1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
53 * FIXME: remove all knowledge of the buffer layer from the core VM
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * Shared mappings now work. 15.8.1995 Bruno.
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
100 * ->anon_vma.lock (vma_adjust)
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
124 static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
127 XA_STATE(xas, &mapping->i_pages, folio->index);
130 mapping_set_update(&xas, mapping);
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
148 static void filemap_unaccount_folio(struct address_space *mapping,
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
164 if (folio_ref_count(folio) >= mapcount + 2) {
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
181 nr = folio_nr_pages(folio);
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
219 struct address_space *mapping = folio->mapping;
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228 void (*freepage)(struct page *);
231 freepage = mapping->a_ops->freepage;
233 freepage(&folio->page);
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
241 * filemap_remove_folio - Remove folio from page cache.
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
248 void filemap_remove_folio(struct folio *folio)
250 struct address_space *mapping = folio->mapping;
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
261 filemap_free_folio(mapping, folio);
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * The function expects the i_pages lock to be held.
277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
306 WARN_ON_ONCE(!folio_test_locked(folio));
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
315 mapping->nrpages -= total_pages;
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
323 if (!folio_batch_count(fbatch))
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
344 int filemap_check_errors(struct address_space *mapping)
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
356 EXPORT_SYMBOL(filemap_check_errors);
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
363 if (test_bit(AS_ENOSPC, &mapping->flags))
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
373 * Call writepages on the mapping using the provided wbc to control the
376 * Return: %0 on success, negative error code otherwise.
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
409 * Return: %0 on success, negative error code otherwise.
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
421 return filemap_fdatawrite_wbc(mapping, &wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
509 if (end_byte < start_byte)
513 while (index <= end) {
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
524 wait_on_page_writeback(page);
525 ClearPageError(page);
527 pagevec_release(&pvec);
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
546 * Return: error status of the address space.
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
554 EXPORT_SYMBOL(filemap_fdatawait_range);
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 struct address_space *mapping = file->f_mapping;
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
601 EXPORT_SYMBOL(file_fdatawait_range);
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * Return: error status of the address space.
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
627 return mapping->nrpages;
630 bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
637 if (end_byte < start_byte)
641 xas_for_each(&xas, page, max) {
642 if (xas_retry(&xas, page))
644 if (xa_is_value(page))
646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
660 * Write out and wait upon file offsets lstart->lend, inclusive.
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
665 * Return: error status of the address space.
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
672 if (mapping_needs_writeback(mapping)) {
673 err = __filemap_fdatawrite_range(mapping, lstart, lend,
676 * Even if the above returned error, the pages may be
677 * written partially (e.g. -ENOSPC), so we wait for it.
678 * But the -EIO is special case, it may indicate the worst
679 * thing (e.g. bug) happened, so we avoid waiting for it.
682 int err2 = filemap_fdatawait_range(mapping,
687 /* Clear any previously stored errors */
688 filemap_check_errors(mapping);
691 err = filemap_check_errors(mapping);
695 EXPORT_SYMBOL(filemap_write_and_wait_range);
697 void __filemap_set_wb_err(struct address_space *mapping, int err)
699 errseq_t eseq = errseq_set(&mapping->wb_err, err);
701 trace_filemap_set_wb_err(mapping, eseq);
703 EXPORT_SYMBOL(__filemap_set_wb_err);
706 * file_check_and_advance_wb_err - report wb error (if any) that was previously
707 * and advance wb_err to current one
708 * @file: struct file on which the error is being reported
710 * When userland calls fsync (or something like nfsd does the equivalent), we
711 * want to report any writeback errors that occurred since the last fsync (or
712 * since the file was opened if there haven't been any).
714 * Grab the wb_err from the mapping. If it matches what we have in the file,
715 * then just quickly return 0. The file is all caught up.
717 * If it doesn't match, then take the mapping value, set the "seen" flag in
718 * it and try to swap it into place. If it works, or another task beat us
719 * to it with the new value, then update the f_wb_err and return the error
720 * portion. The error at this point must be reported via proper channels
721 * (a'la fsync, or NFS COMMIT operation, etc.).
723 * While we handle mapping->wb_err with atomic operations, the f_wb_err
724 * value is protected by the f_lock since we must ensure that it reflects
725 * the latest value swapped in for this file descriptor.
727 * Return: %0 on success, negative error code otherwise.
729 int file_check_and_advance_wb_err(struct file *file)
732 errseq_t old = READ_ONCE(file->f_wb_err);
733 struct address_space *mapping = file->f_mapping;
735 /* Locklessly handle the common case where nothing has changed */
736 if (errseq_check(&mapping->wb_err, old)) {
737 /* Something changed, must use slow path */
738 spin_lock(&file->f_lock);
739 old = file->f_wb_err;
740 err = errseq_check_and_advance(&mapping->wb_err,
742 trace_file_check_and_advance_wb_err(file, old);
743 spin_unlock(&file->f_lock);
747 * We're mostly using this function as a drop in replacement for
748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
749 * that the legacy code would have had on these flags.
751 clear_bit(AS_EIO, &mapping->flags);
752 clear_bit(AS_ENOSPC, &mapping->flags);
755 EXPORT_SYMBOL(file_check_and_advance_wb_err);
758 * file_write_and_wait_range - write out & wait on a file range
759 * @file: file pointing to address_space with pages
760 * @lstart: offset in bytes where the range starts
761 * @lend: offset in bytes where the range ends (inclusive)
763 * Write out and wait upon file offsets lstart->lend, inclusive.
765 * Note that @lend is inclusive (describes the last byte to be written) so
766 * that this function can be used to write to the very end-of-file (end = -1).
768 * After writing out and waiting on the data, we check and advance the
769 * f_wb_err cursor to the latest value, and return any errors detected there.
771 * Return: %0 on success, negative error code otherwise.
773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776 struct address_space *mapping = file->f_mapping;
778 if (mapping_needs_writeback(mapping)) {
779 err = __filemap_fdatawrite_range(mapping, lstart, lend,
781 /* See comment of filemap_write_and_wait() */
783 __filemap_fdatawait_range(mapping, lstart, lend);
785 err2 = file_check_and_advance_wb_err(file);
790 EXPORT_SYMBOL(file_write_and_wait_range);
793 * replace_page_cache_page - replace a pagecache page with a new one
794 * @old: page to be replaced
795 * @new: page to replace with
797 * This function replaces a page in the pagecache with a new one. On
798 * success it acquires the pagecache reference for the new page and
799 * drops it for the old page. Both the old and new pages must be
800 * locked. This function does not add the new page to the LRU, the
801 * caller must do that.
803 * The remove + add is atomic. This function cannot fail.
805 void replace_page_cache_page(struct page *old, struct page *new)
807 struct folio *fold = page_folio(old);
808 struct folio *fnew = page_folio(new);
809 struct address_space *mapping = old->mapping;
810 void (*freepage)(struct page *) = mapping->a_ops->freepage;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
814 VM_BUG_ON_PAGE(!PageLocked(old), old);
815 VM_BUG_ON_PAGE(!PageLocked(new), new);
816 VM_BUG_ON_PAGE(new->mapping, new);
819 new->mapping = mapping;
822 mem_cgroup_migrate(fold, fnew);
825 xas_store(&xas, new);
828 /* hugetlb pages do not participate in page cache accounting. */
830 __dec_lruvec_page_state(old, NR_FILE_PAGES);
832 __inc_lruvec_page_state(new, NR_FILE_PAGES);
833 if (PageSwapBacked(old))
834 __dec_lruvec_page_state(old, NR_SHMEM);
835 if (PageSwapBacked(new))
836 __inc_lruvec_page_state(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
842 EXPORT_SYMBOL_GPL(replace_page_cache_page);
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
879 xas_for_each_conflict(&xas, entry) {
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
900 xas_store(&xas, folio);
904 mapping->nrpages += nr;
906 /* hugetlb pages do not participate in page cache accounting */
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
920 trace_mm_filemap_add_to_page_cache(folio);
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
933 * add_to_page_cache_locked - add a locked page to the pagecache
935 * @mapping: the page's address_space
936 * @offset: page index
937 * @gfp_mask: page allocation mode
939 * This function is used to add a page to the pagecache. It must be locked.
940 * This function does not add the page to the LRU. The caller must do that.
942 * Return: %0 on success, negative error code otherwise.
944 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
945 pgoff_t offset, gfp_t gfp_mask)
947 return __filemap_add_folio(mapping, page_folio(page), offset,
950 EXPORT_SYMBOL(add_to_page_cache_locked);
952 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
953 pgoff_t index, gfp_t gfp)
958 __folio_set_locked(folio);
959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
961 __folio_clear_locked(folio);
964 * The folio might have been evicted from cache only
965 * recently, in which case it should be activated like
966 * any other repeatedly accessed folio.
967 * The exception is folios getting rewritten; evicting other
968 * data from the working set, only to cache data that will
969 * get overwritten with something else, is a waste of memory.
