if (p->is_write) {
1203                 vcpu_cp14(vcpu, r->reg) = p->regval;
1204                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1205         } else {
1206                 p->regval = vcpu_cp14(vcpu, r->reg);
1207         }
1208
1209         return true;
1210 }
1211
1212 /* AArch32 debug register mappings
1213  *
1214  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1215  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1216  *
1217  * All control registers and watchpoint value registers are mapped to
1218  * the lower 32 bits of their AArch64 equivalents. We share the trap
1219  * handlers with the above AArch64 code which checks what mode the
1220  * system is in.
1221  */
1222
1223 static bool trap_xvr(struct kvm_vcpu *vcpu,
1224                      struct sys_reg_params *p,
1225                      const struct sys_reg_desc *rd)
1226 {
1227         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1228
1229         if (p->is_write) {
1230                 u64 val = *dbg_reg;
1231
1232                 val &= 0xffffffffUL;
1233                 val |= p->regval << 32;
1234                 *dbg_reg = val;
1235
1236                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1237         } else {
1238                 p->regval = *dbg_reg >> 32;
1239         }
1240
1241         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1242
1243         return true;
1244 }
1245
1246 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1247         /* DBGBVRn */                                                   \
1248         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1249         /* DBGBCRn */                                                   \
1250         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1251         /* DBGWVRn */                                                   \
1252         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1253         /* DBGWCRn */                                                   \
1254         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1255
1256 #define DBGBXVR(n)                                                      \
1257         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1258
1259 /*
1260  * Trapped cp14 registers. We generally ignore most of the external
1261  * debug, on the principle that they don't really make sense to a
1262  * guest. Revisit this one day, would this principle change.
1263  */
1264 static const struct sys_reg_desc cp14_regs[] = {
1265         /* DBGIDR */
1266         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1267         /* DBGDTRRXext */
1268         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1269
1270         DBG_BCR_BVR_WCR_WVR(0),
1271         /* DBGDSCRint */
1272         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1273         DBG_BCR_BVR_WCR_WVR(1),
1274         /* DBGDCCINT */
1275         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1276         /* DBGDSCRext */
1277         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1278         DBG_BCR_BVR_WCR_WVR(2),
1279         /* DBGDTR[RT]Xint */
1280         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1281         /* DBGDTR[RT]Xext */
1282         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1283         DBG_BCR_BVR_WCR_WVR(3),
1284         DBG_BCR_BVR_WCR_WVR(4),
1285         DBG_BCR_BVR_WCR_WVR(5),
1286         /* DBGWFAR */
1287         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1288         /* DBGOSECCR */
1289         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1290         DBG_BCR_BVR_WCR_WVR(6),
1291         /* DBGVCR */
1292         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1293         DBG_BCR_BVR_WCR_WVR(7),
1294         DBG_BCR_BVR_WCR_WVR(8),
1295         DBG_BCR_BVR_WCR_WVR(9),
1296         DBG_BCR_BVR_WCR_WVR(10),
1297         DBG_BCR_BVR_WCR_WVR(11),
1298         DBG_BCR_BVR_WCR_WVR(12),
1299         DBG_BCR_BVR_WCR_WVR(13),
1300         DBG_BCR_BVR_WCR_WVR(14),
1301         DBG_BCR_BVR_WCR_WVR(15),
1302
1303         /* DBGDRAR (32bit) */
1304         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1305
1306         DBGBXVR(0),
1307         /* DBGOSLAR */
1308         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1309         DBGBXVR(1),
1310         /* DBGOSLSR */
1311         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1312         DBGBXVR(2),
1313         DBGBXVR(3),
1314         /* DBGOSDLR */
1315         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1316         DBGBXVR(4),
1317         /* DBGPRCR */
1318         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1319         DBGBXVR(5),
1320         DBGBXVR(6),
1321         DBGBXVR(7),
1322         DBGBXVR(8),
1323         DBGBXVR(9),
1324         DBGBXVR(10),
1325         DBGBXVR(11),
1326         DBGBXVR(12),
1327         DBGBXVR(13),
1328         DBGBXVR(14),
1329         DBGBXVR(15),
1330
1331         /* DBGDSAR (32bit) */
1332         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1333
1334         /* DBGDEVID2 */
1335         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1336         /* DBGDEVID1 */
