2 * Driver for DBRI sound chip found on Sparcs.
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 * data time multiplexer with ISDN support (aka T7259)
14 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
17 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 * Sparc Technology Business (courtesy of Sun Support)
19 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 * available from the Lucent (formarly AT&T microelectronics) home
22 * - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 * Interfaces: CHI, Audio In & Out, 2 bits parallel
25 * Documentation: from the Crystal Semiconductor home page.
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * I've tried to stick to the following function naming conventions:
49 * cs4215_* CS4215 codec specific stuff
50 * dbri_* DBRI high-level stuff
51 * other DBRI low-level stuff
54 #include <sound/driver.h>
55 #include <linux/interrupt.h>
56 #include <linux/delay.h>
58 #include <sound/core.h>
59 #include <sound/pcm.h>
60 #include <sound/pcm_params.h>
61 #include <sound/info.h>
62 #include <sound/control.h>
63 #include <sound/initval.h>
68 #include <asm/atomic.h>
70 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71 MODULE_DESCRIPTION("Sun DBRI");
72 MODULE_LICENSE("GPL");
73 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
77 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
79 module_param_array(index, int, NULL, 0444);
80 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81 module_param_array(id, charp, NULL, 0444);
82 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83 module_param_array(enable, bool, NULL, 0444);
84 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
95 static int dbri_debug;
96 module_param(dbri_debug, int, 0644);
97 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
100 static char *cmds[] = {
101 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
105 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
108 #define dprintk(a, x...)
110 #endif /* DBRI_DEBUG */
112 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
116 /***************************************************************************
117 CS4215 specific definitions and structures
118 ****************************************************************************/
121 __u8 data[4]; /* Data mode: Time slots 5-8 */
122 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
124 __u8 offset; /* Bit offset from frame sync to time slot 1 */
125 volatile __u32 status;
126 volatile __u32 version;
127 __u8 precision; /* In bits, either 8 or 16 */
128 __u8 channels; /* 1 or 2 */
135 /* Time Slot 1, Status register */
136 #define CS4215_CLB (1<<2) /* Control Latch Bit */
137 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
138 /* 0: line: 2.8V, speaker 8V */
139 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
140 #define CS4215_RSRVD_1 (1<<5)
142 /* Time Slot 2, Data Format Register */
143 #define CS4215_DFR_LINEAR16 0
144 #define CS4215_DFR_ULAW 1
145 #define CS4215_DFR_ALAW 2
146 #define CS4215_DFR_LINEAR8 3
147 #define CS4215_DFR_STEREO (1<<2)
153 { 8000, (1 << 4), (0 << 3) },
154 { 16000, (1 << 4), (1 << 3) },
155 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
156 { 32000, (1 << 4), (3 << 3) },
157 /* { NA, (1 << 4), (4 << 3) }, */
158 /* { NA, (1 << 4), (5 << 3) }, */
159 { 48000, (1 << 4), (6 << 3) },
160 { 9600, (1 << 4), (7 << 3) },
161 { 5513, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
162 { 11025, (2 << 4), (1 << 3) },
163 { 18900, (2 << 4), (2 << 3) },
164 { 22050, (2 << 4), (3 << 3) },
165 { 37800, (2 << 4), (4 << 3) },
166 { 44100, (2 << 4), (5 << 3) },
167 { 33075, (2 << 4), (6 << 3) },
168 { 6615, (2 << 4), (7 << 3) },
172 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
174 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
176 /* Time Slot 3, Serial Port Control register */
177 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
178 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
179 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
180 #define CS4215_BSEL_128 (1<<2)
181 #define CS4215_BSEL_256 (2<<2)
182 #define CS4215_MCK_MAST (0<<4) /* Master clock */
183 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
184 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
185 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
186 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
188 /* Time Slot 4, Test Register */
189 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
190 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
192 /* Time Slot 5, Parallel Port Register */
193 /* Read only here and the same as the in data mode */
195 /* Time Slot 6, Reserved */
197 /* Time Slot 7, Version Register */
198 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
200 /* Time Slot 8, Reserved */
205 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
207 /* Time Slot 5, Output Setting */
208 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
209 #define CS4215_LE (1<<6) /* Line Out Enable */
210 #define CS4215_HE (1<<7) /* Headphone Enable */
212 /* Time Slot 6, Output Setting */
213 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
214 #define CS4215_SE (1<<6) /* Speaker Enable */
215 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
217 /* Time Slot 7, Input Setting */
218 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
219 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
220 #define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
221 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
222 #define CS4215_PIO1 (1<<7)
224 /* Time Slot 8, Input Setting */
225 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
226 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
228 /***************************************************************************
229 DBRI specific definitions and structures
230 ****************************************************************************/
232 /* DBRI main registers */
233 #define REG0 0x00UL /* Status and Control */
234 #define REG1 0x04UL /* Mode and Interrupt */
235 #define REG2 0x08UL /* Parallel IO */
236 #define REG3 0x0cUL /* Test */
237 #define REG8 0x20UL /* Command Queue Pointer */
238 #define REG9 0x24UL /* Interrupt Queue Pointer */
240 #define DBRI_NO_CMDS 64
241 #define DBRI_NO_INTS 1 /* Note: the value of this define was
242 * originally 2. The ringbuffer to store
243 * interrupts in dma is currently broken.
244 * This is a temporary fix until the ringbuffer
247 #define DBRI_INT_BLK 64
248 #define DBRI_NO_DESCS 64
249 #define DBRI_NO_PIPES 32
251 #define DBRI_MM_ONB 1
256 #define DBRI_NO_STREAMS 2
258 /* One transmit/receive descriptor */
260 volatile __u32 word1;
261 volatile __u32 ba; /* Transmit/Receive Buffer Address */
262 volatile __u32 nda; /* Next Descriptor Address */
263 volatile __u32 word4;
266 /* This structure is in a DMA region where it can accessed by both
267 * the CPU and the DBRI
270 volatile s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
271 volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK]; /* Interrupt field */
272 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
275 #define dbri_dma_off(member, elem) \
276 ((u32)(unsigned long) \
277 (&(((struct dbri_dma *)0)->member[elem])))
279 enum in_or_out { PIPEinput, PIPEoutput };
282 u32 sdp; /* SDP command word */
283 enum in_or_out direction;
284 int nextpipe; /* Next pipe in linked list */
286 int cycle; /* Offset of timeslot (bits) */
287 int length; /* Length of timeslot (bits) */
288 int first_desc; /* Index of first descriptor */
289 int desc; /* Index of active descriptor */
290 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
294 int inuse; /* Boolean flag */
295 int next; /* Index of next desc, or -1 */
299 /* Per stream (playback or record) information */
300 struct dbri_streaminfo {
301 struct snd_pcm_substream *substream;
302 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
303 int left; /* # of bytes left in DMA buffer */
304 int size; /* Size of DMA buffer */
305 size_t offset; /* offset in user buffer */
306 int pipe; /* Data pipe used */
307 int left_gain; /* mixer elements */
312 /* This structure holds the information for both chips (DBRI & CS4215) */
314 struct snd_card *card; /* ALSA card */
317 int regs_size, irq; /* Needed for unload */
318 struct sbus_dev *sdev; /* SBUS device info */
321 volatile struct dbri_dma *dma; /* Pointer to our DMA block */
322 u32 dma_dvma; /* DBRI visible DMA address */
324 void __iomem *regs; /* dbri HW regs */
325 int dbri_version; /* 'e' and up is OK */
326 int dbri_irqp; /* intr queue pointer */
327 int wait_send; /* sequence of command buffers send */
328 int wait_ackd; /* sequence of command buffers acknowledged */
330 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
331 struct dbri_desc descs[DBRI_NO_DESCS];
337 struct cs4215 mm; /* mmcodec special info */
338 /* per stream (playback/record) info */
339 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
341 struct snd_dbri *next;
344 #define DBRI_MAX_VOLUME 63 /* Output volume */
345 #define DBRI_MAX_GAIN 15 /* Input gain */
346 #define DBRI_RIGHT_BALANCE 255
347 #define DBRI_MID_BALANCE (DBRI_RIGHT_BALANCE >> 1)
349 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
350 #define D_P (1<<15) /* Program command & queue pointer valid */
351 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
352 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
353 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
354 #define D_X (1<<7) /* Sanity Timer Disable */
355 #define D_T (1<<6) /* Permit activation of the TE interface */
356 #define D_N (1<<5) /* Permit activation of the NT interface */
357 #define D_C (1<<4) /* Permit activation of the CHI interface */
358 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
359 #define D_D (1<<2) /* Disable Master Mode */
360 #define D_H (1<<1) /* Halt for Analysis */
361 #define D_R (1<<0) /* Soft Reset */
363 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
364 #define D_LITTLE_END (1<<8) /* Byte Order */
365 #define D_BIG_END (0<<8) /* Byte Order */
366 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
367 #define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
368 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
369 #define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
370 #define D_IR (1<<0) /* Interrupt Indicator (readonly) */
372 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
373 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
