2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
45 struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
52 /* inode that owns this data */
55 /* starting offset in the inode for our pages */
58 /* number of bytes in the inode we're working on */
61 /* number of bytes on disk */
62 unsigned long compressed_len;
64 /* the compression algorithm for this bio */
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
74 /* for reads, this is the bio we are copying the data into */
78 * the start of a variable length array of checksums only
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
93 return sizeof(struct compressed_bio) +
94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
102 nr_vecs = bio_get_nr_vecs(bdev);
103 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
106 static int check_compressed_csum(struct inode *inode,
107 struct compressed_bio *cb,
115 u32 *cb_sum = &cb->sums;
117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
120 for (i = 0; i < cb->nr_pages; i++) {
121 page = cb->compressed_pages[i];
124 kaddr = kmap_atomic(page);
125 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126 btrfs_csum_final(csum, (char *)&csum);
127 kunmap_atomic(kaddr);
129 if (csum != *cb_sum) {
130 btrfs_info(BTRFS_I(inode)->root->fs_info,
131 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132 btrfs_ino(inode), disk_start, csum, *cb_sum,
145 /* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
149 * This allows the checksumming and other IO error handling routines
152 * The compressed pages are freed here, and it must be run
155 static void end_compressed_bio_read(struct bio *bio)
157 struct compressed_bio *cb = bio->bi_private;
166 /* if there are more bios still pending for this compressed
169 if (!atomic_dec_and_test(&cb->pending_bios))
173 ret = check_compressed_csum(inode, cb,
174 (u64)bio->bi_iter.bi_sector << 9);
178 /* ok, we're the last bio for this extent, lets start
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
191 /* release the compressed pages */
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
199 /* do io completion on the original bio */
201 bio_io_error(cb->orig_bio);
204 struct bio_vec *bvec;
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
210 bio_for_each_segment_all(bvec, cb->orig_bio, i)
211 SetPageChecked(bvec->bv_page);
213 bio_endio(cb->orig_bio);
216 /* finally free the cb struct */
217 kfree(cb->compressed_pages);
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
227 static noinline void end_compressed_writeback(struct inode *inode,
228 const struct compressed_bio *cb)
230 unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
231 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
232 struct page *pages[16];
233 unsigned long nr_pages = end_index - index + 1;
238 mapping_set_error(inode->i_mapping, -EIO);
240 while (nr_pages > 0) {
241 ret = find_get_pages_contig(inode->i_mapping, index,
243 nr_pages, ARRAY_SIZE(pages)), pages);
249 for (i = 0; i < ret; i++) {
251 SetPageError(pages[i]);
252 end_page_writeback(pages[i]);
253 page_cache_release(pages[i]);
258 /* the inode may be gone now */
262 * do the cleanup once all the compressed pages hit the disk.
263 * This will clear writeback on the file pages and free the compressed
266 * This also calls the writeback end hooks for the file pages so that
267 * metadata and checksums can be updated in the file.
269 static void end_compressed_bio_write(struct bio *bio)
271 struct extent_io_tree *tree;
272 struct compressed_bio *cb = bio->bi_private;
280 /* if there are more bios still pending for this compressed
283 if (!atomic_dec_and_test(&cb->pending_bios))
286 /* ok, we're the last bio for this extent, step one is to
287 * call back into the FS and do all the end_io operations
290 tree = &BTRFS_I(inode)->io_tree;
291 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
292 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
294 cb->start + cb->len - 1,
296 bio->bi_error ? 0 : 1);
297 cb->compressed_pages[0]->mapping = NULL;
299 end_compressed_writeback(inode, cb);
300 /* note, our inode could be gone now */
303 * release the compressed pages, these came from alloc_page and
304 * are not attached to the inode at all
307 for (index = 0; index < cb->nr_pages; index++) {
308 page = cb->compressed_pages[index];
309 page->mapping = NULL;
310 page_cache_release(page);
313 /* finally free the cb struct */
314 kfree(cb->compressed_pages);
321 * worker function to build and submit bios for previously compressed pages.
322 * The corresponding pages in the inode should be marked for writeback
323 * and the compressed pages should have a reference on them for dropping
324 * when the IO is complete.