971 WARN_ON_ONCE(folio_test_active(folio));
972 if (!(gfp & __GFP_WRITE) && shadow)
973 workingset_refault(folio, shadow);
974 folio_add_lru(folio);
978 EXPORT_SYMBOL_GPL(filemap_add_folio);
981 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
986 if (cpuset_do_page_mem_spread()) {
987 unsigned int cpuset_mems_cookie;
989 cpuset_mems_cookie = read_mems_allowed_begin();
990 n = cpuset_mem_spread_node();
991 folio = __folio_alloc_node(gfp, order, n);
992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
996 return folio_alloc(gfp, order);
998 EXPORT_SYMBOL(filemap_alloc_folio);
1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1006 * @mapping1: the first mapping to lock
1007 * @mapping2: the second mapping to lock
1009 void filemap_invalidate_lock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1012 if (mapping1 > mapping2)
1013 swap(mapping1, mapping2);
1015 down_write(&mapping1->invalidate_lock);
1016 if (mapping2 && mapping1 != mapping2)
1017 down_write_nested(&mapping2->invalidate_lock, 1);
1019 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1026 * @mapping1: the first mapping to unlock
1027 * @mapping2: the second mapping to unlock
1029 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1030 struct address_space *mapping2)
1033 up_write(&mapping1->invalidate_lock);
1034 if (mapping2 && mapping1 != mapping2)
1035 up_write(&mapping2->invalidate_lock);
1037 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1040 * In order to wait for pages to become available there must be
1041 * waitqueues associated with pages. By using a hash table of
1042 * waitqueues where the bucket discipline is to maintain all
1043 * waiters on the same queue and wake all when any of the pages
1044 * become available, and for the woken contexts to check to be
1045 * sure the appropriate page became available, this saves space
1046 * at a cost of "thundering herd" phenomena during rare hash
1049 #define PAGE_WAIT_TABLE_BITS 8
1050 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1051 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1053 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1058 void __init pagecache_init(void)
1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1063 init_waitqueue_head(&folio_wait_table[i]);
1065 page_writeback_init();
1068 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1069 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1071 SetPageUptodate(ZERO_PAGE(0));
1075 * The page wait code treats the "wait->flags" somewhat unusually, because
1076 * we have multiple different kinds of waits, not just the usual "exclusive"
1081 * (a) no special bits set:
1083 * We're just waiting for the bit to be released, and when a waker
1084 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1085 * and remove it from the wait queue.
1087 * Simple and straightforward.
1089 * (b) WQ_FLAG_EXCLUSIVE:
1091 * The waiter is waiting to get the lock, and only one waiter should
1092 * be woken up to avoid any thundering herd behavior. We'll set the
1093 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1095 * This is the traditional exclusive wait.
1097 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1099 * The waiter is waiting to get the bit, and additionally wants the
1100 * lock to be transferred to it for fair lock behavior. If the lock
1101 * cannot be taken, we stop walking the wait queue without waking
1104 * This is the "fair lock handoff" case, and in addition to setting
1105 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1106 * that it now has the lock.
1108 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1111 struct wait_page_key *key = arg;
1112 struct wait_page_queue *wait_page
1113 = container_of(wait, struct wait_page_queue, wait);
1115 if (!wake_page_match(wait_page, key))
1119 * If it's a lock handoff wait, we get the bit for it, and
1120 * stop walking (and do not wake it up) if we can't.
1122 flags = wait->flags;
1123 if (flags & WQ_FLAG_EXCLUSIVE) {
1124 if (test_bit(key->bit_nr, &key->folio->flags))
1126 if (flags & WQ_FLAG_CUSTOM) {
1127 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1129 flags |= WQ_FLAG_DONE;
1134 * We are holding the wait-queue lock, but the waiter that
1135 * is waiting for this will be checking the flags without
1138 * So update the flags atomically, and wake up the waiter
1139 * afterwards to avoid any races. This store-release pairs
1140 * with the load-acquire in folio_wait_bit_common().
1142 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1143 wake_up_state(wait->private, mode);
1146 * Ok, we have successfully done what we're waiting for,
1147 * and we can unconditionally remove the wait entry.
1149 * Note that this pairs with the "finish_wait()" in the
1150 * waiter, and has to be the absolute last thing we do.
1151 * After this list_del_init(&wait->entry) the wait entry
1152 * might be de-allocated and the process might even have
1155 list_del_init_careful(&wait->entry);
1156 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1159 static void folio_wake_bit(struct folio *folio, int bit_nr)
1161 wait_queue_head_t *q = folio_waitqueue(folio);
1162 struct wait_page_key key;
1163 unsigned long flags;
1164 wait_queue_entry_t bookmark;
1167 key.bit_nr = bit_nr;
1171 bookmark.private = NULL;
1172 bookmark.func = NULL;
1173 INIT_LIST_HEAD(&bookmark.entry);
1175 spin_lock_irqsave(&q->lock, flags);
1176 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1178 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1180 * Take a breather from holding the lock,
1181 * allow pages that finish wake up asynchronously
1182 * to acquire the lock and remove themselves
1185 spin_unlock_irqrestore(&q->lock, flags);
1187 spin_lock_irqsave(&q->lock, flags);
1188 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1192 * It's possible to miss clearing waiters here, when we woke our page
1193 * waiters, but the hashed waitqueue has waiters for other pages on it.
1194 * That's okay, it's a rare case. The next waker will clear it.
1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197 * other), the flag may be cleared in the course of freeing the page;
1198 * but that is not required for correctness.
1200 if (!waitqueue_active(q) || !key.page_match)
1201 folio_clear_waiters(folio);
1203 spin_unlock_irqrestore(&q->lock, flags);
1206 static void folio_wake(struct folio *folio, int bit)
1208 if (!folio_test_waiters(folio))
1210 folio_wake_bit(folio, bit);
1214 * A choice of three behaviors for folio_wait_bit_common():
1217 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1218 * __folio_lock() waiting on then setting PG_locked.
1220 SHARED, /* Hold ref to page and check the bit when woken, like
1221 * folio_wait_writeback() waiting on PG_writeback.
1223 DROP, /* Drop ref to page before wait, no check when woken,
1224 * like folio_put_wait_locked() on PG_locked.
1229 * Attempt to check (or get) the folio flag, and mark us done
1232 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1233 struct wait_queue_entry *wait)
1235 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1236 if (test_and_set_bit(bit_nr, &folio->flags))
1238 } else if (test_bit(bit_nr, &folio->flags))
1241 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1245 /* How many times do we accept lock stealing from under a waiter? */
1246 int sysctl_page_lock_unfairness = 5;
1248 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1249 int state, enum behavior behavior)
1251 wait_queue_head_t *q = folio_waitqueue(folio);
1252 int unfairness = sysctl_page_lock_unfairness;
1253 struct wait_page_queue wait_page;
1254 wait_queue_entry_t *wait = &wait_page.wait;
1255 bool thrashing = false;
1256 bool delayacct = false;
1257 unsigned long pflags;
1259 if (bit_nr == PG_locked &&
1260 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1261 if (!folio_test_swapbacked(folio)) {
1262 delayacct_thrashing_start();
1265 psi_memstall_enter(&pflags);
1270 wait->func = wake_page_function;
1271 wait_page.folio = folio;
1272 wait_page.bit_nr = bit_nr;
1276 if (behavior == EXCLUSIVE) {
1277 wait->flags = WQ_FLAG_EXCLUSIVE;
1278 if (--unfairness < 0)
1279 wait->flags |= WQ_FLAG_CUSTOM;
1283 * Do one last check whether we can get the
1284 * page bit synchronously.
1286 * Do the folio_set_waiters() marking before that
1287 * to let any waker we _just_ missed know they
1288 * need to wake us up (otherwise they'll never
1289 * even go to the slow case that looks at the
1290 * page queue), and add ourselves to the wait
1291 * queue if we need to sleep.
1293 * This part needs to be done under the queue
1294 * lock to avoid races.
1296 spin_lock_irq(&q->lock);
1297 folio_set_waiters(folio);
1298 if (!folio_trylock_flag(folio, bit_nr, wait))
1299 __add_wait_queue_entry_tail(q, wait);
1300 spin_unlock_irq(&q->lock);
1303 * From now on, all the logic will be based on
1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305 * see whether the page bit testing has already
1306 * been done by the wake function.
1308 * We can drop our reference to the folio.
1310 if (behavior == DROP)
1314 * Note that until the "finish_wait()", or until
1315 * we see the WQ_FLAG_WOKEN flag, we need to
1316 * be very careful with the 'wait->flags', because
1317 * we may race with a waker that sets them.
1322 set_current_state(state);
1324 /* Loop until we've been woken or interrupted */
1325 flags = smp_load_acquire(&wait->flags);
1326 if (!(flags & WQ_FLAG_WOKEN)) {
1327 if (signal_pending_state(state, current))
1334 /* If we were non-exclusive, we're done */
1335 if (behavior != EXCLUSIVE)
1338 /* If the waker got the lock for us, we're done */
1339 if (flags & WQ_FLAG_DONE)
1343 * Otherwise, if we're getting the lock, we need to
1344 * try to get it ourselves.
1346 * And if that fails, we'll have to retry this all.
1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1351 wait->flags |= WQ_FLAG_DONE;
1356 * If a signal happened, this 'finish_wait()' may remove the last
1357 * waiter from the wait-queues, but the folio waiters bit will remain
1358 * set. That's ok. The next wakeup will take care of it, and trying
1359 * to do it here would be difficult and prone to races.
1361 finish_wait(q, wait);
1365 delayacct_thrashing_end();
1366 psi_memstall_leave(&pflags);
1370 * NOTE! The wait->flags weren't stable until we've done the
1371 * 'finish_wait()', and we could have exited the loop above due
1372 * to a signal, and had a wakeup event happen after the signal
1373 * test but before the 'finish_wait()'.
1375 * So only after the finish_wait() can we reliably determine
1376 * if we got woken up or not, so we can now figure out the final
1377 * return value based on that state without races.
1379 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1380 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1382 if (behavior == EXCLUSIVE)
1383 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1385 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1388 #ifdef CONFIG_MIGRATION
1390 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1391 * @entry: migration swap entry.
1392 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1393 * for pte entries, pass NULL for pmd entries.
1394 * @ptl: already locked ptl. This function will drop the lock.
1396 * Wait for a migration entry referencing the given page to be removed. This is
1397 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1398 * this can be called without taking a reference on the page. Instead this
1399 * should be called while holding the ptl for the migration entry referencing
1402 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1404 * This follows the same logic as folio_wait_bit_common() so see the comments
1407 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1410 struct wait_page_queue wait_page;
1411 wait_queue_entry_t *wait = &wait_page.wait;
1412 bool thrashing = false;
1413 bool delayacct = false;
1414 unsigned long pflags;
1415 wait_queue_head_t *q;
1416 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1418 q = folio_waitqueue(folio);
1419 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1420 if (!folio_test_swapbacked(folio)) {
1421 delayacct_thrashing_start();
1424 psi_memstall_enter(&pflags);
1429 wait->func = wake_page_function;
1430 wait_page.folio = folio;
1431 wait_page.bit_nr = PG_locked;
1434 spin_lock_irq(&q->lock);
1435 folio_set_waiters(folio);
1436 if (!folio_trylock_flag(folio, PG_locked, wait))
1437 __add_wait_queue_entry_tail(q, wait);
1438 spin_unlock_irq(&q->lock);
1441 * If a migration entry exists for the page the migration path must hold
1442 * a valid reference to the page, and it must take the ptl to remove the
1443 * migration entry. So the page is valid until the ptl is dropped.
