]> Git Repo - linux.git/blob - fs/btrfs/compression.c
block: add a bi_error field to struct bio
[linux.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46         /* number of bios pending for this compressed extent */
47         atomic_t pending_bios;
48
49         /* the pages with the compressed data on them */
50         struct page **compressed_pages;
51
52         /* inode that owns this data */
53         struct inode *inode;
54
55         /* starting offset in the inode for our pages */
56         u64 start;
57
58         /* number of bytes in the inode we're working on */
59         unsigned long len;
60
61         /* number of bytes on disk */
62         unsigned long compressed_len;
63
64         /* the compression algorithm for this bio */
65         int compress_type;
66
67         /* number of compressed pages in the array */
68         unsigned long nr_pages;
69
70         /* IO errors */
71         int errors;
72         int mirror_num;
73
74         /* for reads, this is the bio we are copying the data into */
75         struct bio *orig_bio;
76
77         /*
78          * the start of a variable length array of checksums only
79          * used by reads
80          */
81         u32 sums;
82 };
83
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85                                    u64 disk_start, struct bio_vec *bvec,
86                                    int vcnt, size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_root *root,
89                                       unsigned long disk_size)
90 {
91         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93         return sizeof(struct compressed_bio) +
94                 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98                                         u64 first_byte, gfp_t gfp_flags)
99 {
100         int nr_vecs;
101
102         nr_vecs = bio_get_nr_vecs(bdev);
103         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 }
105
106 static int check_compressed_csum(struct inode *inode,
107                                  struct compressed_bio *cb,
108                                  u64 disk_start)
109 {
110         int ret;
111         struct page *page;
112         unsigned long i;
113         char *kaddr;
114         u32 csum;
115         u32 *cb_sum = &cb->sums;
116
117         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118                 return 0;
119
120         for (i = 0; i < cb->nr_pages; i++) {
121                 page = cb->compressed_pages[i];
122                 csum = ~(u32)0;
123
124                 kaddr = kmap_atomic(page);
125                 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126                 btrfs_csum_final(csum, (char *)&csum);
127                 kunmap_atomic(kaddr);
128
129                 if (csum != *cb_sum) {
130                         btrfs_info(BTRFS_I(inode)->root->fs_info,
131                            "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132                            btrfs_ino(inode), disk_start, csum, *cb_sum,
133                            cb->mirror_num);
134                         ret = -EIO;
135                         goto fail;
136                 }
137                 cb_sum++;
138
139         }
140         ret = 0;
141 fail:
142         return ret;
143 }
144
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio)
156 {
157         struct compressed_bio *cb = bio->bi_private;
158         struct inode *inode;
159         struct page *page;
160         unsigned long index;
161         int ret;
162
163         if (bio->bi_error)
164                 cb->errors = 1;
165
166         /* if there are more bios still pending for this compressed
167          * extent, just exit
168          */
169         if (!atomic_dec_and_test(&cb->pending_bios))
170                 goto out;
171
172         inode = cb->inode;
173         ret = check_compressed_csum(inode, cb,
174                                     (u64)bio->bi_iter.bi_sector << 9);
175         if (ret)
176                 goto csum_failed;
177
178         /* ok, we're the last bio for this extent, lets start
179          * the decompression.