374 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
375 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
376 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
377 #define D_ENPIO (0xf0) /* Enable all the pins */
378 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
379 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
380 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
381 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
383 /* DBRI Commands (Page 20) */
384 #define D_WAIT 0x0 /* Stop execution */
385 #define D_PAUSE 0x1 /* Flush long pipes */
386 #define D_JUMP 0x2 /* New command queue */
387 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
388 #define D_REX 0x4 /* Report command execution via interrupt */
389 #define D_SDP 0x5 /* Setup Data Pipe */
390 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
391 #define D_DTS 0x7 /* Define Time Slot */
392 #define D_SSP 0x8 /* Set short Data Pipe */
393 #define D_CHI 0x9 /* Set CHI Global Mode */
394 #define D_NT 0xa /* NT Command */
395 #define D_TE 0xb /* TE Command */
396 #define D_CDEC 0xc /* Codec setup */
397 #define D_TEST 0xd /* No comment */
398 #define D_CDM 0xe /* CHI Data mode command */
400 /* Special bits for some commands */
401 #define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
403 /* Setup Data Pipe */
405 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
406 #define D_SDP_CHANGE (2<<18) /* Report any changes */
407 #define D_SDP_EVERY (3<<18) /* Report any changes */
408 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
409 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
412 #define D_SDP_MEM (0<<13) /* To/from memory */
413 #define D_SDP_HDLC (2<<13)
414 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
415 #define D_SDP_SER (4<<13) /* Serial to serial */
416 #define D_SDP_FIXED (6<<13) /* Short only */
417 #define D_SDP_MODE(v) ((v)&(7<<13))
419 #define D_SDP_TO_SER (1<<12) /* Direction */
420 #define D_SDP_FROM_SER (0<<12) /* Direction */
421 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
422 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
423 #define D_SDP_P (1<<10) /* Pointer Valid */
424 #define D_SDP_A (1<<8) /* Abort */
425 #define D_SDP_C (1<<7) /* Clear */
427 /* Define Time Slot */
428 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
429 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
430 #define D_DTS_INS (1<<15) /* Insert Time Slot */
431 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
432 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
433 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
435 /* Time Slot defines */
436 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
437 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
438 #define D_TS_DI (1<<13) /* Data Invert */
439 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
440 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
441 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
442 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
443 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
444 #define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
446 /* Concentration Highway Interface Modes */
447 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
448 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
449 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
450 #define D_CHI_OD (1<<13) /* Open Drain Enable */
451 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
452 #define D_CHI_FD (1<<11) /* Frame Drive */
453 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
455 /* NT: These are here for completeness */
456 #define D_NT_FBIT (1<<17) /* Frame Bit */
457 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
458 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
459 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
460 #define D_NT_ISNT (1<<13) /* Configfure interface as NT */
461 #define D_NT_FT (1<<12) /* Fixed Timing */
462 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
463 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
464 #define D_NT_ACT (1<<9) /* Activate Interface */
465 #define D_NT_MFE (1<<8) /* Multiframe Enable */
466 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
467 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
468 #define D_NT_FACT (1<<1) /* Force Activation */
469 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
472 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
473 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
474 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
477 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
478 #define D_TEST_SIZE(v) ((v)<<11) /* */
479 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
480 #define D_TEST_PROC 0x6 /* MicroProcessor test */
481 #define D_TEST_SER 0x7 /* Serial-Controller test */
482 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
483 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
484 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
485 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
486 #define D_TEST_DUMP 0xe /* ROM Dump */
489 #define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
490 #define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
491 #define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
492 #define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
493 #define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
494 #define D_CDM_REN (1<<0) /* Receive Highway Enable */
497 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
498 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
499 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
500 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
501 #define D_INTR_EOL 5 /* End of List */
502 #define D_INTR_CMDI 6 /* Command has bean read */
503 #define D_INTR_XCMP 8 /* Transmission of frame complete */
504 #define D_INTR_SBRI 9 /* BRI status change info */
505 #define D_INTR_FXDT 10 /* Fixed data change */
506 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
507 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
508 #define D_INTR_DBYT 12 /* Dropped by frame slip */
509 #define D_INTR_RBYT 13 /* Repeated by frame slip */
510 #define D_INTR_LINT 14 /* Lost Interrupt */
511 #define D_INTR_UNDR 15 /* DMA underrun */
515 #define D_INTR_CHI 36
516 #define D_INTR_CMD 38
518 #define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
519 #define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
520 #define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
521 #define D_INTR_GETVAL(v) ((v) & 0xffff)
522 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
524 #define D_P_0 0 /* TE receive anchor */
525 #define D_P_1 1 /* TE transmit anchor */
526 #define D_P_2 2 /* NT transmit anchor */
527 #define D_P_3 3 /* NT receive anchor */
528 #define D_P_4 4 /* CHI send data */
529 #define D_P_5 5 /* CHI receive data */
530 #define D_P_6 6 /* */
531 #define D_P_7 7 /* */
532 #define D_P_8 8 /* */
533 #define D_P_9 9 /* */
534 #define D_P_10 10 /* */
535 #define D_P_11 11 /* */
536 #define D_P_12 12 /* */
537 #define D_P_13 13 /* */
538 #define D_P_14 14 /* */
539 #define D_P_15 15 /* */
540 #define D_P_16 16 /* CHI anchor pipe */
541 #define D_P_17 17 /* CHI send */
542 #define D_P_18 18 /* CHI receive */
543 #define D_P_19 19 /* CHI receive */
544 #define D_P_20 20 /* CHI receive */
545 #define D_P_21 21 /* */
546 #define D_P_22 22 /* */
547 #define D_P_23 23 /* */
548 #define D_P_24 24 /* */
549 #define D_P_25 25 /* */
550 #define D_P_26 26 /* */
551 #define D_P_27 27 /* */
552 #define D_P_28 28 /* */
553 #define D_P_29 29 /* */
554 #define D_P_30 30 /* */
555 #define D_P_31 31 /* */
557 /* Transmit descriptor defines */
558 #define DBRI_TD_F (1<<31) /* End of Frame */
559 #define DBRI_TD_D (1<<30) /* Do not append CRC */
560 #define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
561 #define DBRI_TD_B (1<<15) /* Final interrupt */
562 #define DBRI_TD_M (1<<14) /* Marker interrupt */
563 #define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
564 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
565 #define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
566 #define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
567 #define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
568 #define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
569 /* Maximum buffer size per TD: almost 8Kb */
570 #define DBRI_TD_MAXCNT ((1 << 13) - 1)
572 /* Receive descriptor defines */
573 #define DBRI_RD_F (1<<31) /* End of Frame */
574 #define DBRI_RD_C (1<<30) /* Completed buffer */
575 #define DBRI_RD_B (1<<15) /* Final interrupt */
576 #define DBRI_RD_M (1<<14) /* Marker interrupt */
577 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
578 #define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
579 #define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
580 #define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
581 #define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
582 #define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
583 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
585 /* stream_info[] access */
586 /* Translate the ALSA direction into the array index */
587 #define DBRI_STREAMNO(substream) \
588 (substream->stream == \
589 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
591 /* Return a pointer to dbri_streaminfo */
592 #define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
594 static struct snd_dbri *dbri_list; /* All DBRI devices */
597 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
598 * So we have to reverse the bits. Note: not all bit lengths are supported
600 static __u32 reverse_bytes(__u32 b, int len)
604 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
606 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
608 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
610 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
612 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
617 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
624 ****************************************************************************
625 ************** DBRI initialization and command synchronization *************
626 ****************************************************************************
628 Commands are sent to the DBRI by building a list of them in memory,
629 then writing the address of the first list item to DBRI register 8.
