2 * Routines having to do with the 'struct sk_buff' memory handlers.
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%#lx end:%#lx dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data,
92 (unsigned long)skb->tail, (unsigned long)skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
98 * skb_under_panic - private function
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%#lx end:%#lx dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data,
111 (unsigned long)skb->tail, (unsigned long)skb->end,
112 skb->dev ? skb->dev->name : "<NULL>");
116 void skb_truesize_bug(struct sk_buff *skb)
118 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
119 "len=%u, sizeof(sk_buff)=%Zd\n",
120 skb->truesize, skb->len, sizeof(struct sk_buff));
122 EXPORT_SYMBOL(skb_truesize_bug);
124 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
125 * 'private' fields and also do memory statistics to find all the
131 * __alloc_skb - allocate a network buffer
132 * @size: size to allocate
133 * @gfp_mask: allocation mask
134 * @fclone: allocate from fclone cache instead of head cache
135 * and allocate a cloned (child) skb
136 * @node: numa node to allocate memory on
138 * Allocate a new &sk_buff. The returned buffer has no headroom and a
139 * tail room of size bytes. The object has a reference count of one.
140 * The return is the buffer. On a failure the return is %NULL.
142 * Buffers may only be allocated from interrupts using a @gfp_mask of
145 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
146 int fclone, int node)
148 struct kmem_cache *cache;
149 struct skb_shared_info *shinfo;
153 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
156 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
160 /* Get the DATA. Size must match skb_add_mtu(). */
161 size = SKB_DATA_ALIGN(size);
162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
167 memset(skb, 0, offsetof(struct sk_buff, truesize));
168 skb->truesize = size + sizeof(struct sk_buff);
169 atomic_set(&skb->users, 1);
172 skb_reset_tail_pointer(skb);
173 skb->end = skb->tail + size;
174 /* make sure we initialize shinfo sequentially */
175 shinfo = skb_shinfo(skb);
176 atomic_set(&shinfo->dataref, 1);
177 shinfo->nr_frags = 0;
178 shinfo->gso_size = 0;
179 shinfo->gso_segs = 0;
180 shinfo->gso_type = 0;
181 shinfo->ip6_frag_id = 0;
182 shinfo->frag_list = NULL;
185 struct sk_buff *child = skb + 1;
186 atomic_t *fclone_ref = (atomic_t *) (child + 1);
188 skb->fclone = SKB_FCLONE_ORIG;
189 atomic_set(fclone_ref, 1);
191 child->fclone = SKB_FCLONE_UNAVAILABLE;
196 kmem_cache_free(cache, skb);
202 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
203 * @dev: network device to receive on
204 * @length: length to allocate
205 * @gfp_mask: get_free_pages mask, passed to alloc_skb
207 * Allocate a new &sk_buff and assign it a usage count of one. The
208 * buffer has unspecified headroom built in. Users should allocate
209 * the headroom they think they need without accounting for the
210 * built in space. The built in space is used for optimisations.
212 * %NULL is returned if there is no free memory.
214 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
215 unsigned int length, gfp_t gfp_mask)
217 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
220 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
222 skb_reserve(skb, NET_SKB_PAD);
228 static void skb_drop_list(struct sk_buff **listp)
230 struct sk_buff *list = *listp;
235 struct sk_buff *this = list;
241 static inline void skb_drop_fraglist(struct sk_buff *skb)
243 skb_drop_list(&skb_shinfo(skb)->frag_list);
246 static void skb_clone_fraglist(struct sk_buff *skb)
248 struct sk_buff *list;
250 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 static void skb_release_data(struct sk_buff *skb)
257 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
258 &skb_shinfo(skb)->dataref)) {
259 if (skb_shinfo(skb)->nr_frags) {
261 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
262 put_page(skb_shinfo(skb)->frags[i].page);
265 if (skb_shinfo(skb)->frag_list)
266 skb_drop_fraglist(skb);
273 * Free an skbuff by memory without cleaning the state.
275 void kfree_skbmem(struct sk_buff *skb)
277 struct sk_buff *other;
278 atomic_t *fclone_ref;
280 skb_release_data(skb);
281 switch (skb->fclone) {
282 case SKB_FCLONE_UNAVAILABLE:
283 kmem_cache_free(skbuff_head_cache, skb);
286 case SKB_FCLONE_ORIG:
287 fclone_ref = (atomic_t *) (skb + 2);
288 if (atomic_dec_and_test(fclone_ref))
289 kmem_cache_free(skbuff_fclone_cache, skb);
292 case SKB_FCLONE_CLONE:
293 fclone_ref = (atomic_t *) (skb + 1);
296 /* The clone portion is available for
297 * fast-cloning again.
299 skb->fclone = SKB_FCLONE_UNAVAILABLE;
301 if (atomic_dec_and_test(fclone_ref))
302 kmem_cache_free(skbuff_fclone_cache, other);
308 * __kfree_skb - private function
311 * Free an sk_buff. Release anything attached to the buffer.
