]> Git Repo - linux.git/blob - fs/cifs/misc.c
drm/rockchip: Refactor IOMMU initialisation
[linux.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French ([email protected])
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35
36 unsigned int
37 _get_xid(void)
38 {
39         unsigned int xid;
40
41         spin_lock(&GlobalMid_Lock);
42         GlobalTotalActiveXid++;
43
44         /* keep high water mark for number of simultaneous ops in filesystem */
45         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46                 GlobalMaxActiveXid = GlobalTotalActiveXid;
47         if (GlobalTotalActiveXid > 65000)
48                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49         xid = GlobalCurrentXid++;
50         spin_unlock(&GlobalMid_Lock);
51         return xid;
52 }
53
54 void
55 _free_xid(unsigned int xid)
56 {
57         spin_lock(&GlobalMid_Lock);
58         /* if (GlobalTotalActiveXid == 0)
59                 BUG(); */
60         GlobalTotalActiveXid--;
61         spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67         struct cifs_ses *ret_buf;
68
69         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70         if (ret_buf) {
71                 atomic_inc(&sesInfoAllocCount);
72                 ret_buf->status = CifsNew;
73                 ++ret_buf->ses_count;
74                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
75                 INIT_LIST_HEAD(&ret_buf->tcon_list);
76                 mutex_init(&ret_buf->session_mutex);
77                 spin_lock_init(&ret_buf->iface_lock);
78                 spin_lock_init(&ret_buf->chan_lock);
79         }
80         return ret_buf;
81 }
82
83 void
84 sesInfoFree(struct cifs_ses *buf_to_free)
85 {
86         if (buf_to_free == NULL) {
87                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
88                 return;
89         }
90
91         atomic_dec(&sesInfoAllocCount);
92         kfree(buf_to_free->serverOS);
93         kfree(buf_to_free->serverDomain);
94         kfree(buf_to_free->serverNOS);
95         kfree_sensitive(buf_to_free->password);
96         kfree(buf_to_free->user_name);
97         kfree(buf_to_free->domainName);
98         kfree(buf_to_free->workstation_name);
99         kfree_sensitive(buf_to_free->auth_key.response);
100         kfree(buf_to_free->iface_list);
101         kfree_sensitive(buf_to_free);
102 }
103
104 struct cifs_tcon *
105 tconInfoAlloc(void)
106 {
107         struct cifs_tcon *ret_buf;
108
109         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
110         if (!ret_buf)
111                 return NULL;
112         ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
113         if (!ret_buf->crfid.fid) {
114                 kfree(ret_buf);
115                 return NULL;
116         }
117
118         atomic_inc(&tconInfoAllocCount);
119         ret_buf->status = TID_NEW;
120         ++ret_buf->tc_count;
121         INIT_LIST_HEAD(&ret_buf->openFileList);
122         INIT_LIST_HEAD(&ret_buf->tcon_list);
123         spin_lock_init(&ret_buf->open_file_lock);
124         mutex_init(&ret_buf->crfid.fid_mutex);
125         spin_lock_init(&ret_buf->stat_lock);
126         atomic_set(&ret_buf->num_local_opens, 0);
127         atomic_set(&ret_buf->num_remote_opens, 0);
128
129         return ret_buf;
130 }
131
132 void
133 tconInfoFree(struct cifs_tcon *buf_to_free)
134 {
135         if (buf_to_free == NULL) {
136                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
137                 return;
138         }
139         atomic_dec(&tconInfoAllocCount);
140         kfree(buf_to_free->nativeFileSystem);
141         kfree_sensitive(buf_to_free->password);
142         kfree(buf_to_free->crfid.fid);
143         kfree(buf_to_free);
144 }
145
146 struct smb_hdr *
147 cifs_buf_get(void)
148 {
149         struct smb_hdr *ret_buf = NULL;
150         /*
151          * SMB2 header is bigger than CIFS one - no problems to clean some
152          * more bytes for CIFS.
153          */
154         size_t buf_size = sizeof(struct smb2_hdr);
155
156         /*
157          * We could use negotiated size instead of max_msgsize -
158          * but it may be more efficient to always alloc same size
159          * albeit slightly larger than necessary and maxbuffersize
160          * defaults to this and can not be bigger.
