2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot,
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
52 struct btrfs_path *btrfs_alloc_path(void)
54 struct btrfs_path *path;
55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
78 * reset all the locked nodes in the patch to spinning locks.
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 struct extent_buffer *held, int held_rw)
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
104 btrfs_set_path_blocking(p);
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
119 btrfs_clear_lock_blocking_rw(held, held_rw);
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
128 btrfs_release_path(p);
129 kmem_cache_free(btrfs_path_cachep, p);
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
136 * It is safe to call this on paths that no locks or extent buffers held.
138 noinline void btrfs_release_path(struct btrfs_path *p)
142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
150 free_extent_buffer(p->nodes[i]);
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
167 struct extent_buffer *eb;
171 eb = rcu_dereference(root->node);
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
179 if (atomic_inc_not_zero(&eb->refs)) {
189 /* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
195 struct extent_buffer *eb;
198 eb = btrfs_root_node(root);
200 if (eb == root->node)
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
208 /* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
214 struct extent_buffer *eb;
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
231 static void add_root_to_dirty_list(struct btrfs_root *root)
233 spin_lock(&root->fs_info->trans_lock);
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
238 spin_unlock(&root->fs_info->trans_lock);
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
251 struct extent_buffer *cow;
254 struct btrfs_disk_key disk_key;
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
260 level = btrfs_header_level(buf);
262 btrfs_item_key(buf, &disk_key, 0);
264 btrfs_node_key(buf, &disk_key, 0);
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281 btrfs_set_header_owner(cow, new_root_objectid);
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
296 btrfs_mark_buffer_dirty(cow);
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
308 MOD_LOG_ROOT_REPLACE,
311 struct tree_mod_move {
316 struct tree_mod_root {
321 struct tree_mod_elem {
323 u64 index; /* shifted logical */
324 struct seq_list elem;
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
355 spin_lock(&fs_info->tree_mod_seq_lock);
356 __get_tree_mod_seq(fs_info, elem);
357 spin_unlock(&fs_info->tree_mod_seq_lock);
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361 struct seq_list *elem)
363 struct rb_root *tm_root;
364 struct rb_node *node;
365 struct rb_node *next;
366 struct seq_list *cur_elem;
367 struct tree_mod_elem *tm;
368 u64 min_seq = (u64)-1;
369 u64 seq_putting = elem->seq;
374 BUG_ON(!(elem->flags & 1));
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 list_del(&elem->list);
378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380 if (seq_putting > cur_elem->seq) {
382 * blocker with lower sequence number exists, we
383 * cannot remove anything from the log
387 min_seq = cur_elem->seq;
392 * anything that's lower than the lowest existing (read: blocked)
393 * sequence number can be removed from the tree.
395 write_lock(&fs_info->tree_mod_log_lock);
396 tm_root = &fs_info->tree_mod_log;
397 for (node = rb_first(tm_root); node; node = next) {
398 next = rb_next(node);
399 tm = container_of(node, struct tree_mod_elem, node);
400 if (tm->elem.seq > min_seq)
402 rb_erase(node, tm_root);
403 list_del(&tm->elem.list);
406 write_unlock(&fs_info->tree_mod_log_lock);
408 spin_unlock(&fs_info->tree_mod_seq_lock);
412 * key order of the log:
415 * the index is the shifted logical of the *new* root node for root replace
416 * operations, or the shifted logical of the affected block for all other
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
422 struct rb_root *tm_root;
423 struct rb_node **new;
424 struct rb_node *parent = NULL;
425 struct tree_mod_elem *cur;
428 BUG_ON(!tm || !tm->elem.seq);
430 write_lock(&fs_info->tree_mod_log_lock);
431 tm_root = &fs_info->tree_mod_log;
432 new = &tm_root->rb_node;
434 cur = container_of(*new, struct tree_mod_elem, node);
436 if (cur->index < tm->index)
437 new = &((*new)->rb_left);
438 else if (cur->index > tm->index)
439 new = &((*new)->rb_right);
440 else if (cur->elem.seq < tm->elem.seq)
441 new = &((*new)->rb_left);
442 else if (cur->elem.seq > tm->elem.seq)
443 new = &((*new)->rb_right);
451 rb_link_node(&tm->node, parent, new);
452 rb_insert_color(&tm->node, tm_root);
454 write_unlock(&fs_info->tree_mod_log_lock);
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459 struct extent_buffer *eb) {
461 if (list_empty(&(fs_info)->tree_mod_seq_list))
465 if (btrfs_header_level(eb) == 0)
471 * This allocates memory and gets a tree modification sequence number when
474 * Returns 0 when no sequence number is needed, < 0 on error.
475 * Returns 1 when a sequence number was added. In this case,
476 * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477 * after inserting into the rb tree.
479 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480 struct tree_mod_elem **tm_ret)
482 struct tree_mod_elem *tm;
485 if (tree_mod_dont_log(fs_info, NULL))
488 tm = *tm_ret = kzalloc(sizeof(*tm), flags);
493 spin_lock(&fs_info->tree_mod_seq_lock);
494 if (list_empty(&fs_info->tree_mod_seq_list)) {
496 * someone emptied the list while we were waiting for the lock.
497 * we must not add to the list, because no blocker exists. items
498 * are removed from the list only when the existing blocker is
499 * removed from the list.
503 spin_unlock(&fs_info->tree_mod_seq_lock);
505 __get_tree_mod_seq(fs_info, &tm->elem);
513 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514 struct extent_buffer *eb, int slot,
515 enum mod_log_op op, gfp_t flags)
517 struct tree_mod_elem *tm;
520 ret = tree_mod_alloc(fs_info, flags, &tm);
524 tm->index = eb->start >> PAGE_CACHE_SHIFT;
525 if (op != MOD_LOG_KEY_ADD) {
526 btrfs_node_key(eb, &tm->key, slot);
527 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 tm->generation = btrfs_node_ptr_generation(eb, slot);
533 ret = __tree_mod_log_insert(fs_info, tm);
534 spin_unlock(&fs_info->tree_mod_seq_lock);
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540 int slot, enum mod_log_op op)
542 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
546 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547 struct extent_buffer *eb, int dst_slot, int src_slot,
548 int nr_items, gfp_t flags)
550 struct tree_mod_elem *tm;
554 if (tree_mod_dont_log(fs_info, eb))
557 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
563 ret = tree_mod_alloc(fs_info, flags, &tm);
567 tm->index = eb->start >> PAGE_CACHE_SHIFT;
569 tm->move.dst_slot = dst_slot;
570 tm->move.nr_items = nr_items;
571 tm->op = MOD_LOG_MOVE_KEYS;
573 ret = __tree_mod_log_insert(fs_info, tm);
574 spin_unlock(&fs_info->tree_mod_seq_lock);
579 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *old_root,
581 struct extent_buffer *new_root, gfp_t flags)
583 struct tree_mod_elem *tm;
586 ret = tree_mod_alloc(fs_info, flags, &tm);
590 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591 tm->old_root.logical = old_root->start;
592 tm->old_root.level = btrfs_header_level(old_root);
593 tm->generation = btrfs_header_generation(old_root);
594 tm->op = MOD_LOG_ROOT_REPLACE;
596 ret = __tree_mod_log_insert(fs_info, tm);
597 spin_unlock(&fs_info->tree_mod_seq_lock);
601 static struct tree_mod_elem *
602 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
605 struct rb_root *tm_root;
606 struct rb_node *node;
607 struct tree_mod_elem *cur = NULL;
608 struct tree_mod_elem *found = NULL;
609 u64 index = start >> PAGE_CACHE_SHIFT;
611 read_lock(&fs_info->tree_mod_log_lock);
612 tm_root = &fs_info->tree_mod_log;
613 node = tm_root->rb_node;
615 cur = container_of(node, struct tree_mod_elem, node);
616 if (cur->index < index) {
617 node = node->rb_left;
618 } else if (cur->index > index) {
619 node = node->rb_right;
620 } else if (cur->elem.seq < min_seq) {
621 node = node->rb_left;
622 } else if (!smallest) {
623 /* we want the node with the highest seq */
625 BUG_ON(found->elem.seq > cur->elem.seq);
627 node = node->rb_left;
628 } else if (cur->elem.seq > min_seq) {
629 /* we want the node with the smallest seq */
631 BUG_ON(found->elem.seq < cur->elem.seq);
633 node = node->rb_right;
639 read_unlock(&fs_info->tree_mod_log_lock);
645 * this returns the element from the log with the smallest time sequence
646 * value that's in the log (the oldest log item). any element with a time
647 * sequence lower than min_seq will be ignored.
649 static struct tree_mod_elem *
650 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
653 return __tree_mod_log_search(fs_info, start, min_seq, 1);
657 * this returns the element from the log with the largest time sequence
658 * value that's in the log (the most recent log item). any element with
659 * a time sequence lower than min_seq will be ignored.
661 static struct tree_mod_elem *
662 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
664 return __tree_mod_log_search(fs_info, start, min_seq, 0);
668 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669 struct extent_buffer *src, unsigned long dst_offset,
670 unsigned long src_offset, int nr_items)
675 if (tree_mod_dont_log(fs_info, NULL))
678 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
681 /* speed this up by single seq for all operations? */
682 for (i = 0; i < nr_items; i++) {
683 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
686 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
693 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694 int dst_offset, int src_offset, int nr_items)
697 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
703 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704 struct extent_buffer *eb,
705 struct btrfs_disk_key *disk_key, int slot, int atomic)
709 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
711 atomic ? GFP_ATOMIC : GFP_NOFS);
715 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716 struct extent_buffer *eb)
722 if (tree_mod_dont_log(fs_info, eb))
725 nritems = btrfs_header_nritems(eb);
726 for (i = nritems - 1; i >= 0; i--) {
727 ret = tree_mod_log_insert_key(fs_info, eb, i,
728 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
734 tree_mod_log_set_root_pointer(struct btrfs_root *root,
735 struct extent_buffer *new_root_node)
738 tree_mod_log_free_eb(root->fs_info, root->node);
739 ret = tree_mod_log_insert_root(root->fs_info, root->node,
740 new_root_node, GFP_NOFS);
745 * check if the tree block can be shared by multiple trees
747 int btrfs_block_can_be_shared(struct btrfs_root *root,
748 struct extent_buffer *buf)
751 * Tree blocks not in refernece counted trees and tree roots
752 * are never shared. If a block was allocated after the last
753 * snapshot and the block was not allocated by tree relocation,
754 * we know the block is not shared.
756 if (root->ref_cows &&
757 buf != root->node && buf != root->commit_root &&
758 (btrfs_header_generation(buf) <=
759 btrfs_root_last_snapshot(&root->root_item) ||
760 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
762 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763 if (root->ref_cows &&
764 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
770 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct extent_buffer *buf,
773 struct extent_buffer *cow,
783 * Backrefs update rules:
785 * Always use full backrefs for extent pointers in tree block
786 * allocated by tree relocation.
788 * If a shared tree block is no longer referenced by its owner
789 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790 * use full backrefs for extent pointers in tree block.
792 * If a tree block is been relocating
793 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794 * use full backrefs for extent pointers in tree block.
795 * The reason for this is some operations (such as drop tree)
796 * are only allowed for blocks use full backrefs.
799 if (btrfs_block_can_be_shared(root, buf)) {
800 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801 buf->len, &refs, &flags);
806 btrfs_std_error(root->fs_info, ret);
811 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 owner = btrfs_header_owner(buf);
819 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
823 if ((owner == root->root_key.objectid ||
824 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
826 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
827 BUG_ON(ret); /* -ENOMEM */
829 if (root->root_key.objectid ==
830 BTRFS_TREE_RELOC_OBJECTID) {
831 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
832 BUG_ON(ret); /* -ENOMEM */
833 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
834 BUG_ON(ret); /* -ENOMEM */
836 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
839 if (root->root_key.objectid ==
840 BTRFS_TREE_RELOC_OBJECTID)
841 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
843 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
844 BUG_ON(ret); /* -ENOMEM */
846 if (new_flags != 0) {
847 ret = btrfs_set_disk_extent_flags(trans, root,
855 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856 if (root->root_key.objectid ==
857 BTRFS_TREE_RELOC_OBJECTID)
858 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
860 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
861 BUG_ON(ret); /* -ENOMEM */
862 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
863 BUG_ON(ret); /* -ENOMEM */
866 * don't log freeing in case we're freeing the root node, this
867 * is done by tree_mod_log_set_root_pointer later
869 if (buf != root->node && btrfs_header_level(buf) != 0)
870 tree_mod_log_free_eb(root->fs_info, buf);
871 clean_tree_block(trans, root, buf);
878 * does the dirty work in cow of a single block. The parent block (if
879 * supplied) is updated to point to the new cow copy. The new buffer is marked
880 * dirty and returned locked. If you modify the block it needs to be marked
883 * search_start -- an allocation hint for the new block
885 * empty_size -- a hint that you plan on doing more cow. This is the size in
886 * bytes the allocator should try to find free next to the block it returns.
887 * This is just a hint and may be ignored by the allocator.