312 * Clean the state. This is an internal helper function. Users should
313 * always call kfree_skb
316 void __kfree_skb(struct sk_buff *skb)
318 dst_release(skb->dst);
320 secpath_put(skb->sp);
322 if (skb->destructor) {
324 skb->destructor(skb);
326 #ifdef CONFIG_NETFILTER
327 nf_conntrack_put(skb->nfct);
328 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
329 nf_conntrack_put_reasm(skb->nfct_reasm);
331 #ifdef CONFIG_BRIDGE_NETFILTER
332 nf_bridge_put(skb->nf_bridge);
335 /* XXX: IS this still necessary? - JHS */
336 #ifdef CONFIG_NET_SCHED
338 #ifdef CONFIG_NET_CLS_ACT
347 * kfree_skb - free an sk_buff
348 * @skb: buffer to free
350 * Drop a reference to the buffer and free it if the usage count has
353 void kfree_skb(struct sk_buff *skb)
357 if (likely(atomic_read(&skb->users) == 1))
359 else if (likely(!atomic_dec_and_test(&skb->users)))
365 * skb_clone - duplicate an sk_buff
366 * @skb: buffer to clone
367 * @gfp_mask: allocation priority
369 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
370 * copies share the same packet data but not structure. The new
371 * buffer has a reference count of 1. If the allocation fails the
372 * function returns %NULL otherwise the new buffer is returned.
374 * If this function is called from an interrupt gfp_mask() must be
378 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
383 if (skb->fclone == SKB_FCLONE_ORIG &&
384 n->fclone == SKB_FCLONE_UNAVAILABLE) {
385 atomic_t *fclone_ref = (atomic_t *) (n + 1);
386 n->fclone = SKB_FCLONE_CLONE;
387 atomic_inc(fclone_ref);
389 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
392 n->fclone = SKB_FCLONE_UNAVAILABLE;
395 #define C(x) n->x = skb->x
397 n->next = n->prev = NULL;
408 secpath_get(skb->sp);
410 memcpy(n->cb, skb->cb, sizeof(skb->cb));
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 n->destructor = NULL;
428 #ifdef CONFIG_NET_SCHED
430 #ifdef CONFIG_NET_CLS_ACT
431 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
432 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
433 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
436 skb_copy_secmark(n, skb);
439 atomic_set(&n->users, 1);
445 atomic_inc(&(skb_shinfo(skb)->dataref));
451 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
453 #ifndef NET_SKBUFF_DATA_USES_OFFSET
455 * Shift between the two data areas in bytes
457 unsigned long offset = new->data - old->data;
461 new->priority = old->priority;
462 new->protocol = old->protocol;
463 new->dst = dst_clone(old->dst);
465 new->sp = secpath_get(old->sp);
467 new->transport_header = old->transport_header;
468 new->network_header = old->network_header;
469 new->mac_header = old->mac_header;
470 #ifndef NET_SKBUFF_DATA_USES_OFFSET
471 /* {transport,network,mac}_header are relative to skb->head */
472 new->transport_header += offset;
473 new->network_header += offset;
474 new->mac_header += offset;
476 memcpy(new->cb, old->cb, sizeof(old->cb));
477 new->local_df = old->local_df;
478 new->fclone = SKB_FCLONE_UNAVAILABLE;
479 new->pkt_type = old->pkt_type;
480 new->tstamp = old->tstamp;
481 new->destructor = NULL;
482 new->mark = old->mark;
484 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
485 new->ipvs_property = old->ipvs_property;
487 #ifdef CONFIG_NET_SCHED
488 #ifdef CONFIG_NET_CLS_ACT
489 new->tc_verd = old->tc_verd;
491 new->tc_index = old->tc_index;
493 skb_copy_secmark(new, old);
494 atomic_set(&new->users, 1);
495 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
496 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
497 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
501 * skb_copy - create private copy of an sk_buff
502 * @skb: buffer to copy
503 * @gfp_mask: allocation priority
505 * Make a copy of both an &sk_buff and its data. This is used when the
506 * caller wishes to modify the data and needs a private copy of the
507 * data to alter. Returns %NULL on failure or the pointer to the buffer
508 * on success. The returned buffer has a reference count of 1.
510 * As by-product this function converts non-linear &sk_buff to linear
511 * one, so that &sk_buff becomes completely private and caller is allowed
512 * to modify all the data of returned buffer. This means that this
513 * function is not recommended for use in circumstances when only
514 * header is going to be modified. Use pskb_copy() instead.
517 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
519 int headerlen = skb->data - skb->head;
521 * Allocate the copy buffer
524 #ifdef NET_SKBUFF_DATA_USES_OFFSET
525 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
527 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
532 /* Set the data pointer */
533 skb_reserve(n, headerlen);
534 /* Set the tail pointer and length */
535 skb_put(n, skb->len);
537 n->ip_summed = skb->ip_summed;
539 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
542 copy_skb_header(n, skb);
548 * pskb_copy - create copy of an sk_buff with private head.
549 * @skb: buffer to copy
550 * @gfp_mask: allocation priority
552 * Make a copy of both an &sk_buff and part of its data, located
553 * in header. Fragmented data remain shared. This is used when
554 * the caller wishes to modify only header of &sk_buff and needs
555 * private copy of the header to alter. Returns %NULL on failure
556 * or the pointer to the buffer on success.
557 * The returned buffer has a reference count of 1.
