]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c
Merge tag 'for-6.0-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v8.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gfx_v8_0.h"
26 #include "gca/gfx_8_0_sh_mask.h"
27 #include "gca/gfx_8_0_d.h"
28 #include "gca/gfx_8_0_enum.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 #include "oss/oss_3_0_d.h"
31 #include "gmc/gmc_8_1_sh_mask.h"
32 #include "gmc/gmc_8_1_d.h"
33 #include "vi_structs.h"
34 #include "vid.h"
35
36 enum hqd_dequeue_request_type {
37         NO_ACTION = 0,
38         DRAIN_PIPE,
39         RESET_WAVES
40 };
41
42 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
43                         uint32_t queue, uint32_t vmid)
44 {
45         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
46
47         mutex_lock(&adev->srbm_mutex);
48         WREG32(mmSRBM_GFX_CNTL, value);
49 }
50
51 static void unlock_srbm(struct amdgpu_device *adev)
52 {
53         WREG32(mmSRBM_GFX_CNTL, 0);
54         mutex_unlock(&adev->srbm_mutex);
55 }
56
57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
58                                 uint32_t queue_id)
59 {
60         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
62
63         lock_srbm(adev, mec, pipe, queue_id, 0);
64 }
65
66 static void release_queue(struct amdgpu_device *adev)
67 {
68         unlock_srbm(adev);
69 }
70
71 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
72                                         uint32_t sh_mem_config,
73                                         uint32_t sh_mem_ape1_base,
74                                         uint32_t sh_mem_ape1_limit,
75                                         uint32_t sh_mem_bases)
76 {
77         lock_srbm(adev, 0, 0, 0, vmid);
78
79         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
80         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
81         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
82         WREG32(mmSH_MEM_BASES, sh_mem_bases);
83
84         unlock_srbm(adev);
85 }
86
87 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
88                                         unsigned int vmid)
89 {
90         /*
91          * We have to assume that there is no outstanding mapping.
92          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
93          * a mapping is in progress or because a mapping finished
94          * and the SW cleared it.
95          * So the protocol is to always wait & clear.
96          */
97         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
98                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
99
100         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
101
102         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
103                 cpu_relax();
104         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
105
106         /* Mapping vmid to pasid also for IH block */
107         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
108
109         return 0;
110 }
111
112 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
113 {
114         uint32_t mec;
115         uint32_t pipe;
116
117         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
118         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
119
120         lock_srbm(adev, mec, pipe, 0, 0);
121
122         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
123                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
124
125         unlock_srbm(adev);
126
127         return 0;
128 }
129
130 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
131 {
132         uint32_t retval;
133
134         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
135                 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
136
137         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
138                         m->sdma_engine_id, m->sdma_queue_id, retval);
139
140         return retval;
141 }
142
143 static inline struct vi_mqd *get_mqd(void *mqd)
144 {
145         return (struct vi_mqd *)mqd;
146 }
147
148 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
149 {
150         return (struct vi_sdma_mqd *)mqd;
151 }
152
153 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
154                         uint32_t pipe_id, uint32_t queue_id,
155                         uint32_t __user *wptr, uint32_t wptr_shift,
156                         uint32_t wptr_mask, struct mm_struct *mm)
157 {
158         struct vi_mqd *m;
159         uint32_t *mqd_hqd;
160         uint32_t reg, wptr_val, data;
161         bool valid_wptr = false;
162
163         m = get_mqd(mqd);
164
165         acquire_queue(adev, pipe_id, queue_id);
166
167         /* HIQ is set during driver init period with vmid set to 0*/
168         if (m->cp_hqd_vmid == 0) {
169                 uint32_t value, mec, pipe;
170
171                 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
172                 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
173
174                 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
175                         mec, pipe, queue_id);
176                 value = RREG32(mmRLC_CP_SCHEDULERS);
177                 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
178                         ((mec << 5) | (pipe << 3) | queue_id | 0x80));
179                 WREG32(mmRLC_CP_SCHEDULERS, value);
180         }
181
182         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
183         mqd_hqd = &m->cp_mqd_base_addr_lo;
184
185         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
186                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
187
188         /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
189          * This is safe since EOP RPTR==WPTR for any inactive HQD
190          * on ASICs that do not support context-save.
191          * EOP writes/reads can start anywhere in the ring.
192          */
193         if (adev->asic_type != CHIP_TONGA) {
194                 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
195                 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
196                 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
197         }
198
199         for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
200                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
201
202         /* Copy userspace write pointer value to register.
203          * Activate doorbell logic to monitor subsequent changes.
204          */
205         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
206                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
207         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
208
209         /* read_user_ptr may take the mm->mmap_lock.
210          * release srbm_mutex to avoid circular dependency between
211          * srbm_mutex->mmap_lock->reservation_ww_class_mutex->srbm_mutex.