889 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
890 struct btrfs_root *root,
891 struct extent_buffer *buf,
892 struct extent_buffer *parent, int parent_slot,
893 struct extent_buffer **cow_ret,
894 u64 search_start, u64 empty_size)
896 struct btrfs_disk_key disk_key;
897 struct extent_buffer *cow;
906 btrfs_assert_tree_locked(buf);
908 WARN_ON(root->ref_cows && trans->transid !=
909 root->fs_info->running_transaction->transid);
910 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
912 level = btrfs_header_level(buf);
915 btrfs_item_key(buf, &disk_key, 0);
917 btrfs_node_key(buf, &disk_key, 0);
919 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
921 parent_start = parent->start;
927 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928 root->root_key.objectid, &disk_key,
929 level, search_start, empty_size);
933 /* cow is set to blocking by btrfs_init_new_buffer */
935 copy_extent_buffer(cow, buf, 0, 0, cow->len);
936 btrfs_set_header_bytenr(cow, cow->start);
937 btrfs_set_header_generation(cow, trans->transid);
938 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940 BTRFS_HEADER_FLAG_RELOC);
941 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
944 btrfs_set_header_owner(cow, root->root_key.objectid);
946 write_extent_buffer(cow, root->fs_info->fsid,
947 (unsigned long)btrfs_header_fsid(cow),
950 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
952 btrfs_abort_transaction(trans, root, ret);
957 btrfs_reloc_cow_block(trans, root, buf, cow);
959 if (buf == root->node) {
960 WARN_ON(parent && parent != buf);
961 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963 parent_start = buf->start;
967 extent_buffer_get(cow);
968 tree_mod_log_set_root_pointer(root, cow);
969 rcu_assign_pointer(root->node, cow);
971 btrfs_free_tree_block(trans, root, buf, parent_start,
973 free_extent_buffer(buf);
974 add_root_to_dirty_list(root);
976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977 parent_start = parent->start;
981 WARN_ON(trans->transid != btrfs_header_generation(parent));
982 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983 MOD_LOG_KEY_REPLACE);
984 btrfs_set_node_blockptr(parent, parent_slot,
986 btrfs_set_node_ptr_generation(parent, parent_slot,
988 btrfs_mark_buffer_dirty(parent);
989 btrfs_free_tree_block(trans, root, buf, parent_start,
993 btrfs_tree_unlock(buf);
994 free_extent_buffer_stale(buf);
995 btrfs_mark_buffer_dirty(cow);
1001 * returns the logical address of the oldest predecessor of the given root.
1002 * entries older than time_seq are ignored.
1004 static struct tree_mod_elem *
1005 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006 struct btrfs_root *root, u64 time_seq)
1008 struct tree_mod_elem *tm;
1009 struct tree_mod_elem *found = NULL;
1010 u64 root_logical = root->node->start;
1017 * the very last operation that's logged for a root is the replacement
1018 * operation (if it is replaced at all). this has the index of the *new*
1019 * root, making it the very first operation that's logged for this root.
1022 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1027 * we must have key remove operations in the log before the
1028 * replace operation.
1032 if (tm->op != MOD_LOG_ROOT_REPLACE)
1036 root_logical = tm->old_root.logical;
1037 BUG_ON(root_logical == root->node->start);
1041 /* if there's no old root to return, return what we found instead */
1049 * tm is a pointer to the first operation to rewind within eb. then, all
1050 * previous operations will be rewinded (until we reach something older than
1054 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1055 struct tree_mod_elem *first_tm)
1058 struct rb_node *next;
1059 struct tree_mod_elem *tm = first_tm;
1060 unsigned long o_dst;
1061 unsigned long o_src;
1062 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1064 n = btrfs_header_nritems(eb);
1065 while (tm && tm->elem.seq >= time_seq) {
1067 * all the operations are recorded with the operator used for
1068 * the modification. as we're going backwards, we do the
1069 * opposite of each operation here.
1072 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1073 BUG_ON(tm->slot < n);
1074 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1075 case MOD_LOG_KEY_REMOVE:
1076 btrfs_set_node_key(eb, &tm->key, tm->slot);
1077 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1078 btrfs_set_node_ptr_generation(eb, tm->slot,
1082 case MOD_LOG_KEY_REPLACE:
1083 BUG_ON(tm->slot >= n);
1084 btrfs_set_node_key(eb, &tm->key, tm->slot);
1085 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1086 btrfs_set_node_ptr_generation(eb, tm->slot,
1089 case MOD_LOG_KEY_ADD:
1090 if (tm->slot != n - 1) {
1091 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1092 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1093 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1097 case MOD_LOG_MOVE_KEYS:
1098 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1099 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1100 memmove_extent_buffer(eb, o_dst, o_src,
1101 tm->move.nr_items * p_size);
1103 case MOD_LOG_ROOT_REPLACE:
1105 * this operation is special. for roots, this must be
1106 * handled explicitly before rewinding.
1107 * for non-roots, this operation may exist if the node
1108 * was a root: root A -> child B; then A gets empty and
1109 * B is promoted to the new root. in the mod log, we'll
1110 * have a root-replace operation for B, a tree block
1111 * that is no root. we simply ignore that operation.
1115 next = rb_next(&tm->node);
1118 tm = container_of(next, struct tree_mod_elem, node);
1119 if (tm->index != first_tm->index)
1122 btrfs_set_header_nritems(eb, n);
1125 static struct extent_buffer *
1126 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1129 struct extent_buffer *eb_rewin;
1130 struct tree_mod_elem *tm;
1135 if (btrfs_header_level(eb) == 0)
1138 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1142 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1143 BUG_ON(tm->slot != 0);
1144 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1145 fs_info->tree_root->nodesize);
1147 btrfs_set_header_bytenr(eb_rewin, eb->start);
1148 btrfs_set_header_backref_rev(eb_rewin,
1149 btrfs_header_backref_rev(eb));
1150 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1151 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1153 eb_rewin = btrfs_clone_extent_buffer(eb);
1157 extent_buffer_get(eb_rewin);
1158 free_extent_buffer(eb);
1160 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1166 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1167 * value. If there are no changes, the current root->root_node is returned. If
1168 * anything changed in between, there's a fresh buffer allocated on which the
1169 * rewind operations are done. In any case, the returned buffer is read locked.
1170 * Returns NULL on error (with no locks held).
1172 static inline struct extent_buffer *
1173 get_old_root(struct btrfs_root *root, u64 time_seq)
1175 struct tree_mod_elem *tm;
1176 struct extent_buffer *eb;
1177 struct tree_mod_root *old_root = NULL;
1178 u64 old_generation = 0;
1181 eb = btrfs_read_lock_root_node(root);
1182 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1186 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1187 old_root = &tm->old_root;
1188 old_generation = tm->generation;
1189 logical = old_root->logical;
1191 logical = root->node->start;
1194 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1196 * there was an item in the log when __tree_mod_log_oldest_root
1197 * returned. this one must not go away, because the time_seq passed to
1198 * us must be blocking its removal.
1203 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT,
1206 eb = btrfs_clone_extent_buffer(root->node);
1207 btrfs_tree_read_unlock(root->node);
1208 free_extent_buffer(root->node);
1211 btrfs_tree_read_lock(eb);
1213 btrfs_set_header_bytenr(eb, eb->start);
1214 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1215 btrfs_set_header_owner(eb, root->root_key.objectid);
1216 btrfs_set_header_level(eb, old_root->level);
1217 btrfs_set_header_generation(eb, old_generation);
1219 __tree_mod_log_rewind(eb, time_seq, tm);
1220 extent_buffer_get(eb);
1225 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1226 struct btrfs_root *root,
1227 struct extent_buffer *buf)
1229 /* ensure we can see the force_cow */
1233 * We do not need to cow a block if
1234 * 1) this block is not created or changed in this transaction;
1235 * 2) this block does not belong to TREE_RELOC tree;
1236 * 3) the root is not forced COW.
1238 * What is forced COW:
1239 * when we create snapshot during commiting the transaction,
1240 * after we've finished coping src root, we must COW the shared
1241 * block to ensure the metadata consistency.
1243 if (btrfs_header_generation(buf) == trans->transid &&
1244 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1245 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1246 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1253 * cows a single block, see __btrfs_cow_block for the real work.
1254 * This version of it has extra checks so that a block isn't cow'd more than
1255 * once per transaction, as long as it hasn't been written yet
1257 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root, struct extent_buffer *buf,
1259 struct extent_buffer *parent, int parent_slot,
1260 struct extent_buffer **cow_ret)
1265 if (trans->transaction != root->fs_info->running_transaction) {
1266 printk(KERN_CRIT "trans %llu running %llu\n",
1267 (unsigned long long)trans->transid,
1268 (unsigned long long)
1269 root->fs_info->running_transaction->transid);
1272 if (trans->transid != root->fs_info->generation) {
1273 printk(KERN_CRIT "trans %llu running %llu\n",
1274 (unsigned long long)trans->transid,
1275 (unsigned long long)root->fs_info->generation);
1279 if (!should_cow_block(trans, root, buf)) {
1284 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1287 btrfs_set_lock_blocking(parent);
1288 btrfs_set_lock_blocking(buf);
1290 ret = __btrfs_cow_block(trans, root, buf, parent,
1291 parent_slot, cow_ret, search_start, 0);
1293 trace_btrfs_cow_block(root, buf, *cow_ret);
1299 * helper function for defrag to decide if two blocks pointed to by a
1300 * node are actually close by
1302 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1304 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1306 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1312 * compare two keys in a memcmp fashion
1314 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1316 struct btrfs_key k1;
1318 btrfs_disk_key_to_cpu(&k1, disk);
1320 return btrfs_comp_cpu_keys(&k1, k2);
1324 * same as comp_keys only with two btrfs_key's
1326 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1328 if (k1->objectid > k2->objectid)
1330 if (k1->objectid < k2->objectid)
1332 if (k1->type > k2->type)
1334 if (k1->type < k2->type)
1336 if (k1->offset > k2->offset)
1338 if (k1->offset < k2->offset)
1344 * this is used by the defrag code to go through all the
1345 * leaves pointed to by a node and reallocate them so that
1346 * disk order is close to key order
1348 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1349 struct btrfs_root *root, struct extent_buffer *parent,
1350 int start_slot, int cache_only, u64 *last_ret,
1351 struct btrfs_key *progress)
1353 struct extent_buffer *cur;
1356 u64 search_start = *last_ret;
1366 int progress_passed = 0;
1367 struct btrfs_disk_key disk_key;
1369 parent_level = btrfs_header_level(parent);
1370 if (cache_only && parent_level != 1)
1373 if (trans->transaction != root->fs_info->running_transaction)
1375 if (trans->transid != root->fs_info->generation)
1378 parent_nritems = btrfs_header_nritems(parent);
1379 blocksize = btrfs_level_size(root, parent_level - 1);
1380 end_slot = parent_nritems;
1382 if (parent_nritems == 1)
1385 btrfs_set_lock_blocking(parent);
1387 for (i = start_slot; i < end_slot; i++) {
1390 btrfs_node_key(parent, &disk_key, i);
1391 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1394 progress_passed = 1;
1395 blocknr = btrfs_node_blockptr(parent, i);
1396 gen = btrfs_node_ptr_generation(parent, i);
1397 if (last_block == 0)
1398 last_block = blocknr;
1401 other = btrfs_node_blockptr(parent, i - 1);
1402 close = close_blocks(blocknr, other, blocksize);
1404 if (!close && i < end_slot - 2) {
1405 other = btrfs_node_blockptr(parent, i + 1);
1406 close = close_blocks(blocknr, other, blocksize);
1409 last_block = blocknr;
1413 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1415 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1418 if (!cur || !uptodate) {
1420 free_extent_buffer(cur);
1424 cur = read_tree_block(root, blocknr,
1428 } else if (!uptodate) {
1429 err = btrfs_read_buffer(cur, gen);
1431 free_extent_buffer(cur);
1436 if (search_start == 0)
1437 search_start = last_block;
1439 btrfs_tree_lock(cur);
1440 btrfs_set_lock_blocking(cur);
1441 err = __btrfs_cow_block(trans, root, cur, parent, i,
1444 (end_slot - i) * blocksize));
1446 btrfs_tree_unlock(cur);
1447 free_extent_buffer(cur);
1450 search_start = cur->start;
1451 last_block = cur->start;
1452 *last_ret = search_start;
1453 btrfs_tree_unlock(cur);
1454 free_extent_buffer(cur);
1460 * The leaf data grows from end-to-front in the node.
1461 * this returns the address of the start of the last item,
1462 * which is the stop of the leaf data stack
1464 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1465 struct extent_buffer *leaf)
1467 u32 nr = btrfs_header_nritems(leaf);
1469 return BTRFS_LEAF_DATA_SIZE(root);
1470 return btrfs_item_offset_nr(leaf, nr - 1);
1475 * search for key in the extent_buffer. The items start at offset p,
1476 * and they are item_size apart. There are 'max' items in p.
1478 * the slot in the array is returned via slot, and it points to
1479 * the place where you would insert key if it is not found in
1482 * slot may point to max if the key is bigger than all of the keys
1484 static noinline int generic_bin_search(struct extent_buffer *eb,
1486 int item_size, struct btrfs_key *key,
1493 struct btrfs_disk_key *tmp = NULL;
1494 struct btrfs_disk_key unaligned;
1495 unsigned long offset;
1497 unsigned long map_start = 0;
1498 unsigned long map_len = 0;
1501 while (low < high) {
1502 mid = (low + high) / 2;
1503 offset = p + mid * item_size;
1505 if (!kaddr || offset < map_start ||
1506 (offset + sizeof(struct btrfs_disk_key)) >
1507 map_start + map_len) {
1509 err = map_private_extent_buffer(eb, offset,
1510 sizeof(struct btrfs_disk_key),
1511 &kaddr, &map_start, &map_len);
1514 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1517 read_extent_buffer(eb, &unaligned,
1518 offset, sizeof(unaligned));
1523 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1526 ret = comp_keys(tmp, key);
1542 * simple bin_search frontend that does the right thing for
1545 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1546 int level, int *slot)
1549 return generic_bin_search(eb,
1550 offsetof(struct btrfs_leaf, items),
1551 sizeof(struct btrfs_item),
1552 key, btrfs_header_nritems(eb),
1555 return generic_bin_search(eb,
1556 offsetof(struct btrfs_node, ptrs),
1557 sizeof(struct btrfs_key_ptr),
1558 key, btrfs_header_nritems(eb),
1562 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1563 int level, int *slot)
1565 return bin_search(eb, key, level, slot);
1568 static void root_add_used(struct btrfs_root *root, u32 size)
1570 spin_lock(&root->accounting_lock);
1571 btrfs_set_root_used(&root->root_item,
1572 btrfs_root_used(&root->root_item) + size);
1573 spin_unlock(&root->accounting_lock);
1576 static void root_sub_used(struct btrfs_root *root, u32 size)
1578 spin_lock(&root->accounting_lock);
1579 btrfs_set_root_used(&root->root_item,
1580 btrfs_root_used(&root->root_item) - size);
1581 spin_unlock(&root->accounting_lock);
1584 /* given a node and slot number, this reads the blocks it points to. The
1585 * extent buffer is returned with a reference taken (but unlocked).
