1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
5 #include <linux/string.h>
6 #include <linux/bitops.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
18 #include <asm/cpufeature.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
31 #include <asm/thermal.h>
34 #include <linux/topology.h>
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
44 enum split_lock_detect_state {
52 * Default to sld_off because most systems do not support split lock detection.
53 * sld_state_setup() will switch this to sld_warn on systems that support
54 * split lock/bus lock detect, unless there is a command line override.
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it
62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
64 static bool cpu_model_supports_sld __ro_after_init;
67 * Processors which have self-snooping capability can handle conflicting
68 * memory type across CPUs by snooping its own cache. However, there exists
69 * CPU models in which having conflicting memory types still leads to
70 * unpredictable behavior, machine check errors, or hangs. Clear this
71 * feature to prevent its use on machines with known erratas.
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
75 switch (c->x86_model) {
76 case INTEL_FAM6_CORE_YONAH:
77 case INTEL_FAM6_CORE2_MEROM:
78 case INTEL_FAM6_CORE2_MEROM_L:
79 case INTEL_FAM6_CORE2_PENRYN:
80 case INTEL_FAM6_CORE2_DUNNINGTON:
81 case INTEL_FAM6_NEHALEM:
82 case INTEL_FAM6_NEHALEM_G:
83 case INTEL_FAM6_NEHALEM_EP:
84 case INTEL_FAM6_NEHALEM_EX:
85 case INTEL_FAM6_WESTMERE:
86 case INTEL_FAM6_WESTMERE_EP:
87 case INTEL_FAM6_SANDYBRIDGE:
88 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
92 static bool ring3mwait_disabled __read_mostly;
94 static int __init ring3mwait_disable(char *__unused)
96 ring3mwait_disabled = true;
99 __setup("ring3mwait=disable", ring3mwait_disable);
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
104 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 * cpu model and family comparison.
109 switch (c->x86_model) {
110 case INTEL_FAM6_XEON_PHI_KNL:
111 case INTEL_FAM6_XEON_PHI_KNM:
117 if (ring3mwait_disabled)
120 set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 this_cpu_or(msr_misc_features_shadow,
122 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
124 if (c == &boot_cpu_data)
125 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
129 * Early microcode releases for the Spectre v2 mitigation were broken.
130 * Information taken from;
131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132 * - https://kb.vmware.com/s/article/52345
133 * - Microcode revisions observed in the wild
134 * - Release note from 20180108 microcode release
136 struct sku_microcode {
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 },
143 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 },
144 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 },
145 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 },
146 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 },
147 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
148 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
149 { INTEL_FAM6_BROADWELL, 0x04, 0x28 },
150 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b },
151 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 },
152 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 },
153 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
154 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 },
155 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 },
156 { INTEL_FAM6_HASWELL, 0x03, 0x23 },
157 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
158 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
159 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
160 /* Observed in the wild */
161 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
162 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
170 * We know that the hypervisor lie to us on the microcode version so
171 * we may as well hope that it is running the correct version.
173 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
179 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 if (c->x86_model == spectre_bad_microcodes[i].model &&
181 c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 return (c->microcode <= spectre_bad_microcodes[i].microcode);
187 static void early_init_intel(struct cpuinfo_x86 *c)
191 /* Unmask CPUID levels if masked: */
192 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
193 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
194 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
195 c->cpuid_level = cpuid_eax(0);
200 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
201 (c->x86 == 0x6 && c->x86_model >= 0x0e))
202 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
204 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
205 c->microcode = intel_get_microcode_revision();
207 /* Now if any of them are set, check the blacklist and clear the lot */
208 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
209 cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
210 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
211 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
212 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
213 setup_clear_cpu_cap(X86_FEATURE_IBRS);
214 setup_clear_cpu_cap(X86_FEATURE_IBPB);
215 setup_clear_cpu_cap(X86_FEATURE_STIBP);
216 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
217 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
218 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
219 setup_clear_cpu_cap(X86_FEATURE_SSBD);
220 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
224 * Atom erratum AAE44/AAF40/AAG38/AAH41:
226 * A race condition between speculative fetches and invalidating
227 * a large page. This is worked around in microcode, but we
228 * need the microcode to have already been loaded... so if it is
229 * not, recommend a BIOS update and disable large pages.