161          */
162         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
163
164         /* clear the first few header bytes */
165         /* for most paths, more is cleared in header_assemble */
166         memset(ret_buf, 0, buf_size + 3);
167         atomic_inc(&bufAllocCount);
168 #ifdef CONFIG_CIFS_STATS2
169         atomic_inc(&totBufAllocCount);
170 #endif /* CONFIG_CIFS_STATS2 */
171
172         return ret_buf;
173 }
174
175 void
176 cifs_buf_release(void *buf_to_free)
177 {
178         if (buf_to_free == NULL) {
179                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
180                 return;
181         }
182         mempool_free(buf_to_free, cifs_req_poolp);
183
184         atomic_dec(&bufAllocCount);
185         return;
186 }
187
188 struct smb_hdr *
189 cifs_small_buf_get(void)
190 {
191         struct smb_hdr *ret_buf = NULL;
192
193 /* We could use negotiated size instead of max_msgsize -
194    but it may be more efficient to always alloc same size
195    albeit slightly larger than necessary and maxbuffersize
196    defaults to this and can not be bigger */
197         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
198         /* No need to clear memory here, cleared in header assemble */
199         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
200         atomic_inc(&smBufAllocCount);
201 #ifdef CONFIG_CIFS_STATS2
202         atomic_inc(&totSmBufAllocCount);
203 #endif /* CONFIG_CIFS_STATS2 */
204
205         return ret_buf;
206 }
207
208 void
209 cifs_small_buf_release(void *buf_to_free)
210 {
211
212         if (buf_to_free == NULL) {
213                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
214                 return;
215         }
216         mempool_free(buf_to_free, cifs_sm_req_poolp);
217
218         atomic_dec(&smBufAllocCount);
219         return;
220 }
221
222 void
223 free_rsp_buf(int resp_buftype, void *rsp)
224 {
225         if (resp_buftype == CIFS_SMALL_BUFFER)
226                 cifs_small_buf_release(rsp);
227         else if (resp_buftype == CIFS_LARGE_BUFFER)
228                 cifs_buf_release(rsp);
229 }
230
231 /* NB: MID can not be set if treeCon not passed in, in that
232    case it is responsbility of caller to set the mid */
233 void
234 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
235                 const struct cifs_tcon *treeCon, int word_count
236                 /* length of fixed section (word count) in two byte units  */)
237 {
238         char *temp = (char *) buffer;
239
240         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
241
242         buffer->smb_buf_length = cpu_to_be32(
243             (2 * word_count) + sizeof(struct smb_hdr) -
244             4 /*  RFC 1001 length field does not count */  +
245             2 /* for bcc field itself */) ;
246
247         buffer->Protocol[0] = 0xFF;
248         buffer->Protocol[1] = 'S';
249         buffer->Protocol[2] = 'M';
250         buffer->Protocol[3] = 'B';
251         buffer->Command = smb_command;
252         buffer->Flags = 0x00;   /* case sensitive */
253         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
254         buffer->Pid = cpu_to_le16((__u16)current->tgid);
255         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
256         if (treeCon) {
257                 buffer->Tid = treeCon->tid;
258                 if (treeCon->ses) {
259                         if (treeCon->ses->capabilities & CAP_UNICODE)
260                                 buffer->Flags2 |= SMBFLG2_UNICODE;
261                         if (treeCon->ses->capabilities & CAP_STATUS32)
262                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
263
264                         /* Uid is not converted */
265                         buffer->Uid = treeCon->ses->Suid;
266                         if (treeCon->ses->server)
267                                 buffer->Mid = get_next_mid(treeCon->ses->server);
268                 }
269                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
270                         buffer->Flags2 |= SMBFLG2_DFS;
271                 if (treeCon->nocase)
272                         buffer->Flags  |= SMBFLG_CASELESS;
273                 if ((treeCon->ses) && (treeCon->ses->server))
274                         if (treeCon->ses->server->sign)
275                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
276         }
277
278 /*  endian conversion of flags is now done just before sending */
279         buffer->WordCount = (char) word_count;
280         return;
281 }
282
283 static int
284 check_smb_hdr(struct smb_hdr *smb)
285 {
286         /* does it have the right SMB "signature" ? */
287         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
288                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
289                          *(unsigned int *)smb->Protocol);
290                 return 1;
291         }
292
293         /* if it's a response then accept */
294         if (smb->Flags & SMBFLG_RESPONSE)
295                 return 0;
296
297         /* only one valid case where server sends us request */
298         if (smb->Command == SMB_COM_LOCKING_ANDX)
299                 return 0;
300
301         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
302                  get_mid(smb));
303         return 1;
304 }
305
306 int
307 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
308 {
309         struct smb_hdr *smb = (struct smb_hdr *)buf;
310         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
311         __u32 clc_len;  /* calculated length */
312         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
313                  total_read, rfclen);
314
315         /* is this frame too small to even get to a BCC? */
316         if (total_read < 2 + sizeof(struct smb_hdr)) {
317                 if ((total_read >= sizeof(struct smb_hdr) - 1)
318                             && (smb->Status.CifsError != 0)) {
319                         /* it's an error return */
320                         smb->WordCount = 0;
321                         /* some error cases do not return wct and bcc */
322                         return 0;
323                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
324                                 (smb->WordCount == 0)) {
325                         char *tmp = (char *)smb;
326                         /* Need to work around a bug in two servers here */
327                         /* First, check if the part of bcc they sent was zero */
328                         if (tmp[sizeof(struct smb_hdr)] == 0) {
329                                 /* some servers return only half of bcc
330                                  * on simple responses (wct, bcc both zero)
331                                  * in particular have seen this on
332                                  * ulogoffX and FindClose. This leaves
333                                  * one byte of bcc potentially unitialized