180          */
181         ret = btrfs_decompress_biovec(cb->compress_type,
182                                       cb->compressed_pages,
183                                       cb->start,
184                                       cb->orig_bio->bi_io_vec,
185                                       cb->orig_bio->bi_vcnt,
186                                       cb->compressed_len);
187 csum_failed:
188         if (ret)
189                 cb->errors = 1;
190
191         /* release the compressed pages */
192         index = 0;
193         for (index = 0; index < cb->nr_pages; index++) {
194                 page = cb->compressed_pages[index];
195                 page->mapping = NULL;
196                 page_cache_release(page);
197         }
198
199         /* do io completion on the original bio */
200         if (cb->errors) {
201                 bio_io_error(cb->orig_bio);
202         } else {
203                 int i;
204                 struct bio_vec *bvec;
205
206                 /*
207                  * we have verified the checksum already, set page
208                  * checked so the end_io handlers know about it
209                  */
210                 bio_for_each_segment_all(bvec, cb->orig_bio, i)
211                         SetPageChecked(bvec->bv_page);
212
213                 bio_endio(cb->orig_bio);
214         }
215
216         /* finally free the cb struct */
217         kfree(cb->compressed_pages);
218         kfree(cb);
219 out:
220         bio_put(bio);
221 }
222
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline void end_compressed_writeback(struct inode *inode,
228                                               const struct compressed_bio *cb)
229 {
230         unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
231         unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
232         struct page *pages[16];
233         unsigned long nr_pages = end_index - index + 1;
234         int i;
235         int ret;
236
237         if (cb->errors)
238                 mapping_set_error(inode->i_mapping, -EIO);
239
240         while (nr_pages > 0) {
241                 ret = find_get_pages_contig(inode->i_mapping, index,
242                                      min_t(unsigned long,
243                                      nr_pages, ARRAY_SIZE(pages)), pages);
244                 if (ret == 0) {
245                         nr_pages -= 1;
246                         index += 1;
247                         continue;
248                 }
249                 for (i = 0; i < ret; i++) {
250                         if (cb->errors)
251                                 SetPageError(pages[i]);
252                         end_page_writeback(pages[i]);
253                         page_cache_release(pages[i]);
254                 }
255                 nr_pages -= ret;
256                 index += ret;
257         }
258         /* the inode may be gone now */
259 }
260
261 /*
262  * do the cleanup once all the compressed pages hit the disk.
263  * This will clear writeback on the file pages and free the compressed
264  * pages.
265  *
266  * This also calls the writeback end hooks for the file pages so that
267  * metadata and checksums can be updated in the file.
268  */
269 static void end_compressed_bio_write(struct bio *bio)
270 {
271         struct extent_io_tree *tree;
272         struct compressed_bio *cb = bio->bi_private;
273         struct inode *inode;
274         struct page *page;
275         unsigned long index;
276
277         if (bio->bi_error)
278                 cb->errors = 1;
279
280         /* if there are more bios still pending for this compressed
281          * extent, just exit
282          */
283         if (!atomic_dec_and_test(&cb->pending_bios))
284                 goto out;
285
286         /* ok, we're the last bio for this extent, step one is to
287          * call back into the FS and do all the end_io operations
288          */
289         inode = cb->inode;
290         tree = &BTRFS_I(inode)->io_tree;
291         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
292         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293                                          cb->start,
294                                          cb->start + cb->len - 1,
295                                          NULL,
296                                          bio->bi_error ? 0 : 1);
297         cb->compressed_pages[0]->mapping = NULL;
298
299         end_compressed_writeback(inode, cb);
300         /* note, our inode could be gone now */
301
302         /*
303          * release the compressed pages, these came from alloc_page and
304          * are not attached to the inode at all
305          */
306         index = 0;
307         for (index = 0; index < cb->nr_pages; index++) {
308                 page = cb->compressed_pages[index];
309                 page->mapping = NULL;
310                 page_cache_release(page);
311         }
312
313         /* finally free the cb struct */
314         kfree(cb->compressed_pages);
315         kfree(cb);
316 out:
317         bio_put(bio);
318 }
319
320 /*
321  * worker function to build and submit bios for previously compressed pages.
322  * The corresponding pages in the inode should be marked for writeback
323  * and the compressed pages should have a reference on them for dropping
324  * when the IO is complete.
325  *
326  * This also checksums the file bytes and gets things ready for
327  * the end io hooks.