231 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
232 c->microcode < 0x20e) {
233 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
234 clear_cpu_cap(c, X86_FEATURE_PSE);
238 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
240 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
241 if (c->x86 == 15 && c->x86_cache_alignment == 64)
242 c->x86_cache_alignment = 128;
245 /* CPUID workaround for 0F33/0F34 CPU */
246 if (c->x86 == 0xF && c->x86_model == 0x3
247 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
248 c->x86_phys_bits = 36;
251 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
252 * with P/T states and does not stop in deep C-states.
254 * It is also reliable across cores and sockets. (but not across
255 * cabinets - we turn it off in that case explicitly.)
257 if (c->x86_power & (1 << 8)) {
258 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
259 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
262 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
264 switch (c->x86_model) {
265 case INTEL_FAM6_ATOM_SALTWELL_MID:
266 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
267 case INTEL_FAM6_ATOM_SILVERMONT_MID:
268 case INTEL_FAM6_ATOM_AIRMONT_NP:
269 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
277 * There is a known erratum on Pentium III and Core Solo
279 * " Page with PAT set to WC while associated MTRR is UC
280 * may consolidate to UC "
281 * Because of this erratum, it is better to stick with
282 * setting WC in MTRR rather than using PAT on these CPUs.
284 * Enable PAT WC only on P4, Core 2 or later CPUs.
286 if (c->x86 == 6 && c->x86_model < 15)
287 clear_cpu_cap(c, X86_FEATURE_PAT);
290 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
291 * clear the fast string and enhanced fast string CPU capabilities.
293 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
294 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
295 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
296 pr_info("Disabled fast string operations\n");
297 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
298 setup_clear_cpu_cap(X86_FEATURE_ERMS);
303 * Intel Quark Core DevMan_001.pdf section 6.4.11
304 * "The operating system also is required to invalidate (i.e., flush)
305 * the TLB when any changes are made to any of the page table entries.
306 * The operating system must reload CR3 to cause the TLB to be flushed"
308 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
309 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
312 if (c->x86 == 5 && c->x86_model == 9) {
313 pr_info("Disabling PGE capability bit\n");
314 setup_clear_cpu_cap(X86_FEATURE_PGE);
317 check_memory_type_self_snoop_errata(c);
320 * Get the number of SMT siblings early from the extended topology
321 * leaf, if available. Otherwise try the legacy SMT detection.
323 if (detect_extended_topology_early(c) < 0)
327 static void bsp_init_intel(struct cpuinfo_x86 *c)
329 resctrl_cpu_detect(c);
334 * Early probe support logic for ppro memory erratum #50
336 * This is called before we do cpu ident work
339 int ppro_with_ram_bug(void)
341 /* Uses data from early_cpu_detect now */
342 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
343 boot_cpu_data.x86 == 6 &&
344 boot_cpu_data.x86_model == 1 &&
345 boot_cpu_data.x86_stepping < 8) {
346 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
352 static void intel_smp_check(struct cpuinfo_x86 *c)
354 /* calling is from identify_secondary_cpu() ? */
359 * Mask B, Pentium, but not Pentium MMX
362 c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
365 * Remember we have B step Pentia with bugs
367 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
368 "with B stepping processors.\n");
373 static int __init forcepae_setup(char *__unused)
378 __setup("forcepae", forcepae_setup);
380 static void intel_workarounds(struct cpuinfo_x86 *c)
382 #ifdef CONFIG_X86_F00F_BUG
384 * All models of Pentium and Pentium with MMX technology CPUs
385 * have the F0 0F bug, which lets nonprivileged users lock up the
386 * system. Announce that the fault handler will be checking for it.
387 * The Quark is also family 5, but does not have the same bug.
389 clear_cpu_bug(c, X86_BUG_F00F);
390 if (c->x86 == 5 && c->x86_model < 9) {
391 static int f00f_workaround_enabled;
393 set_cpu_bug(c, X86_BUG_F00F);
394 if (!f00f_workaround_enabled) {
395 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
396 f00f_workaround_enabled = 1;
402 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
405 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
406 clear_cpu_cap(c, X86_FEATURE_SEP);
409 * PAE CPUID issue: many Pentium M report no PAE but may have a
410 * functionally usable PAE implementation.
411 * Forcefully enable PAE if kernel parameter "forcepae" is present.
414 pr_warn("PAE forced!\n");
415 set_cpu_cap(c, X86_FEATURE_PAE);
416 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
420 * P4 Xeon erratum 037 workaround.
421 * Hardware prefetcher may cause stale data to be loaded into the cache.