334                                  */
335                                 /* zero rest of bcc */
336                                 tmp[sizeof(struct smb_hdr)+1] = 0;
337                                 return 0;
338                         }
339                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
340                 } else {
341                         cifs_dbg(VFS, "Length less than smb header size\n");
342                 }
343                 return -EIO;
344         }
345
346         /* otherwise, there is enough to get to the BCC */
347         if (check_smb_hdr(smb))
348                 return -EIO;
349         clc_len = smbCalcSize(smb, server);
350
351         if (4 + rfclen != total_read) {
352                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
353                          rfclen);
354                 return -EIO;
355         }
356
357         if (4 + rfclen != clc_len) {
358                 __u16 mid = get_mid(smb);
359                 /* check if bcc wrapped around for large read responses */
360                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
361                         /* check if lengths match mod 64K */
362                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
363                                 return 0; /* bcc wrapped */
364                 }
365                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
366                          clc_len, 4 + rfclen, mid);
367
368                 if (4 + rfclen < clc_len) {
369                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
370                                  rfclen, mid);
371                         return -EIO;
372                 } else if (rfclen > clc_len + 512) {
373                         /*
374                          * Some servers (Windows XP in particular) send more
375                          * data than the lengths in the SMB packet would
376                          * indicate on certain calls (byte range locks and
377                          * trans2 find first calls in particular). While the
378                          * client can handle such a frame by ignoring the
379                          * trailing data, we choose limit the amount of extra
380                          * data to 512 bytes.
381                          */
382                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
383                                  rfclen, mid);
384                         return -EIO;
385                 }
386         }
387         return 0;
388 }
389
390 bool
391 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
392 {
393         struct smb_hdr *buf = (struct smb_hdr *)buffer;
394         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
395         struct list_head *tmp, *tmp1, *tmp2;
396         struct cifs_ses *ses;
397         struct cifs_tcon *tcon;
398         struct cifsInodeInfo *pCifsInode;
399         struct cifsFileInfo *netfile;
400
401         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
402         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
403            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
404                 struct smb_com_transaction_change_notify_rsp *pSMBr =
405                         (struct smb_com_transaction_change_notify_rsp *)buf;
406                 struct file_notify_information *pnotify;
407                 __u32 data_offset = 0;
408                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
409
410                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
411                         data_offset = le32_to_cpu(pSMBr->DataOffset);
412
413                         if (data_offset >
414                             len - sizeof(struct file_notify_information)) {
415                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
416                                          data_offset);
417                                 return true;
418                         }
419                         pnotify = (struct file_notify_information *)
420                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
421                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
422                                  pnotify->FileName, pnotify->Action);
423                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
424                                 sizeof(struct smb_hdr)+60); */
425                         return true;
426                 }
427                 if (pSMBr->hdr.Status.CifsError) {
428                         cifs_dbg(FYI, "notify err 0x%x\n",
429                                  pSMBr->hdr.Status.CifsError);
430                         return true;
431                 }
432                 return false;
433         }
434         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
435                 return false;
436         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
437                 /* no sense logging error on invalid handle on oplock
438                    break - harmless race between close request and oplock
439                    break response is expected from time to time writing out
440                    large dirty files cached on the client */
441                 if ((NT_STATUS_INVALID_HANDLE) ==
442                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
443                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
444                         return true;
445                 } else if (ERRbadfid ==
446                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
447                         return true;
448                 } else {
449                         return false; /* on valid oplock brk we get "request" */
450                 }
451         }
452         if (pSMB->hdr.WordCount != 8)
453                 return false;
454
455         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
456                  pSMB->LockType, pSMB->OplockLevel);
457         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
458                 return false;
459
460         /* look up tcon based on tid & uid */
461         spin_lock(&cifs_tcp_ses_lock);
462         list_for_each(tmp, &srv->smb_ses_list) {
463                 ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
464                 list_for_each(tmp1, &ses->tcon_list) {
465                         tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
466                         if (tcon->tid != buf->Tid)
467                                 continue;
468
469                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
470                         spin_lock(&tcon->open_file_lock);
471                         list_for_each(tmp2, &tcon->openFileList) {
472                                 netfile = list_entry(tmp2, struct cifsFileInfo,
473                                                      tlist);