1337         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1338         /* DBGDEVID */
1339         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1340         /* DBGCLAIMSET */
1341         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1342         /* DBGCLAIMCLR */
1343         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1344         /* DBGAUTHSTATUS */
1345         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1346 };
1347
1348 /* Trapped cp14 64bit registers */
1349 static const struct sys_reg_desc cp14_64_regs[] = {
1350         /* DBGDRAR (64bit) */
1351         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1352
1353         /* DBGDSAR (64bit) */
1354         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1355 };
1356
1357 /* Macro to expand the PMEVCNTRn register */
1358 #define PMU_PMEVCNTR(n)                                                 \
1359         /* PMEVCNTRn */                                                 \
1360         { Op1(0), CRn(0b1110),                                          \
1361           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1362           access_pmu_evcntr }
1363
1364 /* Macro to expand the PMEVTYPERn register */
1365 #define PMU_PMEVTYPER(n)                                                \
1366         /* PMEVTYPERn */                                                \
1367         { Op1(0), CRn(0b1110),                                          \
1368           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1369           access_pmu_evtyper }
1370
1371 /*
1372  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1373  * depending on the way they are accessed (as a 32bit or a 64bit
1374  * register).
1375  */
1376 static const struct sys_reg_desc cp15_regs[] = {
1377         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1378
1379         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1380         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1381         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1382         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1383         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1384         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1385         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1386         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1387         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1388         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1389         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1390
1391         /*
1392          * DC{C,I,CI}SW operations:
1393          */
1394         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1395         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1396         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1397
1398         /* PMU */
1399         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1400         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1401         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1402         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1403         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1404         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1405         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1406         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1407         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1408         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1409         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1410         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1411         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1412         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1413         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1414
1415         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1416         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1417         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1418         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1419
1420         /* ICC_SRE */
1421         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1422
1423         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1424
1425         /* PMEVCNTRn */
1426         PMU_PMEVCNTR(0),
1427         PMU_PMEVCNTR(1),
1428         PMU_PMEVCNTR(2),
1429         PMU_PMEVCNTR(3),
1430         PMU_PMEVCNTR(4),
1431         PMU_PMEVCNTR(5),
1432         PMU_PMEVCNTR(6),
1433         PMU_PMEVCNTR(7),
1434         PMU_PMEVCNTR(8),
1435         PMU_PMEVCNTR(9),
1436         PMU_PMEVCNTR(10),
1437         PMU_PMEVCNTR(11),
1438         PMU_PMEVCNTR(12),
1439         PMU_PMEVCNTR(13),
1440         PMU_PMEVCNTR(14),
1441         PMU_PMEVCNTR(15),
1442         PMU_PMEVCNTR(16),
1443         PMU_PMEVCNTR(17),
1444         PMU_PMEVCNTR(18),
1445         PMU_PMEVCNTR(19),
1446         PMU_PMEVCNTR(20),
1447         PMU_PMEVCNTR(21),
1448         PMU_PMEVCNTR(22),
1449         PMU_PMEVCNTR(23),
1450         PMU_PMEVCNTR(24),