1586 * NULL is returned on error.
1588 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1589 struct extent_buffer *parent, int slot)
1591 int level = btrfs_header_level(parent);
1594 if (slot >= btrfs_header_nritems(parent))
1599 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1600 btrfs_level_size(root, level - 1),
1601 btrfs_node_ptr_generation(parent, slot));
1605 * node level balancing, used to make sure nodes are in proper order for
1606 * item deletion. We balance from the top down, so we have to make sure
1607 * that a deletion won't leave an node completely empty later on.
1609 static noinline int balance_level(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root,
1611 struct btrfs_path *path, int level)
1613 struct extent_buffer *right = NULL;
1614 struct extent_buffer *mid;
1615 struct extent_buffer *left = NULL;
1616 struct extent_buffer *parent = NULL;
1620 int orig_slot = path->slots[level];
1626 mid = path->nodes[level];
1628 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1629 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1630 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1632 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1634 if (level < BTRFS_MAX_LEVEL - 1) {
1635 parent = path->nodes[level + 1];
1636 pslot = path->slots[level + 1];
1640 * deal with the case where there is only one pointer in the root
1641 * by promoting the node below to a root
1644 struct extent_buffer *child;
1646 if (btrfs_header_nritems(mid) != 1)
1649 /* promote the child to a root */
1650 child = read_node_slot(root, mid, 0);
1653 btrfs_std_error(root->fs_info, ret);
1657 btrfs_tree_lock(child);
1658 btrfs_set_lock_blocking(child);
1659 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1661 btrfs_tree_unlock(child);
1662 free_extent_buffer(child);
1666 tree_mod_log_set_root_pointer(root, child);
1667 rcu_assign_pointer(root->node, child);
1669 add_root_to_dirty_list(root);
1670 btrfs_tree_unlock(child);
1672 path->locks[level] = 0;
1673 path->nodes[level] = NULL;
1674 clean_tree_block(trans, root, mid);
1675 btrfs_tree_unlock(mid);
1676 /* once for the path */
1677 free_extent_buffer(mid);
1679 root_sub_used(root, mid->len);
1680 btrfs_free_tree_block(trans, root, mid, 0, 1);
1681 /* once for the root ptr */
1682 free_extent_buffer_stale(mid);
1685 if (btrfs_header_nritems(mid) >
1686 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1689 left = read_node_slot(root, parent, pslot - 1);
1691 btrfs_tree_lock(left);
1692 btrfs_set_lock_blocking(left);
1693 wret = btrfs_cow_block(trans, root, left,
1694 parent, pslot - 1, &left);
1700 right = read_node_slot(root, parent, pslot + 1);
1702 btrfs_tree_lock(right);
1703 btrfs_set_lock_blocking(right);
1704 wret = btrfs_cow_block(trans, root, right,
1705 parent, pslot + 1, &right);
1712 /* first, try to make some room in the middle buffer */
1714 orig_slot += btrfs_header_nritems(left);
1715 wret = push_node_left(trans, root, left, mid, 1);
1721 * then try to empty the right most buffer into the middle
1724 wret = push_node_left(trans, root, mid, right, 1);
1725 if (wret < 0 && wret != -ENOSPC)
1727 if (btrfs_header_nritems(right) == 0) {
1728 clean_tree_block(trans, root, right);
1729 btrfs_tree_unlock(right);
1730 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1731 root_sub_used(root, right->len);
1732 btrfs_free_tree_block(trans, root, right, 0, 1);
1733 free_extent_buffer_stale(right);
1736 struct btrfs_disk_key right_key;
1737 btrfs_node_key(right, &right_key, 0);
1738 tree_mod_log_set_node_key(root->fs_info, parent,
1739 &right_key, pslot + 1, 0);
1740 btrfs_set_node_key(parent, &right_key, pslot + 1);
1741 btrfs_mark_buffer_dirty(parent);
1744 if (btrfs_header_nritems(mid) == 1) {
1746 * we're not allowed to leave a node with one item in the
1747 * tree during a delete. A deletion from lower in the tree
1748 * could try to delete the only pointer in this node.
1749 * So, pull some keys from the left.
1750 * There has to be a left pointer at this point because
1751 * otherwise we would have pulled some pointers from the
1756 btrfs_std_error(root->fs_info, ret);
1759 wret = balance_node_right(trans, root, mid, left);
1765 wret = push_node_left(trans, root, left, mid, 1);
1771 if (btrfs_header_nritems(mid) == 0) {
1772 clean_tree_block(trans, root, mid);
1773 btrfs_tree_unlock(mid);
1774 del_ptr(trans, root, path, level + 1, pslot, 1);
1775 root_sub_used(root, mid->len);
1776 btrfs_free_tree_block(trans, root, mid, 0, 1);
1777 free_extent_buffer_stale(mid);
1780 /* update the parent key to reflect our changes */
1781 struct btrfs_disk_key mid_key;
1782 btrfs_node_key(mid, &mid_key, 0);
1783 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1785 btrfs_set_node_key(parent, &mid_key, pslot);
1786 btrfs_mark_buffer_dirty(parent);
1789 /* update the path */
1791 if (btrfs_header_nritems(left) > orig_slot) {
1792 extent_buffer_get(left);
1793 /* left was locked after cow */
1794 path->nodes[level] = left;
1795 path->slots[level + 1] -= 1;
1796 path->slots[level] = orig_slot;
1798 btrfs_tree_unlock(mid);
1799 free_extent_buffer(mid);
1802 orig_slot -= btrfs_header_nritems(left);
1803 path->slots[level] = orig_slot;
1806 /* double check we haven't messed things up */
1808 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1812 btrfs_tree_unlock(right);
1813 free_extent_buffer(right);
1816 if (path->nodes[level] != left)
1817 btrfs_tree_unlock(left);
1818 free_extent_buffer(left);
1823 /* Node balancing for insertion. Here we only split or push nodes around
1824 * when they are completely full. This is also done top down, so we
1825 * have to be pessimistic.
1827 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *root,
1829 struct btrfs_path *path, int level)
1831 struct extent_buffer *right = NULL;
1832 struct extent_buffer *mid;
1833 struct extent_buffer *left = NULL;
1834 struct extent_buffer *parent = NULL;
1838 int orig_slot = path->slots[level];
1843 mid = path->nodes[level];
1844 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1846 if (level < BTRFS_MAX_LEVEL - 1) {
1847 parent = path->nodes[level + 1];
1848 pslot = path->slots[level + 1];
1854 left = read_node_slot(root, parent, pslot - 1);
1856 /* first, try to make some room in the middle buffer */
1860 btrfs_tree_lock(left);
1861 btrfs_set_lock_blocking(left);
1863 left_nr = btrfs_header_nritems(left);
1864 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1867 ret = btrfs_cow_block(trans, root, left, parent,
1872 wret = push_node_left(trans, root,
1879 struct btrfs_disk_key disk_key;
1880 orig_slot += left_nr;
1881 btrfs_node_key(mid, &disk_key, 0);
1882 tree_mod_log_set_node_key(root->fs_info, parent,
1883 &disk_key, pslot, 0);
1884 btrfs_set_node_key(parent, &disk_key, pslot);
1885 btrfs_mark_buffer_dirty(parent);
1886 if (btrfs_header_nritems(left) > orig_slot) {
1887 path->nodes[level] = left;
1888 path->slots[level + 1] -= 1;
1889 path->slots[level] = orig_slot;
1890 btrfs_tree_unlock(mid);
1891 free_extent_buffer(mid);
1894 btrfs_header_nritems(left);
1895 path->slots[level] = orig_slot;
1896 btrfs_tree_unlock(left);
1897 free_extent_buffer(left);
1901 btrfs_tree_unlock(left);
1902 free_extent_buffer(left);
1904 right = read_node_slot(root, parent, pslot + 1);
1907 * then try to empty the right most buffer into the middle
1912 btrfs_tree_lock(right);
1913 btrfs_set_lock_blocking(right);
1915 right_nr = btrfs_header_nritems(right);
1916 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1919 ret = btrfs_cow_block(trans, root, right,
1925 wret = balance_node_right(trans, root,
1932 struct btrfs_disk_key disk_key;
1934 btrfs_node_key(right, &disk_key, 0);
1935 tree_mod_log_set_node_key(root->fs_info, parent,
1936 &disk_key, pslot + 1, 0);
1937 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1938 btrfs_mark_buffer_dirty(parent);
1940 if (btrfs_header_nritems(mid) <= orig_slot) {
1941 path->nodes[level] = right;
1942 path->slots[level + 1] += 1;
1943 path->slots[level] = orig_slot -
1944 btrfs_header_nritems(mid);
1945 btrfs_tree_unlock(mid);
1946 free_extent_buffer(mid);
1948 btrfs_tree_unlock(right);
1949 free_extent_buffer(right);
1953 btrfs_tree_unlock(right);
1954 free_extent_buffer(right);
1960 * readahead one full node of leaves, finding things that are close
1961 * to the block in 'slot', and triggering ra on them.
1963 static void reada_for_search(struct btrfs_root *root,
1964 struct btrfs_path *path,
1965 int level, int slot, u64 objectid)
1967 struct extent_buffer *node;
1968 struct btrfs_disk_key disk_key;
1974 int direction = path->reada;
1975 struct extent_buffer *eb;
1983 if (!path->nodes[level])
1986 node = path->nodes[level];
1988 search = btrfs_node_blockptr(node, slot);
1989 blocksize = btrfs_level_size(root, level - 1);
1990 eb = btrfs_find_tree_block(root, search, blocksize);
1992 free_extent_buffer(eb);
1998 nritems = btrfs_header_nritems(node);
2002 if (direction < 0) {
2006 } else if (direction > 0) {
2011 if (path->reada < 0 && objectid) {
2012 btrfs_node_key(node, &disk_key, nr);
2013 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2016 search = btrfs_node_blockptr(node, nr);
2017 if ((search <= target && target - search <= 65536) ||
2018 (search > target && search - target <= 65536)) {
2019 gen = btrfs_node_ptr_generation(node, nr);
2020 readahead_tree_block(root, search, blocksize, gen);
2024 if ((nread > 65536 || nscan > 32))
2030 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2033 static noinline int reada_for_balance(struct btrfs_root *root,
2034 struct btrfs_path *path, int level)
2038 struct extent_buffer *parent;
2039 struct extent_buffer *eb;
2046 parent = path->nodes[level + 1];
2050 nritems = btrfs_header_nritems(parent);
2051 slot = path->slots[level + 1];
2052 blocksize = btrfs_level_size(root, level);
2055 block1 = btrfs_node_blockptr(parent, slot - 1);
2056 gen = btrfs_node_ptr_generation(parent, slot - 1);
2057 eb = btrfs_find_tree_block(root, block1, blocksize);
2059 * if we get -eagain from btrfs_buffer_uptodate, we
2060 * don't want to return eagain here. That will loop
2063 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2065 free_extent_buffer(eb);
2067 if (slot + 1 < nritems) {
2068 block2 = btrfs_node_blockptr(parent, slot + 1);
2069 gen = btrfs_node_ptr_generation(parent, slot + 1);
2070 eb = btrfs_find_tree_block(root, block2, blocksize);
2071 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2073 free_extent_buffer(eb);
2075 if (block1 || block2) {
2078 /* release the whole path */
2079 btrfs_release_path(path);
2081 /* read the blocks */
2083 readahead_tree_block(root, block1, blocksize, 0);
2085 readahead_tree_block(root, block2, blocksize, 0);
2088 eb = read_tree_block(root, block1, blocksize, 0);
2089 free_extent_buffer(eb);
2092 eb = read_tree_block(root, block2, blocksize, 0);
2093 free_extent_buffer(eb);
2101 * when we walk down the tree, it is usually safe to unlock the higher layers
2102 * in the tree. The exceptions are when our path goes through slot 0, because
2103 * operations on the tree might require changing key pointers higher up in the
2106 * callers might also have set path->keep_locks, which tells this code to keep
2107 * the lock if the path points to the last slot in the block. This is part of
2108 * walking through the tree, and selecting the next slot in the higher block.
2110 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2111 * if lowest_unlock is 1, level 0 won't be unlocked
2113 static noinline void unlock_up(struct btrfs_path *path, int level,
2114 int lowest_unlock, int min_write_lock_level,
2115 int *write_lock_level)
2118 int skip_level = level;
2120 struct extent_buffer *t;
2122 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2123 if (!path->nodes[i])
2125 if (!path->locks[i])
2127 if (!no_skips && path->slots[i] == 0) {
2131 if (!no_skips && path->keep_locks) {
2134 nritems = btrfs_header_nritems(t);
2135 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2140 if (skip_level < i && i >= lowest_unlock)
2144 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2145 btrfs_tree_unlock_rw(t, path->locks[i]);
2147 if (write_lock_level &&
2148 i > min_write_lock_level &&
2149 i <= *write_lock_level) {
2150 *write_lock_level = i - 1;
2157 * This releases any locks held in the path starting at level and
2158 * going all the way up to the root.
2160 * btrfs_search_slot will keep the lock held on higher nodes in a few
2161 * corner cases, such as COW of the block at slot zero in the node. This
2162 * ignores those rules, and it should only be called when there are no
2163 * more updates to be done higher up in the tree.
2165 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2169 if (path->keep_locks)
2172 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2173 if (!path->nodes[i])
2175 if (!path->locks[i])
2177 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2183 * helper function for btrfs_search_slot. The goal is to find a block
2184 * in cache without setting the path to blocking. If we find the block
2185 * we return zero and the path is unchanged.
2187 * If we can't find the block, we set the path blocking and do some
2188 * reada. -EAGAIN is returned and the search must be repeated.