326 * This also checksums the file bytes and gets things ready for
329 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
330 unsigned long len, u64 disk_start,
331 unsigned long compressed_len,
332 struct page **compressed_pages,
333 unsigned long nr_pages)
335 struct bio *bio = NULL;
336 struct btrfs_root *root = BTRFS_I(inode)->root;
337 struct compressed_bio *cb;
338 unsigned long bytes_left;
339 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
342 u64 first_byte = disk_start;
343 struct block_device *bdev;
345 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
347 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
348 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
351 atomic_set(&cb->pending_bios, 0);
357 cb->compressed_pages = compressed_pages;
358 cb->compressed_len = compressed_len;
360 cb->nr_pages = nr_pages;
362 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
364 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
369 bio->bi_private = cb;
370 bio->bi_end_io = end_compressed_bio_write;
371 atomic_inc(&cb->pending_bios);
373 /* create and submit bios for the compressed pages */
374 bytes_left = compressed_len;
375 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
376 page = compressed_pages[pg_index];
377 page->mapping = inode->i_mapping;
378 if (bio->bi_iter.bi_size)
379 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
385 page->mapping = NULL;
386 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
391 * inc the count before we submit the bio so
392 * we know the end IO handler won't happen before
393 * we inc the count. Otherwise, the cb might get
394 * freed before we're done setting it up
396 atomic_inc(&cb->pending_bios);
397 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
398 BTRFS_WQ_ENDIO_DATA);
399 BUG_ON(ret); /* -ENOMEM */
402 ret = btrfs_csum_one_bio(root, inode, bio,
404 BUG_ON(ret); /* -ENOMEM */
407 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
408 BUG_ON(ret); /* -ENOMEM */
412 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
414 bio->bi_private = cb;
415 bio->bi_end_io = end_compressed_bio_write;
416 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
418 if (bytes_left < PAGE_CACHE_SIZE) {
419 btrfs_info(BTRFS_I(inode)->root->fs_info,
420 "bytes left %lu compress len %lu nr %lu",
421 bytes_left, cb->compressed_len, cb->nr_pages);
423 bytes_left -= PAGE_CACHE_SIZE;
424 first_byte += PAGE_CACHE_SIZE;
429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430 BUG_ON(ret); /* -ENOMEM */
433 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434 BUG_ON(ret); /* -ENOMEM */
437 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438 BUG_ON(ret); /* -ENOMEM */
444 static noinline int add_ra_bio_pages(struct inode *inode,
446 struct compressed_bio *cb)
448 unsigned long end_index;
449 unsigned long pg_index;
451 u64 isize = i_size_read(inode);
454 unsigned long nr_pages = 0;
455 struct extent_map *em;
456 struct address_space *mapping = inode->i_mapping;
457 struct extent_map_tree *em_tree;
458 struct extent_io_tree *tree;
462 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
463 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
464 em_tree = &BTRFS_I(inode)->extent_tree;
465 tree = &BTRFS_I(inode)->io_tree;
470 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
472 while (last_offset < compressed_end) {
473 pg_index = last_offset >> PAGE_CACHE_SHIFT;
475 if (pg_index > end_index)
479 page = radix_tree_lookup(&mapping->page_tree, pg_index);
481 if (page && !radix_tree_exceptional_entry(page)) {
488 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
493 if (add_to_page_cache_lru(page, mapping, pg_index,
495 page_cache_release(page);
499 end = last_offset + PAGE_CACHE_SIZE - 1;
501 * at this point, we have a locked page in the page cache
502 * for these bytes in the file. But, we have to make
503 * sure they map to this compressed extent on disk.