630 The list is terminated with a WAIT command, which generates a
631 CPU interrupt to signal completion.
633 Since the DBRI can run in parallel with the CPU, several means of
634 synchronization present themselves. The method implemented here is close
635 to the original scheme (Rudolf's), and uses 2 counters (wait_send and
636 wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
638 A more sophisticated scheme might involve a circular command buffer
639 or an array of command buffers. A routine could fill one with
640 commands and link it onto a list. When a interrupt signaled
641 completion of the current command buffer, look on the list for
644 Every time a routine wants to write commands to the DBRI, it must
645 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
646 in return. dbri_cmdlock() will block if the previous commands have not
647 been completed yet. After this the commands can be written to the buffer,
648 and dbri_cmdsend() is called with the final pointer value to send them
653 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri);
655 enum dbri_lock { NoGetLock, GetLock };
658 static volatile s32 *dbri_cmdlock(struct snd_dbri * dbri, enum dbri_lock get)
660 int maxloops = MAXLOOPS;
663 if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
664 printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
668 /* Delay if previous commands are still being processed */
669 while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
670 msleep_interruptible(1);
671 /* If dbri_cmdlock() got called from inside the
672 * interrupt handler, this will do the processing.
674 dbri_process_interrupt_buffer(dbri);
677 printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
680 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
681 MAXLOOPS - maxloops - 1);
684 /*if (get == GetLock) spin_lock(&dbri->lock); */
685 return &dbri->dma->cmd[0];
688 static void dbri_cmdsend(struct snd_dbri * dbri, volatile s32 * cmd)
692 for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
693 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
696 if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
697 printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
698 /* Ignore the last part. */
699 cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
703 dbri->wait_send &= 0xffff; /* restrict it to a 16 bit counter. */
704 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
705 *(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
707 /* Set command pointer and signal it is valid. */
708 sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
710 /*spin_unlock(&dbri->lock); */
713 /* Lock must be held when calling this */
714 static void dbri_reset(struct snd_dbri * dbri)
718 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
719 sbus_readl(dbri->regs + REG0),
720 sbus_readl(dbri->regs + REG2),
721 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
723 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
724 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
728 /* Lock must not be held before calling this */
729 static void dbri_initialize(struct snd_dbri * dbri)
736 spin_lock_irqsave(&dbri->lock, flags);
740 cmd = dbri_cmdlock(dbri, NoGetLock);
741 dprintk(D_GEN, "init: cmd: %p, int: %p\n",
742 &dbri->dma->cmd[0], &dbri->dma->intr[0]);
745 * Initialize the interrupt ringbuffer.
747 for (n = 0; n < DBRI_NO_INTS - 1; n++) {
748 dma_addr = dbri->dma_dvma;
749 dma_addr += dbri_dma_off(intr, ((n + 1) * DBRI_INT_BLK));
750 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
752 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
753 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
756 /* Initialize pipes */
757 for (n = 0; n < DBRI_NO_PIPES; n++)
758 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
760 /* A brute approach - DBRI falls back to working burst size by itself
761 * On SS20 D_S does not work, so do not try so high. */
762 tmp = sbus_readl(dbri->regs + REG0);
765 sbus_writel(tmp, dbri->regs + REG0);
768 * Set up the interrupt queue
770 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
771 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
774 dbri_cmdsend(dbri, cmd);
775 spin_unlock_irqrestore(&dbri->lock, flags);
779 ****************************************************************************
780 ************************** DBRI data pipe management ***********************
781 ****************************************************************************
783 While DBRI control functions use the command and interrupt buffers, the
784 main data path takes the form of data pipes, which can be short (command
785 and interrupt driven), or long (attached to DMA buffers). These functions
786 provide a rudimentary means of setting up and managing the DBRI's pipes,
787 but the calling functions have to make sure they respect the pipes' linked
788 list ordering, among other things. The transmit and receive functions
789 here interface closely with the transmit and receive interrupt code.
792 static int pipe_active(struct snd_dbri * dbri, int pipe)
794 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
797 /* reset_pipe(dbri, pipe)
799 * Called on an in-use pipe to clear anything being transmitted or received
800 * Lock must be held before calling this.
802 static void reset_pipe(struct snd_dbri * dbri, int pipe)
808 if (pipe < 0 || pipe > 31) {
809 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
813 sdp = dbri->pipes[pipe].sdp;
815 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
819 cmd = dbri_cmdlock(dbri, NoGetLock);
820 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
822 dbri_cmdsend(dbri, cmd);
824 desc = dbri->pipes[pipe].first_desc;
826 dbri->descs[desc].inuse = 0;
827 desc = dbri->descs[desc].next;
830 dbri->pipes[pipe].desc = -1;
831 dbri->pipes[pipe].first_desc = -1;
834 /* FIXME: direction as an argument? */
835 static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
837 if (pipe < 0 || pipe > 31) {
838 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
842 if ((sdp & 0xf800) != sdp) {
843 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
847 /* If this is a fixed receive pipe, arrange for an interrupt
848 * every time its data changes
850 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
854 dbri->pipes[pipe].sdp = sdp;
855 dbri->pipes[pipe].desc = -1;
856 dbri->pipes[pipe].first_desc = -1;
857 if (sdp & D_SDP_TO_SER)
858 dbri->pipes[pipe].direction = PIPEoutput;
860 dbri->pipes[pipe].direction = PIPEinput;
862 reset_pipe(dbri, pipe);
865 /* FIXME: direction not needed */
866 static void link_time_slot(struct snd_dbri * dbri, int pipe,
867 enum in_or_out direction, int basepipe,
868 int length, int cycle)
875 if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
877 "DBRI: link_time_slot called with illegal pipe number\n");
881 if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
882 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
886 /* Deal with CHI special case:
887 * "If transmission on edges 0 or 1 is desired, then cycle n
888 * (where n = # of bit times per frame...) must be used."
889 * - DBRI data sheet, page 11
891 if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
892 cycle = dbri->chi_bpf;
894 if (basepipe == pipe) {
898 /* We're not initializing a new linked list (basepipe != pipe),
899 * so run through the linked list and find where this pipe
900 * should be sloted in, based on its cycle. CHI confuses
901 * things a bit, since it has a single anchor for both its
902 * transmit and receive lists.