474                                 if (pSMB->Fid != netfile->fid.netfid)
475                                         continue;
476
477                                 cifs_dbg(FYI, "file id match, oplock break\n");
478                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
479
480                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
481                                         &pCifsInode->flags);
482
483                                 netfile->oplock_epoch = 0;
484                                 netfile->oplock_level = pSMB->OplockLevel;
485                                 netfile->oplock_break_cancelled = false;
486                                 cifs_queue_oplock_break(netfile);
487
488                                 spin_unlock(&tcon->open_file_lock);
489                                 spin_unlock(&cifs_tcp_ses_lock);
490                                 return true;
491                         }
492                         spin_unlock(&tcon->open_file_lock);
493                         spin_unlock(&cifs_tcp_ses_lock);
494                         cifs_dbg(FYI, "No matching file for oplock break\n");
495                         return true;
496                 }
497         }
498         spin_unlock(&cifs_tcp_ses_lock);
499         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
500         return true;
501 }
502
503 void
504 dump_smb(void *buf, int smb_buf_length)
505 {
506         if (traceSMB == 0)
507                 return;
508
509         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
510                        smb_buf_length, true);
511 }
512
513 void
514 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
515 {
516         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
517                 struct cifs_tcon *tcon = NULL;
518
519                 if (cifs_sb->master_tlink)
520                         tcon = cifs_sb_master_tcon(cifs_sb);
521
522                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
523                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
524                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
525                          tcon ? tcon->treeName : "new server");
526                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
527                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
528
529         }
530 }
531
532 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
533 {
534         oplock &= 0xF;
535
536         if (oplock == OPLOCK_EXCLUSIVE) {
537                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
538                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
539                          &cinode->vfs_inode);
540         } else if (oplock == OPLOCK_READ) {
541                 cinode->oplock = CIFS_CACHE_READ_FLG;
542                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
543                          &cinode->vfs_inode);
544         } else
545                 cinode->oplock = 0;
546 }
547
548 /*
549  * We wait for oplock breaks to be processed before we attempt to perform
550  * writes.
551  */
552 int cifs_get_writer(struct cifsInodeInfo *cinode)
553 {
554         int rc;
555
556 start:
557         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
558                          TASK_KILLABLE);
559         if (rc)
560                 return rc;
561
562         spin_lock(&cinode->writers_lock);
563         if (!cinode->writers)
564                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
565         cinode->writers++;
566         /* Check to see if we have started servicing an oplock break */
567         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
568                 cinode->writers--;
569                 if (cinode->writers == 0) {
570                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
571                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
572                 }
573                 spin_unlock(&cinode->writers_lock);
574                 goto start;
575         }
576         spin_unlock(&cinode->writers_lock);
577         return 0;
578 }
579
580 void cifs_put_writer(struct cifsInodeInfo *cinode)
581 {
582         spin_lock(&cinode->writers_lock);
583         cinode->writers--;
584         if (cinode->writers == 0) {
585                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
587         }
588         spin_unlock(&cinode->writers_lock);
589 }
590
591 /**
592  * cifs_queue_oplock_break - queue the oplock break handler for cfile
593  * @cfile: The file to break the oplock on
594  *
595  * This function is called from the demultiplex thread when it
596  * receives an oplock break for @cfile.
597  *
598  * Assumes the tcon->open_file_lock is held.
599  * Assumes cfile->file_info_lock is NOT held.
600  */
601 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
602 {
603         /*
604          * Bump the handle refcount now while we hold the
605          * open_file_lock to enforce the validity of it for the oplock
606          * break handler. The matching put is done at the end of the
607          * handler.
608          */
609         cifsFileInfo_get(cfile);
610
611         queue_work(cifsoplockd_wq, &cfile->oplock_break);
612 }
613
614 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
615 {
616         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
617         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
618 }
619
620 bool
621 backup_cred(struct cifs_sb_info *cifs_sb)
622 {
623         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
624                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
625                         return true;
626         }
627         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
628                 if (in_group_p(cifs_sb->ctx->backupgid))
629                         return true;
630         }
631
632         return false;
633 }
634
635 void
636 cifs_del_pending_open(struct cifs_pending_open *open)
637 {
638         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
639         list_del(&open->olist);
640         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
641 }
642
643 void
644 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
645                              struct cifs_pending_open *open)
646 {
647         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
648         open->oplock = CIFS_OPLOCK_NO_CHANGE;
649         open->tlink = tlink;
650         fid->pending_open = open;
651         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
652 }
653
654 void
655 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
656                       struct cifs_pending_open *open)
657 {
658         spin_lock(&tlink_tcon(tlink)->open_file_lock);
659         cifs_add_pending_open_locked(fid, tlink, open);
660         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
661 }
662
663 /*
664  * Critical section which runs after acquiring deferred_lock.
