4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 ctx->attr_gencount = nfsi->attr_gencount;
80 ctx->cred = get_cred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
86 return ERR_PTR(-ENOMEM);
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 spin_lock(&dir->i_lock);
93 spin_unlock(&dir->i_lock);
102 nfs_opendir(struct inode *inode, struct file *filp)
105 struct nfs_open_dir_context *ctx;
107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 ctx = alloc_nfs_open_dir_context(inode, current_cred());
116 filp->private_data = ctx;
122 nfs_closedir(struct inode *inode, struct file *filp)
124 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
128 struct nfs_cache_array_entry {
132 unsigned char d_type;
135 struct nfs_cache_array {
139 struct nfs_cache_array_entry array[0];
145 struct page *pages[NFS_MAX_READDIR_RAPAGES];
148 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
152 struct dir_context *ctx;
153 unsigned long page_index;
154 struct readdirvec pvec;
157 loff_t current_index;
158 decode_dirent_t decode;
160 unsigned long timestamp;
161 unsigned long gencount;
162 unsigned int cache_entry_index;
165 } nfs_readdir_descriptor_t;
168 * we are freeing strings created by nfs_add_to_readdir_array()
171 void nfs_readdir_clear_array(struct page *page)
173 struct nfs_cache_array *array;
176 array = kmap_atomic(page);
177 for (i = 0; i < array->size; i++)
178 kfree(array->array[i].string.name);
179 kunmap_atomic(array);
183 * the caller is responsible for freeing qstr.name
184 * when called by nfs_readdir_add_to_array, the strings will be freed in
185 * nfs_clear_readdir_array()
188 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
191 string->name = kmemdup(name, len, GFP_KERNEL);
192 if (string->name == NULL)
195 * Avoid a kmemleak false positive. The pointer to the name is stored
196 * in a page cache page which kmemleak does not scan.
198 kmemleak_not_leak(string->name);
199 string->hash = full_name_hash(NULL, name, len);
204 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
206 struct nfs_cache_array *array = kmap(page);
207 struct nfs_cache_array_entry *cache_entry;
210 cache_entry = &array->array[array->size];
212 /* Check that this entry lies within the page bounds */
214 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
217 cache_entry->cookie = entry->prev_cookie;
218 cache_entry->ino = entry->ino;
219 cache_entry->d_type = entry->d_type;
220 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
223 array->last_cookie = entry->cookie;
226 array->eof_index = array->size;
233 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
235 loff_t diff = desc->ctx->pos - desc->current_index;
240 if (diff >= array->size) {
241 if (array->eof_index >= 0)
246 index = (unsigned int)diff;
247 *desc->dir_cookie = array->array[index].cookie;
248 desc->cache_entry_index = index;
256 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
258 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
261 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
265 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
269 int status = -EAGAIN;
271 for (i = 0; i < array->size; i++) {
272 if (array->array[i].cookie == *desc->dir_cookie) {
273 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
274 struct nfs_open_dir_context *ctx = desc->file->private_data;
276 new_pos = desc->current_index + i;
277 if (ctx->attr_gencount != nfsi->attr_gencount ||
278 !nfs_readdir_inode_mapping_valid(nfsi)) {
280 ctx->attr_gencount = nfsi->attr_gencount;
281 } else if (new_pos < desc->ctx->pos) {
283 && ctx->dup_cookie == *desc->dir_cookie) {
284 if (printk_ratelimit()) {
285 pr_notice("NFS: directory %pD2 contains a readdir loop."
286 "Please contact your server vendor. "
287 "The file: %.*s has duplicate cookie %llu\n",
288 desc->file, array->array[i].string.len,
289 array->array[i].string.name, *desc->dir_cookie);
294 ctx->dup_cookie = *desc->dir_cookie;
297 desc->ctx->pos = new_pos;
298 desc->cache_entry_index = i;
302 if (array->eof_index >= 0) {
303 status = -EBADCOOKIE;
304 if (*desc->dir_cookie == array->last_cookie)
312 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
314 struct nfs_cache_array *array;
317 array = kmap(desc->page);
319 if (*desc->dir_cookie == 0)
320 status = nfs_readdir_search_for_pos(array, desc);
322 status = nfs_readdir_search_for_cookie(array, desc);
324 if (status == -EAGAIN) {
325 desc->last_cookie = array->last_cookie;
326 desc->current_index += array->size;
333 /* Fill a page with xdr information before transferring to the cache page */
335 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
336 struct nfs_entry *entry, struct file *file, struct inode *inode)
338 struct nfs_open_dir_context *ctx = file->private_data;
339 const struct cred *cred = ctx->cred;
340 unsigned long timestamp, gencount;
345 gencount = nfs_inc_attr_generation_counter();
346 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
347 NFS_SERVER(inode)->dtsize, desc->plus);
349 /* We requested READDIRPLUS, but the server doesn't grok it */
350 if (error == -ENOTSUPP && desc->plus) {
351 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
352 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
358 desc->timestamp = timestamp;
359 desc->gencount = gencount;
364 static int xdr_decode(nfs_readdir_descriptor_t *desc,
365 struct nfs_entry *entry, struct xdr_stream *xdr)
369 error = desc->decode(xdr, entry, desc->plus);
372 entry->fattr->time_start = desc->timestamp;
373 entry->fattr->gencount = desc->gencount;
377 /* Match file and dirent using either filehandle or fileid
378 * Note: caller is responsible for checking the fsid
381 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
384 struct nfs_inode *nfsi;
386 if (d_really_is_negative(dentry))
389 inode = d_inode(dentry);
390 if (is_bad_inode(inode) || NFS_STALE(inode))
394 if (entry->fattr->fileid != nfsi->fileid)
396 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
402 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
404 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
406 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
414 * This function is called by the lookup and getattr code to request the
415 * use of readdirplus to accelerate any future lookups in the same
418 void nfs_advise_use_readdirplus(struct inode *dir)
420 struct nfs_inode *nfsi = NFS_I(dir);
422 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
423 !list_empty(&nfsi->open_files))
424 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
428 * This function is mainly for use by nfs_getattr().
430 * If this is an 'ls -l', we want to force use of readdirplus.