328  */
329 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
330                                  unsigned long len, u64 disk_start,
331                                  unsigned long compressed_len,
332                                  struct page **compressed_pages,
333                                  unsigned long nr_pages)
334 {
335         struct bio *bio = NULL;
336         struct btrfs_root *root = BTRFS_I(inode)->root;
337         struct compressed_bio *cb;
338         unsigned long bytes_left;
339         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
340         int pg_index = 0;
341         struct page *page;
342         u64 first_byte = disk_start;
343         struct block_device *bdev;
344         int ret;
345         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
346
347         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
348         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
349         if (!cb)
350                 return -ENOMEM;
351         atomic_set(&cb->pending_bios, 0);
352         cb->errors = 0;
353         cb->inode = inode;
354         cb->start = start;
355         cb->len = len;
356         cb->mirror_num = 0;
357         cb->compressed_pages = compressed_pages;
358         cb->compressed_len = compressed_len;
359         cb->orig_bio = NULL;
360         cb->nr_pages = nr_pages;
361
362         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
363
364         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
365         if (!bio) {
366                 kfree(cb);
367                 return -ENOMEM;
368         }
369         bio->bi_private = cb;
370         bio->bi_end_io = end_compressed_bio_write;
371         atomic_inc(&cb->pending_bios);
372
373         /* create and submit bios for the compressed pages */
374         bytes_left = compressed_len;
375         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
376                 page = compressed_pages[pg_index];
377                 page->mapping = inode->i_mapping;
378                 if (bio->bi_iter.bi_size)
379                         ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
380                                                            PAGE_CACHE_SIZE,
381                                                            bio, 0);
382                 else
383                         ret = 0;
384
385                 page->mapping = NULL;
386                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
387                     PAGE_CACHE_SIZE) {
388                         bio_get(bio);
389
390                         /*
391                          * inc the count before we submit the bio so
392                          * we know the end IO handler won't happen before
393                          * we inc the count.  Otherwise, the cb might get
394                          * freed before we're done setting it up
395                          */
396                         atomic_inc(&cb->pending_bios);
397                         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
398                                         BTRFS_WQ_ENDIO_DATA);
399                         BUG_ON(ret); /* -ENOMEM */
400
401                         if (!skip_sum) {
402                                 ret = btrfs_csum_one_bio(root, inode, bio,
403                                                          start, 1);
404                                 BUG_ON(ret); /* -ENOMEM */
405                         }
406
407                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
408                         BUG_ON(ret); /* -ENOMEM */
409
410                         bio_put(bio);
411
412                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
413                         BUG_ON(!bio);
414                         bio->bi_private = cb;
415                         bio->bi_end_io = end_compressed_bio_write;
416                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
417                 }
418                 if (bytes_left < PAGE_CACHE_SIZE) {
419                         btrfs_info(BTRFS_I(inode)->root->fs_info,
420                                         "bytes left %lu compress len %lu nr %lu",
421                                bytes_left, cb->compressed_len, cb->nr_pages);
422                 }
423                 bytes_left -= PAGE_CACHE_SIZE;
424                 first_byte += PAGE_CACHE_SIZE;
425                 cond_resched();
426         }
427         bio_get(bio);
428
429         ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430         BUG_ON(ret); /* -ENOMEM */
431
432         if (!skip_sum) {
433                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434                 BUG_ON(ret); /* -ENOMEM */
435         }
436
437         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438         BUG_ON(ret); /* -ENOMEM */
439