665  * As there is no reference count on cifs_deferred_close, pdclose
666  * should not be used outside deferred_lock.
667  */
668 bool
669 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
670 {
671         struct cifs_deferred_close *dclose;
672
673         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
674                 if ((dclose->netfid == cfile->fid.netfid) &&
675                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
676                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
677                         *pdclose = dclose;
678                         return true;
679                 }
680         }
681         return false;
682 }
683
684 /*
685  * Critical section which runs after acquiring deferred_lock.
686  */
687 void
688 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
689 {
690         bool is_deferred = false;
691         struct cifs_deferred_close *pdclose;
692
693         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
694         if (is_deferred) {
695                 kfree(dclose);
696                 return;
697         }
698
699         dclose->tlink = cfile->tlink;
700         dclose->netfid = cfile->fid.netfid;
701         dclose->persistent_fid = cfile->fid.persistent_fid;
702         dclose->volatile_fid = cfile->fid.volatile_fid;
703         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
704 }
705
706 /*
707  * Critical section which runs after acquiring deferred_lock.
708  */
709 void
710 cifs_del_deferred_close(struct cifsFileInfo *cfile)
711 {
712         bool is_deferred = false;
713         struct cifs_deferred_close *dclose;
714
715         is_deferred = cifs_is_deferred_close(cfile, &dclose);
716         if (!is_deferred)
717                 return;
718         list_del(&dclose->dlist);
719         kfree(dclose);
720 }
721
722 void
723 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
724 {
725         struct cifsFileInfo *cfile = NULL;
726         struct file_list *tmp_list, *tmp_next_list;
727         struct list_head file_head;
728
729         if (cifs_inode == NULL)
730                 return;
731
732         INIT_LIST_HEAD(&file_head);
733         spin_lock(&cifs_inode->open_file_lock);
734         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
735                 if (delayed_work_pending(&cfile->deferred)) {
736                         if (cancel_delayed_work(&cfile->deferred)) {
737                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
738                                 if (tmp_list == NULL)
739                                         break;
740                                 tmp_list->cfile = cfile;
741                                 list_add_tail(&tmp_list->list, &file_head);
742                         }
743                 }
744         }
745         spin_unlock(&cifs_inode->open_file_lock);
746
747         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
748                 _cifsFileInfo_put(tmp_list->cfile, true, false);
749                 list_del(&tmp_list->list);
750                 kfree(tmp_list);
751         }
752 }
753
754 void
755 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
756 {
757         struct cifsFileInfo *cfile;
758         struct list_head *tmp;
759         struct file_list *tmp_list, *tmp_next_list;
760         struct list_head file_head;
761
762         INIT_LIST_HEAD(&file_head);
763         spin_lock(&tcon->open_file_lock);
764         list_for_each(tmp, &tcon->openFileList) {
765                 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
766                 if (delayed_work_pending(&cfile->deferred)) {
767                         if (cancel_delayed_work(&cfile->deferred)) {
768                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
769                                 if (tmp_list == NULL)
770                                         break;
771                                 tmp_list->cfile = cfile;
772                                 list_add_tail(&tmp_list->list, &file_head);
773                         }
774                 }
775         }
776         spin_unlock(&tcon->open_file_lock);
777
778         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
779                 _cifsFileInfo_put(tmp_list->cfile, true, false);
780                 list_del(&tmp_list->list);
781                 kfree(tmp_list);
782         }
783 }
784 void
785 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
786 {
787         struct cifsFileInfo *cfile;
788         struct list_head *tmp;
789         struct file_list *tmp_list, *tmp_next_list;
790         struct list_head file_head;
791         void *page;
792         const char *full_path;
793
794         INIT_LIST_HEAD(&file_head);
795         page = alloc_dentry_path();
796         spin_lock(&tcon->open_file_lock);
797         list_for_each(tmp, &tcon->openFileList) {
798                 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
799                 full_path = build_path_from_dentry(cfile->dentry, page);
800                 if (strstr(full_path, path)) {
801                         if (delayed_work_pending(&cfile->deferred)) {
802                                 if (cancel_delayed_work(&cfile->deferred)) {
803                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
804                                         if (tmp_list == NULL)
805                                                 break;
806                                         tmp_list->cfile = cfile;
807                                         list_add_tail(&tmp_list->list, &file_head);
808                                 }
809                         }
810                 }
811         }
812         spin_unlock(&tcon->open_file_lock);
813
814         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