2191 read_block_for_search(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root, struct btrfs_path *p,
2193 struct extent_buffer **eb_ret, int level, int slot,
2194 struct btrfs_key *key, u64 time_seq)
2199 struct extent_buffer *b = *eb_ret;
2200 struct extent_buffer *tmp;
2203 blocknr = btrfs_node_blockptr(b, slot);
2204 gen = btrfs_node_ptr_generation(b, slot);
2205 blocksize = btrfs_level_size(root, level - 1);
2207 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2209 /* first we do an atomic uptodate check */
2210 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2211 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2213 * we found an up to date block without
2220 /* the pages were up to date, but we failed
2221 * the generation number check. Do a full
2222 * read for the generation number that is correct.
2223 * We must do this without dropping locks so
2224 * we can trust our generation number
2226 free_extent_buffer(tmp);
2227 btrfs_set_path_blocking(p);
2229 /* now we're allowed to do a blocking uptodate check */
2230 tmp = read_tree_block(root, blocknr, blocksize, gen);
2231 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2235 free_extent_buffer(tmp);
2236 btrfs_release_path(p);
2242 * reduce lock contention at high levels
2243 * of the btree by dropping locks before
2244 * we read. Don't release the lock on the current
2245 * level because we need to walk this node to figure
2246 * out which blocks to read.
2248 btrfs_unlock_up_safe(p, level + 1);
2249 btrfs_set_path_blocking(p);
2251 free_extent_buffer(tmp);
2253 reada_for_search(root, p, level, slot, key->objectid);
2255 btrfs_release_path(p);
2258 tmp = read_tree_block(root, blocknr, blocksize, 0);
2261 * If the read above didn't mark this buffer up to date,
2262 * it will never end up being up to date. Set ret to EIO now
2263 * and give up so that our caller doesn't loop forever
2266 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2268 free_extent_buffer(tmp);
2274 * helper function for btrfs_search_slot. This does all of the checks
2275 * for node-level blocks and does any balancing required based on
2278 * If no extra work was required, zero is returned. If we had to
2279 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2283 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2284 struct btrfs_root *root, struct btrfs_path *p,
2285 struct extent_buffer *b, int level, int ins_len,
2286 int *write_lock_level)
2289 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2290 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2293 if (*write_lock_level < level + 1) {
2294 *write_lock_level = level + 1;
2295 btrfs_release_path(p);
2299 sret = reada_for_balance(root, p, level);
2303 btrfs_set_path_blocking(p);
2304 sret = split_node(trans, root, p, level);
2305 btrfs_clear_path_blocking(p, NULL, 0);
2312 b = p->nodes[level];
2313 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2314 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2317 if (*write_lock_level < level + 1) {
2318 *write_lock_level = level + 1;
2319 btrfs_release_path(p);
2323 sret = reada_for_balance(root, p, level);
2327 btrfs_set_path_blocking(p);
2328 sret = balance_level(trans, root, p, level);
2329 btrfs_clear_path_blocking(p, NULL, 0);
2335 b = p->nodes[level];
2337 btrfs_release_path(p);
2340 BUG_ON(btrfs_header_nritems(b) == 1);
2351 * look for key in the tree. path is filled in with nodes along the way
2352 * if key is found, we return zero and you can find the item in the leaf
2353 * level of the path (level 0)
2355 * If the key isn't found, the path points to the slot where it should
2356 * be inserted, and 1 is returned. If there are other errors during the
2357 * search a negative error number is returned.
2359 * if ins_len > 0, nodes and leaves will be split as we walk down the
2360 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2363 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2364 *root, struct btrfs_key *key, struct btrfs_path *p, int
2367 struct extent_buffer *b;
2372 int lowest_unlock = 1;
2374 /* everything at write_lock_level or lower must be write locked */
2375 int write_lock_level = 0;
2376 u8 lowest_level = 0;
2377 int min_write_lock_level;
2379 lowest_level = p->lowest_level;
2380 WARN_ON(lowest_level && ins_len > 0);
2381 WARN_ON(p->nodes[0] != NULL);
2386 /* when we are removing items, we might have to go up to level
2387 * two as we update tree pointers Make sure we keep write
2388 * for those levels as well
2390 write_lock_level = 2;
2391 } else if (ins_len > 0) {
2393 * for inserting items, make sure we have a write lock on
2394 * level 1 so we can update keys
2396 write_lock_level = 1;
2400 write_lock_level = -1;
2402 if (cow && (p->keep_locks || p->lowest_level))
2403 write_lock_level = BTRFS_MAX_LEVEL;
2405 min_write_lock_level = write_lock_level;
2409 * we try very hard to do read locks on the root
2411 root_lock = BTRFS_READ_LOCK;
2413 if (p->search_commit_root) {
2415 * the commit roots are read only
2416 * so we always do read locks
2418 b = root->commit_root;
2419 extent_buffer_get(b);
2420 level = btrfs_header_level(b);
2421 if (!p->skip_locking)
2422 btrfs_tree_read_lock(b);
2424 if (p->skip_locking) {
2425 b = btrfs_root_node(root);
2426 level = btrfs_header_level(b);
2428 /* we don't know the level of the root node
2429 * until we actually have it read locked
2431 b = btrfs_read_lock_root_node(root);
2432 level = btrfs_header_level(b);
2433 if (level <= write_lock_level) {
2434 /* whoops, must trade for write lock */
2435 btrfs_tree_read_unlock(b);
2436 free_extent_buffer(b);
2437 b = btrfs_lock_root_node(root);
2438 root_lock = BTRFS_WRITE_LOCK;
2440 /* the level might have changed, check again */
2441 level = btrfs_header_level(b);
2445 p->nodes[level] = b;
2446 if (!p->skip_locking)
2447 p->locks[level] = root_lock;
2450 level = btrfs_header_level(b);
2453 * setup the path here so we can release it under lock
2454 * contention with the cow code
2458 * if we don't really need to cow this block
2459 * then we don't want to set the path blocking,
2460 * so we test it here
2462 if (!should_cow_block(trans, root, b))
2465 btrfs_set_path_blocking(p);
2468 * must have write locks on this node and the
2471 if (level + 1 > write_lock_level) {
2472 write_lock_level = level + 1;
2473 btrfs_release_path(p);
2477 err = btrfs_cow_block(trans, root, b,
2478 p->nodes[level + 1],
2479 p->slots[level + 1], &b);
2486 BUG_ON(!cow && ins_len);
2488 p->nodes[level] = b;
2489 btrfs_clear_path_blocking(p, NULL, 0);
2492 * we have a lock on b and as long as we aren't changing
2493 * the tree, there is no way to for the items in b to change.
2494 * It is safe to drop the lock on our parent before we
2495 * go through the expensive btree search on b.
2497 * If cow is true, then we might be changing slot zero,
2498 * which may require changing the parent. So, we can't
2499 * drop the lock until after we know which slot we're
2503 btrfs_unlock_up_safe(p, level + 1);
2505 ret = bin_search(b, key, level, &slot);
2509 if (ret && slot > 0) {
2513 p->slots[level] = slot;
2514 err = setup_nodes_for_search(trans, root, p, b, level,
2515 ins_len, &write_lock_level);
2522 b = p->nodes[level];
2523 slot = p->slots[level];
2526 * slot 0 is special, if we change the key
2527 * we have to update the parent pointer
2528 * which means we must have a write lock
2531 if (slot == 0 && cow &&
2532 write_lock_level < level + 1) {
2533 write_lock_level = level + 1;
2534 btrfs_release_path(p);
2538 unlock_up(p, level, lowest_unlock,
2539 min_write_lock_level, &write_lock_level);
2541 if (level == lowest_level) {
2547 err = read_block_for_search(trans, root, p,
2548 &b, level, slot, key, 0);
2556 if (!p->skip_locking) {
2557 level = btrfs_header_level(b);
2558 if (level <= write_lock_level) {
2559 err = btrfs_try_tree_write_lock(b);
2561 btrfs_set_path_blocking(p);
2563 btrfs_clear_path_blocking(p, b,
2566 p->locks[level] = BTRFS_WRITE_LOCK;
2568 err = btrfs_try_tree_read_lock(b);
2570 btrfs_set_path_blocking(p);
2571 btrfs_tree_read_lock(b);
2572 btrfs_clear_path_blocking(p, b,
2575 p->locks[level] = BTRFS_READ_LOCK;
2577 p->nodes[level] = b;
2580 p->slots[level] = slot;
2582 btrfs_leaf_free_space(root, b) < ins_len) {
2583 if (write_lock_level < 1) {
2584 write_lock_level = 1;
2585 btrfs_release_path(p);
2589 btrfs_set_path_blocking(p);
2590 err = split_leaf(trans, root, key,
2591 p, ins_len, ret == 0);
2592 btrfs_clear_path_blocking(p, NULL, 0);
2600 if (!p->search_for_split)
2601 unlock_up(p, level, lowest_unlock,
2602 min_write_lock_level, &write_lock_level);
2609 * we don't really know what they plan on doing with the path
2610 * from here on, so for now just mark it as blocking
2612 if (!p->leave_spinning)
2613 btrfs_set_path_blocking(p);
2615 btrfs_release_path(p);
2620 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2621 * current state of the tree together with the operations recorded in the tree
2622 * modification log to search for the key in a previous version of this tree, as
2623 * denoted by the time_seq parameter.
2625 * Naturally, there is no support for insert, delete or cow operations.
2627 * The resulting path and return value will be set up as if we called
2628 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2630 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2631 struct btrfs_path *p, u64 time_seq)
2633 struct extent_buffer *b;
2638 int lowest_unlock = 1;
2639 u8 lowest_level = 0;
2641 lowest_level = p->lowest_level;
2642 WARN_ON(p->nodes[0] != NULL);
2644 if (p->search_commit_root) {
2646 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2650 b = get_old_root(root, time_seq);
2651 level = btrfs_header_level(b);
2652 p->locks[level] = BTRFS_READ_LOCK;
2655 level = btrfs_header_level(b);
2656 p->nodes[level] = b;
2657 btrfs_clear_path_blocking(p, NULL, 0);
2660 * we have a lock on b and as long as we aren't changing
2661 * the tree, there is no way to for the items in b to change.
2662 * It is safe to drop the lock on our parent before we
2663 * go through the expensive btree search on b.
2665 btrfs_unlock_up_safe(p, level + 1);
2667 ret = bin_search(b, key, level, &slot);
2671 if (ret && slot > 0) {
2675 p->slots[level] = slot;
2676 unlock_up(p, level, lowest_unlock, 0, NULL);
2678 if (level == lowest_level) {
2684 err = read_block_for_search(NULL, root, p, &b, level,
2685 slot, key, time_seq);
2693 level = btrfs_header_level(b);
2694 err = btrfs_try_tree_read_lock(b);
2696 btrfs_set_path_blocking(p);
2697 btrfs_tree_read_lock(b);
2698 btrfs_clear_path_blocking(p, b,
2701 p->locks[level] = BTRFS_READ_LOCK;
2702 p->nodes[level] = b;
2703 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2704 if (b != p->nodes[level]) {
2705 btrfs_tree_unlock_rw(p->nodes[level],
2707 p->locks[level] = 0;
2708 p->nodes[level] = b;
2711 p->slots[level] = slot;
2712 unlock_up(p, level, lowest_unlock, 0, NULL);
2718 if (!p->leave_spinning)
2719 btrfs_set_path_blocking(p);
2721 btrfs_release_path(p);
2727 * adjust the pointers going up the tree, starting at level
2728 * making sure the right key of each node is points to 'key'.
2729 * This is used after shifting pointers to the left, so it stops
2730 * fixing up pointers when a given leaf/node is not in slot 0 of the
2734 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2735 struct btrfs_root *root, struct btrfs_path *path,
2736 struct btrfs_disk_key *key, int level)
2739 struct extent_buffer *t;
2741 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2742 int tslot = path->slots[i];
2743 if (!path->nodes[i])
2746 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2747 btrfs_set_node_key(t, key, tslot);
2748 btrfs_mark_buffer_dirty(path->nodes[i]);
2757 * This function isn't completely safe. It's the caller's responsibility
2758 * that the new key won't break the order
2760 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root, struct btrfs_path *path,
2762 struct btrfs_key *new_key)
2764 struct btrfs_disk_key disk_key;
2765 struct extent_buffer *eb;
2768 eb = path->nodes[0];
2769 slot = path->slots[0];
2771 btrfs_item_key(eb, &disk_key, slot - 1);
2772 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2774 if (slot < btrfs_header_nritems(eb) - 1) {
2775 btrfs_item_key(eb, &disk_key, slot + 1);
2776 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2779 btrfs_cpu_key_to_disk(&disk_key, new_key);
2780 btrfs_set_item_key(eb, &disk_key, slot);
2781 btrfs_mark_buffer_dirty(eb);
2783 fixup_low_keys(trans, root, path, &disk_key, 1);
2787 * try to push data from one node into the next node left in the
2790 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2791 * error, and > 0 if there was no room in the left hand block.
2793 static int push_node_left(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root, struct extent_buffer *dst,
2795 struct extent_buffer *src, int empty)
2802 src_nritems = btrfs_header_nritems(src);
2803 dst_nritems = btrfs_header_nritems(dst);
2804 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2805 WARN_ON(btrfs_header_generation(src) != trans->transid);
2806 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2808 if (!empty && src_nritems <= 8)
2811 if (push_items <= 0)
2815 push_items = min(src_nritems, push_items);
2816 if (push_items < src_nritems) {
2817 /* leave at least 8 pointers in the node if
2818 * we aren't going to empty it
2820 if (src_nritems - push_items < 8) {
2821 if (push_items <= 8)
2827 push_items = min(src_nritems - 8, push_items);
2829 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2831 copy_extent_buffer(dst, src,
2832 btrfs_node_key_ptr_offset(dst_nritems),
2833 btrfs_node_key_ptr_offset(0),
2834 push_items * sizeof(struct btrfs_key_ptr));
2836 if (push_items < src_nritems) {
2837 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2838 src_nritems - push_items);
2839 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2840 btrfs_node_key_ptr_offset(push_items),
2841 (src_nritems - push_items) *
2842 sizeof(struct btrfs_key_ptr));
2844 btrfs_set_header_nritems(src, src_nritems - push_items);
2845 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2846 btrfs_mark_buffer_dirty(src);
2847 btrfs_mark_buffer_dirty(dst);
2853 * try to push data from one node into the next node right in the
2856 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2857 * error, and > 0 if there was no room in the right hand block.