423 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
424 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
425 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
426 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
427 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
432 * See if we have a good local APIC by checking for buggy Pentia,
433 * i.e. all B steppings and the C2 stepping of P54C when using their
434 * integrated APIC (see 11AP erratum in "Pentium Processor
435 * Specification Update").
437 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
438 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
439 set_cpu_bug(c, X86_BUG_11AP);
442 #ifdef CONFIG_X86_INTEL_USERCOPY
444 * Set up the preferred alignment for movsl bulk memory moves
447 case 4: /* 486: untested */
449 case 5: /* Old Pentia: untested */
451 case 6: /* PII/PIII only like movsl with 8-byte alignment */
454 case 15: /* P4 is OK down to 8-byte alignment */
463 static void intel_workarounds(struct cpuinfo_x86 *c)
468 static void srat_detect_node(struct cpuinfo_x86 *c)
472 int cpu = smp_processor_id();
474 /* Don't do the funky fallback heuristics the AMD version employs
476 node = numa_cpu_node(cpu);
477 if (node == NUMA_NO_NODE || !node_online(node)) {
478 /* reuse the value from init_cpu_to_node() */
479 node = cpu_to_node(cpu);
481 numa_set_node(cpu, node);
485 #define MSR_IA32_TME_ACTIVATE 0x982
487 /* Helpers to access TME_ACTIVATE MSR */
488 #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
489 #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
491 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
492 #define TME_ACTIVATE_POLICY_AES_XTS_128 0
494 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
496 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
497 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
499 /* Values for mktme_status (SW only construct) */
500 #define MKTME_ENABLED 0
501 #define MKTME_DISABLED 1
502 #define MKTME_UNINITIALIZED 2
503 static int mktme_status = MKTME_UNINITIALIZED;
505 static void detect_tme(struct cpuinfo_x86 *c)
507 u64 tme_activate, tme_policy, tme_crypto_algs;
508 int keyid_bits = 0, nr_keyids = 0;
509 static u64 tme_activate_cpu0 = 0;
511 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
513 if (mktme_status != MKTME_UNINITIALIZED) {
514 if (tme_activate != tme_activate_cpu0) {
516 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
517 pr_err_once("x86/tme: MKTME is not usable\n");
518 mktme_status = MKTME_DISABLED;
520 /* Proceed. We may need to exclude bits from x86_phys_bits. */
523 tme_activate_cpu0 = tme_activate;
526 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
527 pr_info_once("x86/tme: not enabled by BIOS\n");
528 mktme_status = MKTME_DISABLED;
532 if (mktme_status != MKTME_UNINITIALIZED)
533 goto detect_keyid_bits;
535 pr_info("x86/tme: enabled by BIOS\n");
537 tme_policy = TME_ACTIVATE_POLICY(tme_activate);
538 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
539 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
541 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
542 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
543 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
545 mktme_status = MKTME_DISABLED;
548 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
549 nr_keyids = (1UL << keyid_bits) - 1;
551 pr_info_once("x86/mktme: enabled by BIOS\n");
552 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
554 pr_info_once("x86/mktme: disabled by BIOS\n");
557 if (mktme_status == MKTME_UNINITIALIZED) {
558 /* MKTME is usable */
559 mktme_status = MKTME_ENABLED;
563 * KeyID bits effectively lower the number of physical address
564 * bits. Update cpuinfo_x86::x86_phys_bits accordingly.
566 c->x86_phys_bits -= keyid_bits;
569 static void init_cpuid_fault(struct cpuinfo_x86 *c)
573 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
574 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
575 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
579 static void init_intel_misc_features(struct cpuinfo_x86 *c)
583 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
586 /* Clear all MISC features */
587 this_cpu_write(msr_misc_features_shadow, 0);
589 /* Check features and update capabilities and shadow control bits */
591 probe_xeon_phi_r3mwait(c);
593 msr = this_cpu_read(msr_misc_features_shadow);
594 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
597 static void split_lock_init(void);
598 static void bus_lock_init(void);
600 static void init_intel(struct cpuinfo_x86 *c)
604 intel_workarounds(c);
607 * Detect the extended topology information if available. This
608 * will reinitialise the initial_apicid which will be used
609 * in init_intel_cacheinfo()
611 detect_extended_topology(c);
613 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
615 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
618 detect_num_cpu_cores(c);
624 init_intel_cacheinfo(c);
626 if (c->cpuid_level > 9) {
627 unsigned eax = cpuid_eax(10);
628 /* Check for version and the number of counters */
629 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
630 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
633 if (cpu_has(c, X86_FEATURE_XMM2))
634 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
636 if (boot_cpu_has(X86_FEATURE_DS)) {
639 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
640 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
641 set_cpu_cap(c, X86_FEATURE_BTS);
642 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
643 set_cpu_cap(c, X86_FEATURE_PEBS);
646 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
647 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
648 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
650 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
651 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
652 set_cpu_bug(c, X86_BUG_MONITOR);
656 c->x86_cache_alignment = c->x86_clflush_size * 2;
658 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
661 * Names for the Pentium II/Celeron processors
662 * detectable only by also checking the cache size.