560 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
563 * Allocate the copy buffer
566 #ifdef NET_SKBUFF_DATA_USES_OFFSET
567 n = alloc_skb(skb->end, gfp_mask);
569 n = alloc_skb(skb->end - skb->head, gfp_mask);
574 /* Set the data pointer */
575 skb_reserve(n, skb->data - skb->head);
576 /* Set the tail pointer and length */
577 skb_put(n, skb_headlen(skb));
579 memcpy(n->data, skb->data, n->len);
581 n->ip_summed = skb->ip_summed;
583 n->truesize += skb->data_len;
584 n->data_len = skb->data_len;
587 if (skb_shinfo(skb)->nr_frags) {
590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
591 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
592 get_page(skb_shinfo(n)->frags[i].page);
594 skb_shinfo(n)->nr_frags = i;
597 if (skb_shinfo(skb)->frag_list) {
598 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
599 skb_clone_fraglist(n);
602 copy_skb_header(n, skb);
608 * pskb_expand_head - reallocate header of &sk_buff
609 * @skb: buffer to reallocate
610 * @nhead: room to add at head
611 * @ntail: room to add at tail
612 * @gfp_mask: allocation priority
614 * Expands (or creates identical copy, if &nhead and &ntail are zero)
615 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
616 * reference count of 1. Returns zero in the case of success or error,
617 * if expansion failed. In the last case, &sk_buff is not changed.
619 * All the pointers pointing into skb header may change and must be
620 * reloaded after call to this function.
623 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
628 #ifdef NET_SKBUFF_DATA_USES_OFFSET
629 int size = nhead + skb->end + ntail;
631 int size = nhead + (skb->end - skb->head) + ntail;
638 size = SKB_DATA_ALIGN(size);
640 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
644 /* Copy only real data... and, alas, header. This should be
645 * optimized for the cases when header is void. */
646 memcpy(data + nhead, skb->head,
647 #ifdef NET_SKBUFF_DATA_USES_OFFSET
650 skb->tail - skb->head);
652 memcpy(data + size, skb_end_pointer(skb),
653 sizeof(struct skb_shared_info));
655 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
656 get_page(skb_shinfo(skb)->frags[i].page);
658 if (skb_shinfo(skb)->frag_list)
659 skb_clone_fraglist(skb);
661 skb_release_data(skb);
663 off = (data + nhead) - skb->head;
667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
670 skb->end = skb->head + size;
671 /* {transport,network,mac}_header and tail are relative to skb->head */
673 skb->transport_header += off;
674 skb->network_header += off;
675 skb->mac_header += off;
679 atomic_set(&skb_shinfo(skb)->dataref, 1);
686 /* Make private copy of skb with writable head and some headroom */
688 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
690 struct sk_buff *skb2;
691 int delta = headroom - skb_headroom(skb);
694 skb2 = pskb_copy(skb, GFP_ATOMIC);
696 skb2 = skb_clone(skb, GFP_ATOMIC);
697 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
708 * skb_copy_expand - copy and expand sk_buff
709 * @skb: buffer to copy
710 * @newheadroom: new free bytes at head
711 * @newtailroom: new free bytes at tail
712 * @gfp_mask: allocation priority
714 * Make a copy of both an &sk_buff and its data and while doing so
715 * allocate additional space.
717 * This is used when the caller wishes to modify the data and needs a
718 * private copy of the data to alter as well as more space for new fields.
719 * Returns %NULL on failure or the pointer to the buffer
720 * on success. The returned buffer has a reference count of 1.
722 * You must pass %GFP_ATOMIC as the allocation priority if this function
723 * is called from an interrupt.
725 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
726 * only by netfilter in the cases when checksum is recalculated? --ANK
728 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
729 int newheadroom, int newtailroom,
733 * Allocate the copy buffer
735 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
737 int head_copy_len, head_copy_off;
742 skb_reserve(n, newheadroom);
744 /* Set the tail pointer and length */
745 skb_put(n, skb->len);
747 head_copy_len = skb_headroom(skb);
749 if (newheadroom <= head_copy_len)
750 head_copy_len = newheadroom;
752 head_copy_off = newheadroom - head_copy_len;
754 /* Copy the linear header and data. */
755 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
756 skb->len + head_copy_len))
759 copy_skb_header(n, skb);
765 * skb_pad - zero pad the tail of an skb
766 * @skb: buffer to pad
769 * Ensure that a buffer is followed by a padding area that is zero
770 * filled. Used by network drivers which may DMA or transfer data
771 * beyond the buffer end onto the wire.
773 * May return error in out of memory cases. The skb is freed on error.
776 int skb_pad(struct sk_buff *skb, int pad)
781 /* If the skbuff is non linear tailroom is always zero.. */
782 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
783 memset(skb->data+skb->len, 0, pad);
787 ntail = skb->data_len + pad - (skb->end - skb->tail);
788 if (likely(skb_cloned(skb) || ntail > 0)) {
789 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
794 /* FIXME: The use of this function with non-linear skb's really needs
797 err = skb_linearize(skb);
801 memset(skb->data + skb->len, 0, pad);
809 /* Trims skb to length len. It can change skb pointers.