1451         PMU_PMEVCNTR(25),
1452         PMU_PMEVCNTR(26),
1453         PMU_PMEVCNTR(27),
1454         PMU_PMEVCNTR(28),
1455         PMU_PMEVCNTR(29),
1456         PMU_PMEVCNTR(30),
1457         /* PMEVTYPERn */
1458         PMU_PMEVTYPER(0),
1459         PMU_PMEVTYPER(1),
1460         PMU_PMEVTYPER(2),
1461         PMU_PMEVTYPER(3),
1462         PMU_PMEVTYPER(4),
1463         PMU_PMEVTYPER(5),
1464         PMU_PMEVTYPER(6),
1465         PMU_PMEVTYPER(7),
1466         PMU_PMEVTYPER(8),
1467         PMU_PMEVTYPER(9),
1468         PMU_PMEVTYPER(10),
1469         PMU_PMEVTYPER(11),
1470         PMU_PMEVTYPER(12),
1471         PMU_PMEVTYPER(13),
1472         PMU_PMEVTYPER(14),
1473         PMU_PMEVTYPER(15),
1474         PMU_PMEVTYPER(16),
1475         PMU_PMEVTYPER(17),
1476         PMU_PMEVTYPER(18),
1477         PMU_PMEVTYPER(19),
1478         PMU_PMEVTYPER(20),
1479         PMU_PMEVTYPER(21),
1480         PMU_PMEVTYPER(22),
1481         PMU_PMEVTYPER(23),
1482         PMU_PMEVTYPER(24),
1483         PMU_PMEVTYPER(25),
1484         PMU_PMEVTYPER(26),
1485         PMU_PMEVTYPER(27),
1486         PMU_PMEVTYPER(28),
1487         PMU_PMEVTYPER(29),
1488         PMU_PMEVTYPER(30),
1489         /* PMCCFILTR */
1490         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1491 };
1492
1493 static const struct sys_reg_desc cp15_64_regs[] = {
1494         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1495         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1496         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1497         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1498 };
1499
1500 /* Target specific emulation tables */
1501 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1502
1503 void kvm_register_target_sys_reg_table(unsigned int target,
1504                                        struct kvm_sys_reg_target_table *table)
1505 {
1506         target_tables[target] = table;
1507 }
1508
1509 /* Get specific register table for this target. */
1510 static const struct sys_reg_desc *get_target_table(unsigned target,
1511                                                    bool mode_is_64,
1512                                                    size_t *num)
1513 {
1514         struct kvm_sys_reg_target_table *table;
1515
1516         table = target_tables[target];
1517         if (mode_is_64) {
1518                 *num = table->table64.num;
1519                 return table->table64.table;
1520         } else {
1521                 *num = table->table32.num;
1522                 return table->table32.table;
1523         }
1524 }
1525
1526 #define reg_to_match_value(x)                                           \
1527         ({                                                              \
1528                 unsigned long val;                                      \
1529                 val  = (x)->Op0 << 14;                                  \
1530                 val |= (x)->Op1 << 11;                                  \
1531                 val |= (x)->CRn << 7;                                   \
1532                 val |= (x)->CRm << 3;                                   \
1533                 val |= (x)->Op2;                                        \
1534                 val;                                                    \
1535          })
1536
1537 static int match_sys_reg(const void *key, const void *elt)
1538 {
1539         const unsigned long pval = (unsigned long)key;
1540         const struct sys_reg_desc *r = elt;
1541
1542         return pval - reg_to_match_value(r);
1543 }
1544
1545 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1546                                          const struct sys_reg_desc table[],
1547                                          unsigned int num)
1548 {
1549         unsigned long pval = reg_to_match_value(params);
1550
1551         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1552 }
1553
1554 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1555 {
1556         kvm_inject_undefined(vcpu);
1557         return 1;
1558 }
1559
1560 /*
1561  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1562  *                call the corresponding trap handler.
1563  *
1564  * @params: pointer to the descriptor of the access
1565  * @table: array of trap descriptors
1566  * @num: size of the trap descriptor array
1567  *
1568  * Return 0 if the access has been handled, and -1 if not.
1569  */
1570 static int emulate_cp(struct kvm_vcpu *vcpu,
1571                       struct sys_reg_params *params,
1572                       const struct sys_reg_desc *table,
1573                       size_t num)
1574 {
1575         const struct sys_reg_desc *r;
1576
1577         if (!table)
1578                 return -1;      /* Not handled */
1579
1580         r = find_reg(params, table, num);
1581
1582         if (r) {
1583                 /*
1584                  * Not having an accessor means that we have
1585                  * configured a trap that we don't know how to
1586                  * handle. This certainly qualifies as a gross bug
1587                  * that should be fixed right away.
