]> Git Repo - linux.git/blob - arch/x86/kernel/cpu/intel.c
Merge tag 'sysctl-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof...
[linux.git] / arch / x86 / kernel / cpu / intel.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36
37 #include "cpu.h"
38
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43
44 enum split_lock_detect_state {
45         sld_off = 0,
46         sld_warn,
47         sld_fatal,
48         sld_ratelimit,
49 };
50
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75         switch (c->x86_model) {
76         case INTEL_FAM6_CORE_YONAH:
77         case INTEL_FAM6_CORE2_MEROM:
78         case INTEL_FAM6_CORE2_MEROM_L:
79         case INTEL_FAM6_CORE2_PENRYN:
80         case INTEL_FAM6_CORE2_DUNNINGTON:
81         case INTEL_FAM6_NEHALEM:
82         case INTEL_FAM6_NEHALEM_G:
83         case INTEL_FAM6_NEHALEM_EP:
84         case INTEL_FAM6_NEHALEM_EX:
85         case INTEL_FAM6_WESTMERE:
86         case INTEL_FAM6_WESTMERE_EP:
87         case INTEL_FAM6_SANDYBRIDGE:
88                 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89         }
90 }
91
92 static bool ring3mwait_disabled __read_mostly;
93
94 static int __init ring3mwait_disable(char *__unused)
95 {
96         ring3mwait_disabled = true;
97         return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103         /*
104          * Ring 3 MONITOR/MWAIT feature cannot be detected without
105          * cpu model and family comparison.
106          */
107         if (c->x86 != 6)
108                 return;
109         switch (c->x86_model) {
110         case INTEL_FAM6_XEON_PHI_KNL:
111         case INTEL_FAM6_XEON_PHI_KNM:
112                 break;
113         default:
114                 return;
115         }
116
117         if (ring3mwait_disabled)
118                 return;
119
120         set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121         this_cpu_or(msr_misc_features_shadow,
122                     1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123
124         if (c == &boot_cpu_data)
125                 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137         u8 model;
138         u8 stepping;
139         u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142         { INTEL_FAM6_KABYLAKE,          0x0B,   0x80 },
143         { INTEL_FAM6_KABYLAKE,          0x0A,   0x80 },
144         { INTEL_FAM6_KABYLAKE,          0x09,   0x80 },
145         { INTEL_FAM6_KABYLAKE_L,        0x0A,   0x80 },
146         { INTEL_FAM6_KABYLAKE_L,        0x09,   0x80 },
147         { INTEL_FAM6_SKYLAKE_X,         0x03,   0x0100013e },
148         { INTEL_FAM6_SKYLAKE_X,         0x04,   0x0200003c },
149         { INTEL_FAM6_BROADWELL,         0x04,   0x28 },
150         { INTEL_FAM6_BROADWELL_G,       0x01,   0x1b },
151         { INTEL_FAM6_BROADWELL_D,       0x02,   0x14 },
152         { INTEL_FAM6_BROADWELL_D,       0x03,   0x07000011 },
153         { INTEL_FAM6_BROADWELL_X,       0x01,   0x0b000025 },
154         { INTEL_FAM6_HASWELL_L,         0x01,   0x21 },
155         { INTEL_FAM6_HASWELL_G,         0x01,   0x18 },
156         { INTEL_FAM6_HASWELL,           0x03,   0x23 },
157         { INTEL_FAM6_HASWELL_X,         0x02,   0x3b },
158         { INTEL_FAM6_HASWELL_X,         0x04,   0x10 },
159         { INTEL_FAM6_IVYBRIDGE_X,       0x04,   0x42a },
160         /* Observed in the wild */
161         { INTEL_FAM6_SANDYBRIDGE_X,     0x06,   0x61b },
162         { INTEL_FAM6_SANDYBRIDGE_X,     0x07,   0x712 },
163 };
164
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167         int i;
168
169         /*
170          * We know that the hypervisor lie to us on the microcode version so
171          * we may as well hope that it is running the correct version.
172          */
173         if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174                 return false;
175
176         if (c->x86 != 6)
177                 return false;
178
179         for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180                 if (c->x86_model == spectre_bad_microcodes[i].model &&
181                     c->x86_stepping == spectre_bad_microcodes[i].stepping)
182                         return (c->microcode <= spectre_bad_microcodes[i].microcode);
183         }
184         return false;
185 }
186
187 static void early_init_intel(struct cpuinfo_x86 *c)
188 {
189         u64 misc_enable;
190
191         /* Unmask CPUID levels if masked: */
192         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
193                 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
194                                   MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
195                         c->cpuid_level = cpuid_eax(0);
196                         get_cpu_cap(c);
197                 }
198         }
199
200         if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
201                 (c->x86 == 0x6 && c->x86_model >= 0x0e))
202                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
203
204         if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
205                 c->microcode = intel_get_microcode_revision();
206
207         /* Now if any of them are set, check the blacklist and clear the lot */
208         if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
209              cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
210              cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
211              cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
212                 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
213                 setup_clear_cpu_cap(X86_FEATURE_IBRS);
214                 setup_clear_cpu_cap(X86_FEATURE_IBPB);
215                 setup_clear_cpu_cap(X86_FEATURE_STIBP);
216                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
217                 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
218                 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
219                 setup_clear_cpu_cap(X86_FEATURE_SSBD);
220                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
221         }
222
223         /*
224          * Atom erratum AAE44/AAF40/AAG38/AAH41:
225          *
226          * A race condition between speculative fetches and invalidating
227          * a large page.  This is worked around in microcode, but we
228          * need the microcode to have already been loaded... so if it is
229          * not, recommend a BIOS update and disable large pages.