663 * Dixon is NOT a Celeron.
666 unsigned int l2 = c->x86_cache_size;
669 switch (c->x86_model) {
672 p = "Celeron (Covington)";
674 p = "Mobile Pentium II (Dixon)";
679 p = "Celeron (Mendocino)";
680 else if (c->x86_stepping == 0 || c->x86_stepping == 5)
686 p = "Celeron (Coppermine)";
691 strcpy(c->x86_model_id, p);
695 set_cpu_cap(c, X86_FEATURE_P4);
697 set_cpu_cap(c, X86_FEATURE_P3);
700 /* Work around errata */
703 init_ia32_feat_ctl(c);
705 if (cpu_has(c, X86_FEATURE_TME))
708 init_intel_misc_features(c);
713 intel_init_thermal(c);
717 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
720 * Intel PIII Tualatin. This comes in two flavours.
721 * One has 256kb of cache, the other 512. We have no way
722 * to determine which, so we use a boottime override
723 * for the 512kb model, and assume 256 otherwise.
725 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
729 * Intel Quark SoC X1000 contains a 4-way set associative
730 * 16K cache with a 16 byte cache line and 256 lines per tag
732 if ((c->x86 == 5) && (c->x86_model == 9))
738 #define TLB_INST_4K 0x01
739 #define TLB_INST_4M 0x02
740 #define TLB_INST_2M_4M 0x03
742 #define TLB_INST_ALL 0x05
743 #define TLB_INST_1G 0x06
745 #define TLB_DATA_4K 0x11
746 #define TLB_DATA_4M 0x12
747 #define TLB_DATA_2M_4M 0x13
748 #define TLB_DATA_4K_4M 0x14
750 #define TLB_DATA_1G 0x16
752 #define TLB_DATA0_4K 0x21
753 #define TLB_DATA0_4M 0x22
754 #define TLB_DATA0_2M_4M 0x23
757 #define STLB_4K_2M 0x42
759 static const struct _tlb_table intel_tlb_table[] = {
760 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
761 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
762 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
763 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
764 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
765 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
766 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
767 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
768 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
769 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
770 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
771 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
772 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
773 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
774 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
775 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
776 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
777 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
778 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
779 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
780 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
781 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
782 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
783 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
784 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
785 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
786 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
787 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
788 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
789 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
790 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
791 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
792 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
793 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
794 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
795 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
799 static void intel_tlb_lookup(const unsigned char desc)
805 /* look up this descriptor in the table */
806 for (k = 0; intel_tlb_table[k].descriptor != desc &&
807 intel_tlb_table[k].descriptor != 0; k++)
810 if (intel_tlb_table[k].tlb_type == 0)
813 switch (intel_tlb_table[k].tlb_type) {
815 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
816 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
817 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
818 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
821 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
822 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
823 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
824 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
825 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
826 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
827 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
828 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
829 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
830 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
831 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
832 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
835 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
836 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
837 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
838 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
839 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
840 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
843 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
844 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
847 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
848 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
851 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