1588                  */
1589                 BUG_ON(!r->access);
1590
1591                 if (likely(r->access(vcpu, params, r))) {
1592                         /* Skip instruction, since it was emulated */
1593                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1594                         /* Handled */
1595                         return 0;
1596                 }
1597         }
1598
1599         /* Not handled */
1600         return -1;
1601 }
1602
1603 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1604                                 struct sys_reg_params *params)
1605 {
1606         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1607         int cp = -1;
1608
1609         switch(hsr_ec) {
1610         case ESR_ELx_EC_CP15_32:
1611         case ESR_ELx_EC_CP15_64:
1612                 cp = 15;
1613                 break;
1614         case ESR_ELx_EC_CP14_MR:
1615         case ESR_ELx_EC_CP14_64:
1616                 cp = 14;
1617                 break;
1618         default:
1619                 WARN_ON(1);
1620         }
1621
1622         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1623                 cp, *vcpu_pc(vcpu));
1624         print_sys_reg_instr(params);
1625         kvm_inject_undefined(vcpu);
1626 }
1627
1628 /**
1629  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1630  * @vcpu: The VCPU pointer
1631  * @run:  The kvm_run struct
1632  */
1633 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1634                             const struct sys_reg_desc *global,
1635                             size_t nr_global,
1636                             const struct sys_reg_desc *target_specific,
1637                             size_t nr_specific)
1638 {
1639         struct sys_reg_params params;
1640         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1641         int Rt = (hsr >> 5) & 0xf;
1642         int Rt2 = (hsr >> 10) & 0xf;
1643
1644         params.is_aarch32 = true;
1645         params.is_32bit = false;
1646         params.CRm = (hsr >> 1) & 0xf;
1647         params.is_write = ((hsr & 1) == 0);
1648
1649         params.Op0 = 0;
1650         params.Op1 = (hsr >> 16) & 0xf;
1651         params.Op2 = 0;
1652         params.CRn = 0;
1653
1654         /*
1655          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1656          * backends between AArch32 and AArch64, we get away with it.
1657          */
1658         if (params.is_write) {
1659                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1660                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1661         }
1662
1663         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1664                 goto out;
1665         if (!emulate_cp(vcpu, &params, global, nr_global))
1666                 goto out;
1667
1668         unhandled_cp_access(vcpu, &params);
1669
1670 out:
1671         /* Split up the value between registers for the read side */
1672         if (!params.is_write) {
1673                 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1674                 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1675         }
1676
1677         return 1;
1678 }
1679
1680 /**
1681  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1682  * @vcpu: The VCPU pointer
1683  * @run:  The kvm_run struct
1684  */
1685 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1686                             const struct sys_reg_desc *global,
1687                             size_t nr_global,
1688                             const struct sys_reg_desc *target_specific,
1689                             size_t nr_specific)
1690 {
1691         struct sys_reg_params params;
1692         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1693         int Rt  = (hsr >> 5) & 0xf;
1694
1695         params.is_aarch32 = true;
1696         params.is_32bit = true;
1697         params.CRm = (hsr >> 1) & 0xf;
1698         params.regval = vcpu_get_reg(vcpu, Rt);
1699         params.is_write = ((hsr & 1) == 0);
1700         params.CRn = (hsr >> 10) & 0xf;
1701         params.Op0 = 0;
1702         params.Op1 = (hsr >> 14) & 0x7;
1703         params.Op2 = (hsr >> 17) & 0x7;
1704
1705         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1706             !emulate_cp(vcpu, &params, global, nr_global)) {
1707                 if (!params.is_write)
1708                         vcpu_set_reg(vcpu, Rt, params.regval);
1709                 return 1;
1710         }
1711
1712         unhandled_cp_access(vcpu, &params);
1713         return 1;
1714 }
1715
1716 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1717 {
1718         const struct sys_reg_desc *target_specific;
1719         size_t num;
1720
1721         target_specific = get_target_table(vcpu->arch.target, false, &num);
1722         return kvm_handle_cp_64(vcpu,
1723                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1724                                 target_specific, num);
1725 }
1726
1727 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1728 {
1729         const struct sys_reg_desc *target_specific;
1730         size_t num;
1731
1732         target_specific = get_target_table(vcpu->arch.target, false, &num);
1733         return kvm_handle_cp_32(vcpu,
1734                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1735                                 target_specific, num);
1736 }
1737
1738 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1739 {
1740         return kvm_handle_cp_64(vcpu,
1741                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1742                                 NULL, 0);
1743 }
1744
1745 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1746 {
1747         return kvm_handle_cp_32(vcpu,
1748                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1749                                 NULL, 0);
1750 }
1751
1752 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1753                            struct sys_reg_params *params)
1754 {
1755         size_t num;
1756         const struct sys_reg_desc *table, *r;
1757
1758         table = get_target_table(vcpu->arch.target, true, &num);
1759
1760         /* Search target-specific then generic table. */
1761         r = find_reg(params, table, num);
1762         if (!r)
1763                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1764
1765         if (likely(r)) {
1766                 /*
1767                  * Not having an accessor means that we have
1768                  * configured a trap that we don't know how to
1769                  * handle. This certainly qualifies as a gross bug
1770                  * that should be fixed right away.