440         bio_put(bio);
441         return 0;
442 }
443
444 static noinline int add_ra_bio_pages(struct inode *inode,
445                                      u64 compressed_end,
446                                      struct compressed_bio *cb)
447 {
448         unsigned long end_index;
449         unsigned long pg_index;
450         u64 last_offset;
451         u64 isize = i_size_read(inode);
452         int ret;
453         struct page *page;
454         unsigned long nr_pages = 0;
455         struct extent_map *em;
456         struct address_space *mapping = inode->i_mapping;
457         struct extent_map_tree *em_tree;
458         struct extent_io_tree *tree;
459         u64 end;
460         int misses = 0;
461
462         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
463         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
464         em_tree = &BTRFS_I(inode)->extent_tree;
465         tree = &BTRFS_I(inode)->io_tree;
466
467         if (isize == 0)
468                 return 0;
469
470         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
471
472         while (last_offset < compressed_end) {
473                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
474
475                 if (pg_index > end_index)
476                         break;
477
478                 rcu_read_lock();
479                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
480                 rcu_read_unlock();
481                 if (page && !radix_tree_exceptional_entry(page)) {
482                         misses++;
483                         if (misses > 4)
484                                 break;
485                         goto next;
486                 }
487
488                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
489                                                                 ~__GFP_FS);
490                 if (!page)
491                         break;
492
493                 if (add_to_page_cache_lru(page, mapping, pg_index,
494                                                                 GFP_NOFS)) {
495                         page_cache_release(page);
496                         goto next;
497                 }
498
499                 end = last_offset + PAGE_CACHE_SIZE - 1;
500                 /*
501                  * at this point, we have a locked page in the page cache
502                  * for these bytes in the file.  But, we have to make
503                  * sure they map to this compressed extent on disk.
504                  */
505                 set_page_extent_mapped(page);
506                 lock_extent(tree, last_offset, end);
507                 read_lock(&em_tree->lock);
508                 em = lookup_extent_mapping(em_tree, last_offset,
509                                            PAGE_CACHE_SIZE);
510                 read_unlock(&em_tree->lock);
511
512                 if (!em || last_offset < em->start ||
513                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
514                     (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
515                         free_extent_map(em);
516                         unlock_extent(tree, last_offset, end);
517                         unlock_page(page);
518                         page_cache_release(page);
519                         break;
520                 }
521                 free_extent_map(em);
522
523                 if (page->index == end_index) {
524                         char *userpage;
525                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
526
527                         if (zero_offset) {
528                                 int zeros;
529                                 zeros = PAGE_CACHE_SIZE - zero_offset;
530                                 userpage = kmap_atomic(page);
531                                 memset(userpage + zero_offset, 0, zeros);
532                                 flush_dcache_page(page);
533                                 kunmap_atomic(userpage);
534                         }
535                 }
536
537                 ret = bio_add_page(cb->orig_bio, page,
538                                    PAGE_CACHE_SIZE, 0);
539
540                 if (ret == PAGE_CACHE_SIZE) {
541                         nr_pages++;
542                         page_cache_release(page);
543                 } else {
544                         unlock_extent(tree, last_offset, end);
545                         unlock_page(page);
546                         page_cache_release(page);
547                         break;
548                 }
549 next:
550                 last_offset += PAGE_CACHE_SIZE;
551         }
552         return 0;
553 }
554
555 /*
556  * for a compressed read, the bio we get passed has all the inode pages
557  * in it.  We don't actually do IO on those pages but allocate new ones
558  * to hold the compressed pages on disk.