431 * Do this by checking if there is an active file descriptor
432 * and calling nfs_advise_use_readdirplus, then forcing a
435 void nfs_force_use_readdirplus(struct inode *dir)
437 struct nfs_inode *nfsi = NFS_I(dir);
439 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
440 !list_empty(&nfsi->open_files)) {
441 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
442 invalidate_mapping_pages(dir->i_mapping, 0, -1);
447 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
449 struct qstr filename = QSTR_INIT(entry->name, entry->len);
450 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
451 struct dentry *dentry;
452 struct dentry *alias;
453 struct inode *dir = d_inode(parent);
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
459 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
461 if (filename.len == 0)
463 /* Validate that the name doesn't contain any illegal '\0' */
464 if (strnlen(filename.name, filename.len) != filename.len)
467 if (strnchr(filename.name, filename.len, '/'))
469 if (filename.name[0] == '.') {
470 if (filename.len == 1)
472 if (filename.len == 2 && filename.name[1] == '.')
475 filename.hash = full_name_hash(parent, filename.name, filename.len);
477 dentry = d_lookup(parent, &filename);
480 dentry = d_alloc_parallel(parent, &filename, &wq);
484 if (!d_in_lookup(dentry)) {
485 /* Is there a mountpoint here? If so, just exit */
486 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
487 &entry->fattr->fsid))
489 if (nfs_same_file(dentry, entry)) {
490 if (!entry->fh->size)
492 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
493 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
495 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
498 d_invalidate(dentry);
504 if (!entry->fh->size) {
505 d_lookup_done(dentry);
509 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
510 alias = d_splice_alias(inode, dentry);
511 d_lookup_done(dentry);
518 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
523 /* Perform conversion from xdr to cache array */
525 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
526 struct page **xdr_pages, struct page *page, unsigned int buflen)
528 struct xdr_stream stream;
530 struct page *scratch;
531 struct nfs_cache_array *array;
532 unsigned int count = 0;
534 int max_rapages = NFS_MAX_READDIR_RAPAGES;
536 desc->pvec.index = desc->page_index;
539 scratch = alloc_page(GFP_KERNEL);
546 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
550 status = xdr_decode(desc, entry, &stream);
552 if (status == -EAGAIN)
560 nfs_prime_dcache(file_dentry(desc->file), entry);
562 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
563 if (status == -ENOSPC) {
565 if (desc->pvec.nr == max_rapages)
567 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
571 } while (!entry->eof);
574 * page and desc->pvec.pages[0] are valid, don't need to check
575 * whether or not to be NULL.
577 copy_highpage(page, desc->pvec.pages[0]);
580 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
581 array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]);
582 array->eof_index = array->size;
584 kunmap_atomic(array);
590 * desc->pvec.nr > 0 means at least one page was completely filled,
591 * we should return -ENOSPC. Otherwise function
592 * nfs_readdir_xdr_to_array will enter infinite loop.
594 if (desc->pvec.nr > 0)
600 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
603 for (i = 0; i < npages; i++)
608 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
609 * to nfs_readdir_free_pages()
612 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
616 for (i = 0; i < npages; i++) {
617 struct page *page = alloc_page(GFP_KERNEL);
625 nfs_readdir_free_pages(pages, i);
630 * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure.
633 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc)
635 struct nfs_cache_array *array;
636 int max_rapages = NFS_MAX_READDIR_RAPAGES;
639 for (index = 0; index < max_rapages; index++) {
640 array = kmap_atomic(desc->pvec.pages[index]);
641 memset(array, 0, sizeof(struct nfs_cache_array));
642 array->eof_index = -1;
643 kunmap_atomic(array);
648 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
650 struct page *pages[NFS_MAX_READDIR_PAGES];
651 struct nfs_entry entry;
652 struct file *file = desc->file;
653 struct nfs_cache_array *array;
654 int status = -ENOMEM;
655 unsigned int array_size = ARRAY_SIZE(pages);
658 * This means we hit readdir rdpages miss, the preallocated rdpages
659 * are useless, the preallocate rdpages should be reinitialized.
661 nfs_readdir_rapages_init(desc);
663 entry.prev_cookie = 0;
664 entry.cookie = desc->last_cookie;
666 entry.fh = nfs_alloc_fhandle();
667 entry.fattr = nfs_alloc_fattr();
668 entry.server = NFS_SERVER(inode);
669 if (entry.fh == NULL || entry.fattr == NULL)
672 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
673 if (IS_ERR(entry.label)) {
674 status = PTR_ERR(entry.label);
679 memset(array, 0, sizeof(struct nfs_cache_array));
680 array->eof_index = -1;
682 status = nfs_readdir_alloc_pages(pages, array_size);
684 goto out_release_array;
687 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
692 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
694 if (status == -ENOSPC)
698 } while (array->eof_index < 0);
700 nfs_readdir_free_pages(pages, array_size);
703 nfs4_label_free(entry.label);
705 nfs_free_fattr(entry.fattr);
706 nfs_free_fhandle(entry.fh);
711 * Now we cache directories properly, by converting xdr information
712 * to an array that can be used for lookups later. This results in
713 * fewer cache pages, since we can store more information on each page.
714 * We only need to convert from xdr once so future lookups are much simpler
717 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
719 struct inode *inode = file_inode(desc->file);
723 * If desc->page_index in range desc->pvec.index and
724 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit.
726 if (desc->page_index >= desc->pvec.index &&
727 desc->page_index < (desc->pvec.index + desc->pvec.nr)) {
729 * page and desc->pvec.pages[x] are valid, don't need to check
730 * whether or not to be NULL.
732 copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]);
735 ret = nfs_readdir_xdr_to_array(desc, page, inode);
740 SetPageUptodate(page);
742 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
743 /* Should never happen */
744 nfs_zap_mapping(inode, inode->i_mapping);
754 void cache_page_release(nfs_readdir_descriptor_t *desc)
756 if (!desc->page->mapping)
757 nfs_readdir_clear_array(desc->page);
758 put_page(desc->page);
763 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
765 return read_cache_page(desc->file->f_mapping,
766 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
770 * Returns 0 if desc->dir_cookie was found on page desc->page_index
773 int find_cache_page(nfs_readdir_descriptor_t *desc)
777 desc->page = get_cache_page(desc);
778 if (IS_ERR(desc->page))
779 return PTR_ERR(desc->page);
781 res = nfs_readdir_search_array(desc);
783 cache_page_release(desc);
787 /* Search for desc->dir_cookie from the beginning of the page cache */
789 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
793 if (desc->page_index == 0) {
794 desc->current_index = 0;
795 desc->last_cookie = 0;
798 res = find_cache_page(desc);
799 } while (res == -EAGAIN);
804 * Once we've found the start of the dirent within a page: fill 'er up...