2859 * this will only push up to 1/2 the contents of the left node over
2861 static int balance_node_right(struct btrfs_trans_handle *trans,
2862 struct btrfs_root *root,
2863 struct extent_buffer *dst,
2864 struct extent_buffer *src)
2872 WARN_ON(btrfs_header_generation(src) != trans->transid);
2873 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2875 src_nritems = btrfs_header_nritems(src);
2876 dst_nritems = btrfs_header_nritems(dst);
2877 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2878 if (push_items <= 0)
2881 if (src_nritems < 4)
2884 max_push = src_nritems / 2 + 1;
2885 /* don't try to empty the node */
2886 if (max_push >= src_nritems)
2889 if (max_push < push_items)
2890 push_items = max_push;
2892 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2893 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2894 btrfs_node_key_ptr_offset(0),
2896 sizeof(struct btrfs_key_ptr));
2898 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2899 src_nritems - push_items, push_items);
2900 copy_extent_buffer(dst, src,
2901 btrfs_node_key_ptr_offset(0),
2902 btrfs_node_key_ptr_offset(src_nritems - push_items),
2903 push_items * sizeof(struct btrfs_key_ptr));
2905 btrfs_set_header_nritems(src, src_nritems - push_items);
2906 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2908 btrfs_mark_buffer_dirty(src);
2909 btrfs_mark_buffer_dirty(dst);
2915 * helper function to insert a new root level in the tree.
2916 * A new node is allocated, and a single item is inserted to
2917 * point to the existing root
2919 * returns zero on success or < 0 on failure.
2921 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2922 struct btrfs_root *root,
2923 struct btrfs_path *path, int level)
2926 struct extent_buffer *lower;
2927 struct extent_buffer *c;
2928 struct extent_buffer *old;
2929 struct btrfs_disk_key lower_key;
2931 BUG_ON(path->nodes[level]);
2932 BUG_ON(path->nodes[level-1] != root->node);
2934 lower = path->nodes[level-1];
2936 btrfs_item_key(lower, &lower_key, 0);
2938 btrfs_node_key(lower, &lower_key, 0);
2940 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2941 root->root_key.objectid, &lower_key,
2942 level, root->node->start, 0);
2946 root_add_used(root, root->nodesize);
2948 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2949 btrfs_set_header_nritems(c, 1);
2950 btrfs_set_header_level(c, level);
2951 btrfs_set_header_bytenr(c, c->start);
2952 btrfs_set_header_generation(c, trans->transid);
2953 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2954 btrfs_set_header_owner(c, root->root_key.objectid);
2956 write_extent_buffer(c, root->fs_info->fsid,
2957 (unsigned long)btrfs_header_fsid(c),
2960 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2961 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2964 btrfs_set_node_key(c, &lower_key, 0);
2965 btrfs_set_node_blockptr(c, 0, lower->start);
2966 lower_gen = btrfs_header_generation(lower);
2967 WARN_ON(lower_gen != trans->transid);
2969 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2971 btrfs_mark_buffer_dirty(c);
2974 tree_mod_log_set_root_pointer(root, c);
2975 rcu_assign_pointer(root->node, c);
2977 /* the super has an extra ref to root->node */
2978 free_extent_buffer(old);
2980 add_root_to_dirty_list(root);
2981 extent_buffer_get(c);
2982 path->nodes[level] = c;
2983 path->locks[level] = BTRFS_WRITE_LOCK;
2984 path->slots[level] = 0;
2989 * worker function to insert a single pointer in a node.
2990 * the node should have enough room for the pointer already
2992 * slot and level indicate where you want the key to go, and
2993 * blocknr is the block the key points to.
2995 static void insert_ptr(struct btrfs_trans_handle *trans,
2996 struct btrfs_root *root, struct btrfs_path *path,
2997 struct btrfs_disk_key *key, u64 bytenr,
2998 int slot, int level, int tree_mod_log)
3000 struct extent_buffer *lower;
3004 BUG_ON(!path->nodes[level]);
3005 btrfs_assert_tree_locked(path->nodes[level]);
3006 lower = path->nodes[level];
3007 nritems = btrfs_header_nritems(lower);
3008 BUG_ON(slot > nritems);
3009 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3010 if (slot != nritems) {
3011 if (tree_mod_log && level)
3012 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3013 slot, nritems - slot);
3014 memmove_extent_buffer(lower,
3015 btrfs_node_key_ptr_offset(slot + 1),
3016 btrfs_node_key_ptr_offset(slot),
3017 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3019 if (tree_mod_log && level) {
3020 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3024 btrfs_set_node_key(lower, key, slot);
3025 btrfs_set_node_blockptr(lower, slot, bytenr);
3026 WARN_ON(trans->transid == 0);
3027 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3028 btrfs_set_header_nritems(lower, nritems + 1);
3029 btrfs_mark_buffer_dirty(lower);
3033 * split the node at the specified level in path in two.
3034 * The path is corrected to point to the appropriate node after the split
3036 * Before splitting this tries to make some room in the node by pushing
3037 * left and right, if either one works, it returns right away.
3039 * returns 0 on success and < 0 on failure
3041 static noinline int split_node(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root,
3043 struct btrfs_path *path, int level)
3045 struct extent_buffer *c;
3046 struct extent_buffer *split;
3047 struct btrfs_disk_key disk_key;
3052 c = path->nodes[level];
3053 WARN_ON(btrfs_header_generation(c) != trans->transid);
3054 if (c == root->node) {
3055 /* trying to split the root, lets make a new one */
3056 ret = insert_new_root(trans, root, path, level + 1);
3060 ret = push_nodes_for_insert(trans, root, path, level);
3061 c = path->nodes[level];
3062 if (!ret && btrfs_header_nritems(c) <
3063 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3069 c_nritems = btrfs_header_nritems(c);
3070 mid = (c_nritems + 1) / 2;
3071 btrfs_node_key(c, &disk_key, mid);
3073 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3074 root->root_key.objectid,
3075 &disk_key, level, c->start, 0);
3077 return PTR_ERR(split);
3079 root_add_used(root, root->nodesize);
3081 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3082 btrfs_set_header_level(split, btrfs_header_level(c));
3083 btrfs_set_header_bytenr(split, split->start);
3084 btrfs_set_header_generation(split, trans->transid);
3085 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3086 btrfs_set_header_owner(split, root->root_key.objectid);
3087 write_extent_buffer(split, root->fs_info->fsid,
3088 (unsigned long)btrfs_header_fsid(split),
3090 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3091 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3094 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3095 copy_extent_buffer(split, c,
3096 btrfs_node_key_ptr_offset(0),
3097 btrfs_node_key_ptr_offset(mid),
3098 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3099 btrfs_set_header_nritems(split, c_nritems - mid);
3100 btrfs_set_header_nritems(c, mid);
3103 btrfs_mark_buffer_dirty(c);
3104 btrfs_mark_buffer_dirty(split);
3106 insert_ptr(trans, root, path, &disk_key, split->start,
3107 path->slots[level + 1] + 1, level + 1, 1);
3109 if (path->slots[level] >= mid) {
3110 path->slots[level] -= mid;
3111 btrfs_tree_unlock(c);
3112 free_extent_buffer(c);
3113 path->nodes[level] = split;
3114 path->slots[level + 1] += 1;
3116 btrfs_tree_unlock(split);
3117 free_extent_buffer(split);
3123 * how many bytes are required to store the items in a leaf. start
3124 * and nr indicate which items in the leaf to check. This totals up the
3125 * space used both by the item structs and the item data
3127 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3130 int nritems = btrfs_header_nritems(l);
3131 int end = min(nritems, start + nr) - 1;
3135 data_len = btrfs_item_end_nr(l, start);
3136 data_len = data_len - btrfs_item_offset_nr(l, end);
3137 data_len += sizeof(struct btrfs_item) * nr;
3138 WARN_ON(data_len < 0);
3143 * The space between the end of the leaf items and
3144 * the start of the leaf data. IOW, how much room
3145 * the leaf has left for both items and data
3147 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3148 struct extent_buffer *leaf)
3150 int nritems = btrfs_header_nritems(leaf);
3152 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3154 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3155 "used %d nritems %d\n",
3156 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3157 leaf_space_used(leaf, 0, nritems), nritems);
3163 * min slot controls the lowest index we're willing to push to the
3164 * right. We'll push up to and including min_slot, but no lower
3166 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *root,
3168 struct btrfs_path *path,
3169 int data_size, int empty,
3170 struct extent_buffer *right,
3171 int free_space, u32 left_nritems,
3174 struct extent_buffer *left = path->nodes[0];
3175 struct extent_buffer *upper = path->nodes[1];
3176 struct btrfs_map_token token;
3177 struct btrfs_disk_key disk_key;
3182 struct btrfs_item *item;
3188 btrfs_init_map_token(&token);
3193 nr = max_t(u32, 1, min_slot);
3195 if (path->slots[0] >= left_nritems)
3196 push_space += data_size;
3198 slot = path->slots[1];
3199 i = left_nritems - 1;
3201 item = btrfs_item_nr(left, i);
3203 if (!empty && push_items > 0) {
3204 if (path->slots[0] > i)
3206 if (path->slots[0] == i) {
3207 int space = btrfs_leaf_free_space(root, left);
3208 if (space + push_space * 2 > free_space)
3213 if (path->slots[0] == i)
3214 push_space += data_size;
3216 this_item_size = btrfs_item_size(left, item);
3217 if (this_item_size + sizeof(*item) + push_space > free_space)
3221 push_space += this_item_size + sizeof(*item);
3227 if (push_items == 0)
3230 if (!empty && push_items == left_nritems)
3233 /* push left to right */
3234 right_nritems = btrfs_header_nritems(right);
3236 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3237 push_space -= leaf_data_end(root, left);
3239 /* make room in the right data area */
3240 data_end = leaf_data_end(root, right);
3241 memmove_extent_buffer(right,
3242 btrfs_leaf_data(right) + data_end - push_space,
3243 btrfs_leaf_data(right) + data_end,
3244 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3246 /* copy from the left data area */
3247 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3248 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3249 btrfs_leaf_data(left) + leaf_data_end(root, left),
3252 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3253 btrfs_item_nr_offset(0),
3254 right_nritems * sizeof(struct btrfs_item));
3256 /* copy the items from left to right */
3257 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3258 btrfs_item_nr_offset(left_nritems - push_items),
3259 push_items * sizeof(struct btrfs_item));
3261 /* update the item pointers */
3262 right_nritems += push_items;
3263 btrfs_set_header_nritems(right, right_nritems);
3264 push_space = BTRFS_LEAF_DATA_SIZE(root);
3265 for (i = 0; i < right_nritems; i++) {
3266 item = btrfs_item_nr(right, i);
3267 push_space -= btrfs_token_item_size(right, item, &token);
3268 btrfs_set_token_item_offset(right, item, push_space, &token);
3271 left_nritems -= push_items;
3272 btrfs_set_header_nritems(left, left_nritems);
3275 btrfs_mark_buffer_dirty(left);
3277 clean_tree_block(trans, root, left);
3279 btrfs_mark_buffer_dirty(right);
3281 btrfs_item_key(right, &disk_key, 0);
3282 btrfs_set_node_key(upper, &disk_key, slot + 1);
3283 btrfs_mark_buffer_dirty(upper);
3285 /* then fixup the leaf pointer in the path */
3286 if (path->slots[0] >= left_nritems) {
3287 path->slots[0] -= left_nritems;
3288 if (btrfs_header_nritems(path->nodes[0]) == 0)
3289 clean_tree_block(trans, root, path->nodes[0]);
3290 btrfs_tree_unlock(path->nodes[0]);
3291 free_extent_buffer(path->nodes[0]);
3292 path->nodes[0] = right;
3293 path->slots[1] += 1;
3295 btrfs_tree_unlock(right);
3296 free_extent_buffer(right);
3301 btrfs_tree_unlock(right);
3302 free_extent_buffer(right);
3307 * push some data in the path leaf to the right, trying to free up at
3308 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3310 * returns 1 if the push failed because the other node didn't have enough
3311 * room, 0 if everything worked out and < 0 if there were major errors.