230          */
231         if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
232             c->microcode < 0x20e) {
233                 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
234                 clear_cpu_cap(c, X86_FEATURE_PSE);
235         }
236
237 #ifdef CONFIG_X86_64
238         set_cpu_cap(c, X86_FEATURE_SYSENTER32);
239 #else
240         /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
241         if (c->x86 == 15 && c->x86_cache_alignment == 64)
242                 c->x86_cache_alignment = 128;
243 #endif
244
245         /* CPUID workaround for 0F33/0F34 CPU */
246         if (c->x86 == 0xF && c->x86_model == 0x3
247             && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
248                 c->x86_phys_bits = 36;
249
250         /*
251          * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
252          * with P/T states and does not stop in deep C-states.
253          *
254          * It is also reliable across cores and sockets. (but not across
255          * cabinets - we turn it off in that case explicitly.)
256          */
257         if (c->x86_power & (1 << 8)) {
258                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
259                 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
260         }
261
262         /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
263         if (c->x86 == 6) {
264                 switch (c->x86_model) {
265                 case INTEL_FAM6_ATOM_SALTWELL_MID:
266                 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
267                 case INTEL_FAM6_ATOM_SILVERMONT_MID:
268                 case INTEL_FAM6_ATOM_AIRMONT_NP:
269                         set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
270                         break;
271                 default:
272                         break;
273                 }
274         }
275
276         /*
277          * There is a known erratum on Pentium III and Core Solo
278          * and Core Duo CPUs.
279          * " Page with PAT set to WC while associated MTRR is UC
280          *   may consolidate to UC "
281          * Because of this erratum, it is better to stick with
282          * setting WC in MTRR rather than using PAT on these CPUs.
283          *
284          * Enable PAT WC only on P4, Core 2 or later CPUs.
285          */
286         if (c->x86 == 6 && c->x86_model < 15)
287                 clear_cpu_cap(c, X86_FEATURE_PAT);
288
289         /*
290          * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
291          * clear the fast string and enhanced fast string CPU capabilities.
292          */
293         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
294                 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
295                 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
296                         pr_info("Disabled fast string operations\n");
297                         setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
298                         setup_clear_cpu_cap(X86_FEATURE_ERMS);
299                 }
300         }
301
302         /*
303          * Intel Quark Core DevMan_001.pdf section 6.4.11
304          * "The operating system also is required to invalidate (i.e., flush)
305          *  the TLB when any changes are made to any of the page table entries.
306          *  The operating system must reload CR3 to cause the TLB to be flushed"
307          *
308          * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
309          * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
310          * to be modified.
311          */
312         if (c->x86 == 5 && c->x86_model == 9) {
313                 pr_info("Disabling PGE capability bit\n");
314                 setup_clear_cpu_cap(X86_FEATURE_PGE);
315         }
316
317         check_memory_type_self_snoop_errata(c);
318
319         /*
320          * Get the number of SMT siblings early from the extended topology
321          * leaf, if available. Otherwise try the legacy SMT detection.
322          */
323         if (detect_extended_topology_early(c) < 0)
324                 detect_ht_early(c);
325 }
326
327 static void bsp_init_intel(struct cpuinfo_x86 *c)
328 {
329         resctrl_cpu_detect(c);
330 }
331
332 #ifdef CONFIG_X86_32
333 /*
334  *      Early probe support logic for ppro memory erratum #50
335  *
336  *      This is called before we do cpu ident work
337  */
338
339 int ppro_with_ram_bug(void)
340 {
341         /* Uses data from early_cpu_detect now */
342         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
343             boot_cpu_data.x86 == 6 &&
344             boot_cpu_data.x86_model == 1 &&
345             boot_cpu_data.x86_stepping < 8) {
346                 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
347                 return 1;
348         }
349         return 0;
350 }
351
352 static void intel_smp_check(struct cpuinfo_x86 *c)
353 {
354         /* calling is from identify_secondary_cpu() ? */
355         if (!c->cpu_index)
356                 return;
357
358         /*
359          * Mask B, Pentium, but not Pentium MMX
360          */
361         if (c->x86 == 5 &&
362             c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
363             c->x86_model <= 3) {
364                 /*
365                  * Remember we have B step Pentia with bugs
366                  */
367                 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
368                                     "with B stepping processors.\n");
369         }
370 }
371
372 static int forcepae;
373 static int __init forcepae_setup(char *__unused)
374 {
375         forcepae = 1;
376         return 1;
377 }
378 __setup("forcepae", forcepae_setup);
379
380 static void intel_workarounds(struct cpuinfo_x86 *c)
381 {
382 #ifdef CONFIG_X86_F00F_BUG
383         /*
384          * All models of Pentium and Pentium with MMX technology CPUs
385          * have the F0 0F bug, which lets nonprivileged users lock up the
386          * system. Announce that the fault handler will be checking for it.