904 if (basepipe == 16) {
905 if (direction == PIPEinput) {
906 prevpipe = dbri->chi_in_pipe;
908 prevpipe = dbri->chi_out_pipe;
914 nextpipe = dbri->pipes[prevpipe].nextpipe;
916 while (dbri->pipes[nextpipe].cycle < cycle
917 && dbri->pipes[nextpipe].nextpipe != basepipe) {
919 nextpipe = dbri->pipes[nextpipe].nextpipe;
923 if (prevpipe == 16) {
924 if (direction == PIPEinput) {
925 dbri->chi_in_pipe = pipe;
927 dbri->chi_out_pipe = pipe;
930 dbri->pipes[prevpipe].nextpipe = pipe;
933 dbri->pipes[pipe].nextpipe = nextpipe;
934 dbri->pipes[pipe].cycle = cycle;
935 dbri->pipes[pipe].length = length;
937 cmd = dbri_cmdlock(dbri, NoGetLock);
939 if (direction == PIPEinput) {
940 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
941 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
943 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
946 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
947 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
950 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
953 dbri_cmdsend(dbri, cmd);
956 static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
957 enum in_or_out direction, int prevpipe,
963 if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
965 "DBRI: unlink_time_slot called with illegal pipe number\n");
969 cmd = dbri_cmdlock(dbri, NoGetLock);
971 if (direction == PIPEinput) {
972 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
973 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
974 *(cmd++) = D_TS_NEXT(nextpipe);
977 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
978 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
980 *(cmd++) = D_TS_NEXT(nextpipe);
983 dbri_cmdsend(dbri, cmd);
986 /* xmit_fixed() / recv_fixed()
988 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
989 * expected to change much, and which we don't need to buffer.
990 * The DBRI only interrupts us when the data changes (receive pipes),
991 * or only changes the data when this function is called (transmit pipes).
992 * Only short pipes (numbers 16-31) can be used in fixed data mode.
994 * These function operate on a 32-bit field, no matter how large
995 * the actual time slot is. The interrupt handler takes care of bit
996 * ordering and alignment. An 8-bit time slot will always end up
997 * in the low-order 8 bits, filled either MSB-first or LSB-first,
998 * depending on the settings passed to setup_pipe()
1000 static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
1004 if (pipe < 16 || pipe > 31) {
1005 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1009 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1010 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1014 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1015 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1020 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1024 /* DBRI short pipes always transmit LSB first */
1026 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1027 data = reverse_bytes(data, dbri->pipes[pipe].length);
1029 cmd = dbri_cmdlock(dbri, GetLock);
1031 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1034 dbri_cmdsend(dbri, cmd);
1037 static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1039 if (pipe < 16 || pipe > 31) {
1040 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1044 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1045 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1049 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1050 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1054 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1059 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1060 * with a DMA buffer.
1062 * Only pipe numbers 0-15 can be used in this mode.
1064 * This function takes a stream number pointing to a data buffer,
1065 * and work by building chains of descriptors which identify the
1066 * data buffers. Buffers too large for a single descriptor will
1067 * be spread across multiple descriptors.
1069 static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1071 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1075 int first_desc = -1;
1078 if (info->pipe < 0 || info->pipe > 15) {
1079 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1083 if (dbri->pipes[info->pipe].sdp == 0) {
1084 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1089 dvma_buffer = info->dvma_buffer;
1092 if (streamno == DBRI_PLAY) {
1093 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1094 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1099 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1101 "DBRI: setup_descs: Called on transmit pipe %d\n",
1105 /* Should be able to queue multiple buffers to receive on a pipe */
1106 if (pipe_active(dbri, info->pipe)) {
1107 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1112 /* Make sure buffer size is multiple of four */
1119 for (; desc < DBRI_NO_DESCS; desc++) {
1120 if (!dbri->descs[desc].inuse)
1123 if (desc == DBRI_NO_DESCS) {
1124 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1128 if (len > DBRI_TD_MAXCNT) {
1129 mylen = DBRI_TD_MAXCNT; /* 8KB - 1 */
1133 if (mylen > period) {
1137 dbri->descs[desc].inuse = 1;
1138 dbri->descs[desc].next = -1;
1139 dbri->dma->desc[desc].ba = dvma_buffer;
1140 dbri->dma->desc[desc].nda = 0;
1142 if (streamno == DBRI_PLAY) {
1143 dbri->descs[desc].len = mylen;
1144 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1145 dbri->dma->desc[desc].word4 = 0;
1146 if (first_desc != -1)
1147 dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1149 dbri->descs[desc].len = 0;
1150 dbri->dma->desc[desc].word1 = 0;
1151 dbri->dma->desc[desc].word4 =
1152 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1155 if (first_desc == -1) {
1158 dbri->descs[last_desc].next = desc;
1159 dbri->dma->desc[last_desc].nda =
1160 dbri->dma_dvma + dbri_dma_off(desc, desc);
1164 dvma_buffer += mylen;
1168 if (first_desc == -1 || last_desc == -1) {
1169 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1173 dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1174 if (streamno == DBRI_PLAY) {
1175 dbri->dma->desc[last_desc].word1 |=
1176 DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1178 dbri->pipes[info->pipe].first_desc = first_desc;
1179 dbri->pipes[info->pipe].desc = first_desc;
1181 for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1182 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1184 dbri->dma->desc[desc].word1,
1185 dbri->dma->desc[desc].ba,
1186 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1192 ****************************************************************************
1193 ************************** DBRI - CHI interface ****************************
1194 ****************************************************************************
1196 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1197 multiplexed serial interface which the DBRI can operate in either master
1198 (give clock/frame sync) or slave (take clock/frame sync) mode.
1202 enum master_or_slave { CHImaster, CHIslave };
1204 static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1209 static int chi_initialized = 0; /* FIXME: mutex? */
1211 if (!chi_initialized) {
1213 cmd = dbri_cmdlock(dbri, GetLock);
1215 /* Set CHI Anchor: Pipe 16 */
1217 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1218 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1219 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1222 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1223 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1225 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1227 dbri->pipes[16].sdp = 1;
1228 dbri->pipes[16].nextpipe = 16;
1229 dbri->chi_in_pipe = 16;
1230 dbri->chi_out_pipe = 16;
1238 for (pipe = dbri->chi_in_pipe;
1239 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1240 unlink_time_slot(dbri, pipe, PIPEinput,
1241 16, dbri->pipes[pipe].nextpipe);
1243 for (pipe = dbri->chi_out_pipe;
1244 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1245 unlink_time_slot(dbri, pipe, PIPEoutput,
1246 16, dbri->pipes[pipe].nextpipe);
1249 dbri->chi_in_pipe = 16;
1250 dbri->chi_out_pipe = 16;
1252 cmd = dbri_cmdlock(dbri, GetLock);
1255 if (master_or_slave == CHIslave) {
1256 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1258 * CHICM = 0 (slave mode, 8 kHz frame rate)
1259 * IR = give immediate CHI status interrupt
1260 * EN = give CHI status interrupt upon change
1262 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1264 /* Setup DBRI for CHI Master - generate clock, FS
1266 * BPF = bits per 8 kHz frame
1267 * 12.288 MHz / CHICM_divisor = clock rate
1268 * FD = 1 - drive CHIFS on rising edge of CHICK
1270 int clockrate = bits_per_frame * 8;
1271 int divisor = 12288 / clockrate;
1273 if (divisor > 255 || divisor * clockrate != 12288)
1274 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1276 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277 | D_CHI_BPF(bits_per_frame));
1280 dbri->chi_bpf = bits_per_frame;
1284 * RCE = 0 - receive on falling edge of CHICK
1285 * XCE = 1 - transmit on rising edge of CHICK
1286 * XEN = 1 - enable transmitter
1287 * REN = 1 - enable receiver
1290 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1293 dbri_cmdsend(dbri, cmd);
1297 ****************************************************************************
1298 *********************** CS4215 audio codec management **********************
1299 ****************************************************************************
1301 In the standard SPARC audio configuration, the CS4215 codec is attached
1302 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1305 static void cs4215_setup_pipes(struct snd_dbri * dbri)
1309 * Pipe 4: Send timeslots 1-4 (audio data)
1310 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1311 * Pipe 6: Receive timeslots 1-4 (audio data)
1312 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1313 * interrupt, and the rest of the data (slot 5 and 8) is
1314 * not relevant for us (only for doublechecking).
1317 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1318 * Pipe 18: Receive timeslot 1 (clb).