815                 _cifsFileInfo_put(tmp_list->cfile, true, false);
816                 list_del(&tmp_list->list);
817                 kfree(tmp_list);
818         }
819         free_dentry_path(page);
820 }
821
822 /* parses DFS refferal V3 structure
823  * caller is responsible for freeing target_nodes
824  * returns:
825  * - on success - 0
826  * - on failure - errno
827  */
828 int
829 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
830                     unsigned int *num_of_nodes,
831                     struct dfs_info3_param **target_nodes,
832                     const struct nls_table *nls_codepage, int remap,
833                     const char *searchName, bool is_unicode)
834 {
835         int i, rc = 0;
836         char *data_end;
837         struct dfs_referral_level_3 *ref;
838
839         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
840
841         if (*num_of_nodes < 1) {
842                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
843                          *num_of_nodes);
844                 rc = -EINVAL;
845                 goto parse_DFS_referrals_exit;
846         }
847
848         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
849         if (ref->VersionNumber != cpu_to_le16(3)) {
850                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
851                          le16_to_cpu(ref->VersionNumber));
852                 rc = -EINVAL;
853                 goto parse_DFS_referrals_exit;
854         }
855
856         /* get the upper boundary of the resp buffer */
857         data_end = (char *)rsp + rsp_size;
858
859         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
860                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
861
862         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
863                                 GFP_KERNEL);
864         if (*target_nodes == NULL) {
865                 rc = -ENOMEM;
866                 goto parse_DFS_referrals_exit;
867         }
868
869         /* collect necessary data from referrals */
870         for (i = 0; i < *num_of_nodes; i++) {
871                 char *temp;
872                 int max_len;
873                 struct dfs_info3_param *node = (*target_nodes)+i;
874
875                 node->flags = le32_to_cpu(rsp->DFSFlags);
876                 if (is_unicode) {
877                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
878                                                 GFP_KERNEL);
879                         if (tmp == NULL) {
880                                 rc = -ENOMEM;
881                                 goto parse_DFS_referrals_exit;
882                         }
883                         cifsConvertToUTF16((__le16 *) tmp, searchName,
884                                            PATH_MAX, nls_codepage, remap);
885                         node->path_consumed = cifs_utf16_bytes(tmp,
886                                         le16_to_cpu(rsp->PathConsumed),
887                                         nls_codepage);
888                         kfree(tmp);
889                 } else
890                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
891
892                 node->server_type = le16_to_cpu(ref->ServerType);
893                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
894
895                 /* copy DfsPath */
896                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
897                 max_len = data_end - temp;
898                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
899                                                 is_unicode, nls_codepage);
900                 if (!node->path_name) {
901                         rc = -ENOMEM;
902                         goto parse_DFS_referrals_exit;
903                 }
904
905                 /* copy link target UNC */
906                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
907                 max_len = data_end - temp;
908                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
909                                                 is_unicode, nls_codepage);
910                 if (!node->node_name) {
911                         rc = -ENOMEM;
912                         goto parse_DFS_referrals_exit;
913                 }
914
915                 node->ttl = le32_to_cpu(ref->TimeToLive);
916
917                 ref++;
918         }
919
920 parse_DFS_referrals_exit:
921         if (rc) {
922                 free_dfs_info_array(*target_nodes, *num_of_nodes);
923                 *target_nodes = NULL;
924                 *num_of_nodes = 0;
925         }
926         return rc;
927 }
928
929 struct cifs_aio_ctx *
930 cifs_aio_ctx_alloc(void)
931 {
932         struct cifs_aio_ctx *ctx;
933
934         /*
935          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
936          * to false so that we know when we have to unreference pages within
937          * cifs_aio_ctx_release()
938          */
939         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
940         if (!ctx)
941                 return NULL;
942
943         INIT_LIST_HEAD(&ctx->list);
944         mutex_init(&ctx->aio_mutex);
945         init_completion(&ctx->done);
946         kref_init(&ctx->refcount);
947         return ctx;
948 }
949
950 void
951 cifs_aio_ctx_release(struct kref *refcount)
952 {
953         struct cifs_aio_ctx *ctx = container_of(refcount,
954                                         struct cifs_aio_ctx, refcount);
955
956         cifsFileInfo_put(ctx->cfile);
957
958         /*
959          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
960          * which means that iov_iter_get_pages() was a success and thus that
961          * we have taken reference on pages.