1771                  */
1772                 BUG_ON(!r->access);
1773
1774                 if (likely(r->access(vcpu, params, r))) {
1775                         /* Skip instruction, since it was emulated */
1776                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1777                         return 1;
1778                 }
1779                 /* If access function fails, it should complain. */
1780         } else {
1781                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1782                         *vcpu_pc(vcpu));
1783                 print_sys_reg_instr(params);
1784         }
1785         kvm_inject_undefined(vcpu);
1786         return 1;
1787 }
1788
1789 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1790                               const struct sys_reg_desc *table, size_t num)
1791 {
1792         unsigned long i;
1793
1794         for (i = 0; i < num; i++)
1795                 if (table[i].reset)
1796                         table[i].reset(vcpu, &table[i]);
1797 }
1798
1799 /**
1800  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1801  * @vcpu: The VCPU pointer
1802  * @run:  The kvm_run struct
1803  */
1804 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1805 {
1806         struct sys_reg_params params;
1807         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1808         int Rt = (esr >> 5) & 0x1f;
1809         int ret;
1810
1811         trace_kvm_handle_sys_reg(esr);
1812
1813         params.is_aarch32 = false;
1814         params.is_32bit = false;
1815         params.Op0 = (esr >> 20) & 3;
1816         params.Op1 = (esr >> 14) & 0x7;
1817         params.CRn = (esr >> 10) & 0xf;
1818         params.CRm = (esr >> 1) & 0xf;
1819         params.Op2 = (esr >> 17) & 0x7;
1820         params.regval = vcpu_get_reg(vcpu, Rt);
1821         params.is_write = !(esr & 1);
1822
1823         ret = emulate_sys_reg(vcpu, &params);
1824
1825         if (!params.is_write)
1826                 vcpu_set_reg(vcpu, Rt, params.regval);
1827         return ret;
1828 }
1829
1830 /******************************************************************************
1831  * Userspace API
1832  *****************************************************************************/
1833
1834 static bool index_to_params(u64 id, struct sys_reg_params *params)
1835 {
1836         switch (id & KVM_REG_SIZE_MASK) {
1837         case KVM_REG_SIZE_U64:
1838                 /* Any unused index bits means it's not valid. */
1839                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1840                               | KVM_REG_ARM_COPROC_MASK
1841                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1842                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1843                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1844                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1845                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1846                         return false;
1847                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1848                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1849                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1850                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1851                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1852                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1853                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1854                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1855                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1856                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1857                 return true;
1858         default:
1859                 return false;
1860         }
1861 }
1862
1863 const struct sys_reg_desc *find_reg_by_id(u64 id,
1864                                           struct sys_reg_params *params,
1865                                           const struct sys_reg_desc table[],
1866                                           unsigned int num)
1867 {
1868         if (!index_to_params(id, params))
1869                 return NULL;
1870
1871         return find_reg(params, table, num);
1872 }
1873
1874 /* Decode an index value, and find the sys_reg_desc entry. */
1875 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1876                                                     u64 id)
1877 {
1878         size_t num;
1879         const struct sys_reg_desc *table, *r;
1880         struct sys_reg_params params;
1881
1882         /* We only do sys_reg for now. */
1883         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1884                 return NULL;
1885
1886         table = get_target_table(vcpu->arch.target, true, &num);
1887         r = find_reg_by_id(id, &params, table, num);
1888         if (!r)
1889                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1890
1891         /* Not saved in the sys_reg array? */
1892         if (r && !r->reg)
1893                 r = NULL;
1894
1895         return r;
1896 }
1897
1898 /*
1899  * These are the invariant sys_reg registers: we let the guest see the
1900  * host versions of these, so they're part of the guest state.
1901  *
1902  * A future CPU may provide a mechanism to present different values to
1903  * the guest, or a future kvm may trap them.