812 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
814 struct sk_buff **fragp;
815 struct sk_buff *frag;
816 int offset = skb_headlen(skb);
817 int nfrags = skb_shinfo(skb)->nr_frags;
821 if (skb_cloned(skb) &&
822 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
829 for (; i < nfrags; i++) {
830 int end = offset + skb_shinfo(skb)->frags[i].size;
837 skb_shinfo(skb)->frags[i++].size = len - offset;
840 skb_shinfo(skb)->nr_frags = i;
842 for (; i < nfrags; i++)
843 put_page(skb_shinfo(skb)->frags[i].page);
845 if (skb_shinfo(skb)->frag_list)
846 skb_drop_fraglist(skb);
850 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
851 fragp = &frag->next) {
852 int end = offset + frag->len;
854 if (skb_shared(frag)) {
855 struct sk_buff *nfrag;
857 nfrag = skb_clone(frag, GFP_ATOMIC);
858 if (unlikely(!nfrag))
861 nfrag->next = frag->next;
873 unlikely((err = pskb_trim(frag, len - offset))))
877 skb_drop_list(&frag->next);
882 if (len > skb_headlen(skb)) {
883 skb->data_len -= skb->len - len;
888 skb_set_tail_pointer(skb, len);
895 * __pskb_pull_tail - advance tail of skb header
896 * @skb: buffer to reallocate
897 * @delta: number of bytes to advance tail
899 * The function makes a sense only on a fragmented &sk_buff,
900 * it expands header moving its tail forward and copying necessary
901 * data from fragmented part.
903 * &sk_buff MUST have reference count of 1.
905 * Returns %NULL (and &sk_buff does not change) if pull failed
906 * or value of new tail of skb in the case of success.
908 * All the pointers pointing into skb header may change and must be
909 * reloaded after call to this function.
912 /* Moves tail of skb head forward, copying data from fragmented part,
913 * when it is necessary.
914 * 1. It may fail due to malloc failure.
915 * 2. It may change skb pointers.
917 * It is pretty complicated. Luckily, it is called only in exceptional cases.
919 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
921 /* If skb has not enough free space at tail, get new one
922 * plus 128 bytes for future expansions. If we have enough
923 * room at tail, reallocate without expansion only if skb is cloned.
925 int i, k, eat = (skb->tail + delta) - skb->end;
927 if (eat > 0 || skb_cloned(skb)) {
928 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
933 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
936 /* Optimization: no fragments, no reasons to preestimate
937 * size of pulled pages. Superb.
939 if (!skb_shinfo(skb)->frag_list)
942 /* Estimate size of pulled pages. */
944 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
945 if (skb_shinfo(skb)->frags[i].size >= eat)
947 eat -= skb_shinfo(skb)->frags[i].size;
950 /* If we need update frag list, we are in troubles.
951 * Certainly, it possible to add an offset to skb data,
952 * but taking into account that pulling is expected to
953 * be very rare operation, it is worth to fight against
954 * further bloating skb head and crucify ourselves here instead.
955 * Pure masohism, indeed. 8)8)
958 struct sk_buff *list = skb_shinfo(skb)->frag_list;
959 struct sk_buff *clone = NULL;
960 struct sk_buff *insp = NULL;
965 if (list->len <= eat) {
966 /* Eaten as whole. */
971 /* Eaten partially. */
973 if (skb_shared(list)) {
974 /* Sucks! We need to fork list. :-( */
975 clone = skb_clone(list, GFP_ATOMIC);
981 /* This may be pulled without
985 if (!pskb_pull(list, eat)) {
994 /* Free pulled out fragments. */
995 while ((list = skb_shinfo(skb)->frag_list) != insp) {
996 skb_shinfo(skb)->frag_list = list->next;
999 /* And insert new clone at head. */
1002 skb_shinfo(skb)->frag_list = clone;
1005 /* Success! Now we may commit changes to skb data. */
1010 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1011 if (skb_shinfo(skb)->frags[i].size <= eat) {
1012 put_page(skb_shinfo(skb)->frags[i].page);
1013 eat -= skb_shinfo(skb)->frags[i].size;
1015 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1017 skb_shinfo(skb)->frags[k].page_offset += eat;
1018 skb_shinfo(skb)->frags[k].size -= eat;
1024 skb_shinfo(skb)->nr_frags = k;
1027 skb->data_len -= delta;
1029 return skb_tail_pointer(skb);
1032 /* Copy some data bits from skb to kernel buffer. */
1034 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1037 int start = skb_headlen(skb);
1039 if (offset > (int)skb->len - len)
1043 if ((copy = start - offset) > 0) {
1046 memcpy(to, skb->data + offset, copy);
1047 if ((len -= copy) == 0)
1053 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1056 BUG_TRAP(start <= offset + len);
1058 end = start + skb_shinfo(skb)->frags[i].size;
1059 if ((copy = end - offset) > 0) {
1065 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1067 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1068 offset - start, copy);
1069 kunmap_skb_frag(vaddr);
1071 if ((len -= copy) == 0)
1079 if (skb_shinfo(skb)->frag_list) {
1080 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1082 for (; list; list = list->next) {
1085 BUG_TRAP(start <= offset + len);
1087 end = start + list->len;
1088 if ((copy = end - offset) > 0) {
1091 if (skb_copy_bits(list, offset - start,
1094 if ((len -= copy) == 0)
1110 * skb_store_bits - store bits from kernel buffer to skb
1111 * @skb: destination buffer
1112 * @offset: offset in destination
1113 * @from: source buffer
1114 * @len: number of bytes to copy
1116 * Copy the specified number of bytes from the source buffer to the
1117 * destination skb. This function handles all the messy bits of
1118 * traversing fragment lists and such.