1319 * Pipe 19: Receive timeslot 7 (version).
1322 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1323 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1324 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1325 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1327 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1329 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 static int cs4215_init_data(struct cs4215 *mm)
1335 * No action, memory resetting only.
1337 * Data Time Slot 5-8
1338 * Speaker,Line and Headphone enable. Gain set to the half.
1341 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1342 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1343 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1344 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1347 * Control Time Slot 1-4
1348 * 0: Default I/O voltage scale
1349 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1350 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1353 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1354 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1355 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1360 mm->precision = 8; /* For ULAW */
1366 static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1369 dbri->mm.data[0] |= 63;
1370 dbri->mm.data[1] |= 63;
1371 dbri->mm.data[2] &= ~15;
1372 dbri->mm.data[3] &= ~15;
1374 /* Start by setting the playback attenuation. */
1375 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1376 int left_gain = info->left_gain % 64;
1377 int right_gain = info->right_gain % 64;
1379 if (info->balance < DBRI_MID_BALANCE) {
1380 right_gain *= info->balance;
1381 right_gain /= DBRI_MID_BALANCE;
1383 left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1384 left_gain /= DBRI_MID_BALANCE;
1387 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1388 dbri->mm.data[1] &= ~0x3f;
1389 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392 /* Now set the recording gain. */
1393 info = &dbri->stream_info[DBRI_REC];
1394 left_gain = info->left_gain % 16;
1395 right_gain = info->right_gain % 16;
1396 dbri->mm.data[2] |= CS4215_LG(left_gain);
1397 dbri->mm.data[3] |= CS4215_RG(right_gain);
1400 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1404 * Set the CS4215 to data mode.
1406 static void cs4215_open(struct snd_dbri * dbri)
1411 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412 dbri->mm.channels, dbri->mm.precision);
1414 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415 * to make sure this takes. This avoids clicking noises.
1418 cs4215_setdata(dbri, 1);
1423 * Pipe 4: Send timeslots 1-4 (audio data)
1424 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425 * Pipe 6: Receive timeslots 1-4 (audio data)
1426 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427 * interrupt, and the rest of the data (slot 5 and 8) is
1428 * not relevant for us (only for doublechecking).
1430 * Just like in control mode, the time slots are all offset by eight
1431 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1432 * even if it's the CHI master. Don't ask me...
1434 tmp = sbus_readl(dbri->regs + REG0);
1435 tmp &= ~(D_C); /* Disable CHI */
1436 sbus_writel(tmp, dbri->regs + REG0);
1438 /* Switch CS4215 to data mode - set PIO3 to 1 */
1439 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1440 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1442 reset_chi(dbri, CHIslave, 128);
1444 /* Note: this next doesn't work for 8-bit stereo, because the two
1445 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1446 * (See CS4215 datasheet Fig 15)
1448 * DBRI non-contiguous mode would be required to make this work.
1450 data_width = dbri->mm.channels * dbri->mm.precision;
1452 link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1453 link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1454 link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1455 link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1457 /* FIXME: enable CHI after _setdata? */
1458 tmp = sbus_readl(dbri->regs + REG0);
1459 tmp |= D_C; /* Enable CHI */
1460 sbus_writel(tmp, dbri->regs + REG0);
1462 cs4215_setdata(dbri, 0);
1466 * Send the control information (i.e. audio format)
1468 static int cs4215_setctrl(struct snd_dbri * dbri)
1473 /* FIXME - let the CPU do something useful during these delays */
1475 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1476 * to make sure this takes. This avoids clicking noises.
1478 cs4215_setdata(dbri, 1);
1482 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1483 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1485 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1486 sbus_writel(val, dbri->regs + REG2);
1487 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1490 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1491 * operate as CHI master, supplying clocking and frame synchronization.
1493 * In Data mode, however, the CS4215 must be CHI master to insure
1494 * that its data stream is synchronous with its codec.
1496 * The upshot of all this? We start by putting the DBRI into master
1497 * mode, program the CS4215 in Control mode, then switch the CS4215
1498 * into Data mode and put the DBRI into slave mode. Various timing
1499 * requirements must be observed along the way.
1501 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1502 * others?), the addressing of the CS4215's time slots is
1503 * offset by eight bits, so we add eight to all the "cycle"
1504 * values in the Define Time Slot (DTS) commands. This is
1505 * done in hardware by a TI 248 that delays the DBRI->4215
1506 * frame sync signal by eight clock cycles. Anybody know why?
1508 tmp = sbus_readl(dbri->regs + REG0);
1509 tmp &= ~D_C; /* Disable CHI */
1510 sbus_writel(tmp, dbri->regs + REG0);
1512 reset_chi(dbri, CHImaster, 128);
1516 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1517 * Pipe 18: Receive timeslot 1 (clb).
1518 * Pipe 19: Receive timeslot 7 (version).
1521 link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1522 link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1523 link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1525 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1526 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1527 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1529 tmp = sbus_readl(dbri->regs + REG0);
1530 tmp |= D_C; /* Enable CHI */
1531 sbus_writel(tmp, dbri->regs + REG0);
1533 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1534 msleep_interruptible(1);
1537 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1542 /* Disable changes to our copy of the version number, as we are about
1543 * to leave control mode.
1545 recv_fixed(dbri, 19, NULL);
1547 /* Terminate CS4215 control mode - data sheet says
1548 * "Set CLB=1 and send two more frames of valid control info"
1550 dbri->mm.ctrl[0] |= CS4215_CLB;
1551 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1553 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1556 cs4215_setdata(dbri, 0);
1562 * Setup the codec with the sampling rate, audio format and number of
1564 * As part of the process we resend the settings for the data
1565 * timeslots as well.
1567 static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1568 snd_pcm_format_t format, unsigned int channels)
1573 /* Lookup index for this rate */
1574 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1575 if (CS4215_FREQ[freq_idx].freq == rate)
1578 if (CS4215_FREQ[freq_idx].freq != rate) {
1579 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1584 case SNDRV_PCM_FORMAT_MU_LAW:
1585 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1586 dbri->mm.precision = 8;
1588 case SNDRV_PCM_FORMAT_A_LAW:
1589 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1590 dbri->mm.precision = 8;
1592 case SNDRV_PCM_FORMAT_U8:
1593 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1594 dbri->mm.precision = 8;
1596 case SNDRV_PCM_FORMAT_S16_BE:
1597 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1598 dbri->mm.precision = 16;
1601 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1605 /* Add rate parameters */
1606 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1607 dbri->mm.ctrl[2] = CS4215_XCLK |
1608 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1610 dbri->mm.channels = channels;
1611 /* Stereo bit: 8 bit stereo not working yet. */
1612 if ((channels > 1) && (dbri->mm.precision == 16))
1613 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1615 ret = cs4215_setctrl(dbri);
1617 cs4215_open(dbri); /* set codec to data mode */
1625 static int cs4215_init(struct snd_dbri * dbri)
1627 u32 reg2 = sbus_readl(dbri->regs + REG2);
1628 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1630 /* Look for the cs4215 chips */
1631 if (reg2 & D_PIO2) {
1632 dprintk(D_MM, "Onboard CS4215 detected\n");
1633 dbri->mm.onboard = 1;
1635 if (reg2 & D_PIO0) {
1636 dprintk(D_MM, "Speakerbox detected\n");
1637 dbri->mm.onboard = 0;
1639 if (reg2 & D_PIO2) {
1640 printk(KERN_INFO "DBRI: Using speakerbox / "
1641 "ignoring onboard mmcodec.\n");
1642 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1646 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1647 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1651 cs4215_setup_pipes(dbri);
1653 cs4215_init_data(&dbri->mm);
1655 /* Enable capture of the status & version timeslots. */
1656 recv_fixed(dbri, 18, &dbri->mm.status);
1657 recv_fixed(dbri, 19, &dbri->mm.version);
1659 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1660 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1661 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1665 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1671 ****************************************************************************
1672 *************************** DBRI interrupt handler *************************
1673 ****************************************************************************
1675 The DBRI communicates with the CPU mainly via a circular interrupt
1676 buffer. When an interrupt is signaled, the CPU walks through the
1677 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1678 Complicated interrupts are handled by dedicated functions (which
1679 appear first in this file). Any pending interrupts can be serviced by
1680 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1681 interrupts are disabled. This function is used by dbri_cmdlock()
1682 to make sure we're synced up with the chip before each command sequence,
1683 even if we're running cli'ed.