505 set_page_extent_mapped(page);
506 lock_extent(tree, last_offset, end);
507 read_lock(&em_tree->lock);
508 em = lookup_extent_mapping(em_tree, last_offset,
510 read_unlock(&em_tree->lock);
512 if (!em || last_offset < em->start ||
513 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
514 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
516 unlock_extent(tree, last_offset, end);
518 page_cache_release(page);
523 if (page->index == end_index) {
525 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
529 zeros = PAGE_CACHE_SIZE - zero_offset;
530 userpage = kmap_atomic(page);
531 memset(userpage + zero_offset, 0, zeros);
532 flush_dcache_page(page);
533 kunmap_atomic(userpage);
537 ret = bio_add_page(cb->orig_bio, page,
540 if (ret == PAGE_CACHE_SIZE) {
542 page_cache_release(page);
544 unlock_extent(tree, last_offset, end);
546 page_cache_release(page);
550 last_offset += PAGE_CACHE_SIZE;
556 * for a compressed read, the bio we get passed has all the inode pages
557 * in it. We don't actually do IO on those pages but allocate new ones
558 * to hold the compressed pages on disk.
560 * bio->bi_iter.bi_sector points to the compressed extent on disk
561 * bio->bi_io_vec points to all of the inode pages
562 * bio->bi_vcnt is a count of pages
564 * After the compressed pages are read, we copy the bytes into the
565 * bio we were passed and then call the bio end_io calls
567 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
568 int mirror_num, unsigned long bio_flags)
570 struct extent_io_tree *tree;
571 struct extent_map_tree *em_tree;
572 struct compressed_bio *cb;
573 struct btrfs_root *root = BTRFS_I(inode)->root;
574 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
575 unsigned long compressed_len;
576 unsigned long nr_pages;
577 unsigned long pg_index;
579 struct block_device *bdev;
580 struct bio *comp_bio;
581 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
584 struct extent_map *em;
589 tree = &BTRFS_I(inode)->io_tree;
590 em_tree = &BTRFS_I(inode)->extent_tree;
592 /* we need the actual starting offset of this extent in the file */
593 read_lock(&em_tree->lock);
594 em = lookup_extent_mapping(em_tree,
595 page_offset(bio->bi_io_vec->bv_page),
597 read_unlock(&em_tree->lock);
601 compressed_len = em->block_len;
602 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
606 atomic_set(&cb->pending_bios, 0);
609 cb->mirror_num = mirror_num;
612 cb->start = em->orig_start;
614 em_start = em->start;
619 cb->len = uncompressed_len;
620 cb->compressed_len = compressed_len;
621 cb->compress_type = extent_compress_type(bio_flags);
624 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
625 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
627 if (!cb->compressed_pages)
630 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
632 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
635 if (!cb->compressed_pages[pg_index]) {
636 faili = pg_index - 1;
641 faili = nr_pages - 1;
642 cb->nr_pages = nr_pages;
644 /* In the parent-locked case, we only locked the range we are
645 * interested in. In all other cases, we can opportunistically
646 * cache decompressed data that goes beyond the requested range. */
647 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
648 add_ra_bio_pages(inode, em_start + em_len, cb);
650 /* include any pages we added in add_ra-bio_pages */
651 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
652 cb->len = uncompressed_len;
654 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
657 comp_bio->bi_private = cb;
658 comp_bio->bi_end_io = end_compressed_bio_read;
659 atomic_inc(&cb->pending_bios);
661 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 page = cb->compressed_pages[pg_index];
663 page->mapping = inode->i_mapping;
664 page->index = em_start >> PAGE_CACHE_SHIFT;
666 if (comp_bio->bi_iter.bi_size)
667 ret = tree->ops->merge_bio_hook(READ, page, 0,
673 page->mapping = NULL;
674 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
678 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
679 BTRFS_WQ_ENDIO_DATA);
680 BUG_ON(ret); /* -ENOMEM */
683 * inc the count before we submit the bio so
684 * we know the end IO handler won't happen before
685 * we inc the count. Otherwise, the cb might get
686 * freed before we're done setting it up
688 atomic_inc(&cb->pending_bios);
690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 ret = btrfs_lookup_bio_sums(root, inode,
693 BUG_ON(ret); /* -ENOMEM */
695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
698 ret = btrfs_map_bio(root, READ, comp_bio,
707 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
710 comp_bio->bi_private = cb;
711 comp_bio->bi_end_io = end_compressed_bio_read;
713 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
715 cur_disk_byte += PAGE_CACHE_SIZE;
719 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
720 BTRFS_WQ_ENDIO_DATA);
721 BUG_ON(ret); /* -ENOMEM */
723 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
724 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
725 BUG_ON(ret); /* -ENOMEM */
728 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
739 __free_page(cb->compressed_pages[faili]);
743 kfree(cb->compressed_pages);
751 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
752 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
753 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
754 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
755 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
757 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
758 &btrfs_zlib_compress,
762 void __init btrfs_init_compress(void)
766 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
767 INIT_LIST_HEAD(&comp_idle_workspace[i]);
768 spin_lock_init(&comp_workspace_lock[i]);
769 atomic_set(&comp_alloc_workspace[i], 0);
770 init_waitqueue_head(&comp_workspace_wait[i]);
775 * this finds an available workspace or allocates a new one
776 * ERR_PTR is returned if things go bad.