1446 pte_unmap_unlock(ptep, ptl);
1453 set_current_state(TASK_UNINTERRUPTIBLE);
1455 /* Loop until we've been woken or interrupted */
1456 flags = smp_load_acquire(&wait->flags);
1457 if (!(flags & WQ_FLAG_WOKEN)) {
1458 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1467 finish_wait(q, wait);
1471 delayacct_thrashing_end();
1472 psi_memstall_leave(&pflags);
1477 void folio_wait_bit(struct folio *folio, int bit_nr)
1479 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1481 EXPORT_SYMBOL(folio_wait_bit);
1483 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1485 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1487 EXPORT_SYMBOL(folio_wait_bit_killable);
1490 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1491 * @folio: The folio to wait for.
1492 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1494 * The caller should hold a reference on @folio. They expect the page to
1495 * become unlocked relatively soon, but do not wish to hold up migration
1496 * (for example) by holding the reference while waiting for the folio to
1497 * come unlocked. After this function returns, the caller should not
1498 * dereference @folio.
1500 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1502 int folio_put_wait_locked(struct folio *folio, int state)
1504 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1508 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1509 * @folio: Folio defining the wait queue of interest
1510 * @waiter: Waiter to add to the queue
1512 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1514 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1516 wait_queue_head_t *q = folio_waitqueue(folio);
1517 unsigned long flags;
1519 spin_lock_irqsave(&q->lock, flags);
1520 __add_wait_queue_entry_tail(q, waiter);
1521 folio_set_waiters(folio);
1522 spin_unlock_irqrestore(&q->lock, flags);
1524 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1526 #ifndef clear_bit_unlock_is_negative_byte
1529 * PG_waiters is the high bit in the same byte as PG_lock.
1531 * On x86 (and on many other architectures), we can clear PG_lock and
1532 * test the sign bit at the same time. But if the architecture does
1533 * not support that special operation, we just do this all by hand
1536 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1537 * being cleared, but a memory barrier should be unnecessary since it is
1538 * in the same byte as PG_locked.
1540 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1542 clear_bit_unlock(nr, mem);
1543 /* smp_mb__after_atomic(); */
1544 return test_bit(PG_waiters, mem);
1550 * folio_unlock - Unlock a locked folio.
1551 * @folio: The folio.
1553 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1555 * Context: May be called from interrupt or process context. May not be
1556 * called from NMI context.
1558 void folio_unlock(struct folio *folio)
1560 /* Bit 7 allows x86 to check the byte's sign bit */
1561 BUILD_BUG_ON(PG_waiters != 7);
1562 BUILD_BUG_ON(PG_locked > 7);
1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1565 folio_wake_bit(folio, PG_locked);
1567 EXPORT_SYMBOL(folio_unlock);
1570 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1571 * @folio: The folio.
1573 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1574 * it. The folio reference held for PG_private_2 being set is released.
1576 * This is, for example, used when a netfs folio is being written to a local
1577 * disk cache, thereby allowing writes to the cache for the same folio to be
1580 void folio_end_private_2(struct folio *folio)
1582 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1583 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1584 folio_wake_bit(folio, PG_private_2);
1587 EXPORT_SYMBOL(folio_end_private_2);
1590 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1591 * @folio: The folio to wait on.
1593 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1595 void folio_wait_private_2(struct folio *folio)
1597 while (folio_test_private_2(folio))
1598 folio_wait_bit(folio, PG_private_2);
1600 EXPORT_SYMBOL(folio_wait_private_2);
1603 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1604 * @folio: The folio to wait on.
1606 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1607 * fatal signal is received by the calling task.
1610 * - 0 if successful.
1611 * - -EINTR if a fatal signal was encountered.
1613 int folio_wait_private_2_killable(struct folio *folio)
1617 while (folio_test_private_2(folio)) {
1618 ret = folio_wait_bit_killable(folio, PG_private_2);
1625 EXPORT_SYMBOL(folio_wait_private_2_killable);
1628 * folio_end_writeback - End writeback against a folio.
1629 * @folio: The folio.
1631 void folio_end_writeback(struct folio *folio)
1634 * folio_test_clear_reclaim() could be used here but it is an
1635 * atomic operation and overkill in this particular case. Failing
1636 * to shuffle a folio marked for immediate reclaim is too mild
1637 * a gain to justify taking an atomic operation penalty at the
1638 * end of every folio writeback.
1640 if (folio_test_reclaim(folio)) {
1641 folio_clear_reclaim(folio);
1642 folio_rotate_reclaimable(folio);
1646 * Writeback does not hold a folio reference of its own, relying
1647 * on truncation to wait for the clearing of PG_writeback.
1648 * But here we must make sure that the folio is not freed and
1649 * reused before the folio_wake().
1652 if (!__folio_end_writeback(folio))
1655 smp_mb__after_atomic();
1656 folio_wake(folio, PG_writeback);
1657 acct_reclaim_writeback(folio);
1660 EXPORT_SYMBOL(folio_end_writeback);
1663 * After completing I/O on a page, call this routine to update the page
1664 * flags appropriately
1666 void page_endio(struct page *page, bool is_write, int err)
1670 SetPageUptodate(page);
1672 ClearPageUptodate(page);
1678 struct address_space *mapping;
1681 mapping = page_mapping(page);
1683 mapping_set_error(mapping, err);
1685 end_page_writeback(page);
1688 EXPORT_SYMBOL_GPL(page_endio);
1691 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1692 * @folio: The folio to lock
1694 void __folio_lock(struct folio *folio)
1696 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1699 EXPORT_SYMBOL(__folio_lock);
1701 int __folio_lock_killable(struct folio *folio)
1703 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1706 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1708 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1710 struct wait_queue_head *q = folio_waitqueue(folio);
1713 wait->folio = folio;
1714 wait->bit_nr = PG_locked;
1716 spin_lock_irq(&q->lock);
1717 __add_wait_queue_entry_tail(q, &wait->wait);
1718 folio_set_waiters(folio);
1719 ret = !folio_trylock(folio);
1721 * If we were successful now, we know we're still on the
1722 * waitqueue as we're still under the lock. This means it's
1723 * safe to remove and return success, we know the callback
1724 * isn't going to trigger.
1727 __remove_wait_queue(q, &wait->wait);
1730 spin_unlock_irq(&q->lock);
1736 * true - folio is locked; mmap_lock is still held.
1737 * false - folio is not locked.
1738 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1739 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1740 * which case mmap_lock is still held.
1742 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1743 * with the folio locked and the mmap_lock unperturbed.
1745 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1748 if (fault_flag_allow_retry_first(flags)) {
1750 * CAUTION! In this case, mmap_lock is not released
1751 * even though return 0.
1753 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1756 mmap_read_unlock(mm);
1757 if (flags & FAULT_FLAG_KILLABLE)
1758 folio_wait_locked_killable(folio);
1760 folio_wait_locked(folio);
1763 if (flags & FAULT_FLAG_KILLABLE) {
1766 ret = __folio_lock_killable(folio);
1768 mmap_read_unlock(mm);
1772 __folio_lock(folio);
1779 * page_cache_next_miss() - Find the next gap in the page cache.
1780 * @mapping: Mapping.
1782 * @max_scan: Maximum range to search.
1784 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1785 * gap with the lowest index.
1787 * This function may be called under the rcu_read_lock. However, this will
1788 * not atomically search a snapshot of the cache at a single point in time.
1789 * For example, if a gap is created at index 5, then subsequently a gap is
1790 * created at index 10, page_cache_next_miss covering both indices may
1791 * return 10 if called under the rcu_read_lock.
1793 * Return: The index of the gap if found, otherwise an index outside the
1794 * range specified (in which case 'return - index >= max_scan' will be true).
1795 * In the rare case of index wrap-around, 0 will be returned.
1797 pgoff_t page_cache_next_miss(struct address_space *mapping,
1798 pgoff_t index, unsigned long max_scan)
1800 XA_STATE(xas, &mapping->i_pages, index);
1802 while (max_scan--) {
1803 void *entry = xas_next(&xas);
1804 if (!entry || xa_is_value(entry))
1806 if (xas.xa_index == 0)
1810 return xas.xa_index;
1812 EXPORT_SYMBOL(page_cache_next_miss);
1815 * page_cache_prev_miss() - Find the previous gap in the page cache.
1816 * @mapping: Mapping.
1818 * @max_scan: Maximum range to search.
1820 * Search the range [max(index - max_scan + 1, 0), index] for the
1821 * gap with the highest index.
1823 * This function may be called under the rcu_read_lock. However, this will
1824 * not atomically search a snapshot of the cache at a single point in time.
1825 * For example, if a gap is created at index 10, then subsequently a gap is
1826 * created at index 5, page_cache_prev_miss() covering both indices may
1827 * return 5 if called under the rcu_read_lock.
1829 * Return: The index of the gap if found, otherwise an index outside the
1830 * range specified (in which case 'index - return >= max_scan' will be true).
1831 * In the rare case of wrap-around, ULONG_MAX will be returned.