1121 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1124 int start = skb_headlen(skb);
1126 if (offset > (int)skb->len - len)
1129 if ((copy = start - offset) > 0) {
1132 memcpy(skb->data + offset, from, copy);
1133 if ((len -= copy) == 0)
1139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1143 BUG_TRAP(start <= offset + len);
1145 end = start + frag->size;
1146 if ((copy = end - offset) > 0) {
1152 vaddr = kmap_skb_frag(frag);
1153 memcpy(vaddr + frag->page_offset + offset - start,
1155 kunmap_skb_frag(vaddr);
1157 if ((len -= copy) == 0)
1165 if (skb_shinfo(skb)->frag_list) {
1166 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1168 for (; list; list = list->next) {
1171 BUG_TRAP(start <= offset + len);
1173 end = start + list->len;
1174 if ((copy = end - offset) > 0) {
1177 if (skb_store_bits(list, offset - start,
1180 if ((len -= copy) == 0)
1195 EXPORT_SYMBOL(skb_store_bits);
1197 /* Checksum skb data. */
1199 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1200 int len, __wsum csum)
1202 int start = skb_headlen(skb);
1203 int i, copy = start - offset;
1206 /* Checksum header. */
1210 csum = csum_partial(skb->data + offset, copy, csum);
1211 if ((len -= copy) == 0)
1217 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1220 BUG_TRAP(start <= offset + len);
1222 end = start + skb_shinfo(skb)->frags[i].size;
1223 if ((copy = end - offset) > 0) {
1226 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1230 vaddr = kmap_skb_frag(frag);
1231 csum2 = csum_partial(vaddr + frag->page_offset +
1232 offset - start, copy, 0);
1233 kunmap_skb_frag(vaddr);
1234 csum = csum_block_add(csum, csum2, pos);
1243 if (skb_shinfo(skb)->frag_list) {
1244 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1246 for (; list; list = list->next) {
1249 BUG_TRAP(start <= offset + len);
1251 end = start + list->len;
1252 if ((copy = end - offset) > 0) {
1256 csum2 = skb_checksum(list, offset - start,
1258 csum = csum_block_add(csum, csum2, pos);
1259 if ((len -= copy) == 0)
1272 /* Both of above in one bottle. */
1274 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1275 u8 *to, int len, __wsum csum)
1277 int start = skb_headlen(skb);
1278 int i, copy = start - offset;
1285 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1287 if ((len -= copy) == 0)
1294 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1297 BUG_TRAP(start <= offset + len);
1299 end = start + skb_shinfo(skb)->frags[i].size;
1300 if ((copy = end - offset) > 0) {
1303 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1307 vaddr = kmap_skb_frag(frag);
1308 csum2 = csum_partial_copy_nocheck(vaddr +
1312 kunmap_skb_frag(vaddr);
1313 csum = csum_block_add(csum, csum2, pos);
1323 if (skb_shinfo(skb)->frag_list) {
1324 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1326 for (; list; list = list->next) {
1330 BUG_TRAP(start <= offset + len);
1332 end = start + list->len;
1333 if ((copy = end - offset) > 0) {
1336 csum2 = skb_copy_and_csum_bits(list,
1339 csum = csum_block_add(csum, csum2, pos);
1340 if ((len -= copy) == 0)
1353 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1358 if (skb->ip_summed == CHECKSUM_PARTIAL)
1359 csstart = skb_transport_offset(skb);
1361 csstart = skb_headlen(skb);
1363 BUG_ON(csstart > skb_headlen(skb));
1365 memcpy(to, skb->data, csstart);
1368 if (csstart != skb->len)
1369 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1370 skb->len - csstart, 0);
1372 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1373 long csstuff = csstart + skb->csum_offset;
1375 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1380 * skb_dequeue - remove from the head of the queue
1381 * @list: list to dequeue from
1383 * Remove the head of the list. The list lock is taken so the function
1384 * may be used safely with other locking list functions. The head item is
1385 * returned or %NULL if the list is empty.
1388 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1390 unsigned long flags;
1391 struct sk_buff *result;
1393 spin_lock_irqsave(&list->lock, flags);
1394 result = __skb_dequeue(list);
1395 spin_unlock_irqrestore(&list->lock, flags);
1400 * skb_dequeue_tail - remove from the tail of the queue
1401 * @list: list to dequeue from
1403 * Remove the tail of the list. The list lock is taken so the function
1404 * may be used safely with other locking list functions. The tail item is
1405 * returned or %NULL if the list is empty.
1407 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1409 unsigned long flags;
1410 struct sk_buff *result;
1412 spin_lock_irqsave(&list->lock, flags);
1413 result = __skb_dequeue_tail(list);
1414 spin_unlock_irqrestore(&list->lock, flags);
1419 * skb_queue_purge - empty a list
1420 * @list: list to empty
1422 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1423 * the list and one reference dropped. This function takes the list
1424 * lock and is atomic with respect to other list locking functions.
1426 void skb_queue_purge(struct sk_buff_head *list)
1428 struct sk_buff *skb;
1429 while ((skb = skb_dequeue(list)) != NULL)
1434 * skb_queue_head - queue a buffer at the list head
1435 * @list: list to use
1436 * @newsk: buffer to queue
1438 * Queue a buffer at the start of the list. This function takes the
1439 * list lock and can be used safely with other locking &sk_buff functions
1442 * A buffer cannot be placed on two lists at the same time.