559  *
560  * bio->bi_iter.bi_sector points to the compressed extent on disk
561  * bio->bi_io_vec points to all of the inode pages
562  * bio->bi_vcnt is a count of pages
563  *
564  * After the compressed pages are read, we copy the bytes into the
565  * bio we were passed and then call the bio end_io calls
566  */
567 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
568                                  int mirror_num, unsigned long bio_flags)
569 {
570         struct extent_io_tree *tree;
571         struct extent_map_tree *em_tree;
572         struct compressed_bio *cb;
573         struct btrfs_root *root = BTRFS_I(inode)->root;
574         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
575         unsigned long compressed_len;
576         unsigned long nr_pages;
577         unsigned long pg_index;
578         struct page *page;
579         struct block_device *bdev;
580         struct bio *comp_bio;
581         u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
582         u64 em_len;
583         u64 em_start;
584         struct extent_map *em;
585         int ret = -ENOMEM;
586         int faili = 0;
587         u32 *sums;
588
589         tree = &BTRFS_I(inode)->io_tree;
590         em_tree = &BTRFS_I(inode)->extent_tree;
591
592         /* we need the actual starting offset of this extent in the file */
593         read_lock(&em_tree->lock);
594         em = lookup_extent_mapping(em_tree,
595                                    page_offset(bio->bi_io_vec->bv_page),
596                                    PAGE_CACHE_SIZE);
597         read_unlock(&em_tree->lock);
598         if (!em)
599                 return -EIO;
600
601         compressed_len = em->block_len;
602         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
603         if (!cb)
604                 goto out;
605
606         atomic_set(&cb->pending_bios, 0);
607         cb->errors = 0;
608         cb->inode = inode;
609         cb->mirror_num = mirror_num;
610         sums = &cb->sums;
611
612         cb->start = em->orig_start;
613         em_len = em->len;
614         em_start = em->start;
615
616         free_extent_map(em);
617         em = NULL;
618
619         cb->len = uncompressed_len;
620         cb->compressed_len = compressed_len;
621         cb->compress_type = extent_compress_type(bio_flags);
622         cb->orig_bio = bio;
623
624         nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
625         cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
626                                        GFP_NOFS);
627         if (!cb->compressed_pages)
628                 goto fail1;
629
630         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
631
632         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
634                                                               __GFP_HIGHMEM);
635                 if (!cb->compressed_pages[pg_index]) {
636                         faili = pg_index - 1;
637                         ret = -ENOMEM;
638                         goto fail2;
639                 }
640         }
641         faili = nr_pages - 1;
642         cb->nr_pages = nr_pages;
643
644         /* In the parent-locked case, we only locked the range we are
645          * interested in.  In all other cases, we can opportunistically
646          * cache decompressed data that goes beyond the requested range. */
647         if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
648                 add_ra_bio_pages(inode, em_start + em_len, cb);
649
650         /* include any pages we added in add_ra-bio_pages */
651         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
652         cb->len = uncompressed_len;
653
654         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
655         if (!comp_bio)
656                 goto fail2;
657         comp_bio->bi_private = cb;
658         comp_bio->bi_end_io = end_compressed_bio_read;
659         atomic_inc(&cb->pending_bios);
660
661         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662                 page = cb->compressed_pages[pg_index];
663                 page->mapping = inode->i_mapping;
664                 page->index = em_start >> PAGE_CACHE_SHIFT;
665
666                 if (comp_bio->bi_iter.bi_size)
667                         ret = tree->ops->merge_bio_hook(READ, page, 0,
668                                                         PAGE_CACHE_SIZE,
669                                                         comp_bio, 0);
670                 else
671                         ret = 0;
672
673                 page->mapping = NULL;
674                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
675                     PAGE_CACHE_SIZE) {
676                         bio_get(comp_bio);
677
678                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
679                                         BTRFS_WQ_ENDIO_DATA);
680                         BUG_ON(ret); /* -ENOMEM */
681
682                         /*
683                          * inc the count before we submit the bio so
684                          * we know the end IO handler won't happen before
685                          * we inc the count.  Otherwise, the cb might get
686                          * freed before we're done setting it up
687                          */
688                         atomic_inc(&cb->pending_bios);
689
690                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691                                 ret = btrfs_lookup_bio_sums(root, inode,
692                                                         comp_bio, sums);
693                                 BUG_ON(ret); /* -ENOMEM */
694                         }
695                         sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696                                              root->sectorsize);
697
698                         ret = btrfs_map_bio(root, READ, comp_bio,
699                                             mirror_num, 0);
700                         if (ret) {