1833 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1834 pgoff_t index, unsigned long max_scan)
1836 XA_STATE(xas, &mapping->i_pages, index);
1838 while (max_scan--) {
1839 void *entry = xas_prev(&xas);
1840 if (!entry || xa_is_value(entry))
1842 if (xas.xa_index == ULONG_MAX)
1846 return xas.xa_index;
1848 EXPORT_SYMBOL(page_cache_prev_miss);
1851 * Lockless page cache protocol:
1852 * On the lookup side:
1853 * 1. Load the folio from i_pages
1854 * 2. Increment the refcount if it's not zero
1855 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1857 * On the removal side:
1858 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1859 * B. Remove the page from i_pages
1860 * C. Return the page to the page allocator
1862 * This means that any page may have its reference count temporarily
1863 * increased by a speculative page cache (or fast GUP) lookup as it can
1864 * be allocated by another user before the RCU grace period expires.
1865 * Because the refcount temporarily acquired here may end up being the
1866 * last refcount on the page, any page allocation must be freeable by
1871 * mapping_get_entry - Get a page cache entry.
1872 * @mapping: the address_space to search
1873 * @index: The page cache index.
1875 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1876 * it is returned with an increased refcount. If it is a shadow entry
1877 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1878 * it is returned without further action.
1880 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1882 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1884 XA_STATE(xas, &mapping->i_pages, index);
1885 struct folio *folio;
1890 folio = xas_load(&xas);
1891 if (xas_retry(&xas, folio))
1894 * A shadow entry of a recently evicted page, or a swap entry from
1895 * shmem/tmpfs. Return it without attempting to raise page count.
1897 if (!folio || xa_is_value(folio))
1900 if (!folio_try_get_rcu(folio))
1903 if (unlikely(folio != xas_reload(&xas))) {
1914 * __filemap_get_folio - Find and get a reference to a folio.
1915 * @mapping: The address_space to search.
1916 * @index: The page index.
1917 * @fgp_flags: %FGP flags modify how the folio is returned.
1918 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1920 * Looks up the page cache entry at @mapping & @index.
1922 * @fgp_flags can be zero or more of these flags:
1924 * * %FGP_ACCESSED - The folio will be marked accessed.
1925 * * %FGP_LOCK - The folio is returned locked.
1926 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1927 * instead of allocating a new folio to replace it.
1928 * * %FGP_CREAT - If no page is present then a new page is allocated using
1929 * @gfp and added to the page cache and the VM's LRU list.
1930 * The page is returned locked and with an increased refcount.
1931 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1932 * page is already in cache. If the page was allocated, unlock it before
1933 * returning so the caller can do the same dance.
1934 * * %FGP_WRITE - The page will be written to by the caller.
1935 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1936 * * %FGP_NOWAIT - Don't get blocked by page lock.
1937 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1939 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1940 * if the %GFP flags specified for %FGP_CREAT are atomic.
1942 * If there is a page cache page, it is returned with an increased refcount.
1944 * Return: The found folio or %NULL otherwise.
1946 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1947 int fgp_flags, gfp_t gfp)
1949 struct folio *folio;
1952 folio = mapping_get_entry(mapping, index);
1953 if (xa_is_value(folio)) {
1954 if (fgp_flags & FGP_ENTRY)
1961 if (fgp_flags & FGP_LOCK) {
1962 if (fgp_flags & FGP_NOWAIT) {
1963 if (!folio_trylock(folio)) {
1971 /* Has the page been truncated? */
1972 if (unlikely(folio->mapping != mapping)) {
1973 folio_unlock(folio);
1977 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1980 if (fgp_flags & FGP_ACCESSED)
1981 folio_mark_accessed(folio);
1982 else if (fgp_flags & FGP_WRITE) {
1983 /* Clear idle flag for buffer write */
1984 if (folio_test_idle(folio))
1985 folio_clear_idle(folio);
1988 if (fgp_flags & FGP_STABLE)
1989 folio_wait_stable(folio);
1991 if (!folio && (fgp_flags & FGP_CREAT)) {
1993 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1995 if (fgp_flags & FGP_NOFS)
1998 folio = filemap_alloc_folio(gfp, 0);
2002 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2003 fgp_flags |= FGP_LOCK;
2005 /* Init accessed so avoid atomic mark_page_accessed later */
2006 if (fgp_flags & FGP_ACCESSED)
2007 __folio_set_referenced(folio);
2009 err = filemap_add_folio(mapping, folio, index, gfp);
2010 if (unlikely(err)) {
2018 * filemap_add_folio locks the page, and for mmap
2019 * we expect an unlocked page.
2021 if (folio && (fgp_flags & FGP_FOR_MMAP))
2022 folio_unlock(folio);
2027 EXPORT_SYMBOL(__filemap_get_folio);
2029 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2032 struct folio *folio;
2035 if (mark == XA_PRESENT)
2036 folio = xas_find(xas, max);
2038 folio = xas_find_marked(xas, max, mark);
2040 if (xas_retry(xas, folio))
2043 * A shadow entry of a recently evicted page, a swap
2044 * entry from shmem/tmpfs or a DAX entry. Return it
2045 * without attempting to raise page count.
2047 if (!folio || xa_is_value(folio))
2050 if (!folio_try_get_rcu(folio))
2053 if (unlikely(folio != xas_reload(xas))) {
2065 * find_get_entries - gang pagecache lookup
2066 * @mapping: The address_space to search
2067 * @start: The starting page cache index
2068 * @end: The final page index (inclusive).
2069 * @fbatch: Where the resulting entries are placed.
2070 * @indices: The cache indices corresponding to the entries in @entries
2072 * find_get_entries() will search for and return a batch of entries in
2073 * the mapping. The entries are placed in @fbatch. find_get_entries()
2074 * takes a reference on any actual folios it returns.
2076 * The entries have ascending indexes. The indices may not be consecutive
2077 * due to not-present entries or large folios.
2079 * Any shadow entries of evicted folios, or swap entries from
2080 * shmem/tmpfs, are included in the returned array.
2082 * Return: The number of entries which were found.
2084 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2087 XA_STATE(xas, &mapping->i_pages, start);
2088 struct folio *folio;
2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2092 indices[fbatch->nr] = xas.xa_index;
2093 if (!folio_batch_add(fbatch, folio))
2098 return folio_batch_count(fbatch);
2102 * find_lock_entries - Find a batch of pagecache entries.
2103 * @mapping: The address_space to search.
2104 * @start: The starting page cache index.
2105 * @end: The final page index (inclusive).
2106 * @fbatch: Where the resulting entries are placed.
2107 * @indices: The cache indices of the entries in @fbatch.
2109 * find_lock_entries() will return a batch of entries from @mapping.
2110 * Swap, shadow and DAX entries are included. Folios are returned
2111 * locked and with an incremented refcount. Folios which are locked
2112 * by somebody else or under writeback are skipped. Folios which are
2113 * partially outside the range are not returned.
2115 * The entries have ascending indexes. The indices may not be consecutive
2116 * due to not-present entries, large folios, folios which could not be
2117 * locked or folios under writeback.
2119 * Return: The number of entries which were found.
2121 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2122 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2124 XA_STATE(xas, &mapping->i_pages, start);
2125 struct folio *folio;
2128 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2129 if (!xa_is_value(folio)) {
2130 if (folio->index < start)
2132 if (folio->index + folio_nr_pages(folio) - 1 > end)
2134 if (!folio_trylock(folio))
2136 if (folio->mapping != mapping ||
2137 folio_test_writeback(folio))
2139 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2142 indices[fbatch->nr] = xas.xa_index;
2143 if (!folio_batch_add(fbatch, folio))
2147 folio_unlock(folio);
2153 return folio_batch_count(fbatch);
2157 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2159 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2163 return index < folio->index + folio_nr_pages(folio) - 1;
2167 * find_get_pages_range - gang pagecache lookup
2168 * @mapping: The address_space to search
2169 * @start: The starting page index
2170 * @end: The final page index (inclusive)
2171 * @nr_pages: The maximum number of pages
2172 * @pages: Where the resulting pages are placed
2174 * find_get_pages_range() will search for and return a group of up to @nr_pages
2175 * pages in the mapping starting at index @start and up to index @end
2176 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2177 * a reference against the returned pages.
2179 * The search returns a group of mapping-contiguous pages with ascending
2180 * indexes. There may be holes in the indices due to not-present pages.
2181 * We also update @start to index the next page for the traversal.
2183 * Return: the number of pages which were found. If this number is
2184 * smaller than @nr_pages, the end of specified range has been
2187 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2188 pgoff_t end, unsigned int nr_pages,
2189 struct page **pages)
2191 XA_STATE(xas, &mapping->i_pages, *start);
2192 struct folio *folio;
2195 if (unlikely(!nr_pages))
2199 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2200 /* Skip over shadow, swap and DAX entries */
2201 if (xa_is_value(folio))
2205 pages[ret] = folio_file_page(folio, xas.xa_index);
2206 if (++ret == nr_pages) {
2207 *start = xas.xa_index + 1;
2210 if (folio_more_pages(folio, xas.xa_index, end)) {
2212 folio_ref_inc(folio);
2218 * We come here when there is no page beyond @end. We take care to not
2219 * overflow the index @start as it confuses some of the callers. This
2220 * breaks the iteration when there is a page at index -1 but that is
2221 * already broken anyway.
2223 if (end == (pgoff_t)-1)
2224 *start = (pgoff_t)-1;
2234 * find_get_pages_contig - gang contiguous pagecache lookup
2235 * @mapping: The address_space to search
2236 * @index: The starting page index
2237 * @nr_pages: The maximum number of pages
2238 * @pages: Where the resulting pages are placed
2240 * find_get_pages_contig() works exactly like find_get_pages_range(),
2241 * except that the returned number of pages are guaranteed to be
2244 * Return: the number of pages which were found.
2246 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2247 unsigned int nr_pages, struct page **pages)
2249 XA_STATE(xas, &mapping->i_pages, index);
2250 struct folio *folio;
2251 unsigned int ret = 0;
2253 if (unlikely(!nr_pages))
2257 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2258 if (xas_retry(&xas, folio))
2261 * If the entry has been swapped out, we can stop looking.
2262 * No current caller is looking for DAX entries.