1689 * Transmit the current TD's for recording/playing, if needed.
1690 * For playback, ALSA has filled the DMA memory with new data (we hope).
1692 static void xmit_descs(unsigned long data)
1694 struct snd_dbri *dbri = (struct snd_dbri *) data;
1695 struct dbri_streaminfo *info;
1697 unsigned long flags;
1701 return; /* Disabled */
1703 /* First check the recording stream for buffer overflow */
1704 info = &dbri->stream_info[DBRI_REC];
1705 spin_lock_irqsave(&dbri->lock, flags);
1707 if ((info->left >= info->size) && (info->pipe >= 0)) {
1708 first_td = dbri->pipes[info->pipe].first_desc;
1710 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712 /* Stream could be closed by the time we run. */
1717 cmd = dbri_cmdlock(dbri, NoGetLock);
1718 *(cmd++) = DBRI_CMD(D_SDP, 0,
1719 dbri->pipes[info->pipe].sdp
1720 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1722 dbri_cmdsend(dbri, cmd);
1724 /* Reset our admin of the pipe & bytes read. */
1725 dbri->pipes[info->pipe].desc = first_td;
1730 spin_unlock_irqrestore(&dbri->lock, flags);
1732 /* Now check the playback stream for buffer underflow */
1733 info = &dbri->stream_info[DBRI_PLAY];
1734 spin_lock_irqsave(&dbri->lock, flags);
1736 if ((info->left <= 0) && (info->pipe >= 0)) {
1737 first_td = dbri->pipes[info->pipe].first_desc;
1739 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1741 /* Stream could be closed by the time we run. */
1743 spin_unlock_irqrestore(&dbri->lock, flags);
1747 cmd = dbri_cmdlock(dbri, NoGetLock);
1748 *(cmd++) = DBRI_CMD(D_SDP, 0,
1749 dbri->pipes[info->pipe].sdp
1750 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1752 dbri_cmdsend(dbri, cmd);
1754 /* Reset our admin of the pipe & bytes written. */
1755 dbri->pipes[info->pipe].desc = first_td;
1756 info->left = info->size;
1758 spin_unlock_irqrestore(&dbri->lock, flags);
1761 static DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1763 /* transmission_complete_intr()
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1768 * Walks through the pipe's list of transmit buffer descriptors and marks
1769 * them as available. Stops when the first descriptor is found without
1770 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1772 * The DMA buffers are not released, but re-used. Since the transmit buffer
1773 * descriptors are not clobbered, they can be re-submitted as is. This is
1774 * done by the xmit_descs() tasklet above since that could take longer.
1777 static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1779 struct dbri_streaminfo *info;
1783 info = &dbri->stream_info[DBRI_PLAY];
1785 td = dbri->pipes[pipe].desc;
1787 if (td >= DBRI_NO_DESCS) {
1788 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1792 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793 if (!(status & DBRI_TD_TBC)) {
1797 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1799 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1800 info->offset += dbri->descs[td].len;
1801 info->left -= dbri->descs[td].len;
1803 /* On the last TD, transmit them all again. */
1804 if (dbri->descs[td].next == -1) {
1805 if (info->left > 0) {
1807 "%d bytes left after last transfer.\n",
1811 tasklet_schedule(&xmit_descs_task);
1814 td = dbri->descs[td].next;
1815 dbri->pipes[pipe].desc = td;
1819 if (spin_is_locked(&dbri->lock)) {
1820 spin_unlock(&dbri->lock);
1821 snd_pcm_period_elapsed(info->substream);
1822 spin_lock(&dbri->lock);
1824 snd_pcm_period_elapsed(info->substream);
1827 static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1829 struct dbri_streaminfo *info;
1830 int rd = dbri->pipes[pipe].desc;
1833 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1834 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1838 dbri->descs[rd].inuse = 0;
1839 dbri->pipes[pipe].desc = dbri->descs[rd].next;
1840 status = dbri->dma->desc[rd].word1;
1841 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1843 info = &dbri->stream_info[DBRI_REC];
1844 info->offset += DBRI_RD_CNT(status);
1845 info->left += DBRI_RD_CNT(status);
1847 /* FIXME: Check status */
1849 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1850 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1852 /* On the last TD, transmit them all again. */
1853 if (dbri->descs[rd].next == -1) {
1854 if (info->left > info->size) {
1856 "%d bytes recorded in %d size buffer.\n",
1857 info->left, info->size);
1859 tasklet_schedule(&xmit_descs_task);
1863 if (spin_is_locked(&dbri->lock)) {
1864 spin_unlock(&dbri->lock);
1865 snd_pcm_period_elapsed(info->substream);
1866 spin_lock(&dbri->lock);
1868 snd_pcm_period_elapsed(info->substream);
1871 static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1873 int val = D_INTR_GETVAL(x);
1874 int channel = D_INTR_GETCHAN(x);
1875 int command = D_INTR_GETCMD(x);
1876 int code = D_INTR_GETCODE(x);
1878 int rval = D_INTR_GETRVAL(x);
1881 if (channel == D_INTR_CMD) {
1882 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1883 cmds[command], val);
1885 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1886 channel, code, rval);
1889 if (channel == D_INTR_CMD && command == D_WAIT) {
1890 dbri->wait_ackd = val;
1891 if (dbri->wait_send != val) {
1892 printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1893 val, dbri->wait_send);
1900 reception_complete_intr(dbri, channel);
1904 transmission_complete_intr(dbri, channel);
1907 /* UNDR - Transmission underrun
1908 * resend SDP command with clear pipe bit (C) set
1914 int td = dbri->pipes[pipe].desc;
1916 dbri->dma->desc[td].word4 = 0;
1917 cmd = dbri_cmdlock(dbri, NoGetLock);
1918 *(cmd++) = DBRI_CMD(D_SDP, 0,
1919 dbri->pipes[pipe].sdp
1920 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1921 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1922 dbri_cmdsend(dbri, cmd);
1926 /* FXDT - Fixed data change */
1927 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1928 val = reverse_bytes(val, dbri->pipes[channel].length);
1930 if (dbri->pipes[channel].recv_fixed_ptr)
1931 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1934 if (channel != D_INTR_CMD)
1936 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1940 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1941 * buffer until it finds a zero word (indicating nothing more to do
1942 * right now). Non-zero words require processing and are handed off
1943 * to dbri_process_one_interrupt AFTER advancing the pointer. This
1944 * order is important since we might recurse back into this function
1945 * and need to make sure the pointer has been advanced first.
1947 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1951 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1952 dbri->dma->intr[dbri->dbri_irqp] = 0;
1954 if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1955 dbri->dbri_irqp = 1;
1956 else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1959 dbri_process_one_interrupt(dbri, x);
1963 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1964 struct pt_regs *regs)
1966 struct snd_dbri *dbri = dev_id;
1967 static int errcnt = 0;
1972 spin_lock(&dbri->lock);
1975 * Read it, so the interrupt goes away.
1977 x = sbus_readl(dbri->regs + REG1);
1979 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1984 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1988 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1992 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1995 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1997 /* Some of these SBus errors cause the chip's SBus circuitry
1998 * to be disabled, so just re-enable and try to keep going.
2000 * The only one I've seen is MRR, which will be triggered
2001 * if you let a transmit pipe underrun, then try to CDP it.