387          * The Quark is also family 5, but does not have the same bug.
388          */
389         clear_cpu_bug(c, X86_BUG_F00F);
390         if (c->x86 == 5 && c->x86_model < 9) {
391                 static int f00f_workaround_enabled;
392
393                 set_cpu_bug(c, X86_BUG_F00F);
394                 if (!f00f_workaround_enabled) {
395                         pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
396                         f00f_workaround_enabled = 1;
397                 }
398         }
399 #endif
400
401         /*
402          * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
403          * model 3 mask 3
404          */
405         if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
406                 clear_cpu_cap(c, X86_FEATURE_SEP);
407
408         /*
409          * PAE CPUID issue: many Pentium M report no PAE but may have a
410          * functionally usable PAE implementation.
411          * Forcefully enable PAE if kernel parameter "forcepae" is present.
412          */
413         if (forcepae) {
414                 pr_warn("PAE forced!\n");
415                 set_cpu_cap(c, X86_FEATURE_PAE);
416                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
417         }
418
419         /*
420          * P4 Xeon erratum 037 workaround.
421          * Hardware prefetcher may cause stale data to be loaded into the cache.
422          */
423         if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
424                 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
425                                 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
426                         pr_info("CPU: C0 stepping P4 Xeon detected.\n");
427                         pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
428                 }
429         }
430
431         /*
432          * See if we have a good local APIC by checking for buggy Pentia,
433          * i.e. all B steppings and the C2 stepping of P54C when using their
434          * integrated APIC (see 11AP erratum in "Pentium Processor
435          * Specification Update").
436          */
437         if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
438             (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
439                 set_cpu_bug(c, X86_BUG_11AP);
440
441
442 #ifdef CONFIG_X86_INTEL_USERCOPY
443         /*
444          * Set up the preferred alignment for movsl bulk memory moves
445          */
446         switch (c->x86) {
447         case 4:         /* 486: untested */
448                 break;
449         case 5:         /* Old Pentia: untested */
450                 break;
451         case 6:         /* PII/PIII only like movsl with 8-byte alignment */
452                 movsl_mask.mask = 7;
453                 break;
454         case 15:        /* P4 is OK down to 8-byte alignment */
455                 movsl_mask.mask = 7;
456                 break;
457         }
458 #endif
459
460         intel_smp_check(c);
461 }
462 #else
463 static void intel_workarounds(struct cpuinfo_x86 *c)
464 {
465 }
466 #endif
467
468 static void srat_detect_node(struct cpuinfo_x86 *c)
469 {
470 #ifdef CONFIG_NUMA
471         unsigned node;
472         int cpu = smp_processor_id();
473
474         /* Don't do the funky fallback heuristics the AMD version employs
475            for now. */
476         node = numa_cpu_node(cpu);
477         if (node == NUMA_NO_NODE || !node_online(node)) {
478                 /* reuse the value from init_cpu_to_node() */
479                 node = cpu_to_node(cpu);
480         }
481         numa_set_node(cpu, node);
482 #endif
483 }
484
485 #define MSR_IA32_TME_ACTIVATE           0x982
486
487 /* Helpers to access TME_ACTIVATE MSR */
488 #define TME_ACTIVATE_LOCKED(x)          (x & 0x1)
489 #define TME_ACTIVATE_ENABLED(x)         (x & 0x2)
490
491 #define TME_ACTIVATE_POLICY(x)          ((x >> 4) & 0xf)        /* Bits 7:4 */
492 #define TME_ACTIVATE_POLICY_AES_XTS_128 0
493
494 #define TME_ACTIVATE_KEYID_BITS(x)      ((x >> 32) & 0xf)       /* Bits 35:32 */
495
496 #define TME_ACTIVATE_CRYPTO_ALGS(x)     ((x >> 48) & 0xffff)    /* Bits 63:48 */
497 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
498
499 /* Values for mktme_status (SW only construct) */
500 #define MKTME_ENABLED                   0
501 #define MKTME_DISABLED                  1
502 #define MKTME_UNINITIALIZED             2
503 static int mktme_status = MKTME_UNINITIALIZED;
504
505 static void detect_tme(struct cpuinfo_x86 *c)
506 {
507         u64 tme_activate, tme_policy, tme_crypto_algs;
508         int keyid_bits = 0, nr_keyids = 0;
509         static u64 tme_activate_cpu0 = 0;
510
511         rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
512
513         if (mktme_status != MKTME_UNINITIALIZED) {
514                 if (tme_activate != tme_activate_cpu0) {
515                         /* Broken BIOS? */
516                         pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
517                         pr_err_once("x86/tme: MKTME is not usable\n");
518                         mktme_status = MKTME_DISABLED;
519
520                         /* Proceed. We may need to exclude bits from x86_phys_bits. */
521                 }
522         } else {
523                 tme_activate_cpu0 = tme_activate;