2264 if (xa_is_value(folio))
2267 if (!folio_try_get_rcu(folio))
2270 if (unlikely(folio != xas_reload(&xas)))
2274 pages[ret] = folio_file_page(folio, xas.xa_index);
2275 if (++ret == nr_pages)
2277 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2279 folio_ref_inc(folio);
2291 EXPORT_SYMBOL(find_get_pages_contig);
2294 * find_get_pages_range_tag - Find and return head pages matching @tag.
2295 * @mapping: the address_space to search
2296 * @index: the starting page index
2297 * @end: The final page index (inclusive)
2298 * @tag: the tag index
2299 * @nr_pages: the maximum number of pages
2300 * @pages: where the resulting pages are placed
2302 * Like find_get_pages_range(), except we only return head pages which are
2303 * tagged with @tag. @index is updated to the index immediately after the
2304 * last page we return, ready for the next iteration.
2306 * Return: the number of pages which were found.
2308 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2309 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2310 struct page **pages)
2312 XA_STATE(xas, &mapping->i_pages, *index);
2313 struct folio *folio;
2316 if (unlikely(!nr_pages))
2320 while ((folio = find_get_entry(&xas, end, tag))) {
2322 * Shadow entries should never be tagged, but this iteration
2323 * is lockless so there is a window for page reclaim to evict
2324 * a page we saw tagged. Skip over it.
2326 if (xa_is_value(folio))
2329 pages[ret] = &folio->page;
2330 if (++ret == nr_pages) {
2331 *index = folio->index + folio_nr_pages(folio);
2337 * We come here when we got to @end. We take care to not overflow the
2338 * index @index as it confuses some of the callers. This breaks the
2339 * iteration when there is a page at index -1 but that is already
2342 if (end == (pgoff_t)-1)
2343 *index = (pgoff_t)-1;
2351 EXPORT_SYMBOL(find_get_pages_range_tag);
2354 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2355 * a _large_ part of the i/o request. Imagine the worst scenario:
2357 * ---R__________________________________________B__________
2358 * ^ reading here ^ bad block(assume 4k)
2360 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2361 * => failing the whole request => read(R) => read(R+1) =>
2362 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2363 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2364 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2366 * It is going insane. Fix it by quickly scaling down the readahead size.
2368 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2374 * filemap_get_read_batch - Get a batch of folios for read
2376 * Get a batch of folios which represent a contiguous range of bytes in
2377 * the file. No exceptional entries will be returned. If @index is in
2378 * the middle of a folio, the entire folio will be returned. The last
2379 * folio in the batch may have the readahead flag set or the uptodate flag
2380 * clear so that the caller can take the appropriate action.
2382 static void filemap_get_read_batch(struct address_space *mapping,
2383 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2385 XA_STATE(xas, &mapping->i_pages, index);
2386 struct folio *folio;
2389 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2390 if (xas_retry(&xas, folio))
2392 if (xas.xa_index > max || xa_is_value(folio))
2394 if (!folio_try_get_rcu(folio))
2397 if (unlikely(folio != xas_reload(&xas)))
2400 if (!folio_batch_add(fbatch, folio))
2402 if (!folio_test_uptodate(folio))
2404 if (folio_test_readahead(folio))
2406 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2416 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2417 struct folio *folio)
2422 * A previous I/O error may have been due to temporary failures,
2423 * eg. multipath errors. PG_error will be set again if readpage
2426 folio_clear_error(folio);
2427 /* Start the actual read. The read will unlock the page. */
2428 error = mapping->a_ops->readpage(file, &folio->page);
2432 error = folio_wait_locked_killable(folio);
2435 if (folio_test_uptodate(folio))
2437 shrink_readahead_size_eio(&file->f_ra);
2441 static bool filemap_range_uptodate(struct address_space *mapping,
2442 loff_t pos, struct iov_iter *iter, struct folio *folio)
2446 if (folio_test_uptodate(folio))
2448 /* pipes can't handle partially uptodate pages */
2449 if (iov_iter_is_pipe(iter))
2451 if (!mapping->a_ops->is_partially_uptodate)
2453 if (mapping->host->i_blkbits >= folio_shift(folio))
2456 count = iter->count;
2457 if (folio_pos(folio) > pos) {
2458 count -= folio_pos(folio) - pos;
2461 pos -= folio_pos(folio);
2464 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2467 static int filemap_update_page(struct kiocb *iocb,
2468 struct address_space *mapping, struct iov_iter *iter,
2469 struct folio *folio)
2473 if (iocb->ki_flags & IOCB_NOWAIT) {
2474 if (!filemap_invalidate_trylock_shared(mapping))
2477 filemap_invalidate_lock_shared(mapping);
2480 if (!folio_trylock(folio)) {
2482 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2483 goto unlock_mapping;
2484 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2485 filemap_invalidate_unlock_shared(mapping);
2487 * This is where we usually end up waiting for a
2488 * previously submitted readahead to finish.
2490 folio_put_wait_locked(folio, TASK_KILLABLE);
2491 return AOP_TRUNCATED_PAGE;
2493 error = __folio_lock_async(folio, iocb->ki_waitq);
2495 goto unlock_mapping;
2498 error = AOP_TRUNCATED_PAGE;
2499 if (!folio->mapping)
2503 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2507 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2510 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2511 goto unlock_mapping;
2513 folio_unlock(folio);
2515 filemap_invalidate_unlock_shared(mapping);
2516 if (error == AOP_TRUNCATED_PAGE)
2521 static int filemap_create_folio(struct file *file,
2522 struct address_space *mapping, pgoff_t index,
2523 struct folio_batch *fbatch)
2525 struct folio *folio;
2528 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2533 * Protect against truncate / hole punch. Grabbing invalidate_lock
2534 * here assures we cannot instantiate and bring uptodate new
2535 * pagecache folios after evicting page cache during truncate
2536 * and before actually freeing blocks. Note that we could
2537 * release invalidate_lock after inserting the folio into
2538 * the page cache as the locked folio would then be enough to
2539 * synchronize with hole punching. But there are code paths
2540 * such as filemap_update_page() filling in partially uptodate
2541 * pages or ->readahead() that need to hold invalidate_lock
2542 * while mapping blocks for IO so let's hold the lock here as
2543 * well to keep locking rules simple.
2545 filemap_invalidate_lock_shared(mapping);
2546 error = filemap_add_folio(mapping, folio, index,
2547 mapping_gfp_constraint(mapping, GFP_KERNEL));
2548 if (error == -EEXIST)
2549 error = AOP_TRUNCATED_PAGE;
2553 error = filemap_read_folio(file, mapping, folio);
2557 filemap_invalidate_unlock_shared(mapping);
2558 folio_batch_add(fbatch, folio);
2561 filemap_invalidate_unlock_shared(mapping);
2566 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2567 struct address_space *mapping, struct folio *folio,
2570 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2572 if (iocb->ki_flags & IOCB_NOIO)
2574 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2578 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2579 struct folio_batch *fbatch)
2581 struct file *filp = iocb->ki_filp;
2582 struct address_space *mapping = filp->f_mapping;
2583 struct file_ra_state *ra = &filp->f_ra;
2584 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2586 struct folio *folio;
2589 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2591 if (fatal_signal_pending(current))
2594 filemap_get_read_batch(mapping, index, last_index, fbatch);
2595 if (!folio_batch_count(fbatch)) {
2596 if (iocb->ki_flags & IOCB_NOIO)
2598 page_cache_sync_readahead(mapping, ra, filp, index,
2599 last_index - index);
2600 filemap_get_read_batch(mapping, index, last_index, fbatch);
2602 if (!folio_batch_count(fbatch)) {
2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2605 err = filemap_create_folio(filp, mapping,
2606 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2607 if (err == AOP_TRUNCATED_PAGE)
2612 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2613 if (folio_test_readahead(folio)) {
2614 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618 if (!folio_test_uptodate(folio)) {
2619 if ((iocb->ki_flags & IOCB_WAITQ) &&
2620 folio_batch_count(fbatch) > 1)
2621 iocb->ki_flags |= IOCB_NOWAIT;
2622 err = filemap_update_page(iocb, mapping, iter, folio);
2631 if (likely(--fbatch->nr))
2633 if (err == AOP_TRUNCATED_PAGE)
2639 * filemap_read - Read data from the page cache.
2640 * @iocb: The iocb to read.
2641 * @iter: Destination for the data.
2642 * @already_read: Number of bytes already read by the caller.
2644 * Copies data from the page cache. If the data is not currently present,
2645 * uses the readahead and readpage address_space operations to fetch it.
2647 * Return: Total number of bytes copied, including those already read by
2648 * the caller. If an error happens before any bytes are copied, returns
2649 * a negative error number.
2651 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2652 ssize_t already_read)
2654 struct file *filp = iocb->ki_filp;
2655 struct file_ra_state *ra = &filp->f_ra;
2656 struct address_space *mapping = filp->f_mapping;
2657 struct inode *inode = mapping->host;
2658 struct folio_batch fbatch;
2660 bool writably_mapped;
2661 loff_t isize, end_offset;
2663 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2665 if (unlikely(!iov_iter_count(iter)))
2668 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2669 folio_batch_init(&fbatch);
2675 * If we've already successfully copied some data, then we
2676 * can no longer safely return -EIOCBQUEUED. Hence mark
2677 * an async read NOWAIT at that point.
2679 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2680 iocb->ki_flags |= IOCB_NOWAIT;
2682 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2685 error = filemap_get_pages(iocb, iter, &fbatch);
2690 * i_size must be checked after we know the pages are Uptodate.
2692 * Checking i_size after the check allows us to calculate
2693 * the correct value for "nr", which means the zero-filled
2694 * part of the page is not copied back to userspace (unless
2695 * another truncate extends the file - this is desired though).
2697 isize = i_size_read(inode);
2698 if (unlikely(iocb->ki_pos >= isize))
2700 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2703 * Once we start copying data, we don't want to be touching any
2704 * cachelines that might be contended:
2706 writably_mapped = mapping_writably_mapped(mapping);
2709 * When a sequential read accesses a page several times, only
2710 * mark it as accessed the first time.