962          */
963         if (ctx->bv) {
964                 unsigned i;
965
966                 for (i = 0; i < ctx->npages; i++) {
967                         if (ctx->should_dirty)
968                                 set_page_dirty(ctx->bv[i].bv_page);
969                         put_page(ctx->bv[i].bv_page);
970                 }
971                 kvfree(ctx->bv);
972         }
973
974         kfree(ctx);
975 }
976
977 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
978
979 int
980 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
981 {
982         ssize_t rc;
983         unsigned int cur_npages;
984         unsigned int npages = 0;
985         unsigned int i;
986         size_t len;
987         size_t count = iov_iter_count(iter);
988         unsigned int saved_len;
989         size_t start;
990         unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
991         struct page **pages = NULL;
992         struct bio_vec *bv = NULL;
993
994         if (iov_iter_is_kvec(iter)) {
995                 memcpy(&ctx->iter, iter, sizeof(*iter));
996                 ctx->len = count;
997                 iov_iter_advance(iter, count);
998                 return 0;
999         }
1000
1001         if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1002                 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1003
1004         if (!bv) {
1005                 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1006                 if (!bv)
1007                         return -ENOMEM;
1008         }
1009
1010         if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1011                 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1012
1013         if (!pages) {
1014                 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1015                 if (!pages) {
1016                         kvfree(bv);
1017                         return -ENOMEM;
1018                 }
1019         }
1020
1021         saved_len = count;
1022
1023         while (count && npages < max_pages) {
1024                 rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
1025                 if (rc < 0) {
1026                         cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1027                         break;
1028                 }
1029
1030                 if (rc > count) {
1031                         cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1032                                  count);
1033                         break;
1034                 }
1035
1036                 iov_iter_advance(iter, rc);
1037                 count -= rc;
1038                 rc += start;
1039                 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1040
1041                 if (npages + cur_npages > max_pages) {
1042                         cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1043                                  npages + cur_npages, max_pages);
1044                         break;
1045                 }
1046
1047                 for (i = 0; i < cur_npages; i++) {
1048                         len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1049                         bv[npages + i].bv_page = pages[i];
1050                         bv[npages + i].bv_offset = start;
1051                         bv[npages + i].bv_len = len - start;
1052                         rc -= len;
1053                         start = 0;
1054                 }
1055
1056                 npages += cur_npages;
1057         }
1058
1059         kvfree(pages);
1060         ctx->bv = bv;
1061         ctx->len = saved_len - count;
1062         ctx->npages = npages;
1063         iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1064         return 0;
1065 }
1066
1067 /**
1068  * cifs_alloc_hash - allocate hash and hash context together
1069  * @name: The name of the crypto hash algo
1070  * @shash: Where to put the pointer to the hash algo
1071  * @sdesc: Where to put the pointer to the hash descriptor
1072  *
1073  * The caller has to make sure @sdesc is initialized to either NULL or
1074  * a valid context. Both can be freed via cifs_free_hash().
1075  */
1076 int
1077 cifs_alloc_hash(const char *name,
1078                 struct crypto_shash **shash, struct sdesc **sdesc)
1079 {
1080         int rc = 0;
1081         size_t size;
1082
1083         if (*sdesc != NULL)
1084                 return 0;
1085
1086         *shash = crypto_alloc_shash(name, 0, 0);
1087         if (IS_ERR(*shash)) {
1088                 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1089                 rc = PTR_ERR(*shash);
1090                 *shash = NULL;
1091                 *sdesc = NULL;
1092                 return rc;
1093         }
1094
1095         size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1096         *sdesc = kmalloc(size, GFP_KERNEL);
1097         if (*sdesc == NULL) {
1098                 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1099                 crypto_free_shash(*shash);
1100                 *shash = NULL;
1101                 return -ENOMEM;
1102         }
1103
1104         (*sdesc)->shash.tfm = *shash;
1105         return 0;
1106 }
1107
1108 /**
1109  * cifs_free_hash - free hash and hash context together
1110  * @shash: Where to find the pointer to the hash algo
1111  * @sdesc: Where to find the pointer to the hash descriptor
1112  *
1113  * Freeing a NULL hash or context is safe.