3313 * this will push starting from min_slot to the end of the leaf. It won't
3314 * push any slot lower than min_slot
3316 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3317 *root, struct btrfs_path *path,
3318 int min_data_size, int data_size,
3319 int empty, u32 min_slot)
3321 struct extent_buffer *left = path->nodes[0];
3322 struct extent_buffer *right;
3323 struct extent_buffer *upper;
3329 if (!path->nodes[1])
3332 slot = path->slots[1];
3333 upper = path->nodes[1];
3334 if (slot >= btrfs_header_nritems(upper) - 1)
3337 btrfs_assert_tree_locked(path->nodes[1]);
3339 right = read_node_slot(root, upper, slot + 1);
3343 btrfs_tree_lock(right);
3344 btrfs_set_lock_blocking(right);
3346 free_space = btrfs_leaf_free_space(root, right);
3347 if (free_space < data_size)
3350 /* cow and double check */
3351 ret = btrfs_cow_block(trans, root, right, upper,
3356 free_space = btrfs_leaf_free_space(root, right);
3357 if (free_space < data_size)
3360 left_nritems = btrfs_header_nritems(left);
3361 if (left_nritems == 0)
3364 return __push_leaf_right(trans, root, path, min_data_size, empty,
3365 right, free_space, left_nritems, min_slot);
3367 btrfs_tree_unlock(right);
3368 free_extent_buffer(right);
3373 * push some data in the path leaf to the left, trying to free up at
3374 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3376 * max_slot can put a limit on how far into the leaf we'll push items. The
3377 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3380 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3381 struct btrfs_root *root,
3382 struct btrfs_path *path, int data_size,
3383 int empty, struct extent_buffer *left,
3384 int free_space, u32 right_nritems,
3387 struct btrfs_disk_key disk_key;
3388 struct extent_buffer *right = path->nodes[0];
3392 struct btrfs_item *item;
3393 u32 old_left_nritems;
3397 u32 old_left_item_size;
3398 struct btrfs_map_token token;
3400 btrfs_init_map_token(&token);
3403 nr = min(right_nritems, max_slot);
3405 nr = min(right_nritems - 1, max_slot);
3407 for (i = 0; i < nr; i++) {
3408 item = btrfs_item_nr(right, i);
3410 if (!empty && push_items > 0) {
3411 if (path->slots[0] < i)
3413 if (path->slots[0] == i) {
3414 int space = btrfs_leaf_free_space(root, right);
3415 if (space + push_space * 2 > free_space)
3420 if (path->slots[0] == i)
3421 push_space += data_size;
3423 this_item_size = btrfs_item_size(right, item);
3424 if (this_item_size + sizeof(*item) + push_space > free_space)
3428 push_space += this_item_size + sizeof(*item);
3431 if (push_items == 0) {
3435 if (!empty && push_items == btrfs_header_nritems(right))
3438 /* push data from right to left */
3439 copy_extent_buffer(left, right,
3440 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3441 btrfs_item_nr_offset(0),
3442 push_items * sizeof(struct btrfs_item));
3444 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3445 btrfs_item_offset_nr(right, push_items - 1);
3447 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3448 leaf_data_end(root, left) - push_space,
3449 btrfs_leaf_data(right) +
3450 btrfs_item_offset_nr(right, push_items - 1),
3452 old_left_nritems = btrfs_header_nritems(left);
3453 BUG_ON(old_left_nritems <= 0);
3455 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3456 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3459 item = btrfs_item_nr(left, i);
3461 ioff = btrfs_token_item_offset(left, item, &token);
3462 btrfs_set_token_item_offset(left, item,
3463 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3466 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3468 /* fixup right node */
3469 if (push_items > right_nritems) {
3470 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3475 if (push_items < right_nritems) {
3476 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3477 leaf_data_end(root, right);
3478 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3479 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3480 btrfs_leaf_data(right) +
3481 leaf_data_end(root, right), push_space);
3483 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3484 btrfs_item_nr_offset(push_items),
3485 (btrfs_header_nritems(right) - push_items) *
3486 sizeof(struct btrfs_item));
3488 right_nritems -= push_items;
3489 btrfs_set_header_nritems(right, right_nritems);
3490 push_space = BTRFS_LEAF_DATA_SIZE(root);
3491 for (i = 0; i < right_nritems; i++) {
3492 item = btrfs_item_nr(right, i);
3494 push_space = push_space - btrfs_token_item_size(right,
3496 btrfs_set_token_item_offset(right, item, push_space, &token);
3499 btrfs_mark_buffer_dirty(left);
3501 btrfs_mark_buffer_dirty(right);
3503 clean_tree_block(trans, root, right);
3505 btrfs_item_key(right, &disk_key, 0);
3506 fixup_low_keys(trans, root, path, &disk_key, 1);
3508 /* then fixup the leaf pointer in the path */
3509 if (path->slots[0] < push_items) {
3510 path->slots[0] += old_left_nritems;
3511 btrfs_tree_unlock(path->nodes[0]);
3512 free_extent_buffer(path->nodes[0]);
3513 path->nodes[0] = left;
3514 path->slots[1] -= 1;
3516 btrfs_tree_unlock(left);
3517 free_extent_buffer(left);
3518 path->slots[0] -= push_items;
3520 BUG_ON(path->slots[0] < 0);
3523 btrfs_tree_unlock(left);
3524 free_extent_buffer(left);
3529 * push some data in the path leaf to the left, trying to free up at
3530 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3532 * max_slot can put a limit on how far into the leaf we'll push items. The
3533 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3536 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3537 *root, struct btrfs_path *path, int min_data_size,
3538 int data_size, int empty, u32 max_slot)
3540 struct extent_buffer *right = path->nodes[0];
3541 struct extent_buffer *left;
3547 slot = path->slots[1];
3550 if (!path->nodes[1])
3553 right_nritems = btrfs_header_nritems(right);
3554 if (right_nritems == 0)
3557 btrfs_assert_tree_locked(path->nodes[1]);
3559 left = read_node_slot(root, path->nodes[1], slot - 1);
3563 btrfs_tree_lock(left);
3564 btrfs_set_lock_blocking(left);
3566 free_space = btrfs_leaf_free_space(root, left);
3567 if (free_space < data_size) {
3572 /* cow and double check */
3573 ret = btrfs_cow_block(trans, root, left,
3574 path->nodes[1], slot - 1, &left);
3576 /* we hit -ENOSPC, but it isn't fatal here */
3582 free_space = btrfs_leaf_free_space(root, left);
3583 if (free_space < data_size) {
3588 return __push_leaf_left(trans, root, path, min_data_size,
3589 empty, left, free_space, right_nritems,
3592 btrfs_tree_unlock(left);
3593 free_extent_buffer(left);
3598 * split the path's leaf in two, making sure there is at least data_size
3599 * available for the resulting leaf level of the path.
3601 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3602 struct btrfs_root *root,
3603 struct btrfs_path *path,
3604 struct extent_buffer *l,
3605 struct extent_buffer *right,
3606 int slot, int mid, int nritems)
3611 struct btrfs_disk_key disk_key;
3612 struct btrfs_map_token token;
3614 btrfs_init_map_token(&token);
3616 nritems = nritems - mid;
3617 btrfs_set_header_nritems(right, nritems);
3618 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3620 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3621 btrfs_item_nr_offset(mid),
3622 nritems * sizeof(struct btrfs_item));
3624 copy_extent_buffer(right, l,
3625 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3626 data_copy_size, btrfs_leaf_data(l) +
3627 leaf_data_end(root, l), data_copy_size);
3629 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3630 btrfs_item_end_nr(l, mid);
3632 for (i = 0; i < nritems; i++) {
3633 struct btrfs_item *item = btrfs_item_nr(right, i);
3636 ioff = btrfs_token_item_offset(right, item, &token);
3637 btrfs_set_token_item_offset(right, item,
3638 ioff + rt_data_off, &token);
3641 btrfs_set_header_nritems(l, mid);
3642 btrfs_item_key(right, &disk_key, 0);
3643 insert_ptr(trans, root, path, &disk_key, right->start,
3644 path->slots[1] + 1, 1, 0);
3646 btrfs_mark_buffer_dirty(right);
3647 btrfs_mark_buffer_dirty(l);
3648 BUG_ON(path->slots[0] != slot);
3651 btrfs_tree_unlock(path->nodes[0]);
3652 free_extent_buffer(path->nodes[0]);
3653 path->nodes[0] = right;
3654 path->slots[0] -= mid;
3655 path->slots[1] += 1;
3657 btrfs_tree_unlock(right);
3658 free_extent_buffer(right);
3661 BUG_ON(path->slots[0] < 0);
3665 * double splits happen when we need to insert a big item in the middle
3666 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3667 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3670 * We avoid this by trying to push the items on either side of our target
3671 * into the adjacent leaves. If all goes well we can avoid the double split
3674 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3675 struct btrfs_root *root,
3676 struct btrfs_path *path,
3684 slot = path->slots[0];
3687 * try to push all the items after our slot into the
3690 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3697 nritems = btrfs_header_nritems(path->nodes[0]);
3699 * our goal is to get our slot at the start or end of a leaf. If
3700 * we've done so we're done
3702 if (path->slots[0] == 0 || path->slots[0] == nritems)
3705 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3708 /* try to push all the items before our slot into the next leaf */
3709 slot = path->slots[0];
3710 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3723 * split the path's leaf in two, making sure there is at least data_size
3724 * available for the resulting leaf level of the path.
3726 * returns 0 if all went well and < 0 on failure.
3728 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root,
3730 struct btrfs_key *ins_key,
3731 struct btrfs_path *path, int data_size,
3734 struct btrfs_disk_key disk_key;
3735 struct extent_buffer *l;
3739 struct extent_buffer *right;
3743 int num_doubles = 0;
3744 int tried_avoid_double = 0;
3747 slot = path->slots[0];
3748 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3749 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3752 /* first try to make some room by pushing left and right */
3754 wret = push_leaf_right(trans, root, path, data_size,
3759 wret = push_leaf_left(trans, root, path, data_size,
3760 data_size, 0, (u32)-1);
3766 /* did the pushes work? */
3767 if (btrfs_leaf_free_space(root, l) >= data_size)
3771 if (!path->nodes[1]) {
3772 ret = insert_new_root(trans, root, path, 1);
3779 slot = path->slots[0];
3780 nritems = btrfs_header_nritems(l);
3781 mid = (nritems + 1) / 2;
3785 leaf_space_used(l, mid, nritems - mid) + data_size >
3786 BTRFS_LEAF_DATA_SIZE(root)) {
3787 if (slot >= nritems) {
3791 if (mid != nritems &&
3792 leaf_space_used(l, mid, nritems - mid) +
3793 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3794 if (data_size && !tried_avoid_double)
3795 goto push_for_double;
3801 if (leaf_space_used(l, 0, mid) + data_size >
3802 BTRFS_LEAF_DATA_SIZE(root)) {
3803 if (!extend && data_size && slot == 0) {
3805 } else if ((extend || !data_size) && slot == 0) {
3809 if (mid != nritems &&
3810 leaf_space_used(l, mid, nritems - mid) +
3811 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3812 if (data_size && !tried_avoid_double)
3813 goto push_for_double;
3821 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3823 btrfs_item_key(l, &disk_key, mid);
3825 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3826 root->root_key.objectid,
3827 &disk_key, 0, l->start, 0);
3829 return PTR_ERR(right);
3831 root_add_used(root, root->leafsize);
3833 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3834 btrfs_set_header_bytenr(right, right->start);
3835 btrfs_set_header_generation(right, trans->transid);
3836 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3837 btrfs_set_header_owner(right, root->root_key.objectid);
3838 btrfs_set_header_level(right, 0);
3839 write_extent_buffer(right, root->fs_info->fsid,
3840 (unsigned long)btrfs_header_fsid(right),
3843 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3844 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3849 btrfs_set_header_nritems(right, 0);
3850 insert_ptr(trans, root, path, &disk_key, right->start,
3851 path->slots[1] + 1, 1, 0);
3852 btrfs_tree_unlock(path->nodes[0]);
3853 free_extent_buffer(path->nodes[0]);
3854 path->nodes[0] = right;
3856 path->slots[1] += 1;
3858 btrfs_set_header_nritems(right, 0);
3859 insert_ptr(trans, root, path, &disk_key, right->start,
3860 path->slots[1], 1, 0);
3861 btrfs_tree_unlock(path->nodes[0]);
3862 free_extent_buffer(path->nodes[0]);
3863 path->nodes[0] = right;
3865 if (path->slots[1] == 0)
3866 fixup_low_keys(trans, root, path,
3869 btrfs_mark_buffer_dirty(right);
3873 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3876 BUG_ON(num_doubles != 0);
3884 push_for_double_split(trans, root, path, data_size);
3885 tried_avoid_double = 1;
3886 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3891 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root,
3893 struct btrfs_path *path, int ins_len)
3895 struct btrfs_key key;
3896 struct extent_buffer *leaf;
3897 struct btrfs_file_extent_item *fi;
3902 leaf = path->nodes[0];
3903 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3905 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3906 key.type != BTRFS_EXTENT_CSUM_KEY);
3908 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3911 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3912 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3913 fi = btrfs_item_ptr(leaf, path->slots[0],
3914 struct btrfs_file_extent_item);
3915 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3917 btrfs_release_path(path);
3919 path->keep_locks = 1;
3920 path->search_for_split = 1;
3921 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3922 path->search_for_split = 0;
3927 leaf = path->nodes[0];
3928 /* if our item isn't there or got smaller, return now */
3929 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3932 /* the leaf has changed, it now has room. return now */
3933 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3936 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3937 fi = btrfs_item_ptr(leaf, path->slots[0],
3938 struct btrfs_file_extent_item);
3939 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3943 btrfs_set_path_blocking(path);
3944 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3948 path->keep_locks = 0;
3949 btrfs_unlock_up_safe(path, 1);
3952 path->keep_locks = 0;
3956 static noinline int split_item(struct btrfs_trans_handle *trans,
3957 struct btrfs_root *root,
3958 struct btrfs_path *path,
3959 struct btrfs_key *new_key,
3960 unsigned long split_offset)
3962 struct extent_buffer *leaf;
3963 struct btrfs_item *item;
3964 struct btrfs_item *new_item;
3970 struct btrfs_disk_key disk_key;
3972 leaf = path->nodes[0];
3973 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3975 btrfs_set_path_blocking(path);
3977 item = btrfs_item_nr(leaf, path->slots[0]);
3978 orig_offset = btrfs_item_offset(leaf, item);
3979 item_size = btrfs_item_size(leaf, item);
3981 buf = kmalloc(item_size, GFP_NOFS);
3985 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986 path->slots[0]), item_size);
3988 slot = path->slots[0] + 1;
3989 nritems = btrfs_header_nritems(leaf);
3990 if (slot != nritems) {
3991 /* shift the items */
3992 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3993 btrfs_item_nr_offset(slot),
3994 (nritems - slot) * sizeof(struct btrfs_item));
3997 btrfs_cpu_key_to_disk(&disk_key, new_key);
3998 btrfs_set_item_key(leaf, &disk_key, slot);
4000 new_item = btrfs_item_nr(leaf, slot);
4002 btrfs_set_item_offset(leaf, new_item, orig_offset);
4003 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4005 btrfs_set_item_offset(leaf, item,
4006 orig_offset + item_size - split_offset);
4007 btrfs_set_item_size(leaf, item, split_offset);
4009 btrfs_set_header_nritems(leaf, nritems + 1);
4011 /* write the data for the start of the original item */
4012 write_extent_buffer(leaf, buf,
4013 btrfs_item_ptr_offset(leaf, path->slots[0]),
4016 /* write the data for the new item */
4017 write_extent_buffer(leaf, buf + split_offset,
4018 btrfs_item_ptr_offset(leaf, slot),
4019 item_size - split_offset);
4020 btrfs_mark_buffer_dirty(leaf);
4022 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4028 * This function splits a single item into two items,
4029 * giving 'new_key' to the new item and splitting the
4030 * old one at split_offset (from the start of the item).