524         }
525
526         if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
527                 pr_info_once("x86/tme: not enabled by BIOS\n");
528                 mktme_status = MKTME_DISABLED;
529                 return;
530         }
531
532         if (mktme_status != MKTME_UNINITIALIZED)
533                 goto detect_keyid_bits;
534
535         pr_info("x86/tme: enabled by BIOS\n");
536
537         tme_policy = TME_ACTIVATE_POLICY(tme_activate);
538         if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
539                 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
540
541         tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
542         if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
543                 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
544                                 tme_crypto_algs);
545                 mktme_status = MKTME_DISABLED;
546         }
547 detect_keyid_bits:
548         keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
549         nr_keyids = (1UL << keyid_bits) - 1;
550         if (nr_keyids) {
551                 pr_info_once("x86/mktme: enabled by BIOS\n");
552                 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
553         } else {
554                 pr_info_once("x86/mktme: disabled by BIOS\n");
555         }
556
557         if (mktme_status == MKTME_UNINITIALIZED) {
558                 /* MKTME is usable */
559                 mktme_status = MKTME_ENABLED;
560         }
561
562         /*
563          * KeyID bits effectively lower the number of physical address
564          * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
565          */
566         c->x86_phys_bits -= keyid_bits;
567 }
568
569 static void init_cpuid_fault(struct cpuinfo_x86 *c)
570 {
571         u64 msr;
572
573         if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
574                 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
575                         set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
576         }
577 }
578
579 static void init_intel_misc_features(struct cpuinfo_x86 *c)
580 {
581         u64 msr;
582
583         if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
584                 return;
585
586         /* Clear all MISC features */
587         this_cpu_write(msr_misc_features_shadow, 0);
588
589         /* Check features and update capabilities and shadow control bits */
590         init_cpuid_fault(c);
591         probe_xeon_phi_r3mwait(c);
592
593         msr = this_cpu_read(msr_misc_features_shadow);
594         wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
595 }
596
597 static void split_lock_init(void);
598 static void bus_lock_init(void);
599
600 static void init_intel(struct cpuinfo_x86 *c)
601 {
602         early_init_intel(c);
603
604         intel_workarounds(c);
605
606         /*
607          * Detect the extended topology information if available. This
608          * will reinitialise the initial_apicid which will be used
609          * in init_intel_cacheinfo()
610          */
611         detect_extended_topology(c);
612
613         if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
614                 /*
615                  * let's use the legacy cpuid vector 0x1 and 0x4 for topology
616                  * detection.
617                  */
618                 detect_num_cpu_cores(c);
619 #ifdef CONFIG_X86_32
620                 detect_ht(c);
621 #endif
622         }
623
624         init_intel_cacheinfo(c);
625
626         if (c->cpuid_level > 9) {
627                 unsigned eax = cpuid_eax(10);
628                 /* Check for version and the number of counters */
629                 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
630                         set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
631         }
632
633         if (cpu_has(c, X86_FEATURE_XMM2))
634                 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
635
636         if (boot_cpu_has(X86_FEATURE_DS)) {
637                 unsigned int l1, l2;
638
639                 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
640                 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
641                         set_cpu_cap(c, X86_FEATURE_BTS);
642                 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
643                         set_cpu_cap(c, X86_FEATURE_PEBS);
644         }
645
646         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
647             (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
648                 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
649
650         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
651                 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
652                 set_cpu_bug(c, X86_BUG_MONITOR);
653
654 #ifdef CONFIG_X86_64
655         if (c->x86 == 15)
656                 c->x86_cache_alignment = c->x86_clflush_size * 2;
657         if (c->x86 == 6)
658                 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
659 #else
660         /*
661          * Names for the Pentium II/Celeron processors
662          * detectable only by also checking the cache size.
663          * Dixon is NOT a Celeron.