1444 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1446 unsigned long flags;
1448 spin_lock_irqsave(&list->lock, flags);
1449 __skb_queue_head(list, newsk);
1450 spin_unlock_irqrestore(&list->lock, flags);
1454 * skb_queue_tail - queue a buffer at the list tail
1455 * @list: list to use
1456 * @newsk: buffer to queue
1458 * Queue a buffer at the tail of the list. This function takes the
1459 * list lock and can be used safely with other locking &sk_buff functions
1462 * A buffer cannot be placed on two lists at the same time.
1464 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1466 unsigned long flags;
1468 spin_lock_irqsave(&list->lock, flags);
1469 __skb_queue_tail(list, newsk);
1470 spin_unlock_irqrestore(&list->lock, flags);
1474 * skb_unlink - remove a buffer from a list
1475 * @skb: buffer to remove
1476 * @list: list to use
1478 * Remove a packet from a list. The list locks are taken and this
1479 * function is atomic with respect to other list locked calls
1481 * You must know what list the SKB is on.
1483 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1485 unsigned long flags;
1487 spin_lock_irqsave(&list->lock, flags);
1488 __skb_unlink(skb, list);
1489 spin_unlock_irqrestore(&list->lock, flags);
1493 * skb_append - append a buffer
1494 * @old: buffer to insert after
1495 * @newsk: buffer to insert
1496 * @list: list to use
1498 * Place a packet after a given packet in a list. The list locks are taken
1499 * and this function is atomic with respect to other list locked calls.
1500 * A buffer cannot be placed on two lists at the same time.
1502 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1504 unsigned long flags;
1506 spin_lock_irqsave(&list->lock, flags);
1507 __skb_append(old, newsk, list);
1508 spin_unlock_irqrestore(&list->lock, flags);
1513 * skb_insert - insert a buffer
1514 * @old: buffer to insert before
1515 * @newsk: buffer to insert
1516 * @list: list to use
1518 * Place a packet before a given packet in a list. The list locks are
1519 * taken and this function is atomic with respect to other list locked
1522 * A buffer cannot be placed on two lists at the same time.
1524 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1526 unsigned long flags;
1528 spin_lock_irqsave(&list->lock, flags);
1529 __skb_insert(newsk, old->prev, old, list);
1530 spin_unlock_irqrestore(&list->lock, flags);
1535 * Tune the memory allocator for a new MTU size.
1537 void skb_add_mtu(int mtu)
1539 /* Must match allocation in alloc_skb */
1540 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1542 kmem_add_cache_size(mtu);
1546 static inline void skb_split_inside_header(struct sk_buff *skb,
1547 struct sk_buff* skb1,
1548 const u32 len, const int pos)
1552 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1554 /* And move data appendix as is. */
1555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1556 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1558 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1559 skb_shinfo(skb)->nr_frags = 0;
1560 skb1->data_len = skb->data_len;
1561 skb1->len += skb1->data_len;
1564 skb_set_tail_pointer(skb, len);
1567 static inline void skb_split_no_header(struct sk_buff *skb,
1568 struct sk_buff* skb1,
1569 const u32 len, int pos)
1572 const int nfrags = skb_shinfo(skb)->nr_frags;
1574 skb_shinfo(skb)->nr_frags = 0;
1575 skb1->len = skb1->data_len = skb->len - len;
1577 skb->data_len = len - pos;
1579 for (i = 0; i < nfrags; i++) {
1580 int size = skb_shinfo(skb)->frags[i].size;
1582 if (pos + size > len) {
1583 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1587 * We have two variants in this case:
1588 * 1. Move all the frag to the second
1589 * part, if it is possible. F.e.
1590 * this approach is mandatory for TUX,
1591 * where splitting is expensive.
1592 * 2. Split is accurately. We make this.
1594 get_page(skb_shinfo(skb)->frags[i].page);
1595 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1596 skb_shinfo(skb1)->frags[0].size -= len - pos;
1597 skb_shinfo(skb)->frags[i].size = len - pos;
1598 skb_shinfo(skb)->nr_frags++;
1602 skb_shinfo(skb)->nr_frags++;
1605 skb_shinfo(skb1)->nr_frags = k;
1609 * skb_split - Split fragmented skb to two parts at length len.
1610 * @skb: the buffer to split
1611 * @skb1: the buffer to receive the second part
1612 * @len: new length for skb
1614 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1616 int pos = skb_headlen(skb);
1618 if (len < pos) /* Split line is inside header. */
1619 skb_split_inside_header(skb, skb1, len, pos);
1620 else /* Second chunk has no header, nothing to copy. */
1621 skb_split_no_header(skb, skb1, len, pos);
1625 * skb_prepare_seq_read - Prepare a sequential read of skb data
1626 * @skb: the buffer to read
1627 * @from: lower offset of data to be read
1628 * @to: upper offset of data to be read
1629 * @st: state variable
1631 * Initializes the specified state variable. Must be called before
1632 * invoking skb_seq_read() for the first time.
1634 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1635 unsigned int to, struct skb_seq_state *st)
1637 st->lower_offset = from;
1638 st->upper_offset = to;
1639 st->root_skb = st->cur_skb = skb;
1640 st->frag_idx = st->stepped_offset = 0;
1641 st->frag_data = NULL;
1645 * skb_seq_read - Sequentially read skb data
1646 * @consumed: number of bytes consumed by the caller so far
1647 * @data: destination pointer for data to be returned
1648 * @st: state variable
1650 * Reads a block of skb data at &consumed relative to the
1651 * lower offset specified to skb_prepare_seq_read(). Assigns
1652 * the head of the data block to &data and returns the length
1653 * of the block or 0 if the end of the skb data or the upper
1654 * offset has been reached.