2003 * If these things persist, we reset the chip.
2005 if ((++errcnt) % 10 == 0) {
2006 dprintk(D_INT, "Interrupt errors exceeded.\n");
2009 tmp = sbus_readl(dbri->regs + REG0);
2011 sbus_writel(tmp, dbri->regs + REG0);
2015 dbri_process_interrupt_buffer(dbri);
2017 /* FIXME: Write 0 into regs to ACK interrupt */
2019 spin_unlock(&dbri->lock);
2024 /****************************************************************************
2026 ****************************************************************************/
2027 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
2028 .info = (SNDRV_PCM_INFO_MMAP |
2029 SNDRV_PCM_INFO_INTERLEAVED |
2030 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2031 SNDRV_PCM_INFO_MMAP_VALID),
2032 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
2033 SNDRV_PCM_FMTBIT_A_LAW |
2034 SNDRV_PCM_FMTBIT_U8 |
2035 SNDRV_PCM_FMTBIT_S16_BE,
2036 .rates = SNDRV_PCM_RATE_8000_48000,
2041 .buffer_bytes_max = (64 * 1024),
2042 .period_bytes_min = 1,
2043 .period_bytes_max = DBRI_TD_MAXCNT,
2045 .periods_max = 1024,
2048 static int snd_dbri_open(struct snd_pcm_substream *substream)
2050 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2051 struct snd_pcm_runtime *runtime = substream->runtime;
2052 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2053 unsigned long flags;
2055 dprintk(D_USR, "open audio output.\n");
2056 runtime->hw = snd_dbri_pcm_hw;
2058 spin_lock_irqsave(&dbri->lock, flags);
2059 info->substream = substream;
2062 info->dvma_buffer = 0;
2064 spin_unlock_irqrestore(&dbri->lock, flags);
2071 static int snd_dbri_close(struct snd_pcm_substream *substream)
2073 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2074 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2076 dprintk(D_USR, "close audio output.\n");
2077 info->substream = NULL;
2084 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2085 struct snd_pcm_hw_params *hw_params)
2087 struct snd_pcm_runtime *runtime = substream->runtime;
2088 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2089 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2093 /* set sampling rate, audio format and number of channels */
2094 ret = cs4215_prepare(dbri, params_rate(hw_params),
2095 params_format(hw_params),
2096 params_channels(hw_params));
2100 if ((ret = snd_pcm_lib_malloc_pages(substream,
2101 params_buffer_bytes(hw_params))) < 0) {
2102 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2106 /* hw_params can get called multiple times. Only map the DMA once.
2108 if (info->dvma_buffer == 0) {
2109 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2110 direction = SBUS_DMA_TODEVICE;
2112 direction = SBUS_DMA_FROMDEVICE;
2114 info->dvma_buffer = sbus_map_single(dbri->sdev,
2116 params_buffer_bytes(hw_params),
2120 direction = params_buffer_bytes(hw_params);
2121 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2122 direction, info->dvma_buffer);
2126 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2128 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2129 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2131 dprintk(D_USR, "hw_free.\n");
2133 /* hw_free can get called multiple times. Only unmap the DMA once.
2135 if (info->dvma_buffer) {
2136 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2137 direction = SBUS_DMA_TODEVICE;
2139 direction = SBUS_DMA_FROMDEVICE;
2141 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2142 substream->runtime->buffer_size, direction);
2143 info->dvma_buffer = 0;
2147 return snd_pcm_lib_free_pages(substream);
2150 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2152 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154 struct snd_pcm_runtime *runtime = substream->runtime;
2157 info->size = snd_pcm_lib_buffer_bytes(substream);
2158 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2159 info->pipe = 4; /* Send pipe */
2161 info->pipe = 6; /* Receive pipe */
2162 info->left = info->size; /* To trigger submittal */
2165 spin_lock_irq(&dbri->lock);
2167 /* Setup the all the transmit/receive desciptors to cover the
2170 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2171 snd_pcm_lib_period_bytes(substream));
2173 runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2175 spin_unlock_irq(&dbri->lock);
2177 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2181 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2183 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2184 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2188 case SNDRV_PCM_TRIGGER_START:
2189 dprintk(D_USR, "start audio, period is %d bytes\n",
2190 (int)snd_pcm_lib_period_bytes(substream));
2191 /* Enable & schedule the tasklet that re-submits the TDs. */
2192 xmit_descs_task.data = (unsigned long)dbri;
2193 tasklet_schedule(&xmit_descs_task);
2195 case SNDRV_PCM_TRIGGER_STOP:
2196 dprintk(D_USR, "stop audio.\n");
2197 /* Make the tasklet bail out immediately. */
2198 xmit_descs_task.data = 0;
2199 reset_pipe(dbri, info->pipe);
2208 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2210 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2211 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2212 snd_pcm_uframes_t ret;
2214 ret = bytes_to_frames(substream->runtime, info->offset)
2215 % substream->runtime->buffer_size;
2216 dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2221 static struct snd_pcm_ops snd_dbri_ops = {
2222 .open = snd_dbri_open,
2223 .close = snd_dbri_close,
2224 .ioctl = snd_pcm_lib_ioctl,
2225 .hw_params = snd_dbri_hw_params,
2226 .hw_free = snd_dbri_hw_free,
2227 .prepare = snd_dbri_prepare,
2228 .trigger = snd_dbri_trigger,
2229 .pointer = snd_dbri_pointer,
2232 static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2234 struct snd_pcm *pcm;
2237 if ((err = snd_pcm_new(dbri->card,
2238 /* ID */ "sun_dbri",
2240 /* playback count */ 1,
2241 /* capture count */ 1, &pcm)) < 0)
2243 snd_assert(pcm != NULL, return -EINVAL);
2245 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2246 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2248 pcm->private_data = dbri;
2249 pcm->info_flags = 0;
2250 strcpy(pcm->name, dbri->card->shortname);
2253 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2254 SNDRV_DMA_TYPE_CONTINUOUS,
2255 snd_dma_continuous_data(GFP_KERNEL),
2256 64 * 1024, 64 * 1024)) < 0) {
2263 /*****************************************************************************
2265 *****************************************************************************/
2267 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2268 struct snd_ctl_elem_info *uinfo)
2270 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2272 uinfo->value.integer.min = 0;
2273 if (kcontrol->private_value == DBRI_PLAY) {
2274 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2276 uinfo->value.integer.max = DBRI_MAX_GAIN;
2281 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_value *ucontrol)
2284 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285 struct dbri_streaminfo *info;
2286 snd_assert(dbri != NULL, return -EINVAL);
2287 info = &dbri->stream_info[kcontrol->private_value];
2288 snd_assert(info != NULL, return -EINVAL);
2290 ucontrol->value.integer.value[0] = info->left_gain;
2291 ucontrol->value.integer.value[1] = info->right_gain;
2295 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2296 struct snd_ctl_elem_value *ucontrol)
2298 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2299 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2300 unsigned long flags;
2303 if (info->left_gain != ucontrol->value.integer.value[0]) {
2304 info->left_gain = ucontrol->value.integer.value[0];
2307 if (info->right_gain != ucontrol->value.integer.value[1]) {
2308 info->right_gain = ucontrol->value.integer.value[1];
2312 /* First mute outputs, and wait 1/8000 sec (125 us)
2313 * to make sure this takes. This avoids clicking noises.
2315 spin_lock_irqsave(&dbri->lock, flags);
2317 cs4215_setdata(dbri, 1);
2319 cs4215_setdata(dbri, 0);
2321 spin_unlock_irqrestore(&dbri->lock, flags);
2326 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2327 struct snd_ctl_elem_info *uinfo)
2329 int mask = (kcontrol->private_value >> 16) & 0xff;
2331 uinfo->type = (mask == 1) ?