807 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
809 struct file *file = desc->file;
812 struct nfs_cache_array *array = NULL;
813 struct nfs_open_dir_context *ctx = file->private_data;
815 array = kmap(desc->page);
816 for (i = desc->cache_entry_index; i < array->size; i++) {
817 struct nfs_cache_array_entry *ent;
819 ent = &array->array[i];
820 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
821 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
826 if (i < (array->size-1))
827 *desc->dir_cookie = array->array[i+1].cookie;
829 *desc->dir_cookie = array->last_cookie;
833 if (array->eof_index >= 0)
837 cache_page_release(desc);
838 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
839 (unsigned long long)*desc->dir_cookie, res);
844 * If we cannot find a cookie in our cache, we suspect that this is
845 * because it points to a deleted file, so we ask the server to return
846 * whatever it thinks is the next entry. We then feed this to filldir.
847 * If all goes well, we should then be able to find our way round the
848 * cache on the next call to readdir_search_pagecache();
850 * NOTE: we cannot add the anonymous page to the pagecache because
851 * the data it contains might not be page aligned. Besides,
852 * we should already have a complete representation of the
853 * directory in the page cache by the time we get here.
856 int uncached_readdir(nfs_readdir_descriptor_t *desc)
858 struct page *page = NULL;
860 struct inode *inode = file_inode(desc->file);
861 struct nfs_open_dir_context *ctx = desc->file->private_data;
863 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
864 (unsigned long long)*desc->dir_cookie);
866 page = alloc_page(GFP_HIGHUSER);
872 desc->page_index = 0;
873 desc->last_cookie = *desc->dir_cookie;
877 status = nfs_readdir_xdr_to_array(desc, page, inode);
881 status = nfs_do_filldir(desc);
884 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
888 cache_page_release(desc);
892 /* The file offset position represents the dirent entry number. A
893 last cookie cache takes care of the common case of reading the
896 static int nfs_readdir(struct file *file, struct dir_context *ctx)
898 struct dentry *dentry = file_dentry(file);
899 struct inode *inode = d_inode(dentry);
900 nfs_readdir_descriptor_t my_desc,
902 struct nfs_open_dir_context *dir_ctx = file->private_data;
904 int max_rapages = NFS_MAX_READDIR_RAPAGES;
906 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
907 file, (long long)ctx->pos);
908 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911 * ctx->pos points to the dirent entry number.
912 * *desc->dir_cookie has the cookie for the next entry. We have
913 * to either find the entry with the appropriate number or
914 * revalidate the cookie.
916 memset(desc, 0, sizeof(*desc));
920 desc->dir_cookie = &dir_ctx->dir_cookie;
921 desc->decode = NFS_PROTO(inode)->decode_dirent;
922 desc->plus = nfs_use_readdirplus(inode, ctx);
924 res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages);
928 nfs_readdir_rapages_init(desc);
930 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
931 res = nfs_revalidate_mapping(inode, file->f_mapping);
936 res = readdir_search_pagecache(desc);
938 if (res == -EBADCOOKIE) {
940 /* This means either end of directory */
941 if (*desc->dir_cookie && !desc->eof) {
942 /* Or that the server has 'lost' a cookie */
943 res = uncached_readdir(desc);
949 if (res == -ETOOSMALL && desc->plus) {
950 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
951 nfs_zap_caches(inode);
952 desc->page_index = 0;
960 res = nfs_do_filldir(desc);
963 } while (!desc->eof);
965 nfs_readdir_free_pages(desc->pvec.pages, max_rapages);
968 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
972 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
974 struct inode *inode = file_inode(filp);
975 struct nfs_open_dir_context *dir_ctx = filp->private_data;
977 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
978 filp, offset, whence);
992 offset += filp->f_pos;
998 if (offset != filp->f_pos) {
999 filp->f_pos = offset;
1000 dir_ctx->dir_cookie = 0;
1003 inode_unlock(inode);
1008 * All directory operations under NFS are synchronous, so fsync()
1009 * is a dummy operation.
1011 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1014 struct inode *inode = file_inode(filp);
1016 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1019 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1020 inode_unlock(inode);
1025 * nfs_force_lookup_revalidate - Mark the directory as having changed
1026 * @dir: pointer to directory inode
1028 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1029 * full lookup on all child dentries of 'dir' whenever a change occurs
1030 * on the server that might have invalidated our dcache.
1032 * The caller should be holding dir->i_lock
1034 void nfs_force_lookup_revalidate(struct inode *dir)
1036 NFS_I(dir)->cache_change_attribute++;
1038 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1041 * A check for whether or not the parent directory has changed.
1042 * In the case it has, we assume that the dentries are untrustworthy
1043 * and may need to be looked up again.
1044 * If rcu_walk prevents us from performing a full check, return 0.
1046 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1049 if (IS_ROOT(dentry))
1051 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1053 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1055 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1056 if (nfs_mapping_need_revalidate_inode(dir)) {
1059 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1062 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1068 * Use intent information to check whether or not we're going to do
1069 * an O_EXCL create using this path component.
1071 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1073 if (NFS_PROTO(dir)->version == 2)
1075 return flags & LOOKUP_EXCL;
1079 * Inode and filehandle revalidation for lookups.
1081 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1082 * or if the intent information indicates that we're about to open this
1083 * particular file and the "nocto" mount flag is not set.
1087 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1089 struct nfs_server *server = NFS_SERVER(inode);
1092 if (IS_AUTOMOUNT(inode))
1095 if (flags & LOOKUP_OPEN) {
1096 switch (inode->i_mode & S_IFMT) {
1098 /* A NFSv4 OPEN will revalidate later */
1099 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1103 if (server->flags & NFS_MOUNT_NOCTO)
1105 /* NFS close-to-open cache consistency validation */
1110 /* VFS wants an on-the-wire revalidation */
1111 if (flags & LOOKUP_REVAL)
1114 return (inode->i_nlink == 0) ? -ESTALE : 0;
1116 if (flags & LOOKUP_RCU)
1118 ret = __nfs_revalidate_inode(server, inode);
1125 * We judge how long we want to trust negative
1126 * dentries by looking at the parent inode mtime.