212          */
213         release_queue(adev);
214         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
215         acquire_queue(adev, pipe_id, queue_id);
216         if (valid_wptr)
217                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
218
219         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
220         WREG32(mmCP_HQD_ACTIVE, data);
221
222         release_queue(adev);
223
224         return 0;
225 }
226
227 static int kgd_hqd_dump(struct amdgpu_device *adev,
228                         uint32_t pipe_id, uint32_t queue_id,
229                         uint32_t (**dump)[2], uint32_t *n_regs)
230 {
231         uint32_t i = 0, reg;
232 #define HQD_N_REGS (54+4)
233 #define DUMP_REG(addr) do {                             \
234                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
235                         break;                          \
236                 (*dump)[i][0] = (addr) << 2;            \
237                 (*dump)[i++][1] = RREG32(addr);         \
238         } while (0)
239
240         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
241         if (*dump == NULL)
242                 return -ENOMEM;
243
244         acquire_queue(adev, pipe_id, queue_id);
245
246         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
247         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
248         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
249         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
250
251         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
252                 DUMP_REG(reg);
253
254         release_queue(adev);
255
256         WARN_ON_ONCE(i != HQD_N_REGS);
257         *n_regs = i;
258
259         return 0;
260 }
261
262 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
263                              uint32_t __user *wptr, struct mm_struct *mm)
264 {
265         struct vi_sdma_mqd *m;
266         unsigned long end_jiffies;
267         uint32_t sdma_rlc_reg_offset;
268         uint32_t data;
269
270         m = get_sdma_mqd(mqd);
271         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
272         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
273                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
274
275         end_jiffies = msecs_to_jiffies(2000) + jiffies;
276         while (true) {
277                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
278                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
279                         break;
280                 if (time_after(jiffies, end_jiffies)) {
281                         pr_err("SDMA RLC not idle in %s\n", __func__);
282                         return -ETIME;
283                 }
284                 usleep_range(500, 1000);
285         }
286
287         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
288                              ENABLE, 1);
289         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
290         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
291                                 m->sdmax_rlcx_rb_rptr);
292
293         if (read_user_wptr(mm, wptr, data))
294                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
295         else
296                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
297                        m->sdmax_rlcx_rb_rptr);
298
299         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
300                                 m->sdmax_rlcx_virtual_addr);
301         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
302         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
303                         m->sdmax_rlcx_rb_base_hi);
304         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
305                         m->sdmax_rlcx_rb_rptr_addr_lo);
306         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
307                         m->sdmax_rlcx_rb_rptr_addr_hi);
308
309         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
310                              RB_ENABLE, 1);
311         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
312
313         return 0;
314 }
315
316 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
317                              uint32_t engine_id, uint32_t queue_id,
318                              uint32_t (**dump)[2], uint32_t *n_regs)
319 {
320         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
321                 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
322         uint32_t i = 0, reg;
323 #undef HQD_N_REGS
324 #define HQD_N_REGS (19+4+2+3+7)
325
326         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
327         if (*dump == NULL)
328                 return -ENOMEM;
329
330         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
331                 DUMP_REG(sdma_offset + reg);
332         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
333              reg++)
334                 DUMP_REG(sdma_offset + reg);
335         for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
336              reg++)
337                 DUMP_REG(sdma_offset + reg);
338         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
339              reg++)
340                 DUMP_REG(sdma_offset + reg);
341         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
342              reg++)
343                 DUMP_REG(sdma_offset + reg);
344
345         WARN_ON_ONCE(i != HQD_N_REGS);
346         *n_regs = i;
347
348         return 0;
349 }
350
351 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
352                                 uint64_t queue_address, uint32_t pipe_id,
353                                 uint32_t queue_id)
354 {
355         uint32_t act;
356         bool retval = false;
357         uint32_t low, high;
358
359         acquire_queue(adev, pipe_id, queue_id);
360         act = RREG32(mmCP_HQD_ACTIVE);
361         if (act) {
362                 low = lower_32_bits(queue_address >> 8);
363                 high = upper_32_bits(queue_address >> 8);
364
365                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
366                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
367                         retval = true;
368         }
369         release_queue(adev);
370         return retval;
371 }
372
373 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
374 {
375         struct vi_sdma_mqd *m;
376         uint32_t sdma_rlc_reg_offset;
377         uint32_t sdma_rlc_rb_cntl;
378
379         m = get_sdma_mqd(mqd);
380         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
381
382         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
383
384         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
385                 return true;
386
387         return false;
388 }
389
390 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
391                                 enum kfd_preempt_type reset_type,
392                                 unsigned int utimeout, uint32_t pipe_id,
393                                 uint32_t queue_id)
394 {
395         uint32_t temp;
396         enum hqd_dequeue_request_type type;
397         unsigned long flags, end_jiffies;
398         int retry;
399         struct vi_mqd *m = get_mqd(mqd);
400
401         if (amdgpu_in_reset(adev))
402                 return -EIO;
403
404         acquire_queue(adev, pipe_id, queue_id);
405
406         if (m->cp_hqd_vmid == 0)
407                 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
408
409         switch (reset_type) {
410         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
411                 type = DRAIN_PIPE;
412                 break;
413         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
414                 type = RESET_WAVES;
415                 break;
416         default:
417                 type = DRAIN_PIPE;
418                 break;
419         }
420
421         /* Workaround: If IQ timer is active and the wait time is close to or
422          * equal to 0, dequeueing is not safe. Wait until either the wait time
423          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
424          * cleared before continuing. Also, ensure wait times are set to at
425          * least 0x3.