852 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
853 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
854 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
858 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
859 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
863 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
864 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
867 case TLB_DATA0_2M_4M:
868 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
869 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
870 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
871 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
874 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
875 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
876 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
877 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
880 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
881 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
886 static void intel_detect_tlb(struct cpuinfo_x86 *c)
889 unsigned int regs[4];
890 unsigned char *desc = (unsigned char *)regs;
892 if (c->cpuid_level < 2)
895 /* Number of times to iterate */
896 n = cpuid_eax(2) & 0xFF;
898 for (i = 0 ; i < n ; i++) {
899 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
901 /* If bit 31 is set, this is an unknown format */
902 for (j = 0 ; j < 3 ; j++)
903 if (regs[j] & (1 << 31))
906 /* Byte 0 is level count, not a descriptor */
907 for (j = 1 ; j < 16 ; j++)
908 intel_tlb_lookup(desc[j]);
912 static const struct cpu_dev intel_cpu_dev = {
914 .c_ident = { "GenuineIntel" },
917 { .family = 4, .model_names =
919 [0] = "486 DX-25/33",
930 { .family = 5, .model_names =
932 [0] = "Pentium 60/66 A-step",
933 [1] = "Pentium 60/66",
934 [2] = "Pentium 75 - 200",
935 [3] = "OverDrive PODP5V83",
937 [7] = "Mobile Pentium 75 - 200",
938 [8] = "Mobile Pentium MMX",
939 [9] = "Quark SoC X1000",
942 { .family = 6, .model_names =
944 [0] = "Pentium Pro A-step",
946 [3] = "Pentium II (Klamath)",
947 [4] = "Pentium II (Deschutes)",
948 [5] = "Pentium II (Deschutes)",
949 [6] = "Mobile Pentium II",
950 [7] = "Pentium III (Katmai)",
951 [8] = "Pentium III (Coppermine)",
952 [10] = "Pentium III (Cascades)",
953 [11] = "Pentium III (Tualatin)",
956 { .family = 15, .model_names =
958 [0] = "Pentium 4 (Unknown)",
959 [1] = "Pentium 4 (Willamette)",
960 [2] = "Pentium 4 (Northwood)",
961 [4] = "Pentium 4 (Foster)",
962 [5] = "Pentium 4 (Foster)",
966 .legacy_cache_size = intel_size_cache,
968 .c_detect_tlb = intel_detect_tlb,
969 .c_early_init = early_init_intel,
970 .c_bsp_init = bsp_init_intel,
971 .c_init = init_intel,
972 .c_x86_vendor = X86_VENDOR_INTEL,
975 cpu_dev_register(intel_cpu_dev);
978 #define pr_fmt(fmt) "x86/split lock detection: " fmt
980 static const struct {
982 enum split_lock_detect_state state;
983 } sld_options[] __initconst = {
985 { "warn", sld_warn },
986 { "fatal", sld_fatal },
987 { "ratelimit:", sld_ratelimit },
990 static struct ratelimit_state bld_ratelimit;
992 static unsigned int sysctl_sld_mitigate = 1;
993 static DEFINE_SEMAPHORE(buslock_sem, 1);
995 #ifdef CONFIG_PROC_SYSCTL
996 static struct ctl_table sld_sysctls[] = {
998 .procname = "split_lock_mitigate",
999 .data = &sysctl_sld_mitigate,
1000 .maxlen = sizeof(unsigned int),
1002 .proc_handler = proc_douintvec_minmax,
1003 .extra1 = SYSCTL_ZERO,
1004 .extra2 = SYSCTL_ONE,
1008 static int __init sld_mitigate_sysctl_init(void)
1010 register_sysctl_init("kernel", sld_sysctls);
1014 late_initcall(sld_mitigate_sysctl_init);
1017 static inline bool match_option(const char *arg, int arglen, const char *opt)
1019 int len = strlen(opt), ratelimit;
1021 if (strncmp(arg, opt, len))
1025 * Min ratelimit is 1 bus lock/sec.
1026 * Max ratelimit is 1000 bus locks/sec.
1028 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1029 ratelimit > 0 && ratelimit <= 1000) {
1030 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1031 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1035 return len == arglen;
1038 static bool split_lock_verify_msr(bool on)
1042 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1045 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1047 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1048 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1050 rdmsrl(MSR_TEST_CTRL, tmp);
1054 static void __init sld_state_setup(void)
1056 enum split_lock_detect_state state = sld_warn;
1060 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1061 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1064 ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1067 for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1068 if (match_option(arg, ret, sld_options[i].option)) {
1069 state = sld_options[i].state;
1077 static void __init __split_lock_setup(void)
1079 if (!split_lock_verify_msr(false)) {
1080 pr_info("MSR access failed: Disabled\n");
1084 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1086 if (!split_lock_verify_msr(true)) {
1087 pr_info("MSR access failed: Disabled\n");
1091 /* Restore the MSR to its cached value. */
1092 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1094 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1098 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1099 * is not implemented as one thread could undo the setting of the other
1100 * thread immediately after dropping the lock anyway.