664          */
665         if (c->x86 == 6) {
666                 unsigned int l2 = c->x86_cache_size;
667                 char *p = NULL;
668
669                 switch (c->x86_model) {
670                 case 5:
671                         if (l2 == 0)
672                                 p = "Celeron (Covington)";
673                         else if (l2 == 256)
674                                 p = "Mobile Pentium II (Dixon)";
675                         break;
676
677                 case 6:
678                         if (l2 == 128)
679                                 p = "Celeron (Mendocino)";
680                         else if (c->x86_stepping == 0 || c->x86_stepping == 5)
681                                 p = "Celeron-A";
682                         break;
683
684                 case 8:
685                         if (l2 == 128)
686                                 p = "Celeron (Coppermine)";
687                         break;
688                 }
689
690                 if (p)
691                         strcpy(c->x86_model_id, p);
692         }
693
694         if (c->x86 == 15)
695                 set_cpu_cap(c, X86_FEATURE_P4);
696         if (c->x86 == 6)
697                 set_cpu_cap(c, X86_FEATURE_P3);
698 #endif
699
700         /* Work around errata */
701         srat_detect_node(c);
702
703         init_ia32_feat_ctl(c);
704
705         if (cpu_has(c, X86_FEATURE_TME))
706                 detect_tme(c);
707
708         init_intel_misc_features(c);
709
710         split_lock_init();
711         bus_lock_init();
712
713         intel_init_thermal(c);
714 }
715
716 #ifdef CONFIG_X86_32
717 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
718 {
719         /*
720          * Intel PIII Tualatin. This comes in two flavours.
721          * One has 256kb of cache, the other 512. We have no way
722          * to determine which, so we use a boottime override
723          * for the 512kb model, and assume 256 otherwise.
724          */
725         if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
726                 size = 256;
727
728         /*
729          * Intel Quark SoC X1000 contains a 4-way set associative
730          * 16K cache with a 16 byte cache line and 256 lines per tag
731          */
732         if ((c->x86 == 5) && (c->x86_model == 9))
733                 size = 16;
734         return size;
735 }
736 #endif
737
738 #define TLB_INST_4K     0x01
739 #define TLB_INST_4M     0x02
740 #define TLB_INST_2M_4M  0x03
741
742 #define TLB_INST_ALL    0x05
743 #define TLB_INST_1G     0x06
744
745 #define TLB_DATA_4K     0x11
746 #define TLB_DATA_4M     0x12
747 #define TLB_DATA_2M_4M  0x13
748 #define TLB_DATA_4K_4M  0x14
749
750 #define TLB_DATA_1G     0x16
751
752 #define TLB_DATA0_4K    0x21
753 #define TLB_DATA0_4M    0x22
754 #define TLB_DATA0_2M_4M 0x23
755
756 #define STLB_4K         0x41
757 #define STLB_4K_2M      0x42
758
759 static const struct _tlb_table intel_tlb_table[] = {
760         { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
761         { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
762         { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
763         { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
764         { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
765         { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
766         { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages" },
767         { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
768         { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
769         { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
770         { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
771         { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
772         { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
773         { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
774         { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
775         { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
776         { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
777         { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
778         { 0x61, TLB_INST_4K,            48,     " TLB_INST 4 KByte pages, full associative" },
779         { 0x63, TLB_DATA_1G,            4,      " TLB_DATA 1 GByte pages, 4-way set associative" },
780         { 0x6b, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 8-way associative" },
781         { 0x6c, TLB_DATA_2M_4M,         128,    " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
782         { 0x6d, TLB_DATA_1G,            16,     " TLB_DATA 1 GByte pages, fully associative" },
783         { 0x76, TLB_INST_2M_4M,         8,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
784         { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
785         { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
786         { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
787         { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
788         { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
789         { 0xb5, TLB_INST_4K,            64,     " TLB_INST 4 KByte pages, 8-way set associative" },
790         { 0xb6, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 8-way set associative" },
791         { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
792         { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
793         { 0xc1, STLB_4K_2M,             1024,   " STLB 4 KByte and 2 MByte pages, 8-way associative" },
794         { 0xc2, TLB_DATA_2M_4M,         16,     " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
795         { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
796         { 0x00, 0, 0 }
797 };
798
799 static void intel_tlb_lookup(const unsigned char desc)
800 {
801         unsigned char k;
802         if (desc == 0)
803                 return;
804
805         /* look up this descriptor in the table */
806         for (k = 0; intel_tlb_table[k].descriptor != desc &&
807              intel_tlb_table[k].descriptor != 0; k++)
808                 ;
809
810         if (intel_tlb_table[k].tlb_type == 0)
811                 return;
812
813         switch (intel_tlb_table[k].tlb_type) {
814         case STLB_4K:
815                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
816                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
817                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
818                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
819                 break;
820         case STLB_4K_2M:
821                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
822                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
823                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
824                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
825                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
826                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
827                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
828                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
829                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
830                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
831                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
832                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
833                 break;
834         case TLB_INST_ALL:
835                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
836                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
837                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