1656 * The caller is not required to consume all of the data
1657 * returned, i.e. &consumed is typically set to the number
1658 * of bytes already consumed and the next call to
1659 * skb_seq_read() will return the remaining part of the block.
1661 * Note: The size of each block of data returned can be arbitary,
1662 * this limitation is the cost for zerocopy seqeuental
1663 * reads of potentially non linear data.
1665 * Note: Fragment lists within fragments are not implemented
1666 * at the moment, state->root_skb could be replaced with
1667 * a stack for this purpose.
1669 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1670 struct skb_seq_state *st)
1672 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1675 if (unlikely(abs_offset >= st->upper_offset))
1679 block_limit = skb_headlen(st->cur_skb);
1681 if (abs_offset < block_limit) {
1682 *data = st->cur_skb->data + abs_offset;
1683 return block_limit - abs_offset;
1686 if (st->frag_idx == 0 && !st->frag_data)
1687 st->stepped_offset += skb_headlen(st->cur_skb);
1689 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1690 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1691 block_limit = frag->size + st->stepped_offset;
1693 if (abs_offset < block_limit) {
1695 st->frag_data = kmap_skb_frag(frag);
1697 *data = (u8 *) st->frag_data + frag->page_offset +
1698 (abs_offset - st->stepped_offset);
1700 return block_limit - abs_offset;
1703 if (st->frag_data) {
1704 kunmap_skb_frag(st->frag_data);
1705 st->frag_data = NULL;
1709 st->stepped_offset += frag->size;
1712 if (st->cur_skb->next) {
1713 st->cur_skb = st->cur_skb->next;
1716 } else if (st->root_skb == st->cur_skb &&
1717 skb_shinfo(st->root_skb)->frag_list) {
1718 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1726 * skb_abort_seq_read - Abort a sequential read of skb data
1727 * @st: state variable
1729 * Must be called if skb_seq_read() was not called until it
1732 void skb_abort_seq_read(struct skb_seq_state *st)
1735 kunmap_skb_frag(st->frag_data);
1738 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1740 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1741 struct ts_config *conf,
1742 struct ts_state *state)
1744 return skb_seq_read(offset, text, TS_SKB_CB(state));
1747 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1749 skb_abort_seq_read(TS_SKB_CB(state));
1753 * skb_find_text - Find a text pattern in skb data
1754 * @skb: the buffer to look in
1755 * @from: search offset
1757 * @config: textsearch configuration
1758 * @state: uninitialized textsearch state variable
1760 * Finds a pattern in the skb data according to the specified
1761 * textsearch configuration. Use textsearch_next() to retrieve
1762 * subsequent occurrences of the pattern. Returns the offset
1763 * to the first occurrence or UINT_MAX if no match was found.
1765 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1766 unsigned int to, struct ts_config *config,
1767 struct ts_state *state)
1771 config->get_next_block = skb_ts_get_next_block;
1772 config->finish = skb_ts_finish;
1774 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1776 ret = textsearch_find(config, state);
1777 return (ret <= to - from ? ret : UINT_MAX);
1781 * skb_append_datato_frags: - append the user data to a skb
1782 * @sk: sock structure
1783 * @skb: skb structure to be appened with user data.
1784 * @getfrag: call back function to be used for getting the user data
1785 * @from: pointer to user message iov
1786 * @length: length of the iov message
1788 * Description: This procedure append the user data in the fragment part
1789 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1791 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1792 int (*getfrag)(void *from, char *to, int offset,
1793 int len, int odd, struct sk_buff *skb),
1794 void *from, int length)
1797 skb_frag_t *frag = NULL;
1798 struct page *page = NULL;
1804 /* Return error if we don't have space for new frag */
1805 frg_cnt = skb_shinfo(skb)->nr_frags;
1806 if (frg_cnt >= MAX_SKB_FRAGS)
1809 /* allocate a new page for next frag */
1810 page = alloc_pages(sk->sk_allocation, 0);
1812 /* If alloc_page fails just return failure and caller will
1813 * free previous allocated pages by doing kfree_skb()
1818 /* initialize the next frag */
1819 sk->sk_sndmsg_page = page;
1820 sk->sk_sndmsg_off = 0;
1821 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1822 skb->truesize += PAGE_SIZE;
1823 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1825 /* get the new initialized frag */
1826 frg_cnt = skb_shinfo(skb)->nr_frags;
1827 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1829 /* copy the user data to page */
1830 left = PAGE_SIZE - frag->page_offset;
1831 copy = (length > left)? left : length;
1833 ret = getfrag(from, (page_address(frag->page) +
1834 frag->page_offset + frag->size),
1835 offset, copy, 0, skb);
1839 /* copy was successful so update the size parameters */
1840 sk->sk_sndmsg_off += copy;
1843 skb->data_len += copy;
1847 } while (length > 0);
1853 * skb_pull_rcsum - pull skb and update receive checksum
1854 * @skb: buffer to update
1855 * @start: start of data before pull
1856 * @len: length of data pulled
1858 * This function performs an skb_pull on the packet and updates
1859 * update the CHECKSUM_COMPLETE checksum. It should be used on
1860 * receive path processing instead of skb_pull unless you know
1861 * that the checksum difference is zero (e.g., a valid IP header)
1862 * or you are setting ip_summed to CHECKSUM_NONE.