778 static struct list_head *find_workspace(int type)
780 struct list_head *workspace;
781 int cpus = num_online_cpus();
784 struct list_head *idle_workspace = &comp_idle_workspace[idx];
785 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
786 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
787 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
788 int *num_workspace = &comp_num_workspace[idx];
790 spin_lock(workspace_lock);
791 if (!list_empty(idle_workspace)) {
792 workspace = idle_workspace->next;
795 spin_unlock(workspace_lock);
799 if (atomic_read(alloc_workspace) > cpus) {
802 spin_unlock(workspace_lock);
803 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
806 finish_wait(workspace_wait, &wait);
809 atomic_inc(alloc_workspace);
810 spin_unlock(workspace_lock);
812 workspace = btrfs_compress_op[idx]->alloc_workspace();
813 if (IS_ERR(workspace)) {
814 atomic_dec(alloc_workspace);
815 wake_up(workspace_wait);
821 * put a workspace struct back on the list or free it if we have enough
822 * idle ones sitting around
824 static void free_workspace(int type, struct list_head *workspace)
827 struct list_head *idle_workspace = &comp_idle_workspace[idx];
828 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
829 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
830 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
831 int *num_workspace = &comp_num_workspace[idx];
833 spin_lock(workspace_lock);
834 if (*num_workspace < num_online_cpus()) {
835 list_add(workspace, idle_workspace);
837 spin_unlock(workspace_lock);
840 spin_unlock(workspace_lock);
842 btrfs_compress_op[idx]->free_workspace(workspace);
843 atomic_dec(alloc_workspace);
846 if (waitqueue_active(workspace_wait))
847 wake_up(workspace_wait);
851 * cleanup function for module exit
853 static void free_workspaces(void)
855 struct list_head *workspace;
858 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
859 while (!list_empty(&comp_idle_workspace[i])) {
860 workspace = comp_idle_workspace[i].next;
862 btrfs_compress_op[i]->free_workspace(workspace);
863 atomic_dec(&comp_alloc_workspace[i]);
869 * given an address space and start/len, compress the bytes.
871 * pages are allocated to hold the compressed result and stored
874 * out_pages is used to return the number of pages allocated. There
875 * may be pages allocated even if we return an error
877 * total_in is used to return the number of bytes actually read. It
878 * may be smaller then len if we had to exit early because we
879 * ran out of room in the pages array or because we cross the
882 * total_out is used to return the total number of compressed bytes
884 * max_out tells us the max number of bytes that we're allowed to
887 int btrfs_compress_pages(int type, struct address_space *mapping,
888 u64 start, unsigned long len,
890 unsigned long nr_dest_pages,
891 unsigned long *out_pages,
892 unsigned long *total_in,
893 unsigned long *total_out,
894 unsigned long max_out)
896 struct list_head *workspace;
899 workspace = find_workspace(type);
900 if (IS_ERR(workspace))
901 return PTR_ERR(workspace);
903 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
905 nr_dest_pages, out_pages,
908 free_workspace(type, workspace);
913 * pages_in is an array of pages with compressed data.
915 * disk_start is the starting logical offset of this array in the file
917 * bvec is a bio_vec of pages from the file that we want to decompress into
919 * vcnt is the count of pages in the biovec
921 * srclen is the number of bytes in pages_in
923 * The basic idea is that we have a bio that was created by readpages.
924 * The pages in the bio are for the uncompressed data, and they may not
925 * be contiguous. They all correspond to the range of bytes covered by
926 * the compressed extent.