4032 * The path may be released by this operation. After
4033 * the split, the path is pointing to the old item. The
4034 * new item is going to be in the same node as the old one.
4036 * Note, the item being split must be smaller enough to live alone on
4037 * a tree block with room for one extra struct btrfs_item
4039 * This allows us to split the item in place, keeping a lock on the
4040 * leaf the entire time.
4042 int btrfs_split_item(struct btrfs_trans_handle *trans,
4043 struct btrfs_root *root,
4044 struct btrfs_path *path,
4045 struct btrfs_key *new_key,
4046 unsigned long split_offset)
4049 ret = setup_leaf_for_split(trans, root, path,
4050 sizeof(struct btrfs_item));
4054 ret = split_item(trans, root, path, new_key, split_offset);
4059 * This function duplicate a item, giving 'new_key' to the new item.
4060 * It guarantees both items live in the same tree leaf and the new item
4061 * is contiguous with the original item.
4063 * This allows us to split file extent in place, keeping a lock on the
4064 * leaf the entire time.
4066 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4067 struct btrfs_root *root,
4068 struct btrfs_path *path,
4069 struct btrfs_key *new_key)
4071 struct extent_buffer *leaf;
4075 leaf = path->nodes[0];
4076 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4077 ret = setup_leaf_for_split(trans, root, path,
4078 item_size + sizeof(struct btrfs_item));
4083 setup_items_for_insert(trans, root, path, new_key, &item_size,
4084 item_size, item_size +
4085 sizeof(struct btrfs_item), 1);
4086 leaf = path->nodes[0];
4087 memcpy_extent_buffer(leaf,
4088 btrfs_item_ptr_offset(leaf, path->slots[0]),
4089 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4095 * make the item pointed to by the path smaller. new_size indicates
4096 * how small to make it, and from_end tells us if we just chop bytes
4097 * off the end of the item or if we shift the item to chop bytes off
4100 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4101 struct btrfs_root *root,
4102 struct btrfs_path *path,
4103 u32 new_size, int from_end)
4106 struct extent_buffer *leaf;
4107 struct btrfs_item *item;
4109 unsigned int data_end;
4110 unsigned int old_data_start;
4111 unsigned int old_size;
4112 unsigned int size_diff;
4114 struct btrfs_map_token token;
4116 btrfs_init_map_token(&token);
4118 leaf = path->nodes[0];
4119 slot = path->slots[0];
4121 old_size = btrfs_item_size_nr(leaf, slot);
4122 if (old_size == new_size)
4125 nritems = btrfs_header_nritems(leaf);
4126 data_end = leaf_data_end(root, leaf);
4128 old_data_start = btrfs_item_offset_nr(leaf, slot);
4130 size_diff = old_size - new_size;
4133 BUG_ON(slot >= nritems);
4136 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4138 /* first correct the data pointers */
4139 for (i = slot; i < nritems; i++) {
4141 item = btrfs_item_nr(leaf, i);
4143 ioff = btrfs_token_item_offset(leaf, item, &token);
4144 btrfs_set_token_item_offset(leaf, item,
4145 ioff + size_diff, &token);
4148 /* shift the data */
4150 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4151 data_end + size_diff, btrfs_leaf_data(leaf) +
4152 data_end, old_data_start + new_size - data_end);
4154 struct btrfs_disk_key disk_key;
4157 btrfs_item_key(leaf, &disk_key, slot);
4159 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4161 struct btrfs_file_extent_item *fi;
4163 fi = btrfs_item_ptr(leaf, slot,
4164 struct btrfs_file_extent_item);
4165 fi = (struct btrfs_file_extent_item *)(
4166 (unsigned long)fi - size_diff);
4168 if (btrfs_file_extent_type(leaf, fi) ==
4169 BTRFS_FILE_EXTENT_INLINE) {
4170 ptr = btrfs_item_ptr_offset(leaf, slot);
4171 memmove_extent_buffer(leaf, ptr,
4173 offsetof(struct btrfs_file_extent_item,
4178 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4179 data_end + size_diff, btrfs_leaf_data(leaf) +
4180 data_end, old_data_start - data_end);
4182 offset = btrfs_disk_key_offset(&disk_key);
4183 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4184 btrfs_set_item_key(leaf, &disk_key, slot);
4186 fixup_low_keys(trans, root, path, &disk_key, 1);
4189 item = btrfs_item_nr(leaf, slot);
4190 btrfs_set_item_size(leaf, item, new_size);
4191 btrfs_mark_buffer_dirty(leaf);
4193 if (btrfs_leaf_free_space(root, leaf) < 0) {
4194 btrfs_print_leaf(root, leaf);
4200 * make the item pointed to by the path bigger, data_size is the new size.
4202 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4203 struct btrfs_root *root, struct btrfs_path *path,
4207 struct extent_buffer *leaf;
4208 struct btrfs_item *item;
4210 unsigned int data_end;
4211 unsigned int old_data;
4212 unsigned int old_size;
4214 struct btrfs_map_token token;
4216 btrfs_init_map_token(&token);
4218 leaf = path->nodes[0];
4220 nritems = btrfs_header_nritems(leaf);
4221 data_end = leaf_data_end(root, leaf);
4223 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4224 btrfs_print_leaf(root, leaf);
4227 slot = path->slots[0];
4228 old_data = btrfs_item_end_nr(leaf, slot);
4231 if (slot >= nritems) {
4232 btrfs_print_leaf(root, leaf);
4233 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4239 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4241 /* first correct the data pointers */
4242 for (i = slot; i < nritems; i++) {
4244 item = btrfs_item_nr(leaf, i);
4246 ioff = btrfs_token_item_offset(leaf, item, &token);
4247 btrfs_set_token_item_offset(leaf, item,
4248 ioff - data_size, &token);
4251 /* shift the data */
4252 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4253 data_end - data_size, btrfs_leaf_data(leaf) +
4254 data_end, old_data - data_end);
4256 data_end = old_data;
4257 old_size = btrfs_item_size_nr(leaf, slot);
4258 item = btrfs_item_nr(leaf, slot);
4259 btrfs_set_item_size(leaf, item, old_size + data_size);
4260 btrfs_mark_buffer_dirty(leaf);
4262 if (btrfs_leaf_free_space(root, leaf) < 0) {
4263 btrfs_print_leaf(root, leaf);
4269 * Given a key and some data, insert items into the tree.
4270 * This does all the path init required, making room in the tree if needed.
4271 * Returns the number of keys that were inserted.
4273 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4274 struct btrfs_root *root,
4275 struct btrfs_path *path,
4276 struct btrfs_key *cpu_key, u32 *data_size,
4279 struct extent_buffer *leaf;
4280 struct btrfs_item *item;
4287 unsigned int data_end;
4288 struct btrfs_disk_key disk_key;
4289 struct btrfs_key found_key;
4290 struct btrfs_map_token token;
4292 btrfs_init_map_token(&token);
4294 for (i = 0; i < nr; i++) {
4295 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4296 BTRFS_LEAF_DATA_SIZE(root)) {
4300 total_data += data_size[i];
4301 total_size += data_size[i] + sizeof(struct btrfs_item);
4305 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4311 leaf = path->nodes[0];
4313 nritems = btrfs_header_nritems(leaf);
4314 data_end = leaf_data_end(root, leaf);
4316 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4317 for (i = nr; i >= 0; i--) {
4318 total_data -= data_size[i];
4319 total_size -= data_size[i] + sizeof(struct btrfs_item);
4320 if (total_size < btrfs_leaf_free_space(root, leaf))
4326 slot = path->slots[0];
4329 if (slot != nritems) {
4330 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4332 item = btrfs_item_nr(leaf, slot);
4333 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4335 /* figure out how many keys we can insert in here */
4336 total_data = data_size[0];
4337 for (i = 1; i < nr; i++) {
4338 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4340 total_data += data_size[i];
4344 if (old_data < data_end) {
4345 btrfs_print_leaf(root, leaf);
4346 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4347 slot, old_data, data_end);
4351 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4353 /* first correct the data pointers */
4354 for (i = slot; i < nritems; i++) {
4357 item = btrfs_item_nr(leaf, i);
4358 ioff = btrfs_token_item_offset(leaf, item, &token);
4359 btrfs_set_token_item_offset(leaf, item,
4360 ioff - total_data, &token);
4362 /* shift the items */
4363 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4364 btrfs_item_nr_offset(slot),
4365 (nritems - slot) * sizeof(struct btrfs_item));
4367 /* shift the data */
4368 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4369 data_end - total_data, btrfs_leaf_data(leaf) +
4370 data_end, old_data - data_end);
4371 data_end = old_data;
4374 * this sucks but it has to be done, if we are inserting at
4375 * the end of the leaf only insert 1 of the items, since we
4376 * have no way of knowing whats on the next leaf and we'd have
4377 * to drop our current locks to figure it out
4382 /* setup the item for the new data */
4383 for (i = 0; i < nr; i++) {
4384 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4385 btrfs_set_item_key(leaf, &disk_key, slot + i);
4386 item = btrfs_item_nr(leaf, slot + i);
4387 btrfs_set_token_item_offset(leaf, item,
4388 data_end - data_size[i], &token);
4389 data_end -= data_size[i];
4390 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4392 btrfs_set_header_nritems(leaf, nritems + nr);
4393 btrfs_mark_buffer_dirty(leaf);
4397 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4398 fixup_low_keys(trans, root, path, &disk_key, 1);
4401 if (btrfs_leaf_free_space(root, leaf) < 0) {
4402 btrfs_print_leaf(root, leaf);
4412 * this is a helper for btrfs_insert_empty_items, the main goal here is
4413 * to save stack depth by doing the bulk of the work in a function
4414 * that doesn't call btrfs_search_slot
4416 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4417 struct btrfs_root *root, struct btrfs_path *path,
4418 struct btrfs_key *cpu_key, u32 *data_size,
4419 u32 total_data, u32 total_size, int nr)
4421 struct btrfs_item *item;
4424 unsigned int data_end;
4425 struct btrfs_disk_key disk_key;
4426 struct extent_buffer *leaf;
4428 struct btrfs_map_token token;
4430 btrfs_init_map_token(&token);
4432 leaf = path->nodes[0];
4433 slot = path->slots[0];
4435 nritems = btrfs_header_nritems(leaf);
4436 data_end = leaf_data_end(root, leaf);
4438 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4439 btrfs_print_leaf(root, leaf);
4440 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4441 total_size, btrfs_leaf_free_space(root, leaf));
4445 if (slot != nritems) {
4446 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4448 if (old_data < data_end) {
4449 btrfs_print_leaf(root, leaf);
4450 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4451 slot, old_data, data_end);
4455 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4457 /* first correct the data pointers */
4458 for (i = slot; i < nritems; i++) {
4461 item = btrfs_item_nr(leaf, i);
4462 ioff = btrfs_token_item_offset(leaf, item, &token);
4463 btrfs_set_token_item_offset(leaf, item,
4464 ioff - total_data, &token);
4466 /* shift the items */
4467 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4468 btrfs_item_nr_offset(slot),
4469 (nritems - slot) * sizeof(struct btrfs_item));
4471 /* shift the data */
4472 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4473 data_end - total_data, btrfs_leaf_data(leaf) +
4474 data_end, old_data - data_end);
4475 data_end = old_data;
4478 /* setup the item for the new data */
4479 for (i = 0; i < nr; i++) {
4480 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4481 btrfs_set_item_key(leaf, &disk_key, slot + i);
4482 item = btrfs_item_nr(leaf, slot + i);
4483 btrfs_set_token_item_offset(leaf, item,
4484 data_end - data_size[i], &token);
4485 data_end -= data_size[i];
4486 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4489 btrfs_set_header_nritems(leaf, nritems + nr);
4492 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4493 fixup_low_keys(trans, root, path, &disk_key, 1);
4495 btrfs_unlock_up_safe(path, 1);
4496 btrfs_mark_buffer_dirty(leaf);
4498 if (btrfs_leaf_free_space(root, leaf) < 0) {
4499 btrfs_print_leaf(root, leaf);
4505 * Given a key and some data, insert items into the tree.
4506 * This does all the path init required, making room in the tree if needed.
4508 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4509 struct btrfs_root *root,
4510 struct btrfs_path *path,
4511 struct btrfs_key *cpu_key, u32 *data_size,
4520 for (i = 0; i < nr; i++)
4521 total_data += data_size[i];
4523 total_size = total_data + (nr * sizeof(struct btrfs_item));
4524 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4530 slot = path->slots[0];
4533 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4534 total_data, total_size, nr);
4539 * Given a key and some data, insert an item into the tree.
4540 * This does all the path init required, making room in the tree if needed.
4542 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4543 *root, struct btrfs_key *cpu_key, void *data, u32
4547 struct btrfs_path *path;
4548 struct extent_buffer *leaf;
4551 path = btrfs_alloc_path();
4554 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4556 leaf = path->nodes[0];
4557 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4558 write_extent_buffer(leaf, data, ptr, data_size);
4559 btrfs_mark_buffer_dirty(leaf);
4561 btrfs_free_path(path);
4566 * delete the pointer from a given node.
4568 * the tree should have been previously balanced so the deletion does not
4571 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4572 struct btrfs_path *path, int level, int slot,
4575 struct extent_buffer *parent = path->nodes[level];
4579 nritems = btrfs_header_nritems(parent);
4580 if (slot != nritems - 1) {
4581 if (tree_mod_log && level)
4582 tree_mod_log_eb_move(root->fs_info, parent, slot,
4583 slot + 1, nritems - slot - 1);
4584 memmove_extent_buffer(parent,
4585 btrfs_node_key_ptr_offset(slot),
4586 btrfs_node_key_ptr_offset(slot + 1),
4587 sizeof(struct btrfs_key_ptr) *
4588 (nritems - slot - 1));
4589 } else if (tree_mod_log && level) {
4590 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4591 MOD_LOG_KEY_REMOVE);
4596 btrfs_set_header_nritems(parent, nritems);
4597 if (nritems == 0 && parent == root->node) {
4598 BUG_ON(btrfs_header_level(root->node) != 1);
4599 /* just turn the root into a leaf and break */
4600 btrfs_set_header_level(root->node, 0);
4601 } else if (slot == 0) {
4602 struct btrfs_disk_key disk_key;
4604 btrfs_node_key(parent, &disk_key, 0);
4605 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4607 btrfs_mark_buffer_dirty(parent);
4611 * a helper function to delete the leaf pointed to by path->slots[1] and
4614 * This deletes the pointer in path->nodes[1] and frees the leaf
4615 * block extent. zero is returned if it all worked out, < 0 otherwise.