838                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
839                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
840                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
841                 break;
842         case TLB_INST_4K:
843                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
844                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
845                 break;
846         case TLB_INST_4M:
847                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
848                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
849                 break;
850         case TLB_INST_2M_4M:
851                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
852                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
853                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
854                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
855                 break;
856         case TLB_DATA_4K:
857         case TLB_DATA0_4K:
858                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
859                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
860                 break;
861         case TLB_DATA_4M:
862         case TLB_DATA0_4M:
863                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
864                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
865                 break;
866         case TLB_DATA_2M_4M:
867         case TLB_DATA0_2M_4M:
868                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
869                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
870                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
871                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
872                 break;
873         case TLB_DATA_4K_4M:
874                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
875                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
876                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
877                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
878                 break;
879         case TLB_DATA_1G:
880                 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
881                         tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
882                 break;
883         }
884 }
885
886 static void intel_detect_tlb(struct cpuinfo_x86 *c)
887 {
888         int i, j, n;
889         unsigned int regs[4];
890         unsigned char *desc = (unsigned char *)regs;
891
892         if (c->cpuid_level < 2)
893                 return;
894
895         /* Number of times to iterate */
896         n = cpuid_eax(2) & 0xFF;
897
898         for (i = 0 ; i < n ; i++) {
899                 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
900
901                 /* If bit 31 is set, this is an unknown format */
902                 for (j = 0 ; j < 3 ; j++)
903                         if (regs[j] & (1 << 31))
904                                 regs[j] = 0;
905
906                 /* Byte 0 is level count, not a descriptor */
907                 for (j = 1 ; j < 16 ; j++)
908                         intel_tlb_lookup(desc[j]);
909         }
910 }
911
912 static const struct cpu_dev intel_cpu_dev = {
913         .c_vendor       = "Intel",
914         .c_ident        = { "GenuineIntel" },
915 #ifdef CONFIG_X86_32
916         .legacy_models = {
917                 { .family = 4, .model_names =
918                   {
919                           [0] = "486 DX-25/33",
920                           [1] = "486 DX-50",
921                           [2] = "486 SX",
922                           [3] = "486 DX/2",
923                           [4] = "486 SL",
924                           [5] = "486 SX/2",
925                           [7] = "486 DX/2-WB",
926                           [8] = "486 DX/4",
927                           [9] = "486 DX/4-WB"
928                   }
929                 },
930                 { .family = 5, .model_names =
931                   {
932                           [0] = "Pentium 60/66 A-step",
933                           [1] = "Pentium 60/66",
934                           [2] = "Pentium 75 - 200",
935                           [3] = "OverDrive PODP5V83",
936                           [4] = "Pentium MMX",
937                           [7] = "Mobile Pentium 75 - 200",
938                           [8] = "Mobile Pentium MMX",
939                           [9] = "Quark SoC X1000",
940                   }
941                 },
942                 { .family = 6, .model_names =
943                   {
944                           [0] = "Pentium Pro A-step",
945                           [1] = "Pentium Pro",
946                           [3] = "Pentium II (Klamath)",
947                           [4] = "Pentium II (Deschutes)",
948                           [5] = "Pentium II (Deschutes)",
949                           [6] = "Mobile Pentium II",
950                           [7] = "Pentium III (Katmai)",
951                           [8] = "Pentium III (Coppermine)",
952                           [10] = "Pentium III (Cascades)",
953                           [11] = "Pentium III (Tualatin)",
954                   }
955                 },
956                 { .family = 15, .model_names =
957                   {
958                           [0] = "Pentium 4 (Unknown)",
959                           [1] = "Pentium 4 (Willamette)",
960                           [2] = "Pentium 4 (Northwood)",
961                           [4] = "Pentium 4 (Foster)",
962                           [5] = "Pentium 4 (Foster)",
963                   }
964                 },
965         },
966         .legacy_cache_size = intel_size_cache,
967 #endif
968         .c_detect_tlb   = intel_detect_tlb,
969         .c_early_init   = early_init_intel,
970         .c_bsp_init     = bsp_init_intel,
971         .c_init         = init_intel,
972         .c_x86_vendor   = X86_VENDOR_INTEL,
973 };
974
975 cpu_dev_register(intel_cpu_dev);
976
977 #undef pr_fmt
978 #define pr_fmt(fmt) "x86/split lock detection: " fmt
979
980 static const struct {
981         const char                      *option;
982         enum split_lock_detect_state    state;
983 } sld_options[] __initconst = {
984         { "off",        sld_off   },
985         { "warn",       sld_warn  },
986         { "fatal",      sld_fatal },
987         { "ratelimit:", sld_ratelimit },
988 };
989
990 static struct ratelimit_state bld_ratelimit;
991
992 static unsigned int sysctl_sld_mitigate = 1;
993 static DEFINE_SEMAPHORE(buslock_sem, 1);
994
995 #ifdef CONFIG_PROC_SYSCTL
996 static struct ctl_table sld_sysctls[] = {
997         {
998                 .procname       = "split_lock_mitigate",
999                 .data           = &sysctl_sld_mitigate,
1000                 .maxlen         = sizeof(unsigned int),
1001                 .mode           = 0644,
1002                 .proc_handler   = proc_douintvec_minmax,
1003                 .extra1         = SYSCTL_ZERO,
1004                 .extra2         = SYSCTL_ONE,
1005         },
1006 };
1007
1008 static int __init sld_mitigate_sysctl_init(void)
1009 {
1010         register_sysctl_init("kernel", sld_sysctls);
1011         return 0;
1012 }
1013
1014 late_initcall(sld_mitigate_sysctl_init);
1015 #endif
1016
1017 static inline bool match_option(const char *arg, int arglen, const char *opt)
1018 {
1019         int len = strlen(opt), ratelimit;
1020
1021         if (strncmp(arg, opt, len))
1022                 return false;
1023
1024         /*
1025          * Min ratelimit is 1 bus lock/sec.