1904  */
1905
1906 #define FUNCTION_INVARIANT(reg)                                         \
1907         static void get_##reg(struct kvm_vcpu *v,                       \
1908                               const struct sys_reg_desc *r)             \
1909         {                                                               \
1910                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
1911         }
1912
1913 FUNCTION_INVARIANT(midr_el1)
1914 FUNCTION_INVARIANT(ctr_el0)
1915 FUNCTION_INVARIANT(revidr_el1)
1916 FUNCTION_INVARIANT(id_pfr0_el1)
1917 FUNCTION_INVARIANT(id_pfr1_el1)
1918 FUNCTION_INVARIANT(id_dfr0_el1)
1919 FUNCTION_INVARIANT(id_afr0_el1)
1920 FUNCTION_INVARIANT(id_mmfr0_el1)
1921 FUNCTION_INVARIANT(id_mmfr1_el1)
1922 FUNCTION_INVARIANT(id_mmfr2_el1)
1923 FUNCTION_INVARIANT(id_mmfr3_el1)
1924 FUNCTION_INVARIANT(id_isar0_el1)
1925 FUNCTION_INVARIANT(id_isar1_el1)
1926 FUNCTION_INVARIANT(id_isar2_el1)
1927 FUNCTION_INVARIANT(id_isar3_el1)
1928 FUNCTION_INVARIANT(id_isar4_el1)
1929 FUNCTION_INVARIANT(id_isar5_el1)
1930 FUNCTION_INVARIANT(clidr_el1)
1931 FUNCTION_INVARIANT(aidr_el1)
1932
1933 /* ->val is filled in by kvm_sys_reg_table_init() */
1934 static struct sys_reg_desc invariant_sys_regs[] = {
1935         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1936           NULL, get_midr_el1 },
1937         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1938           NULL, get_revidr_el1 },
1939         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1940           NULL, get_id_pfr0_el1 },
1941         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1942           NULL, get_id_pfr1_el1 },
1943         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1944           NULL, get_id_dfr0_el1 },
1945         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1946           NULL, get_id_afr0_el1 },
1947         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1948           NULL, get_id_mmfr0_el1 },
1949         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1950           NULL, get_id_mmfr1_el1 },
1951         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1952           NULL, get_id_mmfr2_el1 },
1953         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1954           NULL, get_id_mmfr3_el1 },
1955         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1956           NULL, get_id_isar0_el1 },
1957         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1958           NULL, get_id_isar1_el1 },
1959         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1960           NULL, get_id_isar2_el1 },
1961         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1962           NULL, get_id_isar3_el1 },
1963         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1964           NULL, get_id_isar4_el1 },
1965         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1966           NULL, get_id_isar5_el1 },
1967         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1968           NULL, get_clidr_el1 },
1969         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1970           NULL, get_aidr_el1 },
1971         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1972           NULL, get_ctr_el0 },
1973 };
1974
1975 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1976 {
1977         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1978                 return -EFAULT;
1979         return 0;
1980 }
1981
1982 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1983 {
1984         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1985                 return -EFAULT;
1986         return 0;
1987 }
1988
1989 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1990 {
1991         struct sys_reg_params params;
1992         const struct sys_reg_desc *r;
1993
1994         r = find_reg_by_id(id, &params, invariant_sys_regs,
1995                            ARRAY_SIZE(invariant_sys_regs));
1996         if (!r)
1997                 return -ENOENT;
1998
1999         return reg_to_user(uaddr, &r->val, id);
2000 }
2001
2002 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2003 {
2004         struct sys_reg_params params;
2005         const struct sys_reg_desc *r;
2006         int err;
2007         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2008
2009         r = find_reg_by_id(id, &params, invariant_sys_regs,
2010                            ARRAY_SIZE(invariant_sys_regs));
2011         if (!r)
2012                 return -ENOENT;
2013
2014         err = reg_from_user(&val, uaddr, id);
2015         if (err)
2016                 return err;
2017
2018         /* This is what we mean by invariant: you can't change it. */
2019         if (r->val != val)
2020                 return -EINVAL;
2021
2022         return 0;
2023 }
2024
2025 static bool is_valid_cache(u32 val)
2026 {
2027         u32 level, ctype;
2028
2029         if (val >= CSSELR_MAX)
2030                 return false;
2031
2032         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2033         level = (val >> 1);
2034         ctype = (cache_levels >> (level * 3)) & 7;
2035
2036         switch (ctype) {
2037         case 0: /* No cache */
2038                 return false;
2039         case 1: /* Instruction cache only */
2040                 return (val & 1);
2041         case 2: /* Data cache only */
2042         case 4: /* Unified cache */
2043                 return !(val & 1);
2044         case 3: /* Separate instruction and data caches */
2045                 return true;
2046         default: /* Reserved: we can't know instruction or data. */