4617 * The path must have already been setup for deleting the leaf, including
4618 * all the proper balancing. path->nodes[1] must be locked.
4620 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4621 struct btrfs_root *root,
4622 struct btrfs_path *path,
4623 struct extent_buffer *leaf)
4625 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4626 del_ptr(trans, root, path, 1, path->slots[1], 1);
4629 * btrfs_free_extent is expensive, we want to make sure we
4630 * aren't holding any locks when we call it
4632 btrfs_unlock_up_safe(path, 0);
4634 root_sub_used(root, leaf->len);
4636 extent_buffer_get(leaf);
4637 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4638 free_extent_buffer_stale(leaf);
4641 * delete the item at the leaf level in path. If that empties
4642 * the leaf, remove it from the tree
4644 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4645 struct btrfs_path *path, int slot, int nr)
4647 struct extent_buffer *leaf;
4648 struct btrfs_item *item;
4655 struct btrfs_map_token token;
4657 btrfs_init_map_token(&token);
4659 leaf = path->nodes[0];
4660 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4662 for (i = 0; i < nr; i++)
4663 dsize += btrfs_item_size_nr(leaf, slot + i);
4665 nritems = btrfs_header_nritems(leaf);
4667 if (slot + nr != nritems) {
4668 int data_end = leaf_data_end(root, leaf);
4670 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4672 btrfs_leaf_data(leaf) + data_end,
4673 last_off - data_end);
4675 for (i = slot + nr; i < nritems; i++) {
4678 item = btrfs_item_nr(leaf, i);
4679 ioff = btrfs_token_item_offset(leaf, item, &token);
4680 btrfs_set_token_item_offset(leaf, item,
4681 ioff + dsize, &token);
4684 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4685 btrfs_item_nr_offset(slot + nr),
4686 sizeof(struct btrfs_item) *
4687 (nritems - slot - nr));
4689 btrfs_set_header_nritems(leaf, nritems - nr);
4692 /* delete the leaf if we've emptied it */
4694 if (leaf == root->node) {
4695 btrfs_set_header_level(leaf, 0);
4697 btrfs_set_path_blocking(path);
4698 clean_tree_block(trans, root, leaf);
4699 btrfs_del_leaf(trans, root, path, leaf);
4702 int used = leaf_space_used(leaf, 0, nritems);
4704 struct btrfs_disk_key disk_key;
4706 btrfs_item_key(leaf, &disk_key, 0);
4707 fixup_low_keys(trans, root, path, &disk_key, 1);
4710 /* delete the leaf if it is mostly empty */
4711 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4712 /* push_leaf_left fixes the path.
4713 * make sure the path still points to our leaf
4714 * for possible call to del_ptr below
4716 slot = path->slots[1];
4717 extent_buffer_get(leaf);
4719 btrfs_set_path_blocking(path);
4720 wret = push_leaf_left(trans, root, path, 1, 1,
4722 if (wret < 0 && wret != -ENOSPC)
4725 if (path->nodes[0] == leaf &&
4726 btrfs_header_nritems(leaf)) {
4727 wret = push_leaf_right(trans, root, path, 1,
4729 if (wret < 0 && wret != -ENOSPC)
4733 if (btrfs_header_nritems(leaf) == 0) {
4734 path->slots[1] = slot;
4735 btrfs_del_leaf(trans, root, path, leaf);
4736 free_extent_buffer(leaf);
4739 /* if we're still in the path, make sure
4740 * we're dirty. Otherwise, one of the
4741 * push_leaf functions must have already
4742 * dirtied this buffer
4744 if (path->nodes[0] == leaf)
4745 btrfs_mark_buffer_dirty(leaf);
4746 free_extent_buffer(leaf);
4749 btrfs_mark_buffer_dirty(leaf);
4756 * search the tree again to find a leaf with lesser keys
4757 * returns 0 if it found something or 1 if there are no lesser leaves.
4758 * returns < 0 on io errors.
4760 * This may release the path, and so you may lose any locks held at the
4763 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4765 struct btrfs_key key;
4766 struct btrfs_disk_key found_key;
4769 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4773 else if (key.type > 0)
4775 else if (key.objectid > 0)
4780 btrfs_release_path(path);
4781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4784 btrfs_item_key(path->nodes[0], &found_key, 0);
4785 ret = comp_keys(&found_key, &key);
4792 * A helper function to walk down the tree starting at min_key, and looking
4793 * for nodes or leaves that are either in cache or have a minimum
4794 * transaction id. This is used by the btree defrag code, and tree logging
4796 * This does not cow, but it does stuff the starting key it finds back
4797 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4798 * key and get a writable path.
4800 * This does lock as it descends, and path->keep_locks should be set
4801 * to 1 by the caller.
4803 * This honors path->lowest_level to prevent descent past a given level
4806 * min_trans indicates the oldest transaction that you are interested
4807 * in walking through. Any nodes or leaves older than min_trans are
4808 * skipped over (without reading them).
4810 * returns zero if something useful was found, < 0 on error and 1 if there
4811 * was nothing in the tree that matched the search criteria.
4813 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4814 struct btrfs_key *max_key,
4815 struct btrfs_path *path, int cache_only,
4818 struct extent_buffer *cur;
4819 struct btrfs_key found_key;
4826 WARN_ON(!path->keep_locks);
4828 cur = btrfs_read_lock_root_node(root);
4829 level = btrfs_header_level(cur);
4830 WARN_ON(path->nodes[level]);
4831 path->nodes[level] = cur;
4832 path->locks[level] = BTRFS_READ_LOCK;
4834 if (btrfs_header_generation(cur) < min_trans) {
4839 nritems = btrfs_header_nritems(cur);
4840 level = btrfs_header_level(cur);
4841 sret = bin_search(cur, min_key, level, &slot);
4843 /* at the lowest level, we're done, setup the path and exit */
4844 if (level == path->lowest_level) {
4845 if (slot >= nritems)
4848 path->slots[level] = slot;
4849 btrfs_item_key_to_cpu(cur, &found_key, slot);
4852 if (sret && slot > 0)
4855 * check this node pointer against the cache_only and
4856 * min_trans parameters. If it isn't in cache or is too
4857 * old, skip to the next one.
4859 while (slot < nritems) {
4862 struct extent_buffer *tmp;
4863 struct btrfs_disk_key disk_key;
4865 blockptr = btrfs_node_blockptr(cur, slot);
4866 gen = btrfs_node_ptr_generation(cur, slot);
4867 if (gen < min_trans) {
4875 btrfs_node_key(cur, &disk_key, slot);
4876 if (comp_keys(&disk_key, max_key) >= 0) {
4882 tmp = btrfs_find_tree_block(root, blockptr,
4883 btrfs_level_size(root, level - 1));
4885 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4886 free_extent_buffer(tmp);
4890 free_extent_buffer(tmp);
4895 * we didn't find a candidate key in this node, walk forward
4896 * and find another one
4898 if (slot >= nritems) {
4899 path->slots[level] = slot;
4900 btrfs_set_path_blocking(path);
4901 sret = btrfs_find_next_key(root, path, min_key, level,
4902 cache_only, min_trans);
4904 btrfs_release_path(path);
4910 /* save our key for returning back */
4911 btrfs_node_key_to_cpu(cur, &found_key, slot);
4912 path->slots[level] = slot;
4913 if (level == path->lowest_level) {
4915 unlock_up(path, level, 1, 0, NULL);
4918 btrfs_set_path_blocking(path);
4919 cur = read_node_slot(root, cur, slot);
4920 BUG_ON(!cur); /* -ENOMEM */
4922 btrfs_tree_read_lock(cur);
4924 path->locks[level - 1] = BTRFS_READ_LOCK;
4925 path->nodes[level - 1] = cur;
4926 unlock_up(path, level, 1, 0, NULL);
4927 btrfs_clear_path_blocking(path, NULL, 0);
4931 memcpy(min_key, &found_key, sizeof(found_key));
4932 btrfs_set_path_blocking(path);
4937 * this is similar to btrfs_next_leaf, but does not try to preserve
4938 * and fixup the path. It looks for and returns the next key in the
4939 * tree based on the current path and the cache_only and min_trans
4942 * 0 is returned if another key is found, < 0 if there are any errors
4943 * and 1 is returned if there are no higher keys in the tree
4945 * path->keep_locks should be set to 1 on the search made before
4946 * calling this function.
4948 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4949 struct btrfs_key *key, int level,
4950 int cache_only, u64 min_trans)
4953 struct extent_buffer *c;
4955 WARN_ON(!path->keep_locks);
4956 while (level < BTRFS_MAX_LEVEL) {
4957 if (!path->nodes[level])
4960 slot = path->slots[level] + 1;
4961 c = path->nodes[level];
4963 if (slot >= btrfs_header_nritems(c)) {
4966 struct btrfs_key cur_key;
4967 if (level + 1 >= BTRFS_MAX_LEVEL ||
4968 !path->nodes[level + 1])
4971 if (path->locks[level + 1]) {
4976 slot = btrfs_header_nritems(c) - 1;
4978 btrfs_item_key_to_cpu(c, &cur_key, slot);
4980 btrfs_node_key_to_cpu(c, &cur_key, slot);
4982 orig_lowest = path->lowest_level;
4983 btrfs_release_path(path);
4984 path->lowest_level = level;
4985 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4987 path->lowest_level = orig_lowest;
4991 c = path->nodes[level];
4992 slot = path->slots[level];
4999 btrfs_item_key_to_cpu(c, key, slot);
5001 u64 blockptr = btrfs_node_blockptr(c, slot);
5002 u64 gen = btrfs_node_ptr_generation(c, slot);
5005 struct extent_buffer *cur;
5006 cur = btrfs_find_tree_block(root, blockptr,
5007 btrfs_level_size(root, level - 1));
5009 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5012 free_extent_buffer(cur);
5015 free_extent_buffer(cur);
5017 if (gen < min_trans) {
5021 btrfs_node_key_to_cpu(c, key, slot);
5029 * search the tree again to find a leaf with greater keys
5030 * returns 0 if it found something or 1 if there are no greater leaves.
5031 * returns < 0 on io errors.
5033 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5035 return btrfs_next_old_leaf(root, path, 0);
5038 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5043 struct extent_buffer *c;
5044 struct extent_buffer *next;
5045 struct btrfs_key key;
5048 int old_spinning = path->leave_spinning;
5049 int next_rw_lock = 0;
5051 nritems = btrfs_header_nritems(path->nodes[0]);
5055 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5060 btrfs_release_path(path);
5062 path->keep_locks = 1;
5063 path->leave_spinning = 1;
5066 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5069 path->keep_locks = 0;
5074 nritems = btrfs_header_nritems(path->nodes[0]);
5076 * by releasing the path above we dropped all our locks. A balance
5077 * could have added more items next to the key that used to be
5078 * at the very end of the block. So, check again here and
5079 * advance the path if there are now more items available.
5081 if (nritems > 0 && path->slots[0] < nritems - 1) {
5088 while (level < BTRFS_MAX_LEVEL) {
5089 if (!path->nodes[level]) {
5094 slot = path->slots[level] + 1;
5095 c = path->nodes[level];
5096 if (slot >= btrfs_header_nritems(c)) {
5098 if (level == BTRFS_MAX_LEVEL) {
5106 btrfs_tree_unlock_rw(next, next_rw_lock);
5107 free_extent_buffer(next);
5111 next_rw_lock = path->locks[level];
5112 ret = read_block_for_search(NULL, root, path, &next, level,
5118 btrfs_release_path(path);
5122 if (!path->skip_locking) {
5123 ret = btrfs_try_tree_read_lock(next);
5125 btrfs_set_path_blocking(path);
5126 btrfs_tree_read_lock(next);
5127 btrfs_clear_path_blocking(path, next,
5130 next_rw_lock = BTRFS_READ_LOCK;
5134 path->slots[level] = slot;
5137 c = path->nodes[level];
5138 if (path->locks[level])
5139 btrfs_tree_unlock_rw(c, path->locks[level]);
5141 free_extent_buffer(c);
5142 path->nodes[level] = next;
5143 path->slots[level] = 0;
5144 if (!path->skip_locking)
5145 path->locks[level] = next_rw_lock;
5149 ret = read_block_for_search(NULL, root, path, &next, level,
5155 btrfs_release_path(path);
5159 if (!path->skip_locking) {
5160 ret = btrfs_try_tree_read_lock(next);
5162 btrfs_set_path_blocking(path);
5163 btrfs_tree_read_lock(next);
5164 btrfs_clear_path_blocking(path, next,
5167 next_rw_lock = BTRFS_READ_LOCK;
5172 unlock_up(path, 0, 1, 0, NULL);
5173 path->leave_spinning = old_spinning;
5175 btrfs_set_path_blocking(path);
5181 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5182 * searching until it gets past min_objectid or finds an item of 'type'
5184 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5186 int btrfs_previous_item(struct btrfs_root *root,
5187 struct btrfs_path *path, u64 min_objectid,
5190 struct btrfs_key found_key;
5191 struct extent_buffer *leaf;
5196 if (path->slots[0] == 0) {
5197 btrfs_set_path_blocking(path);
5198 ret = btrfs_prev_leaf(root, path);
5204 leaf = path->nodes[0];
5205 nritems = btrfs_header_nritems(leaf);
5208 if (path->slots[0] == nritems)
5211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5212 if (found_key.objectid < min_objectid)
5214 if (found_key.type == type)
5216 if (found_key.objectid == min_objectid &&
5217 found_key.type < type)