1026          * Max ratelimit is 1000 bus locks/sec.
1027          */
1028         if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1029             ratelimit > 0 && ratelimit <= 1000) {
1030                 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1031                 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1032                 return true;
1033         }
1034
1035         return len == arglen;
1036 }
1037
1038 static bool split_lock_verify_msr(bool on)
1039 {
1040         u64 ctrl, tmp;
1041
1042         if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1043                 return false;
1044         if (on)
1045                 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1046         else
1047                 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1048         if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1049                 return false;
1050         rdmsrl(MSR_TEST_CTRL, tmp);
1051         return ctrl == tmp;
1052 }
1053
1054 static void __init sld_state_setup(void)
1055 {
1056         enum split_lock_detect_state state = sld_warn;
1057         char arg[20];
1058         int i, ret;
1059
1060         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1061             !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1062                 return;
1063
1064         ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1065                                   arg, sizeof(arg));
1066         if (ret >= 0) {
1067                 for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1068                         if (match_option(arg, ret, sld_options[i].option)) {
1069                                 state = sld_options[i].state;
1070                                 break;
1071                         }
1072                 }
1073         }
1074         sld_state = state;
1075 }
1076
1077 static void __init __split_lock_setup(void)
1078 {
1079         if (!split_lock_verify_msr(false)) {
1080                 pr_info("MSR access failed: Disabled\n");
1081                 return;
1082         }
1083
1084         rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1085
1086         if (!split_lock_verify_msr(true)) {
1087                 pr_info("MSR access failed: Disabled\n");
1088                 return;
1089         }
1090
1091         /* Restore the MSR to its cached value. */
1092         wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1093
1094         setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1095 }
1096
1097 /*
1098  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1099  * is not implemented as one thread could undo the setting of the other
1100  * thread immediately after dropping the lock anyway.
1101  */
1102 static void sld_update_msr(bool on)
1103 {
1104         u64 test_ctrl_val = msr_test_ctrl_cache;
1105
1106         if (on)
1107                 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1108
1109         wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1110 }
1111
1112 static void split_lock_init(void)
1113 {
1114         /*
1115          * #DB for bus lock handles ratelimit and #AC for split lock is
1116          * disabled.
1117          */
1118         if (sld_state == sld_ratelimit) {
1119                 split_lock_verify_msr(false);
1120                 return;
1121         }
1122
1123         if (cpu_model_supports_sld)
1124                 split_lock_verify_msr(sld_state != sld_off);
1125 }
1126
1127 static void __split_lock_reenable_unlock(struct work_struct *work)
1128 {
1129         sld_update_msr(true);
1130         up(&buslock_sem);
1131 }
1132
1133 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1134
1135 static void __split_lock_reenable(struct work_struct *work)
1136 {
1137         sld_update_msr(true);
1138 }
1139 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1140
1141 /*
1142  * If a CPU goes offline with pending delayed work to re-enable split lock
1143  * detection then the delayed work will be executed on some other CPU. That
1144  * handles releasing the buslock_sem, but because it executes on a
1145  * different CPU probably won't re-enable split lock detection. This is a
1146  * problem on HT systems since the sibling CPU on the same core may then be
1147  * left running with split lock detection disabled.
1148  *
1149  * Unconditionally re-enable detection here.
1150  */
1151 static int splitlock_cpu_offline(unsigned int cpu)
1152 {
1153         sld_update_msr(true);
1154
1155         return 0;
1156 }
1157
1158 static void split_lock_warn(unsigned long ip)
1159 {
1160         struct delayed_work *work;
1161         int cpu;
1162
1163         if (!current->reported_split_lock)
1164                 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1165                                     current->comm, current->pid, ip);
1166         current->reported_split_lock = 1;
1167
1168         if (sysctl_sld_mitigate) {
1169                 /*
1170                  * misery factor #1:
1171                  * sleep 10ms before trying to execute split lock.