2047                 return false;
2048         }
2049 }
2050
2051 static int demux_c15_get(u64 id, void __user *uaddr)
2052 {
2053         u32 val;
2054         u32 __user *uval = uaddr;
2055
2056         /* Fail if we have unknown bits set. */
2057         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2058                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2059                 return -ENOENT;
2060
2061         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2062         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2063                 if (KVM_REG_SIZE(id) != 4)
2064                         return -ENOENT;
2065                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2066                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2067                 if (!is_valid_cache(val))
2068                         return -ENOENT;
2069
2070                 return put_user(get_ccsidr(val), uval);
2071         default:
2072                 return -ENOENT;
2073         }
2074 }
2075
2076 static int demux_c15_set(u64 id, void __user *uaddr)
2077 {
2078         u32 val, newval;
2079         u32 __user *uval = uaddr;
2080
2081         /* Fail if we have unknown bits set. */
2082         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2083                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2084                 return -ENOENT;
2085
2086         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2087         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2088                 if (KVM_REG_SIZE(id) != 4)
2089                         return -ENOENT;
2090                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2091                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2092                 if (!is_valid_cache(val))
2093                         return -ENOENT;
2094
2095                 if (get_user(newval, uval))
2096                         return -EFAULT;
2097
2098                 /* This is also invariant: you can't change it. */
2099                 if (newval != get_ccsidr(val))
2100                         return -EINVAL;
2101                 return 0;
2102         default:
2103                 return -ENOENT;
2104         }
2105 }
2106
2107 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2108 {
2109         const struct sys_reg_desc *r;
2110         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2111
2112         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2113                 return demux_c15_get(reg->id, uaddr);
2114
2115         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2116                 return -ENOENT;
2117
2118         r = index_to_sys_reg_desc(vcpu, reg->id);
2119         if (!r)
2120                 return get_invariant_sys_reg(reg->id, uaddr);
2121
2122         if (r->get_user)
2123                 return (r->get_user)(vcpu, r, reg, uaddr);
2124
2125         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2126 }
2127
2128 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2129 {
2130         const struct sys_reg_desc *r;
2131         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2132
2133         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2134                 return demux_c15_set(reg->id, uaddr);
2135
2136         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2137                 return -ENOENT;
2138
2139         r = index_to_sys_reg_desc(vcpu, reg->id);
2140         if (!r)
2141                 return set_invariant_sys_reg(reg->id, uaddr);
2142
2143         if (r->set_user)
2144                 return (r->set_user)(vcpu, r, reg, uaddr);
2145
2146         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2147 }
2148
2149 static unsigned int num_demux_regs(void)
2150 {
2151         unsigned int i, count = 0;
2152
2153         for (i = 0; i < CSSELR_MAX; i++)
2154                 if (is_valid_cache(i))
2155                         count++;
2156
2157         return count;
2158 }
2159
2160 static int write_demux_regids(u64 __user *uindices)
2161 {
2162         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2163         unsigned int i;
2164
2165         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2166         for (i = 0; i < CSSELR_MAX; i++) {
2167                 if (!is_valid_cache(i))
2168                         continue;
2169                 if (put_user(val | i, uindices))
2170                         return -EFAULT;
2171                 uindices++;
2172         }
2173         return 0;
2174 }
2175
2176 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2177 {
2178         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2179                 KVM_REG_ARM64_SYSREG |
2180                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2181                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2182                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2183                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2184                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2185 }
2186
2187 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2188 {
2189         if (!*uind)
2190                 return true;
2191
2192         if (put_user(sys_reg_to_index(reg), *uind))
2193                 return false;
2194
2195         (*uind)++;
2196         return true;
2197 }
2198
2199 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2200 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2201 {
2202         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2203         unsigned int total = 0;