1864 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1866 BUG_ON(len > skb->len);
1868 BUG_ON(skb->len < skb->data_len);
1869 skb_postpull_rcsum(skb, skb->data, len);
1870 return skb->data += len;
1873 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1876 * skb_segment - Perform protocol segmentation on skb.
1877 * @skb: buffer to segment
1878 * @features: features for the output path (see dev->features)
1880 * This function performs segmentation on the given skb. It returns
1881 * the segment at the given position. It returns NULL if there are
1882 * no more segments to generate, or when an error is encountered.
1884 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1886 struct sk_buff *segs = NULL;
1887 struct sk_buff *tail = NULL;
1888 unsigned int mss = skb_shinfo(skb)->gso_size;
1889 unsigned int doffset = skb->data - skb_mac_header(skb);
1890 unsigned int offset = doffset;
1891 unsigned int headroom;
1893 int sg = features & NETIF_F_SG;
1894 int nfrags = skb_shinfo(skb)->nr_frags;
1899 __skb_push(skb, doffset);
1900 headroom = skb_headroom(skb);
1901 pos = skb_headlen(skb);
1904 struct sk_buff *nskb;
1910 len = skb->len - offset;
1914 hsize = skb_headlen(skb) - offset;
1917 if (hsize > len || !sg)
1920 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1921 if (unlikely(!nskb))
1930 nskb->dev = skb->dev;
1931 nskb->priority = skb->priority;
1932 nskb->protocol = skb->protocol;
1933 nskb->dst = dst_clone(skb->dst);
1934 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1935 nskb->pkt_type = skb->pkt_type;
1936 nskb->mac_len = skb->mac_len;
1938 skb_reserve(nskb, headroom);
1939 skb_reset_mac_header(nskb);
1940 skb_set_network_header(nskb, skb->mac_len);
1941 nskb->transport_header = (nskb->network_header +
1942 skb_network_header_len(skb));
1943 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1946 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1952 frag = skb_shinfo(nskb)->frags;
1955 nskb->ip_summed = CHECKSUM_PARTIAL;
1956 nskb->csum = skb->csum;
1957 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
1959 while (pos < offset + len) {
1960 BUG_ON(i >= nfrags);
1962 *frag = skb_shinfo(skb)->frags[i];
1963 get_page(frag->page);
1967 frag->page_offset += offset - pos;
1968 frag->size -= offset - pos;
1973 if (pos + size <= offset + len) {
1977 frag->size -= pos + size - (offset + len);
1984 skb_shinfo(nskb)->nr_frags = k;
1985 nskb->data_len = len - hsize;
1986 nskb->len += nskb->data_len;
1987 nskb->truesize += nskb->data_len;
1988 } while ((offset += len) < skb->len);
1993 while ((skb = segs)) {
1997 return ERR_PTR(err);
2000 EXPORT_SYMBOL_GPL(skb_segment);
2002 void __init skb_init(void)
2004 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2005 sizeof(struct sk_buff),
2007 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2009 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2010 (2*sizeof(struct sk_buff)) +
2013 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2017 EXPORT_SYMBOL(___pskb_trim);
2018 EXPORT_SYMBOL(__kfree_skb);
2019 EXPORT_SYMBOL(kfree_skb);
2020 EXPORT_SYMBOL(__pskb_pull_tail);
2021 EXPORT_SYMBOL(__alloc_skb);
2022 EXPORT_SYMBOL(__netdev_alloc_skb);
2023 EXPORT_SYMBOL(pskb_copy);
2024 EXPORT_SYMBOL(pskb_expand_head);
2025 EXPORT_SYMBOL(skb_checksum);
2026 EXPORT_SYMBOL(skb_clone);
2027 EXPORT_SYMBOL(skb_clone_fraglist);
2028 EXPORT_SYMBOL(skb_copy);
2029 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2030 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2031 EXPORT_SYMBOL(skb_copy_bits);
2032 EXPORT_SYMBOL(skb_copy_expand);
2033 EXPORT_SYMBOL(skb_over_panic);
2034 EXPORT_SYMBOL(skb_pad);
2035 EXPORT_SYMBOL(skb_realloc_headroom);
2036 EXPORT_SYMBOL(skb_under_panic);
2037 EXPORT_SYMBOL(skb_dequeue);
2038 EXPORT_SYMBOL(skb_dequeue_tail);
2039 EXPORT_SYMBOL(skb_insert);
2040 EXPORT_SYMBOL(skb_queue_purge);
2041 EXPORT_SYMBOL(skb_queue_head);
2042 EXPORT_SYMBOL(skb_queue_tail);
2043 EXPORT_SYMBOL(skb_unlink);
2044 EXPORT_SYMBOL(skb_append);
2045 EXPORT_SYMBOL(skb_split);
2046 EXPORT_SYMBOL(skb_prepare_seq_read);
2047 EXPORT_SYMBOL(skb_seq_read);
2048 EXPORT_SYMBOL(skb_abort_seq_read);
2049 EXPORT_SYMBOL(skb_find_text);
2050 EXPORT_SYMBOL(skb_append_datato_frags);