2712 if (iocb->ki_pos >> PAGE_SHIFT !=
2713 ra->prev_pos >> PAGE_SHIFT)
2714 folio_mark_accessed(fbatch.folios[0]);
2716 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2717 struct folio *folio = fbatch.folios[i];
2718 size_t fsize = folio_size(folio);
2719 size_t offset = iocb->ki_pos & (fsize - 1);
2720 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2724 if (end_offset < folio_pos(folio))
2727 folio_mark_accessed(folio);
2729 * If users can be writing to this folio using arbitrary
2730 * virtual addresses, take care of potential aliasing
2731 * before reading the folio on the kernel side.
2733 if (writably_mapped)
2734 flush_dcache_folio(folio);
2736 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2738 already_read += copied;
2739 iocb->ki_pos += copied;
2740 ra->prev_pos = iocb->ki_pos;
2742 if (copied < bytes) {
2748 for (i = 0; i < folio_batch_count(&fbatch); i++)
2749 folio_put(fbatch.folios[i]);
2750 folio_batch_init(&fbatch);
2751 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2753 file_accessed(filp);
2755 return already_read ? already_read : error;
2757 EXPORT_SYMBOL_GPL(filemap_read);
2760 * generic_file_read_iter - generic filesystem read routine
2761 * @iocb: kernel I/O control block
2762 * @iter: destination for the data read
2764 * This is the "read_iter()" routine for all filesystems
2765 * that can use the page cache directly.
2767 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2768 * be returned when no data can be read without waiting for I/O requests
2769 * to complete; it doesn't prevent readahead.
2771 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2772 * requests shall be made for the read or for readahead. When no data
2773 * can be read, -EAGAIN shall be returned. When readahead would be
2774 * triggered, a partial, possibly empty read shall be returned.
2777 * * number of bytes copied, even for partial reads
2778 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2781 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2783 size_t count = iov_iter_count(iter);
2787 return 0; /* skip atime */
2789 if (iocb->ki_flags & IOCB_DIRECT) {
2790 struct file *file = iocb->ki_filp;
2791 struct address_space *mapping = file->f_mapping;
2792 struct inode *inode = mapping->host;
2794 if (iocb->ki_flags & IOCB_NOWAIT) {
2795 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2796 iocb->ki_pos + count - 1))
2799 retval = filemap_write_and_wait_range(mapping,
2801 iocb->ki_pos + count - 1);
2806 file_accessed(file);
2808 retval = mapping->a_ops->direct_IO(iocb, iter);
2810 iocb->ki_pos += retval;
2813 if (retval != -EIOCBQUEUED)
2814 iov_iter_revert(iter, count - iov_iter_count(iter));
2817 * Btrfs can have a short DIO read if we encounter
2818 * compressed extents, so if there was an error, or if
2819 * we've already read everything we wanted to, or if
2820 * there was a short read because we hit EOF, go ahead
2821 * and return. Otherwise fallthrough to buffered io for
2822 * the rest of the read. Buffered reads will not work for
2823 * DAX files, so don't bother trying.
2825 if (retval < 0 || !count || IS_DAX(inode))
2827 if (iocb->ki_pos >= i_size_read(inode))
2831 return filemap_read(iocb, iter, retval);
2833 EXPORT_SYMBOL(generic_file_read_iter);
2835 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2836 struct address_space *mapping, struct folio *folio,
2837 loff_t start, loff_t end, bool seek_data)
2839 const struct address_space_operations *ops = mapping->a_ops;
2840 size_t offset, bsz = i_blocksize(mapping->host);
2842 if (xa_is_value(folio) || folio_test_uptodate(folio))
2843 return seek_data ? start : end;
2844 if (!ops->is_partially_uptodate)
2845 return seek_data ? end : start;
2850 if (unlikely(folio->mapping != mapping))
2853 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2856 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2859 start = (start + bsz) & ~(bsz - 1);
2861 } while (offset < folio_size(folio));
2863 folio_unlock(folio);
2868 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2870 if (xa_is_value(folio))
2871 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2872 return folio_size(folio);
2876 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2877 * @mapping: Address space to search.
2878 * @start: First byte to consider.
2879 * @end: Limit of search (exclusive).
2880 * @whence: Either SEEK_HOLE or SEEK_DATA.
2882 * If the page cache knows which blocks contain holes and which blocks
2883 * contain data, your filesystem can use this function to implement
2884 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2885 * entirely memory-based such as tmpfs, and filesystems which support
2886 * unwritten extents.
2888 * Return: The requested offset on success, or -ENXIO if @whence specifies
2889 * SEEK_DATA and there is no data after @start. There is an implicit hole
2890 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2891 * and @end contain data.
2893 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2894 loff_t end, int whence)
2896 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2897 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2898 bool seek_data = (whence == SEEK_DATA);
2899 struct folio *folio;
2905 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2906 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2915 seek_size = seek_folio_size(&xas, folio);
2916 pos = round_up((u64)pos + 1, seek_size);
2917 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2923 if (seek_size > PAGE_SIZE)
2924 xas_set(&xas, pos >> PAGE_SHIFT);
2925 if (!xa_is_value(folio))
2932 if (folio && !xa_is_value(folio))
2940 #define MMAP_LOTSAMISS (100)
2942 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2943 * @vmf - the vm_fault for this fault.
2944 * @folio - the folio to lock.
2945 * @fpin - the pointer to the file we may pin (or is already pinned).
2947 * This works similar to lock_folio_or_retry in that it can drop the
2948 * mmap_lock. It differs in that it actually returns the folio locked
2949 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2950 * to drop the mmap_lock then fpin will point to the pinned file and
2951 * needs to be fput()'ed at a later point.
2953 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2956 if (folio_trylock(folio))
2960 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2961 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2962 * is supposed to work. We have way too many special cases..
2964 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2967 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2968 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2969 if (__folio_lock_killable(folio)) {
2971 * We didn't have the right flags to drop the mmap_lock,
2972 * but all fault_handlers only check for fatal signals
2973 * if we return VM_FAULT_RETRY, so we need to drop the
2974 * mmap_lock here and return 0 if we don't have a fpin.
2977 mmap_read_unlock(vmf->vma->vm_mm);
2981 __folio_lock(folio);
2987 * Synchronous readahead happens when we don't even find a page in the page
2988 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2989 * to drop the mmap sem we return the file that was pinned in order for us to do
2990 * that. If we didn't pin a file then we return NULL. The file that is
2991 * returned needs to be fput()'ed when we're done with it.
2993 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2995 struct file *file = vmf->vma->vm_file;
2996 struct file_ra_state *ra = &file->f_ra;
2997 struct address_space *mapping = file->f_mapping;
2998 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2999 struct file *fpin = NULL;
3000 unsigned int mmap_miss;
3002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3003 /* Use the readahead code, even if readahead is disabled */
3004 if (vmf->vma->vm_flags & VM_HUGEPAGE) {
3005 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3006 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3007 ra->size = HPAGE_PMD_NR;
3009 * Fetch two PMD folios, so we get the chance to actually
3010 * readahead, unless we've been told not to.
3012 if (!(vmf->vma->vm_flags & VM_RAND_READ))
3014 ra->async_size = HPAGE_PMD_NR;
3015 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3020 /* If we don't want any read-ahead, don't bother */
3021 if (vmf->vma->vm_flags & VM_RAND_READ)
3026 if (vmf->vma->vm_flags & VM_SEQ_READ) {
3027 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3028 page_cache_sync_ra(&ractl, ra->ra_pages);
3032 /* Avoid banging the cache line if not needed */
3033 mmap_miss = READ_ONCE(ra->mmap_miss);
3034 if (mmap_miss < MMAP_LOTSAMISS * 10)
3035 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3038 * Do we miss much more than hit in this file? If so,
3039 * stop bothering with read-ahead. It will only hurt.
3041 if (mmap_miss > MMAP_LOTSAMISS)
3047 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3048 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3049 ra->size = ra->ra_pages;
3050 ra->async_size = ra->ra_pages / 4;
3051 ractl._index = ra->start;
3052 page_cache_ra_order(&ractl, ra, 0);
3057 * Asynchronous readahead happens when we find the page and PG_readahead,
3058 * so we want to possibly extend the readahead further. We return the file that
3059 * was pinned if we have to drop the mmap_lock in order to do IO.
3061 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3062 struct folio *folio)
3064 struct file *file = vmf->vma->vm_file;
3065 struct file_ra_state *ra = &file->f_ra;
3066 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3067 struct file *fpin = NULL;
3068 unsigned int mmap_miss;
3070 /* If we don't want any read-ahead, don't bother */
3071 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3074 mmap_miss = READ_ONCE(ra->mmap_miss);
3076 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3078 if (folio_test_readahead(folio)) {
3079 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3080 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3086 * filemap_fault - read in file data for page fault handling
3087 * @vmf: struct vm_fault containing details of the fault
3089 * filemap_fault() is invoked via the vma operations vector for a
3090 * mapped memory region to read in file data during a page fault.
3092 * The goto's are kind of ugly, but this streamlines the normal case of having
3093 * it in the page cache, and handles the special cases reasonably without
3094 * having a lot of duplicated code.
3096 * vma->vm_mm->mmap_lock must be held on entry.
3098 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3099 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3101 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3102 * has not been released.
3104 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3106 * Return: bitwise-OR of %VM_FAULT_ codes.
3108 vm_fault_t filemap_fault(struct vm_fault *vmf)
3111 struct file *file = vmf->vma->vm_file;
3112 struct file *fpin = NULL;
3113 struct address_space *mapping = file->f_mapping;
3114 struct inode *inode = mapping->host;
3115 pgoff_t max_idx, index = vmf->pgoff;
3116 struct folio *folio;
3118 bool mapping_locked = false;
3120 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3121 if (unlikely(index >= max_idx))
3122 return VM_FAULT_SIGBUS;
3125 * Do we have something in the page cache already?