1128 * If parent mtime has changed, we revalidate, else we wait for a
1129 * period corresponding to the parent's attribute cache timeout value.
1131 * If LOOKUP_RCU prevents us from performing a full check, return 1
1132 * suggesting a reval is needed.
1134 * Note that when creating a new file, or looking up a rename target,
1135 * then it shouldn't be necessary to revalidate a negative dentry.
1138 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1141 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1143 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1145 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1149 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1150 struct inode *inode, int error)
1154 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1158 nfs_mark_for_revalidate(dir);
1159 if (inode && S_ISDIR(inode->i_mode)) {
1160 /* Purge readdir caches. */
1161 nfs_zap_caches(inode);
1163 * We can't d_drop the root of a disconnected tree:
1164 * its d_hash is on the s_anon list and d_drop() would hide
1165 * it from shrink_dcache_for_unmount(), leading to busy
1166 * inodes on unmount and further oopses.
1168 if (IS_ROOT(dentry))
1171 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1175 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1176 __func__, dentry, error);
1181 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1185 if (nfs_neg_need_reval(dir, dentry, flags)) {
1186 if (flags & LOOKUP_RCU)
1190 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1194 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1195 struct inode *inode)
1197 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1198 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1202 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1203 struct inode *inode)
1205 struct nfs_fh *fhandle;
1206 struct nfs_fattr *fattr;
1207 struct nfs4_label *label;
1211 fhandle = nfs_alloc_fhandle();
1212 fattr = nfs_alloc_fattr();
1213 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1214 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1217 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1219 if (ret == -ESTALE || ret == -ENOENT)
1224 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1226 if (nfs_refresh_inode(inode, fattr) < 0)
1229 nfs_setsecurity(inode, fattr, label);
1230 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1232 /* set a readdirplus hint that we had a cache miss */
1233 nfs_force_use_readdirplus(dir);
1236 nfs_free_fattr(fattr);
1237 nfs_free_fhandle(fhandle);
1238 nfs4_label_free(label);
1239 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1243 * This is called every time the dcache has a lookup hit,
1244 * and we should check whether we can really trust that
1247 * NOTE! The hit can be a negative hit too, don't assume
1250 * If the parent directory is seen to have changed, we throw out the
1251 * cached dentry and do a new lookup.
1254 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1257 struct inode *inode;
1260 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1261 inode = d_inode(dentry);
1264 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1266 if (is_bad_inode(inode)) {
1267 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1272 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1273 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1275 /* Force a full look up iff the parent directory has changed */
1276 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1277 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1278 error = nfs_lookup_verify_inode(inode, flags);
1280 if (error == -ESTALE)
1281 nfs_zap_caches(dir);
1284 nfs_advise_use_readdirplus(dir);
1288 if (flags & LOOKUP_RCU)
1291 if (NFS_STALE(inode))
1294 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1295 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1296 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1299 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1301 if (flags & LOOKUP_RCU)
1303 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1307 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1308 int (*reval)(struct inode *, struct dentry *, unsigned int))
1310 struct dentry *parent;
1314 if (flags & LOOKUP_RCU) {
1315 parent = READ_ONCE(dentry->d_parent);
1316 dir = d_inode_rcu(parent);
1319 ret = reval(dir, dentry, flags);
1320 if (parent != READ_ONCE(dentry->d_parent))
1323 parent = dget_parent(dentry);
1324 ret = reval(d_inode(parent), dentry, flags);
1330 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1332 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1336 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1337 * when we don't really care about the dentry name. This is called when a
1338 * pathwalk ends on a dentry that was not found via a normal lookup in the
1339 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1341 * In this situation, we just want to verify that the inode itself is OK
1342 * since the dentry might have changed on the server.
1344 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1346 struct inode *inode = d_inode(dentry);
1350 * I believe we can only get a negative dentry here in the case of a
1351 * procfs-style symlink. Just assume it's correct for now, but we may
1352 * eventually need to do something more here.
1355 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1360 if (is_bad_inode(inode)) {
1361 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1366 error = nfs_lookup_verify_inode(inode, flags);
1367 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1368 __func__, inode->i_ino, error ? "invalid" : "valid");
1373 * This is called from dput() when d_count is going to 0.
1375 static int nfs_dentry_delete(const struct dentry *dentry)
1377 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1378 dentry, dentry->d_flags);
1380 /* Unhash any dentry with a stale inode */
1381 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1384 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1385 /* Unhash it, so that ->d_iput() would be called */
1388 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1389 /* Unhash it, so that ancestors of killed async unlink
1390 * files will be cleaned up during umount */
1397 /* Ensure that we revalidate inode->i_nlink */
1398 static void nfs_drop_nlink(struct inode *inode)
1400 spin_lock(&inode->i_lock);
1401 /* drop the inode if we're reasonably sure this is the last link */
1402 if (inode->i_nlink > 0)
1404 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1405 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1406 | NFS_INO_INVALID_CTIME
1407 | NFS_INO_INVALID_OTHER
1408 | NFS_INO_REVAL_FORCED;
1409 spin_unlock(&inode->i_lock);
1413 * Called when the dentry loses inode.
1414 * We use it to clean up silly-renamed files.
1416 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1418 if (S_ISDIR(inode->i_mode))
1419 /* drop any readdir cache as it could easily be old */
1420 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1422 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1423 nfs_complete_unlink(dentry, inode);
1424 nfs_drop_nlink(inode);
1429 static void nfs_d_release(struct dentry *dentry)
1431 /* free cached devname value, if it survived that far */
1432 if (unlikely(dentry->d_fsdata)) {
1433 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1436 kfree(dentry->d_fsdata);
1440 const struct dentry_operations nfs_dentry_operations = {
1441 .d_revalidate = nfs_lookup_revalidate,
1442 .d_weak_revalidate = nfs_weak_revalidate,
1443 .d_delete = nfs_dentry_delete,
1444 .d_iput = nfs_dentry_iput,
1445 .d_automount = nfs_d_automount,
1446 .d_release = nfs_d_release,
1448 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1450 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1453 struct inode *inode = NULL;
1454 struct nfs_fh *fhandle = NULL;
1455 struct nfs_fattr *fattr = NULL;
1456 struct nfs4_label *label = NULL;
1459 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1460 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1462 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1463 return ERR_PTR(-ENAMETOOLONG);
1466 * If we're doing an exclusive create, optimize away the lookup
1467 * but don't hash the dentry.