426          */
427         local_irq_save(flags);
428         preempt_disable();
429         retry = 5000; /* wait for 500 usecs at maximum */
430         while (true) {
431                 temp = RREG32(mmCP_HQD_IQ_TIMER);
432                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
433                         pr_debug("HW is processing IQ\n");
434                         goto loop;
435                 }
436                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
437                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
438                                         == 3) /* SEM-rearm is safe */
439                                 break;
440                         /* Wait time 3 is safe for CP, but our MMIO read/write
441                          * time is close to 1 microsecond, so check for 10 to
442                          * leave more buffer room
443                          */
444                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
445                                         >= 10)
446                                 break;
447                         pr_debug("IQ timer is active\n");
448                 } else
449                         break;
450 loop:
451                 if (!retry) {
452                         pr_err("CP HQD IQ timer status time out\n");
453                         break;
454                 }
455                 ndelay(100);
456                 --retry;
457         }
458         retry = 1000;
459         while (true) {
460                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
461                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
462                         break;
463                 pr_debug("Dequeue request is pending\n");
464
465                 if (!retry) {
466                         pr_err("CP HQD dequeue request time out\n");
467                         break;
468                 }
469                 ndelay(100);
470                 --retry;
471         }
472         local_irq_restore(flags);
473         preempt_enable();
474
475         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
476
477         end_jiffies = (utimeout * HZ / 1000) + jiffies;
478         while (true) {
479                 temp = RREG32(mmCP_HQD_ACTIVE);
480                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
481                         break;
482                 if (time_after(jiffies, end_jiffies)) {
483                         pr_err("cp queue preemption time out.\n");
484                         release_queue(adev);
485                         return -ETIME;
486                 }
487                 usleep_range(500, 1000);
488         }
489
490         release_queue(adev);
491         return 0;
492 }
493
494 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
495                                 unsigned int utimeout)
496 {
497         struct vi_sdma_mqd *m;
498         uint32_t sdma_rlc_reg_offset;
499         uint32_t temp;
500         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
501
502         m = get_sdma_mqd(mqd);
503         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
504
505         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
506         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
507         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
508
509         while (true) {
510                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
511                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
512                         break;
513                 if (time_after(jiffies, end_jiffies)) {
514                         pr_err("SDMA RLC not idle in %s\n", __func__);
515                         return -ETIME;
516                 }
517                 usleep_range(500, 1000);
518         }
519
520         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
521         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
522                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
523                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
524
525         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
526
527         return 0;
528 }
529
530 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
531                                         uint8_t vmid, uint16_t *p_pasid)
532 {
533         uint32_t value;
534
535         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
536         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
537
538         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
539 }
540
541 static int kgd_wave_control_execute(struct amdgpu_device *adev,
542                                         uint32_t gfx_index_val,
543                                         uint32_t sq_cmd)
544 {
545         uint32_t data = 0;
546
547         mutex_lock(&adev->grbm_idx_mutex);
548
549         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
550         WREG32(mmSQ_CMD, sq_cmd);
551
552         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
553                 INSTANCE_BROADCAST_WRITES, 1);
554         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
555                 SH_BROADCAST_WRITES, 1);
556         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
557                 SE_BROADCAST_WRITES, 1);
558
559         WREG32(mmGRBM_GFX_INDEX, data);
560         mutex_unlock(&adev->grbm_idx_mutex);
561
562         return 0;
563 }
564
565 static void set_scratch_backing_va(struct amdgpu_device *adev,
566                                         uint64_t va, uint32_t vmid)
567 {
568         lock_srbm(adev, 0, 0, 0, vmid);
569         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
570         unlock_srbm(adev);
571 }
572
573 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
574                 uint32_t vmid, uint64_t page_table_base)
575 {
576         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
577                 pr_err("trying to set page table base for wrong VMID\n");
578                 return;
579         }
580         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
581                         lower_32_bits(page_table_base));
582 }
583
584 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
585         .program_sh_mem_settings = kgd_program_sh_mem_settings,
586         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
587         .init_interrupts = kgd_init_interrupts,
588         .hqd_load = kgd_hqd_load,
589         .hqd_sdma_load = kgd_hqd_sdma_load,
590         .hqd_dump = kgd_hqd_dump,
591         .hqd_sdma_dump = kgd_hqd_sdma_dump,
592         .hqd_is_occupied = kgd_hqd_is_occupied,
593         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
594         .hqd_destroy = kgd_hqd_destroy,
595         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
596         .wave_control_execute = kgd_wave_control_execute,
597         .get_atc_vmid_pasid_mapping_info =
598                         get_atc_vmid_pasid_mapping_info,
599         .set_scratch_backing_va = set_scratch_backing_va,
600         .set_vm_context_page_table_base = set_vm_context_page_table_base,
601 };
This page took 0.076142 seconds and 4 git commands to generate.