3127 folio = filemap_get_folio(mapping, index);
3128 if (likely(folio)) {
3130 * We found the page, so try async readahead before waiting for
3133 if (!(vmf->flags & FAULT_FLAG_TRIED))
3134 fpin = do_async_mmap_readahead(vmf, folio);
3135 if (unlikely(!folio_test_uptodate(folio))) {
3136 filemap_invalidate_lock_shared(mapping);
3137 mapping_locked = true;
3140 /* No page in the page cache at all */
3141 count_vm_event(PGMAJFAULT);
3142 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3143 ret = VM_FAULT_MAJOR;
3144 fpin = do_sync_mmap_readahead(vmf);
3147 * See comment in filemap_create_folio() why we need
3150 if (!mapping_locked) {
3151 filemap_invalidate_lock_shared(mapping);
3152 mapping_locked = true;
3154 folio = __filemap_get_folio(mapping, index,
3155 FGP_CREAT|FGP_FOR_MMAP,
3160 filemap_invalidate_unlock_shared(mapping);
3161 return VM_FAULT_OOM;
3165 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3168 /* Did it get truncated? */
3169 if (unlikely(folio->mapping != mapping)) {
3170 folio_unlock(folio);
3174 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3177 * We have a locked page in the page cache, now we need to check
3178 * that it's up-to-date. If not, it is going to be due to an error.
3180 if (unlikely(!folio_test_uptodate(folio))) {
3182 * The page was in cache and uptodate and now it is not.
3183 * Strange but possible since we didn't hold the page lock all
3184 * the time. Let's drop everything get the invalidate lock and
3187 if (!mapping_locked) {
3188 folio_unlock(folio);
3192 goto page_not_uptodate;
3196 * We've made it this far and we had to drop our mmap_lock, now is the
3197 * time to return to the upper layer and have it re-find the vma and
3201 folio_unlock(folio);
3205 filemap_invalidate_unlock_shared(mapping);
3208 * Found the page and have a reference on it.
3209 * We must recheck i_size under page lock.
3211 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3212 if (unlikely(index >= max_idx)) {
3213 folio_unlock(folio);
3215 return VM_FAULT_SIGBUS;
3218 vmf->page = folio_file_page(folio, index);
3219 return ret | VM_FAULT_LOCKED;
3223 * Umm, take care of errors if the page isn't up-to-date.
3224 * Try to re-read it _once_. We do this synchronously,
3225 * because there really aren't any performance issues here
3226 * and we need to check for errors.
3228 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3229 error = filemap_read_folio(file, mapping, folio);
3234 if (!error || error == AOP_TRUNCATED_PAGE)
3236 filemap_invalidate_unlock_shared(mapping);
3238 return VM_FAULT_SIGBUS;
3242 * We dropped the mmap_lock, we need to return to the fault handler to
3243 * re-find the vma and come back and find our hopefully still populated
3249 filemap_invalidate_unlock_shared(mapping);
3252 return ret | VM_FAULT_RETRY;
3254 EXPORT_SYMBOL(filemap_fault);
3256 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3258 struct mm_struct *mm = vmf->vma->vm_mm;
3260 /* Huge page is mapped? No need to proceed. */
3261 if (pmd_trans_huge(*vmf->pmd)) {
3267 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3268 vm_fault_t ret = do_set_pmd(vmf, page);
3270 /* The page is mapped successfully, reference consumed. */
3276 if (pmd_none(*vmf->pmd))
3277 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3279 /* See comment in handle_pte_fault() */
3280 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3289 static struct folio *next_uptodate_page(struct folio *folio,
3290 struct address_space *mapping,
3291 struct xa_state *xas, pgoff_t end_pgoff)
3293 unsigned long max_idx;
3298 if (xas_retry(xas, folio))
3300 if (xa_is_value(folio))
3302 if (folio_test_locked(folio))
3304 if (!folio_try_get_rcu(folio))
3306 /* Has the page moved or been split? */
3307 if (unlikely(folio != xas_reload(xas)))
3309 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3311 if (!folio_trylock(folio))
3313 if (folio->mapping != mapping)
3315 if (!folio_test_uptodate(folio))
3317 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3318 if (xas->xa_index >= max_idx)
3322 folio_unlock(folio);
3325 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3330 static inline struct folio *first_map_page(struct address_space *mapping,
3331 struct xa_state *xas,
3334 return next_uptodate_page(xas_find(xas, end_pgoff),
3335 mapping, xas, end_pgoff);
3338 static inline struct folio *next_map_page(struct address_space *mapping,
3339 struct xa_state *xas,
3342 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3343 mapping, xas, end_pgoff);
3346 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3347 pgoff_t start_pgoff, pgoff_t end_pgoff)
3349 struct vm_area_struct *vma = vmf->vma;
3350 struct file *file = vma->vm_file;
3351 struct address_space *mapping = file->f_mapping;
3352 pgoff_t last_pgoff = start_pgoff;
3354 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3355 struct folio *folio;
3357 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3361 folio = first_map_page(mapping, &xas, end_pgoff);
3365 if (filemap_map_pmd(vmf, &folio->page)) {
3366 ret = VM_FAULT_NOPAGE;
3370 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3374 page = folio_file_page(folio, xas.xa_index);
3375 if (PageHWPoison(page))
3381 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3382 vmf->pte += xas.xa_index - last_pgoff;
3383 last_pgoff = xas.xa_index;
3385 if (!pte_none(*vmf->pte))
3388 /* We're about to handle the fault */
3389 if (vmf->address == addr)
3390 ret = VM_FAULT_NOPAGE;
3392 do_set_pte(vmf, page, addr);
3393 /* no need to invalidate: a not-present page won't be cached */
3394 update_mmu_cache(vma, addr, vmf->pte);
3395 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3397 folio_ref_inc(folio);
3400 folio_unlock(folio);
3403 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3407 folio_unlock(folio);
3409 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
3413 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3416 EXPORT_SYMBOL(filemap_map_pages);
3418 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3420 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3421 struct folio *folio = page_folio(vmf->page);
3422 vm_fault_t ret = VM_FAULT_LOCKED;
3424 sb_start_pagefault(mapping->host->i_sb);
3425 file_update_time(vmf->vma->vm_file);
3427 if (folio->mapping != mapping) {
3428 folio_unlock(folio);
3429 ret = VM_FAULT_NOPAGE;
3433 * We mark the folio dirty already here so that when freeze is in
3434 * progress, we are guaranteed that writeback during freezing will
3435 * see the dirty folio and writeprotect it again.
3437 folio_mark_dirty(folio);
3438 folio_wait_stable(folio);
3440 sb_end_pagefault(mapping->host->i_sb);
3444 const struct vm_operations_struct generic_file_vm_ops = {
3445 .fault = filemap_fault,
3446 .map_pages = filemap_map_pages,
3447 .page_mkwrite = filemap_page_mkwrite,
3450 /* This is used for a general mmap of a disk file */
3452 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3454 struct address_space *mapping = file->f_mapping;
3456 if (!mapping->a_ops->readpage)
3458 file_accessed(file);
3459 vma->vm_ops = &generic_file_vm_ops;
3464 * This is for filesystems which do not implement ->writepage.
3466 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3468 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3470 return generic_file_mmap(file, vma);
3473 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3475 return VM_FAULT_SIGBUS;
3477 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3485 #endif /* CONFIG_MMU */
3487 EXPORT_SYMBOL(filemap_page_mkwrite);
3488 EXPORT_SYMBOL(generic_file_mmap);
3489 EXPORT_SYMBOL(generic_file_readonly_mmap);
3491 static struct folio *do_read_cache_folio(struct address_space *mapping,
3492 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3494 struct folio *folio;
3497 folio = filemap_get_folio(mapping, index);
3499 folio = filemap_alloc_folio(gfp, 0);
3501 return ERR_PTR(-ENOMEM);
3502 err = filemap_add_folio(mapping, folio, index, gfp);
3503 if (unlikely(err)) {
3507 /* Presumably ENOMEM for xarray node */
3508 return ERR_PTR(err);
3513 err = filler(data, &folio->page);
3515 err = mapping->a_ops->readpage(data, &folio->page);
3519 return ERR_PTR(err);
3522 folio_wait_locked(folio);
3523 if (!folio_test_uptodate(folio)) {
3525 return ERR_PTR(-EIO);
3530 if (folio_test_uptodate(folio))
3533 if (!folio_trylock(folio)) {
3534 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3538 /* Folio was truncated from mapping */
3539 if (!folio->mapping) {
3540 folio_unlock(folio);
3545 /* Someone else locked and filled the page in a very small window */
3546 if (folio_test_uptodate(folio)) {
3547 folio_unlock(folio);
3552 * A previous I/O error may have been due to temporary
3554 * Clear page error before actual read, PG_error will be
3555 * set again if read page fails.
3557 folio_clear_error(folio);
3561 folio_mark_accessed(folio);
3566 * read_cache_folio - read into page cache, fill it if needed
3567 * @mapping: the page's address_space
3568 * @index: the page index
3569 * @filler: function to perform the read
3570 * @data: first arg to filler(data, page) function, often left as NULL
3572 * Read into the page cache. If a page already exists, and PageUptodate() is
3573 * not set, try to fill the page and wait for it to become unlocked.
3575 * If the page does not get brought uptodate, return -EIO.
3577 * The function expects mapping->invalidate_lock to be already held.
3579 * Return: up to date page on success, ERR_PTR() on failure.
3581 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3582 filler_t filler, void *data)
3584 return do_read_cache_folio(mapping, index, filler, data,
3585 mapping_gfp_mask(mapping));
3587 EXPORT_SYMBOL(read_cache_folio);
3589 static struct page *do_read_cache_page(struct address_space *mapping,
3590 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3592 struct folio *folio;
3594 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3596 return &folio->page;
3597 return folio_file_page(folio, index);
3600 struct page *read_cache_page(struct address_space *mapping,
3601 pgoff_t index, filler_t *filler, void *data)
3603 return do_read_cache_page(mapping, index, filler, data,
3604 mapping_gfp_mask(mapping));
3606 EXPORT_SYMBOL(read_cache_page);
3609 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3610 * @mapping: the page's address_space
3611 * @index: the page index
3612 * @gfp: the page allocator flags to use if allocating
3614 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3615 * any new page allocations done using the specified allocation flags.