701                                 bio->bi_error = ret;
702                                 bio_endio(comp_bio);
703                         }
704
705                         bio_put(comp_bio);
706
707                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
708                                                         GFP_NOFS);
709                         BUG_ON(!comp_bio);
710                         comp_bio->bi_private = cb;
711                         comp_bio->bi_end_io = end_compressed_bio_read;
712
713                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
714                 }
715                 cur_disk_byte += PAGE_CACHE_SIZE;
716         }
717         bio_get(comp_bio);
718
719         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
720                         BTRFS_WQ_ENDIO_DATA);
721         BUG_ON(ret); /* -ENOMEM */
722
723         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
724                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
725                 BUG_ON(ret); /* -ENOMEM */
726         }
727
728         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
729         if (ret) {
730                 bio->bi_error = ret;
731                 bio_endio(comp_bio);
732         }
733
734         bio_put(comp_bio);
735         return 0;
736
737 fail2:
738         while (faili >= 0) {
739                 __free_page(cb->compressed_pages[faili]);
740                 faili--;
741         }
742
743         kfree(cb->compressed_pages);
744 fail1:
745         kfree(cb);
746 out:
747         free_extent_map(em);
748         return ret;
749 }
750
751 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
752 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
753 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
754 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
755 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
756
757 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
758         &btrfs_zlib_compress,
759         &btrfs_lzo_compress,
760 };
761
762 void __init btrfs_init_compress(void)
763 {
764         int i;
765
766         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
767                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
768                 spin_lock_init(&comp_workspace_lock[i]);
769                 atomic_set(&comp_alloc_workspace[i], 0);
770                 init_waitqueue_head(&comp_workspace_wait[i]);
771         }
772 }
773
774 /*
775  * this finds an available workspace or allocates a new one
776  * ERR_PTR is returned if things go bad.
777  */
778 static struct list_head *find_workspace(int type)
779 {
780         struct list_head *workspace;
781         int cpus = num_online_cpus();
782         int idx = type - 1;
783
784         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
785         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
786         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
787         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
788         int *num_workspace                      = &comp_num_workspace[idx];
789 again:
790         spin_lock(workspace_lock);
791         if (!list_empty(idle_workspace)) {
792                 workspace = idle_workspace->next;
793                 list_del(workspace);
794                 (*num_workspace)--;
795                 spin_unlock(workspace_lock);
796                 return workspace;
797
798         }
799         if (atomic_read(alloc_workspace) > cpus) {
800                 DEFINE_WAIT(wait);
801
802                 spin_unlock(workspace_lock);
803                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
804                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
805                         schedule();
806                 finish_wait(workspace_wait, &wait);
807                 goto again;
808         }
809         atomic_inc(alloc_workspace);
810         spin_unlock(workspace_lock);
811
812         workspace = btrfs_compress_op[idx]->alloc_workspace();
813         if (IS_ERR(workspace)) {
814                 atomic_dec(alloc_workspace);
815                 wake_up(workspace_wait);
816         }
817         return workspace;
818 }
819
820 /*
821  * put a workspace struct back on the list or free it if we have enough
822  * idle ones sitting around
823  */
824 static void free_workspace(int type, struct list_head *workspace)
825 {
826         int idx = type - 1;
827         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
828         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
829         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
830         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
831         int *num_workspace                      = &comp_num_workspace[idx];
832
833         spin_lock(workspace_lock);
834         if (*num_workspace < num_online_cpus()) {
835                 list_add(workspace, idle_workspace);
836                 (*num_workspace)++;
837                 spin_unlock(workspace_lock);
838                 goto wake;
839         }
840         spin_unlock(workspace_lock);
841
842         btrfs_compress_op[idx]->free_workspace(workspace);
843         atomic_dec(alloc_workspace);
844 wake:
845         smp_mb();
846         if (waitqueue_active(workspace_wait))
847                 wake_up(workspace_wait);
848 }
849
850 /*
851  * cleanup function for module exit
852  */
853 static void free_workspaces(void)
854 {
855         struct list_head *workspace;
856         int i;
857
858         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
859                 while (!list_empty(&comp_idle_workspace[i])) {
860                         workspace = comp_idle_workspace[i].next;
861                         list_del(workspace);
862                         btrfs_compress_op[i]->free_workspace(workspace);
863                         atomic_dec(&comp_alloc_workspace[i]);
864                 }
865         }
866 }
867
868 /*
869  * given an address space and start/len, compress the bytes.