1469 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1472 res = ERR_PTR(-ENOMEM);
1473 fhandle = nfs_alloc_fhandle();
1474 fattr = nfs_alloc_fattr();
1475 if (fhandle == NULL || fattr == NULL)
1478 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1482 trace_nfs_lookup_enter(dir, dentry, flags);
1483 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1484 if (error == -ENOENT)
1487 res = ERR_PTR(error);
1490 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1491 res = ERR_CAST(inode);
1495 /* Notify readdir to use READDIRPLUS */
1496 nfs_force_use_readdirplus(dir);
1499 res = d_splice_alias(inode, dentry);
1505 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1507 trace_nfs_lookup_exit(dir, dentry, flags, error);
1508 nfs4_label_free(label);
1510 nfs_free_fattr(fattr);
1511 nfs_free_fhandle(fhandle);
1514 EXPORT_SYMBOL_GPL(nfs_lookup);
1516 #if IS_ENABLED(CONFIG_NFS_V4)
1517 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1519 const struct dentry_operations nfs4_dentry_operations = {
1520 .d_revalidate = nfs4_lookup_revalidate,
1521 .d_weak_revalidate = nfs_weak_revalidate,
1522 .d_delete = nfs_dentry_delete,
1523 .d_iput = nfs_dentry_iput,
1524 .d_automount = nfs_d_automount,
1525 .d_release = nfs_d_release,
1527 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1529 static fmode_t flags_to_mode(int flags)
1531 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1532 if ((flags & O_ACCMODE) != O_WRONLY)
1534 if ((flags & O_ACCMODE) != O_RDONLY)
1539 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1541 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1544 static int do_open(struct inode *inode, struct file *filp)
1546 nfs_fscache_open_file(inode, filp);
1550 static int nfs_finish_open(struct nfs_open_context *ctx,
1551 struct dentry *dentry,
1552 struct file *file, unsigned open_flags)
1556 err = finish_open(file, dentry, do_open);
1559 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1560 nfs_file_set_open_context(file, ctx);
1567 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1568 struct file *file, unsigned open_flags,
1571 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1572 struct nfs_open_context *ctx;
1574 struct iattr attr = { .ia_valid = ATTR_OPEN };
1575 struct inode *inode;
1576 unsigned int lookup_flags = 0;
1577 bool switched = false;
1581 /* Expect a negative dentry */
1582 BUG_ON(d_inode(dentry));
1584 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1585 dir->i_sb->s_id, dir->i_ino, dentry);
1587 err = nfs_check_flags(open_flags);
1591 /* NFS only supports OPEN on regular files */
1592 if ((open_flags & O_DIRECTORY)) {
1593 if (!d_in_lookup(dentry)) {
1595 * Hashed negative dentry with O_DIRECTORY: dentry was
1596 * revalidated and is fine, no need to perform lookup
1601 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1605 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1606 return -ENAMETOOLONG;
1608 if (open_flags & O_CREAT) {
1609 struct nfs_server *server = NFS_SERVER(dir);
1611 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1612 mode &= ~current_umask();
1614 attr.ia_valid |= ATTR_MODE;
1615 attr.ia_mode = mode;
1617 if (open_flags & O_TRUNC) {
1618 attr.ia_valid |= ATTR_SIZE;
1622 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1625 dentry = d_alloc_parallel(dentry->d_parent,
1626 &dentry->d_name, &wq);
1628 return PTR_ERR(dentry);
1629 if (unlikely(!d_in_lookup(dentry)))
1630 return finish_no_open(file, dentry);
1633 ctx = create_nfs_open_context(dentry, open_flags, file);
1638 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1639 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1641 file->f_mode |= FMODE_CREATED;
1642 if (IS_ERR(inode)) {
1643 err = PTR_ERR(inode);
1644 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1645 put_nfs_open_context(ctx);
1649 d_splice_alias(NULL, dentry);
1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1656 if (!(open_flags & O_NOFOLLOW))
1666 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1667 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1668 put_nfs_open_context(ctx);
1670 if (unlikely(switched)) {
1671 d_lookup_done(dentry);
1677 res = nfs_lookup(dir, dentry, lookup_flags);
1679 d_lookup_done(dentry);
1686 return PTR_ERR(res);
1687 return finish_no_open(file, res);
1689 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1692 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1695 struct inode *inode;
1697 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1699 if (d_mountpoint(dentry))
1702 inode = d_inode(dentry);
1704 /* We can't create new files in nfs_open_revalidate(), so we
1705 * optimize away revalidation of negative dentries.
1710 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1711 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1713 /* NFS only supports OPEN on regular files */
1714 if (!S_ISREG(inode->i_mode))
1717 /* We cannot do exclusive creation on a positive dentry */
1718 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1721 /* Check if the directory changed */
1722 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1725 /* Let f_op->open() actually open (and revalidate) the file */
1728 if (flags & LOOKUP_RCU)
1730 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1733 return nfs_do_lookup_revalidate(dir, dentry, flags);
1736 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1738 return __nfs_lookup_revalidate(dentry, flags,
1739 nfs4_do_lookup_revalidate);
1742 #endif /* CONFIG_NFSV4 */
1745 * Code common to create, mkdir, and mknod.
1747 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1748 struct nfs_fattr *fattr,
1749 struct nfs4_label *label)
1751 struct dentry *parent = dget_parent(dentry);
1752 struct inode *dir = d_inode(parent);
1753 struct inode *inode;
1755 int error = -EACCES;
1759 /* We may have been initialized further down */
1760 if (d_really_is_positive(dentry))
1762 if (fhandle->size == 0) {
1763 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1767 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1768 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1769 struct nfs_server *server = NFS_SB(dentry->d_sb);
1770 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1775 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1776 d = d_splice_alias(inode, dentry);
1786 nfs_mark_for_revalidate(dir);
1790 EXPORT_SYMBOL_GPL(nfs_instantiate);
1793 * Following a failed create operation, we drop the dentry rather
1794 * than retain a negative dentry. This avoids a problem in the event
1795 * that the operation succeeded on the server, but an error in the
1796 * reply path made it appear to have failed.