1172                  */
1173                 if (msleep_interruptible(10) > 0)
1174                         return;
1175                 /*
1176                  * Misery factor #2:
1177                  * only allow one buslocked disabled core at a time.
1178                  */
1179                 if (down_interruptible(&buslock_sem) == -EINTR)
1180                         return;
1181                 work = &sl_reenable_unlock;
1182         } else {
1183                 work = &sl_reenable;
1184         }
1185
1186         cpu = get_cpu();
1187         schedule_delayed_work_on(cpu, work, 2);
1188
1189         /* Disable split lock detection on this CPU to make progress */
1190         sld_update_msr(false);
1191         put_cpu();
1192 }
1193
1194 bool handle_guest_split_lock(unsigned long ip)
1195 {
1196         if (sld_state == sld_warn) {
1197                 split_lock_warn(ip);
1198                 return true;
1199         }
1200
1201         pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1202                      current->comm, current->pid,
1203                      sld_state == sld_fatal ? "fatal" : "bogus", ip);
1204
1205         current->thread.error_code = 0;
1206         current->thread.trap_nr = X86_TRAP_AC;
1207         force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1208         return false;
1209 }
1210 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1211
1212 static void bus_lock_init(void)
1213 {
1214         u64 val;
1215
1216         if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1217                 return;
1218
1219         rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1220
1221         if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1222             (sld_state == sld_warn || sld_state == sld_fatal)) ||
1223             sld_state == sld_off) {
1224                 /*
1225                  * Warn and fatal are handled by #AC for split lock if #AC for
1226                  * split lock is supported.
1227                  */
1228                 val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1229         } else {
1230                 val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1231         }
1232
1233         wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1234 }
1235
1236 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1237 {
1238         if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1239                 return false;
1240         split_lock_warn(regs->ip);
1241         return true;
1242 }
1243
1244 void handle_bus_lock(struct pt_regs *regs)
1245 {
1246         switch (sld_state) {
1247         case sld_off:
1248                 break;
1249         case sld_ratelimit:
1250                 /* Enforce no more than bld_ratelimit bus locks/sec. */
1251                 while (!__ratelimit(&bld_ratelimit))
1252                         msleep(20);
1253                 /* Warn on the bus lock. */
1254                 fallthrough;
1255         case sld_warn:
1256                 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1257                                     current->comm, current->pid, regs->ip);
1258                 break;
1259         case sld_fatal:
1260                 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1261                 break;
1262         }
1263 }
1264
1265 /*
1266  * CPU models that are known to have the per-core split-lock detection
1267  * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1268  */
1269 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1270         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,   0),
1271         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,   0),
1272         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,   0),
1273         {}
1274 };
1275
1276 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1277 {
1278         const struct x86_cpu_id *m;
1279         u64 ia32_core_caps;
1280
1281         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1282                 return;
1283
1284         /* Check for CPUs that have support but do not enumerate it: */
1285         m = x86_match_cpu(split_lock_cpu_ids);
1286         if (m)
1287                 goto supported;
1288
1289         if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1290                 return;
1291
1292         /*
1293          * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1294          * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is.  All CPUs that set
1295          * it have split lock detection.
1296          */
1297         rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1298         if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1299                 goto supported;
1300
1301         /* CPU is not in the model list and does not have the MSR bit: */
1302         return;
1303
1304 supported:
1305         cpu_model_supports_sld = true;
1306         __split_lock_setup();
1307 }
1308
1309 static void sld_state_show(void)
1310 {
1311         if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1312             !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1313                 return;
1314
1315         switch (sld_state) {
1316         case sld_off:
1317                 pr_info("disabled\n");
1318                 break;
1319         case sld_warn:
1320                 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1321                         pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1322                         if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1323                                               "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1324                                 pr_warn("No splitlock CPU offline handler\n");
1325                 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1326                         pr_info("#DB: warning on user-space bus_locks\n");
1327                 }
1328                 break;
1329         case sld_fatal:
1330                 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1331                         pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1332                 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1333                         pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1334                                 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1335                                 " from non-WB" : "");
1336                 }
1337                 break;
1338         case sld_ratelimit:
1339                 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1340                         pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1341                 break;
1342         }
1343 }
1344
1345 void __init sld_setup(struct cpuinfo_x86 *c)
1346 {
1347         split_lock_setup(c);
1348         sld_state_setup();
1349         sld_state_show();
1350 }
1351
1352 #define X86_HYBRID_CPU_TYPE_ID_SHIFT    24
1353
1354 /**
1355  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1356  *
1357  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1358  * a hybrid processor. If the processor is not hybrid, returns 0.
1359  */
1360 u8 get_this_hybrid_cpu_type(void)
1361 {
1362         if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1363                 return 0;
1364
1365         return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1366 }
This page took 0.115869 seconds and 4 git commands to generate.