870  *
871  * pages are allocated to hold the compressed result and stored
872  * in 'pages'
873  *
874  * out_pages is used to return the number of pages allocated.  There
875  * may be pages allocated even if we return an error
876  *
877  * total_in is used to return the number of bytes actually read.  It
878  * may be smaller then len if we had to exit early because we
879  * ran out of room in the pages array or because we cross the
880  * max_out threshold.
881  *
882  * total_out is used to return the total number of compressed bytes
883  *
884  * max_out tells us the max number of bytes that we're allowed to
885  * stuff into pages
886  */
887 int btrfs_compress_pages(int type, struct address_space *mapping,
888                          u64 start, unsigned long len,
889                          struct page **pages,
890                          unsigned long nr_dest_pages,
891                          unsigned long *out_pages,
892                          unsigned long *total_in,
893                          unsigned long *total_out,
894                          unsigned long max_out)
895 {
896         struct list_head *workspace;
897         int ret;
898
899         workspace = find_workspace(type);
900         if (IS_ERR(workspace))
901                 return PTR_ERR(workspace);
902
903         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
904                                                       start, len, pages,
905                                                       nr_dest_pages, out_pages,
906                                                       total_in, total_out,
907                                                       max_out);
908         free_workspace(type, workspace);
909         return ret;
910 }
911
912 /*
913  * pages_in is an array of pages with compressed data.
914  *
915  * disk_start is the starting logical offset of this array in the file
916  *
917  * bvec is a bio_vec of pages from the file that we want to decompress into
918  *
919  * vcnt is the count of pages in the biovec
920  *
921  * srclen is the number of bytes in pages_in
922  *
923  * The basic idea is that we have a bio that was created by readpages.
924  * The pages in the bio are for the uncompressed data, and they may not
925  * be contiguous.  They all correspond to the range of bytes covered by
926  * the compressed extent.
927  */
928 static int btrfs_decompress_biovec(int type, struct page **pages_in,
929                                    u64 disk_start, struct bio_vec *bvec,
930                                    int vcnt, size_t srclen)
931 {
932         struct list_head *workspace;
933         int ret;
934
935         workspace = find_workspace(type);
936         if (IS_ERR(workspace))
937                 return PTR_ERR(workspace);
938
939         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
940                                                          disk_start,
941                                                          bvec, vcnt, srclen);
942         free_workspace(type, workspace);
943         return ret;
944 }
945
946 /*
947  * a less complex decompression routine.  Our compressed data fits in a
948  * single page, and we want to read a single page out of it.
949  * start_byte tells us the offset into the compressed data we're interested in
950  */
951 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
952                      unsigned long start_byte, size_t srclen, size_t destlen)
953 {
954         struct list_head *workspace;
955         int ret;
956
957         workspace = find_workspace(type);
958         if (IS_ERR(workspace))
959                 return PTR_ERR(workspace);
960
961         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
962                                                   dest_page, start_byte,
963                                                   srclen, destlen);
964
965         free_workspace(type, workspace);
966         return ret;
967 }
968
969 void btrfs_exit_compress(void)
970 {
971         free_workspaces();
972 }
973
974 /*
975  * Copy uncompressed data from working buffer to pages.
976  *
977  * buf_start is the byte offset we're of the start of our workspace buffer.