1798 int nfs_create(struct inode *dir, struct dentry *dentry,
1799 umode_t mode, bool excl)
1802 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1805 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1806 dir->i_sb->s_id, dir->i_ino, dentry);
1808 attr.ia_mode = mode;
1809 attr.ia_valid = ATTR_MODE;
1811 trace_nfs_create_enter(dir, dentry, open_flags);
1812 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1813 trace_nfs_create_exit(dir, dentry, open_flags, error);
1821 EXPORT_SYMBOL_GPL(nfs_create);
1824 * See comments for nfs_proc_create regarding failed operations.
1827 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1832 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1833 dir->i_sb->s_id, dir->i_ino, dentry);
1835 attr.ia_mode = mode;
1836 attr.ia_valid = ATTR_MODE;
1838 trace_nfs_mknod_enter(dir, dentry);
1839 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1840 trace_nfs_mknod_exit(dir, dentry, status);
1848 EXPORT_SYMBOL_GPL(nfs_mknod);
1851 * See comments for nfs_proc_create regarding failed operations.
1853 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1858 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1859 dir->i_sb->s_id, dir->i_ino, dentry);
1861 attr.ia_valid = ATTR_MODE;
1862 attr.ia_mode = mode | S_IFDIR;
1864 trace_nfs_mkdir_enter(dir, dentry);
1865 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1866 trace_nfs_mkdir_exit(dir, dentry, error);
1874 EXPORT_SYMBOL_GPL(nfs_mkdir);
1876 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1878 if (simple_positive(dentry))
1882 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1886 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1887 dir->i_sb->s_id, dir->i_ino, dentry);
1889 trace_nfs_rmdir_enter(dir, dentry);
1890 if (d_really_is_positive(dentry)) {
1891 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1892 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1893 /* Ensure the VFS deletes this inode */
1896 clear_nlink(d_inode(dentry));
1899 nfs_dentry_handle_enoent(dentry);
1901 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1903 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1904 trace_nfs_rmdir_exit(dir, dentry, error);
1908 EXPORT_SYMBOL_GPL(nfs_rmdir);
1911 * Remove a file after making sure there are no pending writes,
1912 * and after checking that the file has only one user.
1914 * We invalidate the attribute cache and free the inode prior to the operation
1915 * to avoid possible races if the server reuses the inode.
1917 static int nfs_safe_remove(struct dentry *dentry)
1919 struct inode *dir = d_inode(dentry->d_parent);
1920 struct inode *inode = d_inode(dentry);
1923 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1925 /* If the dentry was sillyrenamed, we simply call d_delete() */
1926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1931 trace_nfs_remove_enter(dir, dentry);
1932 if (inode != NULL) {
1933 error = NFS_PROTO(dir)->remove(dir, dentry);
1935 nfs_drop_nlink(inode);
1937 error = NFS_PROTO(dir)->remove(dir, dentry);
1938 if (error == -ENOENT)
1939 nfs_dentry_handle_enoent(dentry);
1940 trace_nfs_remove_exit(dir, dentry, error);
1945 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1946 * belongs to an active ".nfs..." file and we return -EBUSY.
1948 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1950 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1953 int need_rehash = 0;
1955 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1956 dir->i_ino, dentry);
1958 trace_nfs_unlink_enter(dir, dentry);
1959 spin_lock(&dentry->d_lock);
1960 if (d_count(dentry) > 1) {
1961 spin_unlock(&dentry->d_lock);
1962 /* Start asynchronous writeout of the inode */
1963 write_inode_now(d_inode(dentry), 0);
1964 error = nfs_sillyrename(dir, dentry);
1967 if (!d_unhashed(dentry)) {
1971 spin_unlock(&dentry->d_lock);
1972 error = nfs_safe_remove(dentry);
1973 if (!error || error == -ENOENT) {
1974 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1975 } else if (need_rehash)
1978 trace_nfs_unlink_exit(dir, dentry, error);
1981 EXPORT_SYMBOL_GPL(nfs_unlink);
1984 * To create a symbolic link, most file systems instantiate a new inode,
1985 * add a page to it containing the path, then write it out to the disk
1986 * using prepare_write/commit_write.
1988 * Unfortunately the NFS client can't create the in-core inode first
1989 * because it needs a file handle to create an in-core inode (see
1990 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1991 * symlink request has completed on the server.
1993 * So instead we allocate a raw page, copy the symname into it, then do
1994 * the SYMLINK request with the page as the buffer. If it succeeds, we
1995 * now have a new file handle and can instantiate an in-core NFS inode
1996 * and move the raw page into its mapping.
1998 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2003 unsigned int pathlen = strlen(symname);
2006 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2007 dir->i_ino, dentry, symname);
2009 if (pathlen > PAGE_SIZE)
2010 return -ENAMETOOLONG;
2012 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2013 attr.ia_valid = ATTR_MODE;
2015 page = alloc_page(GFP_USER);
2019 kaddr = page_address(page);
2020 memcpy(kaddr, symname, pathlen);
2021 if (pathlen < PAGE_SIZE)
2022 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2024 trace_nfs_symlink_enter(dir, dentry);
2025 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2026 trace_nfs_symlink_exit(dir, dentry, error);
2028 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2029 dir->i_sb->s_id, dir->i_ino,
2030 dentry, symname, error);
2037 * No big deal if we can't add this page to the page cache here.
2038 * READLINK will get the missing page from the server if needed.
2040 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2042 SetPageUptodate(page);
2045 * add_to_page_cache_lru() grabs an extra page refcount.
2046 * Drop it here to avoid leaking this page later.
2054 EXPORT_SYMBOL_GPL(nfs_symlink);
2057 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2059 struct inode *inode = d_inode(old_dentry);
2062 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2063 old_dentry, dentry);
2065 trace_nfs_link_enter(inode, dir, dentry);
2067 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2070 d_add(dentry, inode);
2072 trace_nfs_link_exit(inode, dir, dentry, error);
2075 EXPORT_SYMBOL_GPL(nfs_link);
2079 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2080 * different file handle for the same inode after a rename (e.g. when
2081 * moving to a different directory). A fail-safe method to do so would
2082 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2083 * rename the old file using the sillyrename stuff. This way, the original
2084 * file in old_dir will go away when the last process iput()s the inode.