2332 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2334 uinfo->value.integer.min = 0;
2335 uinfo->value.integer.max = mask;
2339 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2340 struct snd_ctl_elem_value *ucontrol)
2342 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2343 int elem = kcontrol->private_value & 0xff;
2344 int shift = (kcontrol->private_value >> 8) & 0xff;
2345 int mask = (kcontrol->private_value >> 16) & 0xff;
2346 int invert = (kcontrol->private_value >> 24) & 1;
2347 snd_assert(dbri != NULL, return -EINVAL);
2350 ucontrol->value.integer.value[0] =
2351 (dbri->mm.data[elem] >> shift) & mask;
2353 ucontrol->value.integer.value[0] =
2354 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2358 ucontrol->value.integer.value[0] =
2359 mask - ucontrol->value.integer.value[0];
2364 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2365 struct snd_ctl_elem_value *ucontrol)
2367 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2368 unsigned long flags;
2369 int elem = kcontrol->private_value & 0xff;
2370 int shift = (kcontrol->private_value >> 8) & 0xff;
2371 int mask = (kcontrol->private_value >> 16) & 0xff;
2372 int invert = (kcontrol->private_value >> 24) & 1;
2375 snd_assert(dbri != NULL, return -EINVAL);
2377 val = (ucontrol->value.integer.value[0] & mask);
2383 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2384 ~(mask << shift)) | val;
2385 changed = (val != dbri->mm.data[elem]);
2387 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2388 ~(mask << shift)) | val;
2389 changed = (val != dbri->mm.ctrl[elem - 4]);
2392 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2393 "mixer-value=%ld, mm-value=0x%x\n",
2394 mask, changed, ucontrol->value.integer.value[0],
2395 dbri->mm.data[elem & 3]);
2398 /* First mute outputs, and wait 1/8000 sec (125 us)
2399 * to make sure this takes. This avoids clicking noises.
2401 spin_lock_irqsave(&dbri->lock, flags);
2403 cs4215_setdata(dbri, 1);
2405 cs4215_setdata(dbri, 0);
2407 spin_unlock_irqrestore(&dbri->lock, flags);
2412 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2413 timeslots. Shift is the bit offset in the timeslot, mask defines the
2414 number of bits. invert is a boolean for use with attenuation.
2416 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2417 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2418 .info = snd_cs4215_info_single, \
2419 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2420 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2422 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2424 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425 .name = "Playback Volume",
2426 .info = snd_cs4215_info_volume,
2427 .get = snd_cs4215_get_volume,
2428 .put = snd_cs4215_put_volume,
2429 .private_value = DBRI_PLAY,
2431 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2432 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2433 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2435 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2436 .name = "Capture Volume",
2437 .info = snd_cs4215_info_volume,
2438 .get = snd_cs4215_get_volume,
2439 .put = snd_cs4215_put_volume,
2440 .private_value = DBRI_REC,
2442 /* FIXME: mic/line switch */
2443 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2444 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2445 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2446 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2449 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2451 static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2453 struct snd_card *card;
2456 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2459 strcpy(card->mixername, card->shortname);
2461 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2462 if ((err = snd_ctl_add(card,
2463 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2467 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2468 dbri->stream_info[idx].left_gain = 0;
2469 dbri->stream_info[idx].right_gain = 0;
2470 dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2476 /****************************************************************************
2478 ****************************************************************************/
2479 static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2481 struct snd_dbri *dbri = entry->private_data;
2483 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2484 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2485 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2486 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2490 static void dbri_debug_read(struct snd_info_entry * entry,
2491 struct snd_info_buffer *buffer)
2493 struct snd_dbri *dbri = entry->private_data;
2495 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2497 for (pipe = 0; pipe < 32; pipe++) {
2498 if (pipe_active(dbri, pipe)) {
2499 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2501 "Pipe %d: %s SDP=0x%x desc=%d, "
2502 "len=%d @ %d prev: %d next %d\n",
2505 PIPEinput ? "input" : "output"), pptr->sdp,
2506 pptr->desc, pptr->length, pptr->cycle,
2507 pptr->prevpipe, pptr->nextpipe);
2513 void snd_dbri_proc(struct snd_dbri * dbri)
2515 struct snd_info_entry *entry;
2517 if (! snd_card_proc_new(dbri->card, "regs", &entry))
2518 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2521 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2522 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2523 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2529 ****************************************************************************
2530 **************************** Initialization ********************************
2531 ****************************************************************************
2533 static void snd_dbri_free(struct snd_dbri * dbri);
2535 static int __init snd_dbri_create(struct snd_card *card,
2536 struct sbus_dev *sdev,
2537 struct linux_prom_irqs *irq, int dev)
2539 struct snd_dbri *dbri = card->private_data;
2542 spin_lock_init(&dbri->lock);
2545 dbri->irq = irq->pri;
2546 dbri->dbri_version = sdev->prom_name[9];
2548 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2550 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2552 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2553 dbri->dma, dbri->dma_dvma);
2555 /* Map the registers into memory. */
2556 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2557 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2558 dbri->regs_size, "DBRI Registers");
2560 printk(KERN_ERR "DBRI: could not allocate registers\n");
2561 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2562 (void *)dbri->dma, dbri->dma_dvma);
2566 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2567 "DBRI audio", dbri);
2569 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2570 sbus_iounmap(dbri->regs, dbri->regs_size);
2571 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2572 (void *)dbri->dma, dbri->dma_dvma);
2576 /* Do low level initialization of the DBRI and CS4215 chips */
2577 dbri_initialize(dbri);
2578 err = cs4215_init(dbri);
2580 snd_dbri_free(dbri);
2584 dbri->next = dbri_list;
2590 static void snd_dbri_free(struct snd_dbri * dbri)
2592 dprintk(D_GEN, "snd_dbri_free\n");
2596 free_irq(dbri->irq, dbri);
2599 sbus_iounmap(dbri->regs, dbri->regs_size);
2602 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2603 (void *)dbri->dma, dbri->dma_dvma);
2606 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2608 struct snd_dbri *dbri;
2609 struct linux_prom_irqs irq;
2610 struct resource *rp;
2611 struct snd_card *card;
2615 if (sdev->prom_name[9] < 'e') {
2616 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2617 sdev->prom_name[9]);
2621 if (dev >= SNDRV_CARDS)
2628 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2630 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2634 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2635 sizeof(struct snd_dbri));
2639 strcpy(card->driver, "DBRI");
2640 strcpy(card->shortname, "Sun DBRI");
2641 rp = &sdev->resource[0];
2642 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2644 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
2646 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2647 snd_card_free(card);
2651 dbri = card->private_data;
2652 if ((err = snd_dbri_pcm(dbri)) < 0)
2655 if ((err = snd_dbri_mixer(dbri)) < 0)
2658 /* /proc file handling */
2659 snd_dbri_proc(dbri);
2661 if ((err = snd_card_register(card)) < 0)
2664 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2666 dbri->irq, dbri->dbri_version, dbri->mm.version);
2672 snd_dbri_free(dbri);
2673 snd_card_free(card);
2677 /* Probe for the dbri chip and then attach the driver. */
2678 static int __init dbri_init(void)
2680 struct sbus_bus *sbus;
2681 struct sbus_dev *sdev;
2684 /* Probe each SBUS for the DBRI chip(s). */
2685 for_all_sbusdev(sdev, sbus) {
2687 * The version is coded in the last character
2689 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2690 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2691 sdev->prom_name, sdev->slot);
2693 if (dbri_attach(sdev->prom_node, sdev) == 0)
2698 return (found > 0) ? 0 : -EIO;
2701 static void __exit dbri_exit(void)
2703 struct snd_dbri *this = dbri_list;
2705 while (this != NULL) {
2706 struct snd_dbri *next = this->next;
2707 struct snd_card *card = this->card;
2709 snd_dbri_free(this);
2710 snd_card_free(card);
2716 module_init(dbri_init);
2717 module_exit(dbri_exit);