978  *
979  * total_out is the last byte of the buffer
980  */
981 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
982                               unsigned long total_out, u64 disk_start,
983                               struct bio_vec *bvec, int vcnt,
984                               unsigned long *pg_index,
985                               unsigned long *pg_offset)
986 {
987         unsigned long buf_offset;
988         unsigned long current_buf_start;
989         unsigned long start_byte;
990         unsigned long working_bytes = total_out - buf_start;
991         unsigned long bytes;
992         char *kaddr;
993         struct page *page_out = bvec[*pg_index].bv_page;
994
995         /*
996          * start byte is the first byte of the page we're currently
997          * copying into relative to the start of the compressed data.
998          */
999         start_byte = page_offset(page_out) - disk_start;
1000
1001         /* we haven't yet hit data corresponding to this page */
1002         if (total_out <= start_byte)
1003                 return 1;
1004
1005         /*
1006          * the start of the data we care about is offset into
1007          * the middle of our working buffer
1008          */
1009         if (total_out > start_byte && buf_start < start_byte) {
1010                 buf_offset = start_byte - buf_start;
1011                 working_bytes -= buf_offset;
1012         } else {
1013                 buf_offset = 0;
1014         }
1015         current_buf_start = buf_start;
1016
1017         /* copy bytes from the working buffer into the pages */
1018         while (working_bytes > 0) {
1019                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1020                             PAGE_CACHE_SIZE - buf_offset);
1021                 bytes = min(bytes, working_bytes);
1022                 kaddr = kmap_atomic(page_out);
1023                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1024                 kunmap_atomic(kaddr);
1025                 flush_dcache_page(page_out);
1026
1027                 *pg_offset += bytes;
1028                 buf_offset += bytes;
1029                 working_bytes -= bytes;
1030                 current_buf_start += bytes;
1031
1032                 /* check if we need to pick another page */
1033                 if (*pg_offset == PAGE_CACHE_SIZE) {
1034                         (*pg_index)++;
1035                         if (*pg_index >= vcnt)
1036                                 return 0;
1037
1038                         page_out = bvec[*pg_index].bv_page;
1039                         *pg_offset = 0;
1040                         start_byte = page_offset(page_out) - disk_start;
1041
1042                         /*
1043                          * make sure our new page is covered by this
1044                          * working buffer
1045                          */
1046                         if (total_out <= start_byte)
1047                                 return 1;
1048
1049                         /*
1050                          * the next page in the biovec might not be adjacent
1051                          * to the last page, but it might still be found
1052                          * inside this working buffer. bump our offset pointer
1053                          */
1054                         if (total_out > start_byte &&
1055                             current_buf_start < start_byte) {
1056                                 buf_offset = start_byte - buf_start;
1057                                 working_bytes = total_out - start_byte;
1058                                 current_buf_start = buf_start + buf_offset;
1059                         }
1060                 }
1061         }
1062
1063         return 1;
1064 }
1065
1066 /*
1067  * When uncompressing data, we need to make sure and zero any parts of
1068  * the biovec that were not filled in by the decompression code.  pg_index
1069  * and pg_offset indicate the last page and the last offset of that page
1070  * that have been filled in.  This will zero everything remaining in the
1071  * biovec.
1072  */
1073 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1074                                    unsigned long pg_index,
1075                                    unsigned long pg_offset)
1076 {
1077         while (pg_index < vcnt) {
1078                 struct page *page = bvec[pg_index].bv_page;
1079                 unsigned long off = bvec[pg_index].bv_offset;
1080                 unsigned long len = bvec[pg_index].bv_len;
1081
1082                 if (pg_offset < off)
1083                         pg_offset = off;
1084                 if (pg_offset < off + len) {
1085                         unsigned long bytes = off + len - pg_offset;
1086                         char *kaddr;
1087
1088                         kaddr = kmap_atomic(page);
1089                         memset(kaddr + pg_offset, 0, bytes);
1090                         kunmap_atomic(kaddr);
1091                 }
1092                 pg_index++;
1093                 pg_offset = 0;
1094         }
1095 }
This page took 0.087268 seconds and 4 git commands to generate.