2088 * It actually works quite well. One needs to have the possibility for
2089 * at least one ".nfs..." file in each directory the file ever gets
2090 * moved or linked to which happens automagically with the new
2091 * implementation that only depends on the dcache stuff instead of
2092 * using the inode layer
2094 * Unfortunately, things are a little more complicated than indicated
2095 * above. For a cross-directory move, we want to make sure we can get
2096 * rid of the old inode after the operation. This means there must be
2097 * no pending writes (if it's a file), and the use count must be 1.
2098 * If these conditions are met, we can drop the dentries before doing
2101 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2102 struct inode *new_dir, struct dentry *new_dentry,
2105 struct inode *old_inode = d_inode(old_dentry);
2106 struct inode *new_inode = d_inode(new_dentry);
2107 struct dentry *dentry = NULL, *rehash = NULL;
2108 struct rpc_task *task;
2114 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2115 old_dentry, new_dentry,
2116 d_count(new_dentry));
2118 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2120 * For non-directories, check whether the target is busy and if so,
2121 * make a copy of the dentry and then do a silly-rename. If the
2122 * silly-rename succeeds, the copied dentry is hashed and becomes
2125 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2127 * To prevent any new references to the target during the
2128 * rename, we unhash the dentry in advance.
2130 if (!d_unhashed(new_dentry)) {
2132 rehash = new_dentry;
2135 if (d_count(new_dentry) > 2) {
2138 /* copy the target dentry's name */
2139 dentry = d_alloc(new_dentry->d_parent,
2140 &new_dentry->d_name);
2144 /* silly-rename the existing target ... */
2145 err = nfs_sillyrename(new_dir, new_dentry);
2149 new_dentry = dentry;
2155 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2157 error = PTR_ERR(task);
2161 error = rpc_wait_for_completion_task(task);
2163 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2164 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2167 error = task->tk_status;
2169 /* Ensure the inode attributes are revalidated */
2171 spin_lock(&old_inode->i_lock);
2172 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2173 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2174 | NFS_INO_INVALID_CTIME
2175 | NFS_INO_REVAL_FORCED;
2176 spin_unlock(&old_inode->i_lock);
2181 trace_nfs_rename_exit(old_dir, old_dentry,
2182 new_dir, new_dentry, error);
2184 if (new_inode != NULL)
2185 nfs_drop_nlink(new_inode);
2187 * The d_move() should be here instead of in an async RPC completion
2188 * handler because we need the proper locks to move the dentry. If
2189 * we're interrupted by a signal, the async RPC completion handler
2190 * should mark the directories for revalidation.
2192 d_move(old_dentry, new_dentry);
2193 nfs_set_verifier(old_dentry,
2194 nfs_save_change_attribute(new_dir));
2195 } else if (error == -ENOENT)
2196 nfs_dentry_handle_enoent(old_dentry);
2198 /* new dentry created? */
2203 EXPORT_SYMBOL_GPL(nfs_rename);
2205 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2206 static LIST_HEAD(nfs_access_lru_list);
2207 static atomic_long_t nfs_access_nr_entries;
2209 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2210 module_param(nfs_access_max_cachesize, ulong, 0644);
2211 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2213 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2215 put_cred(entry->cred);
2216 kfree_rcu(entry, rcu_head);
2217 smp_mb__before_atomic();
2218 atomic_long_dec(&nfs_access_nr_entries);
2219 smp_mb__after_atomic();
2222 static void nfs_access_free_list(struct list_head *head)
2224 struct nfs_access_entry *cache;
2226 while (!list_empty(head)) {
2227 cache = list_entry(head->next, struct nfs_access_entry, lru);
2228 list_del(&cache->lru);
2229 nfs_access_free_entry(cache);
2233 static unsigned long
2234 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2237 struct nfs_inode *nfsi, *next;
2238 struct nfs_access_entry *cache;
2241 spin_lock(&nfs_access_lru_lock);
2242 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2243 struct inode *inode;
2245 if (nr_to_scan-- == 0)
2247 inode = &nfsi->vfs_inode;
2248 spin_lock(&inode->i_lock);
2249 if (list_empty(&nfsi->access_cache_entry_lru))
2250 goto remove_lru_entry;
2251 cache = list_entry(nfsi->access_cache_entry_lru.next,
2252 struct nfs_access_entry, lru);
2253 list_move(&cache->lru, &head);
2254 rb_erase(&cache->rb_node, &nfsi->access_cache);
2256 if (!list_empty(&nfsi->access_cache_entry_lru))
2257 list_move_tail(&nfsi->access_cache_inode_lru,
2258 &nfs_access_lru_list);
2261 list_del_init(&nfsi->access_cache_inode_lru);
2262 smp_mb__before_atomic();
2263 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2264 smp_mb__after_atomic();
2266 spin_unlock(&inode->i_lock);
2268 spin_unlock(&nfs_access_lru_lock);
2269 nfs_access_free_list(&head);
2274 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2276 int nr_to_scan = sc->nr_to_scan;
2277 gfp_t gfp_mask = sc->gfp_mask;
2279 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2281 return nfs_do_access_cache_scan(nr_to_scan);
2286 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2288 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2292 nfs_access_cache_enforce_limit(void)
2294 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2296 unsigned int nr_to_scan;
2298 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2301 diff = nr_entries - nfs_access_max_cachesize;
2302 if (diff < nr_to_scan)
2304 nfs_do_access_cache_scan(nr_to_scan);
2307 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2309 struct rb_root *root_node = &nfsi->access_cache;
2311 struct nfs_access_entry *entry;
2313 /* Unhook entries from the cache */
2314 while ((n = rb_first(root_node)) != NULL) {
2315 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2316 rb_erase(n, root_node);
2317 list_move(&entry->lru, head);
2319 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2322 void nfs_access_zap_cache(struct inode *inode)
2326 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2328 /* Remove from global LRU init */
2329 spin_lock(&nfs_access_lru_lock);
2330 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2331 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2333 spin_lock(&inode->i_lock);
2334 __nfs_access_zap_cache(NFS_I(inode), &head);
2335 spin_unlock(&inode->i_lock);
2336 spin_unlock(&nfs_access_lru_lock);
2337 nfs_access_free_list(&head);
2339 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2341 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2343 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2346 struct nfs_access_entry *entry =
2347 rb_entry(n, struct nfs_access_entry, rb_node);
2348 int cmp = cred_fscmp(cred, entry->cred);
2360 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2362 struct nfs_inode *nfsi = NFS_I(inode);
2363 struct nfs_access_entry *cache;
2367 spin_lock(&inode->i_lock);
2369 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2371 cache = nfs_access_search_rbtree(inode, cred);
2375 /* Found an entry, is our attribute cache valid? */
2376 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2383 spin_unlock(&inode->i_lock);
2384 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2387 spin_lock(&inode->i_lock);
2390 res->cred = cache->cred;
2391 res->mask = cache->mask;
2392 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2395 spin_unlock(&inode->i_lock);
2398 spin_unlock(&inode->i_lock);
2399 nfs_access_zap_cache(inode);
2403 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2405 /* Only check the most recently returned cache entry,
2406 * but do it without locking.