3617 * If the page does not get brought uptodate, return -EIO.
3619 * The function expects mapping->invalidate_lock to be already held.
3621 * Return: up to date page on success, ERR_PTR() on failure.
3623 struct page *read_cache_page_gfp(struct address_space *mapping,
3627 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3629 EXPORT_SYMBOL(read_cache_page_gfp);
3631 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3632 loff_t pos, unsigned len, unsigned flags,
3633 struct page **pagep, void **fsdata)
3635 const struct address_space_operations *aops = mapping->a_ops;
3637 return aops->write_begin(file, mapping, pos, len, flags,
3640 EXPORT_SYMBOL(pagecache_write_begin);
3642 int pagecache_write_end(struct file *file, struct address_space *mapping,
3643 loff_t pos, unsigned len, unsigned copied,
3644 struct page *page, void *fsdata)
3646 const struct address_space_operations *aops = mapping->a_ops;
3648 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3650 EXPORT_SYMBOL(pagecache_write_end);
3653 * Warn about a page cache invalidation failure during a direct I/O write.
3655 void dio_warn_stale_pagecache(struct file *filp)
3657 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3661 errseq_set(&filp->f_mapping->wb_err, -EIO);
3662 if (__ratelimit(&_rs)) {
3663 path = file_path(filp, pathname, sizeof(pathname));
3666 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3667 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3673 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3675 struct file *file = iocb->ki_filp;
3676 struct address_space *mapping = file->f_mapping;
3677 struct inode *inode = mapping->host;
3678 loff_t pos = iocb->ki_pos;
3683 write_len = iov_iter_count(from);
3684 end = (pos + write_len - 1) >> PAGE_SHIFT;
3686 if (iocb->ki_flags & IOCB_NOWAIT) {
3687 /* If there are pages to writeback, return */
3688 if (filemap_range_has_page(file->f_mapping, pos,
3689 pos + write_len - 1))
3692 written = filemap_write_and_wait_range(mapping, pos,
3693 pos + write_len - 1);
3699 * After a write we want buffered reads to be sure to go to disk to get
3700 * the new data. We invalidate clean cached page from the region we're
3701 * about to write. We do this *before* the write so that we can return
3702 * without clobbering -EIOCBQUEUED from ->direct_IO().
3704 written = invalidate_inode_pages2_range(mapping,
3705 pos >> PAGE_SHIFT, end);
3707 * If a page can not be invalidated, return 0 to fall back
3708 * to buffered write.
3711 if (written == -EBUSY)
3716 written = mapping->a_ops->direct_IO(iocb, from);
3719 * Finally, try again to invalidate clean pages which might have been
3720 * cached by non-direct readahead, or faulted in by get_user_pages()
3721 * if the source of the write was an mmap'ed region of the file
3722 * we're writing. Either one is a pretty crazy thing to do,
3723 * so we don't support it 100%. If this invalidation
3724 * fails, tough, the write still worked...
3726 * Most of the time we do not need this since dio_complete() will do
3727 * the invalidation for us. However there are some file systems that
3728 * do not end up with dio_complete() being called, so let's not break
3729 * them by removing it completely.
3731 * Noticeable example is a blkdev_direct_IO().
3733 * Skip invalidation for async writes or if mapping has no pages.
3735 if (written > 0 && mapping->nrpages &&
3736 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3737 dio_warn_stale_pagecache(file);
3741 write_len -= written;
3742 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3743 i_size_write(inode, pos);
3744 mark_inode_dirty(inode);
3748 if (written != -EIOCBQUEUED)
3749 iov_iter_revert(from, write_len - iov_iter_count(from));
3753 EXPORT_SYMBOL(generic_file_direct_write);
3755 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3757 struct file *file = iocb->ki_filp;
3758 loff_t pos = iocb->ki_pos;
3759 struct address_space *mapping = file->f_mapping;
3760 const struct address_space_operations *a_ops = mapping->a_ops;
3762 ssize_t written = 0;
3763 unsigned int flags = 0;
3767 unsigned long offset; /* Offset into pagecache page */
3768 unsigned long bytes; /* Bytes to write to page */
3769 size_t copied; /* Bytes copied from user */
3772 offset = (pos & (PAGE_SIZE - 1));
3773 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3778 * Bring in the user page that we will copy from _first_.
3779 * Otherwise there's a nasty deadlock on copying from the
3780 * same page as we're writing to, without it being marked
3783 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3788 if (fatal_signal_pending(current)) {
3793 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3795 if (unlikely(status < 0))
3798 if (mapping_writably_mapped(mapping))
3799 flush_dcache_page(page);
3801 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3802 flush_dcache_page(page);
3804 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3806 if (unlikely(status != copied)) {
3807 iov_iter_revert(i, copied - max(status, 0L));
3808 if (unlikely(status < 0))
3813 if (unlikely(status == 0)) {
3815 * A short copy made ->write_end() reject the
3816 * thing entirely. Might be memory poisoning
3817 * halfway through, might be a race with munmap,
3818 * might be severe memory pressure.
3827 balance_dirty_pages_ratelimited(mapping);
3828 } while (iov_iter_count(i));
3830 return written ? written : status;
3832 EXPORT_SYMBOL(generic_perform_write);
3835 * __generic_file_write_iter - write data to a file
3836 * @iocb: IO state structure (file, offset, etc.)
3837 * @from: iov_iter with data to write
3839 * This function does all the work needed for actually writing data to a
3840 * file. It does all basic checks, removes SUID from the file, updates
3841 * modification times and calls proper subroutines depending on whether we
3842 * do direct IO or a standard buffered write.
3844 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3845 * object which does not need locking at all.
3847 * This function does *not* take care of syncing data in case of O_SYNC write.
3848 * A caller has to handle it. This is mainly due to the fact that we want to
3849 * avoid syncing under i_rwsem.
3852 * * number of bytes written, even for truncated writes
3853 * * negative error code if no data has been written at all
3855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3857 struct file *file = iocb->ki_filp;
3858 struct address_space *mapping = file->f_mapping;
3859 struct inode *inode = mapping->host;
3860 ssize_t written = 0;
3864 /* We can write back this queue in page reclaim */
3865 current->backing_dev_info = inode_to_bdi(inode);
3866 err = file_remove_privs(file);
3870 err = file_update_time(file);
3874 if (iocb->ki_flags & IOCB_DIRECT) {
3875 loff_t pos, endbyte;
3877 written = generic_file_direct_write(iocb, from);
3879 * If the write stopped short of completing, fall back to
3880 * buffered writes. Some filesystems do this for writes to
3881 * holes, for example. For DAX files, a buffered write will
3882 * not succeed (even if it did, DAX does not handle dirty
3883 * page-cache pages correctly).
3885 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3889 status = generic_perform_write(iocb, from);
3891 * If generic_perform_write() returned a synchronous error
3892 * then we want to return the number of bytes which were
3893 * direct-written, or the error code if that was zero. Note
3894 * that this differs from normal direct-io semantics, which
3895 * will return -EFOO even if some bytes were written.
3897 if (unlikely(status < 0)) {
3902 * We need to ensure that the page cache pages are written to
3903 * disk and invalidated to preserve the expected O_DIRECT
3906 endbyte = pos + status - 1;
3907 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3909 iocb->ki_pos = endbyte + 1;
3911 invalidate_mapping_pages(mapping,
3913 endbyte >> PAGE_SHIFT);
3916 * We don't know how much we wrote, so just return
3917 * the number of bytes which were direct-written
3921 written = generic_perform_write(iocb, from);
3922 if (likely(written > 0))
3923 iocb->ki_pos += written;
3926 current->backing_dev_info = NULL;
3927 return written ? written : err;
3929 EXPORT_SYMBOL(__generic_file_write_iter);
3932 * generic_file_write_iter - write data to a file
3933 * @iocb: IO state structure
3934 * @from: iov_iter with data to write
3936 * This is a wrapper around __generic_file_write_iter() to be used by most
3937 * filesystems. It takes care of syncing the file in case of O_SYNC file
3938 * and acquires i_rwsem as needed.
3940 * * negative error code if no data has been written at all of
3941 * vfs_fsync_range() failed for a synchronous write
3942 * * number of bytes written, even for truncated writes
3944 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3946 struct file *file = iocb->ki_filp;
3947 struct inode *inode = file->f_mapping->host;
3951 ret = generic_write_checks(iocb, from);
3953 ret = __generic_file_write_iter(iocb, from);
3954 inode_unlock(inode);
3957 ret = generic_write_sync(iocb, ret);
3960 EXPORT_SYMBOL(generic_file_write_iter);
3963 * filemap_release_folio() - Release fs-specific metadata on a folio.
3964 * @folio: The folio which the kernel is trying to free.
3965 * @gfp: Memory allocation flags (and I/O mode).
3967 * The address_space is trying to release any data attached to a folio
3968 * (presumably at folio->private).
3970 * This will also be called if the private_2 flag is set on a page,
3971 * indicating that the folio has other metadata associated with it.
3973 * The @gfp argument specifies whether I/O may be performed to release
3974 * this page (__GFP_IO), and whether the call may block
3975 * (__GFP_RECLAIM & __GFP_FS).
3977 * Return: %true if the release was successful, otherwise %false.
3979 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3981 struct address_space * const mapping = folio->mapping;
3983 BUG_ON(!folio_test_locked(folio));
3984 if (folio_test_writeback(folio))
3987 if (mapping && mapping->a_ops->releasepage)
3988 return mapping->a_ops->releasepage(&folio->page, gfp);
3989 return try_to_free_buffers(&folio->page);
3991 EXPORT_SYMBOL(filemap_release_folio);