928 static int btrfs_decompress_biovec(int type, struct page **pages_in,
929 u64 disk_start, struct bio_vec *bvec,
930 int vcnt, size_t srclen)
932 struct list_head *workspace;
935 workspace = find_workspace(type);
936 if (IS_ERR(workspace))
937 return PTR_ERR(workspace);
939 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
942 free_workspace(type, workspace);
947 * a less complex decompression routine. Our compressed data fits in a
948 * single page, and we want to read a single page out of it.
949 * start_byte tells us the offset into the compressed data we're interested in
951 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
952 unsigned long start_byte, size_t srclen, size_t destlen)
954 struct list_head *workspace;
957 workspace = find_workspace(type);
958 if (IS_ERR(workspace))
959 return PTR_ERR(workspace);
961 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
962 dest_page, start_byte,
965 free_workspace(type, workspace);
969 void btrfs_exit_compress(void)
975 * Copy uncompressed data from working buffer to pages.
977 * buf_start is the byte offset we're of the start of our workspace buffer.
979 * total_out is the last byte of the buffer
981 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
982 unsigned long total_out, u64 disk_start,
983 struct bio_vec *bvec, int vcnt,
984 unsigned long *pg_index,
985 unsigned long *pg_offset)
987 unsigned long buf_offset;
988 unsigned long current_buf_start;
989 unsigned long start_byte;
990 unsigned long working_bytes = total_out - buf_start;
993 struct page *page_out = bvec[*pg_index].bv_page;
996 * start byte is the first byte of the page we're currently
997 * copying into relative to the start of the compressed data.
999 start_byte = page_offset(page_out) - disk_start;
1001 /* we haven't yet hit data corresponding to this page */
1002 if (total_out <= start_byte)
1006 * the start of the data we care about is offset into
1007 * the middle of our working buffer
1009 if (total_out > start_byte && buf_start < start_byte) {
1010 buf_offset = start_byte - buf_start;
1011 working_bytes -= buf_offset;
1015 current_buf_start = buf_start;
1017 /* copy bytes from the working buffer into the pages */
1018 while (working_bytes > 0) {
1019 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1020 PAGE_CACHE_SIZE - buf_offset);
1021 bytes = min(bytes, working_bytes);
1022 kaddr = kmap_atomic(page_out);
1023 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1024 kunmap_atomic(kaddr);
1025 flush_dcache_page(page_out);
1027 *pg_offset += bytes;
1028 buf_offset += bytes;
1029 working_bytes -= bytes;
1030 current_buf_start += bytes;
1032 /* check if we need to pick another page */
1033 if (*pg_offset == PAGE_CACHE_SIZE) {
1035 if (*pg_index >= vcnt)
1038 page_out = bvec[*pg_index].bv_page;
1040 start_byte = page_offset(page_out) - disk_start;
1043 * make sure our new page is covered by this
1046 if (total_out <= start_byte)
1050 * the next page in the biovec might not be adjacent
1051 * to the last page, but it might still be found
1052 * inside this working buffer. bump our offset pointer
1054 if (total_out > start_byte &&
1055 current_buf_start < start_byte) {
1056 buf_offset = start_byte - buf_start;
1057 working_bytes = total_out - start_byte;
1058 current_buf_start = buf_start + buf_offset;
1067 * When uncompressing data, we need to make sure and zero any parts of
1068 * the biovec that were not filled in by the decompression code. pg_index
1069 * and pg_offset indicate the last page and the last offset of that page
1070 * that have been filled in. This will zero everything remaining in the
1073 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1074 unsigned long pg_index,
1075 unsigned long pg_offset)
1077 while (pg_index < vcnt) {
1078 struct page *page = bvec[pg_index].bv_page;
1079 unsigned long off = bvec[pg_index].bv_offset;
1080 unsigned long len = bvec[pg_index].bv_len;
1082 if (pg_offset < off)
1084 if (pg_offset < off + len) {
1085 unsigned long bytes = off + len - pg_offset;
1088 kaddr = kmap_atomic(page);
1089 memset(kaddr + pg_offset, 0, bytes);
1090 kunmap_atomic(kaddr);