2408 struct nfs_inode *nfsi = NFS_I(inode);
2409 struct nfs_access_entry *cache;
2411 struct list_head *lh;
2414 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2416 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2417 cache = list_entry(lh, struct nfs_access_entry, lru);
2418 if (lh == &nfsi->access_cache_entry_lru ||
2419 cred != cache->cred)
2423 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2425 res->cred = cache->cred;
2426 res->mask = cache->mask;
2433 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2435 struct nfs_inode *nfsi = NFS_I(inode);
2436 struct rb_root *root_node = &nfsi->access_cache;
2437 struct rb_node **p = &root_node->rb_node;
2438 struct rb_node *parent = NULL;
2439 struct nfs_access_entry *entry;
2442 spin_lock(&inode->i_lock);
2443 while (*p != NULL) {
2445 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2446 cmp = cred_fscmp(set->cred, entry->cred);
2449 p = &parent->rb_left;
2451 p = &parent->rb_right;
2455 rb_link_node(&set->rb_node, parent, p);
2456 rb_insert_color(&set->rb_node, root_node);
2457 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2458 spin_unlock(&inode->i_lock);
2461 rb_replace_node(parent, &set->rb_node, root_node);
2462 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2463 list_del(&entry->lru);
2464 spin_unlock(&inode->i_lock);
2465 nfs_access_free_entry(entry);
2468 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2470 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2473 RB_CLEAR_NODE(&cache->rb_node);
2474 cache->cred = get_cred(set->cred);
2475 cache->mask = set->mask;
2477 /* The above field assignments must be visible
2478 * before this item appears on the lru. We cannot easily
2479 * use rcu_assign_pointer, so just force the memory barrier.
2482 nfs_access_add_rbtree(inode, cache);
2484 /* Update accounting */
2485 smp_mb__before_atomic();
2486 atomic_long_inc(&nfs_access_nr_entries);
2487 smp_mb__after_atomic();
2489 /* Add inode to global LRU list */
2490 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2491 spin_lock(&nfs_access_lru_lock);
2492 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2493 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2494 &nfs_access_lru_list);
2495 spin_unlock(&nfs_access_lru_lock);
2497 nfs_access_cache_enforce_limit();
2499 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2501 #define NFS_MAY_READ (NFS_ACCESS_READ)
2502 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2503 NFS_ACCESS_EXTEND | \
2505 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2507 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2508 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2509 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2511 nfs_access_calc_mask(u32 access_result, umode_t umode)
2515 if (access_result & NFS_MAY_READ)
2517 if (S_ISDIR(umode)) {
2518 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2520 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2522 } else if (S_ISREG(umode)) {
2523 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2525 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2527 } else if (access_result & NFS_MAY_WRITE)
2532 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2534 entry->mask = access_result;
2536 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2538 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2540 struct nfs_access_entry cache;
2541 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2545 trace_nfs_access_enter(inode);
2547 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2549 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2558 * Determine which access bits we want to ask for...
2560 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2561 if (S_ISDIR(inode->i_mode))
2562 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2564 cache.mask |= NFS_ACCESS_EXECUTE;
2566 status = NFS_PROTO(inode)->access(inode, &cache);
2568 if (status == -ESTALE) {
2569 nfs_zap_caches(inode);
2570 if (!S_ISDIR(inode->i_mode))
2571 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2575 nfs_access_add_cache(inode, &cache);
2577 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2578 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2581 trace_nfs_access_exit(inode, status);
2585 static int nfs_open_permission_mask(int openflags)
2589 if (openflags & __FMODE_EXEC) {
2590 /* ONLY check exec rights */
2593 if ((openflags & O_ACCMODE) != O_WRONLY)
2595 if ((openflags & O_ACCMODE) != O_RDONLY)
2602 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2604 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2606 EXPORT_SYMBOL_GPL(nfs_may_open);
2608 static int nfs_execute_ok(struct inode *inode, int mask)
2610 struct nfs_server *server = NFS_SERVER(inode);
2613 if (S_ISDIR(inode->i_mode))
2615 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2616 if (mask & MAY_NOT_BLOCK)
2618 ret = __nfs_revalidate_inode(server, inode);
2620 if (ret == 0 && !execute_ok(inode))
2625 int nfs_permission(struct inode *inode, int mask)
2627 const struct cred *cred = current_cred();
2630 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2632 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2634 /* Is this sys_access() ? */
2635 if (mask & (MAY_ACCESS | MAY_CHDIR))
2638 switch (inode->i_mode & S_IFMT) {
2642 if ((mask & MAY_OPEN) &&
2643 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2648 * Optimize away all write operations, since the server
2649 * will check permissions when we perform the op.
2651 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2656 if (!NFS_PROTO(inode)->access)
2659 /* Always try fast lookups first */
2661 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2663 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2664 /* Fast lookup failed, try the slow way */
2665 res = nfs_do_access(inode, cred, mask);
2668 if (!res && (mask & MAY_EXEC))
2669 res = nfs_execute_ok(inode, mask);
2671 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2672 inode->i_sb->s_id, inode->i_ino, mask, res);
2675 if (mask & MAY_NOT_BLOCK)
2678 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2680 res = generic_permission(inode, mask);
2683 EXPORT_SYMBOL_GPL(nfs_permission);
2687 * version-control: t
2688 * kept-new-versions: 5