1102 static void sld_update_msr(bool on)
1104 u64 test_ctrl_val = msr_test_ctrl_cache;
1107 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1109 wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1112 static void split_lock_init(void)
1115 * #DB for bus lock handles ratelimit and #AC for split lock is
1118 if (sld_state == sld_ratelimit) {
1119 split_lock_verify_msr(false);
1123 if (cpu_model_supports_sld)
1124 split_lock_verify_msr(sld_state != sld_off);
1127 static void __split_lock_reenable_unlock(struct work_struct *work)
1129 sld_update_msr(true);
1133 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1135 static void __split_lock_reenable(struct work_struct *work)
1137 sld_update_msr(true);
1139 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1142 * If a CPU goes offline with pending delayed work to re-enable split lock
1143 * detection then the delayed work will be executed on some other CPU. That
1144 * handles releasing the buslock_sem, but because it executes on a
1145 * different CPU probably won't re-enable split lock detection. This is a
1146 * problem on HT systems since the sibling CPU on the same core may then be
1147 * left running with split lock detection disabled.
1149 * Unconditionally re-enable detection here.
1151 static int splitlock_cpu_offline(unsigned int cpu)
1153 sld_update_msr(true);
1158 static void split_lock_warn(unsigned long ip)
1160 struct delayed_work *work;
1163 if (!current->reported_split_lock)
1164 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1165 current->comm, current->pid, ip);
1166 current->reported_split_lock = 1;
1168 if (sysctl_sld_mitigate) {
1171 * sleep 10ms before trying to execute split lock.
1173 if (msleep_interruptible(10) > 0)
1177 * only allow one buslocked disabled core at a time.
1179 if (down_interruptible(&buslock_sem) == -EINTR)
1181 work = &sl_reenable_unlock;
1183 work = &sl_reenable;
1187 schedule_delayed_work_on(cpu, work, 2);
1189 /* Disable split lock detection on this CPU to make progress */
1190 sld_update_msr(false);
1194 bool handle_guest_split_lock(unsigned long ip)
1196 if (sld_state == sld_warn) {
1197 split_lock_warn(ip);
1201 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1202 current->comm, current->pid,
1203 sld_state == sld_fatal ? "fatal" : "bogus", ip);
1205 current->thread.error_code = 0;
1206 current->thread.trap_nr = X86_TRAP_AC;
1207 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1210 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1212 static void bus_lock_init(void)
1216 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1219 rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1221 if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1222 (sld_state == sld_warn || sld_state == sld_fatal)) ||
1223 sld_state == sld_off) {
1225 * Warn and fatal are handled by #AC for split lock if #AC for
1226 * split lock is supported.
1228 val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1230 val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1233 wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1236 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1238 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1240 split_lock_warn(regs->ip);
1244 void handle_bus_lock(struct pt_regs *regs)
1246 switch (sld_state) {
1250 /* Enforce no more than bld_ratelimit bus locks/sec. */
1251 while (!__ratelimit(&bld_ratelimit))
1253 /* Warn on the bus lock. */
1256 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1257 current->comm, current->pid, regs->ip);
1260 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1266 * CPU models that are known to have the per-core split-lock detection
1267 * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1269 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1270 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0),
1271 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0),
1272 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0),
1276 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1278 const struct x86_cpu_id *m;
1281 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1284 /* Check for CPUs that have support but do not enumerate it: */
1285 m = x86_match_cpu(split_lock_cpu_ids);
1289 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1293 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1294 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is. All CPUs that set
1295 * it have split lock detection.
1297 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1298 if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1301 /* CPU is not in the model list and does not have the MSR bit: */
1305 cpu_model_supports_sld = true;
1306 __split_lock_setup();
1309 static void sld_state_show(void)
1311 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1312 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1315 switch (sld_state) {
1317 pr_info("disabled\n");
1320 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1321 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1322 if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1323 "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1324 pr_warn("No splitlock CPU offline handler\n");
1325 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1326 pr_info("#DB: warning on user-space bus_locks\n");
1330 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1331 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1332 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1333 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1334 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1335 " from non-WB" : "");
1339 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1340 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1345 void __init sld_setup(struct cpuinfo_x86 *c)
1347 split_lock_setup(c);
1352 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
1355 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1357 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1358 * a hybrid processor. If the processor is not hybrid, returns 0.
1360 u8 get_this_hybrid_cpu_type(void)
1362 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1365 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;