2204         size_t num;
2205
2206         /* We check for duplicates here, to allow arch-specific overrides. */
2207         i1 = get_target_table(vcpu->arch.target, true, &num);
2208         end1 = i1 + num;
2209         i2 = sys_reg_descs;
2210         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2211
2212         BUG_ON(i1 == end1 || i2 == end2);
2213
2214         /* Walk carefully, as both tables may refer to the same register. */
2215         while (i1 || i2) {
2216                 int cmp = cmp_sys_reg(i1, i2);
2217                 /* target-specific overrides generic entry. */
2218                 if (cmp <= 0) {
2219                         /* Ignore registers we trap but don't save. */
2220                         if (i1->reg) {
2221                                 if (!copy_reg_to_user(i1, &uind))
2222                                         return -EFAULT;
2223                                 total++;
2224                         }
2225                 } else {
2226                         /* Ignore registers we trap but don't save. */
2227                         if (i2->reg) {
2228                                 if (!copy_reg_to_user(i2, &uind))
2229                                         return -EFAULT;
2230                                 total++;
2231                         }
2232                 }
2233
2234                 if (cmp <= 0 && ++i1 == end1)
2235                         i1 = NULL;
2236                 if (cmp >= 0 && ++i2 == end2)
2237                         i2 = NULL;
2238         }
2239         return total;
2240 }
2241
2242 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2243 {
2244         return ARRAY_SIZE(invariant_sys_regs)
2245                 + num_demux_regs()
2246                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2247 }
2248
2249 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2250 {
2251         unsigned int i;
2252         int err;
2253
2254         /* Then give them all the invariant registers' indices. */
2255         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2256                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2257                         return -EFAULT;
2258                 uindices++;
2259         }
2260
2261         err = walk_sys_regs(vcpu, uindices);
2262         if (err < 0)
2263                 return err;
2264         uindices += err;
2265
2266         return write_demux_regids(uindices);
2267 }
2268
2269 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2270 {
2271         unsigned int i;
2272
2273         for (i = 1; i < n; i++) {
2274                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2275                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2276                         return 1;
2277                 }
2278         }
2279
2280         return 0;
2281 }
2282
2283 void kvm_sys_reg_table_init(void)
2284 {
2285         unsigned int i;
2286         struct sys_reg_desc clidr;
2287
2288         /* Make sure tables are unique and in order. */
2289         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2290         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2291         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2292         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2293         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2294         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2295
2296         /* We abuse the reset function to overwrite the table itself. */
2297         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2298                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2299
2300         /*
2301          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2302          *
2303          *   If software reads the Cache Type fields from Ctype1
2304          *   upwards, once it has seen a value of 0b000, no caches
2305          *   exist at further-out levels of the hierarchy. So, for
2306          *   example, if Ctype3 is the first Cache Type field with a
2307          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2308          *   ignored.
2309          */
2310         get_clidr_el1(NULL, &clidr); /* Ugly... */
2311         cache_levels = clidr.val;
2312         for (i = 0; i < 7; i++)
2313                 if (((cache_levels >> (i*3)) & 7) == 0)
2314                         break;
2315         /* Clear all higher bits. */
2316         cache_levels &= (1 << (i*3))-1;
2317 }
2318
2319 /**
2320  * kvm_reset_sys_regs - sets system registers to reset value
2321  * @vcpu: The VCPU pointer
2322  *
2323  * This function finds the right table above and sets the registers on the
2324  * virtual CPU struct to their architecturally defined reset values.
2325  */
2326 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2327 {
2328         size_t num;
2329         const struct sys_reg_desc *table;
2330
2331         /* Catch someone adding a register without putting in reset entry. */
2332         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2333
2334         /* Generic chip reset first (so target could override). */
2335         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2336
2337         table = get_target_table(vcpu->arch.target, true, &num);
2338         reset_sys_reg_descs(vcpu, table, num);
2339
2340         for (num = 1; num < NR_SYS_REGS; num++)
2341                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2342                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2343 }
This page took 0.170477 seconds and 4 git commands to generate.