1114  */
1115 void
1116 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1117 {
1118         kfree(*sdesc);
1119         *sdesc = NULL;
1120         if (*shash)
1121                 crypto_free_shash(*shash);
1122         *shash = NULL;
1123 }
1124
1125 /**
1126  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1127  * @rqst: The request descriptor
1128  * @page: The index of the page to query
1129  * @len: Where to store the length for this page:
1130  * @offset: Where to store the offset for this page
1131  */
1132 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1133                                 unsigned int *len, unsigned int *offset)
1134 {
1135         *len = rqst->rq_pagesz;
1136         *offset = (page == 0) ? rqst->rq_offset : 0;
1137
1138         if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1139                 *len = rqst->rq_tailsz;
1140         else if (page == 0)
1141                 *len = rqst->rq_pagesz - rqst->rq_offset;
1142 }
1143
1144 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1145 {
1146         const char *end;
1147
1148         /* skip initial slashes */
1149         while (*unc && (*unc == '\\' || *unc == '/'))
1150                 unc++;
1151
1152         end = unc;
1153
1154         while (*end && !(*end == '\\' || *end == '/'))
1155                 end++;
1156
1157         *h = unc;
1158         *len = end - unc;
1159 }
1160
1161 /**
1162  * copy_path_name - copy src path to dst, possibly truncating
1163  * @dst: The destination buffer
1164  * @src: The source name
1165  *
1166  * returns number of bytes written (including trailing nul)
1167  */
1168 int copy_path_name(char *dst, const char *src)
1169 {
1170         int name_len;
1171
1172         /*
1173          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1174          * will truncate and strlen(dst) will be PATH_MAX-1
1175          */
1176         name_len = strscpy(dst, src, PATH_MAX);
1177         if (WARN_ON_ONCE(name_len < 0))
1178                 name_len = PATH_MAX-1;
1179
1180         /* we count the trailing nul */
1181         name_len++;
1182         return name_len;
1183 }
1184
1185 struct super_cb_data {
1186         void *data;
1187         struct super_block *sb;
1188 };
1189
1190 static void tcp_super_cb(struct super_block *sb, void *arg)
1191 {
1192         struct super_cb_data *sd = arg;
1193         struct TCP_Server_Info *server = sd->data;
1194         struct cifs_sb_info *cifs_sb;
1195         struct cifs_tcon *tcon;
1196
1197         if (sd->sb)
1198                 return;
1199
1200         cifs_sb = CIFS_SB(sb);
1201         tcon = cifs_sb_master_tcon(cifs_sb);
1202         if (tcon->ses->server == server)
1203                 sd->sb = sb;
1204 }
1205
1206 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1207                                             void *data)
1208 {
1209         struct super_cb_data sd = {
1210                 .data = data,
1211                 .sb = NULL,
1212         };
1213
1214         iterate_supers_type(&cifs_fs_type, f, &sd);
1215
1216         if (!sd.sb)
1217                 return ERR_PTR(-EINVAL);
1218         /*
1219          * Grab an active reference in order to prevent automounts (DFS links)
1220          * of expiring and then freeing up our cifs superblock pointer while
1221          * we're doing failover.
1222          */
1223         cifs_sb_active(sd.sb);
1224         return sd.sb;
1225 }
1226
1227 static void __cifs_put_super(struct super_block *sb)
1228 {
1229         if (!IS_ERR_OR_NULL(sb))
1230                 cifs_sb_deactive(sb);
1231 }
1232
1233 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1234 {
1235         return __cifs_get_super(tcp_super_cb, server);
1236 }
1237
1238 void cifs_put_tcp_super(struct super_block *sb)
1239 {
1240         __cifs_put_super(sb);
1241 }
1242
1243 #ifdef CONFIG_CIFS_DFS_UPCALL
1244 int match_target_ip(struct TCP_Server_Info *server,
1245                     const char *share, size_t share_len,
1246                     bool *result)
1247 {
1248         int rc;
1249         char *target, *tip = NULL;
1250         struct sockaddr tipaddr;
1251
1252         *result = false;
1253
1254         target = kzalloc(share_len + 3, GFP_KERNEL);
1255         if (!target) {
1256                 rc = -ENOMEM;
1257                 goto out;
1258         }
1259
1260         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1261
1262         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1263
1264         rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1265         if (rc < 0)
1266                 goto out;
1267
1268         cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1269
1270         if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1271                 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1272                          __func__);
1273                 rc = -EINVAL;
1274                 goto out;
1275         }
1276
1277         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1278                                     &tipaddr);
1279         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1280         rc = 0;
1281
1282 out:
1283         kfree(target);
1284         kfree(tip);
1285
1286         return rc;
1287 }
1288
1289 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1290 {
1291         kfree(cifs_sb->prepath);
1292
1293         if (prefix && *prefix) {
1294                 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1295                 if (!cifs_sb->prepath)
1296                         return -ENOMEM;
1297
1298                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1299         } else
1300                 cifs_sb->prepath = NULL;
1301
1302         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1303         return 0;
1304 }
1305
1306 /** cifs_dfs_query_info_nonascii_quirk
1307  * Handle weird Windows SMB server behaviour. It responds with
1308  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request
1309  * for "\<server>\<dfsname>\<linkpath>" DFS reference,
1310  * where <dfsname> contains non-ASCII unicode symbols.
1311  *
1312  * Check such DFS reference and emulate -ENOENT if it is actual.
1313  */
1314 int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid,
1315                                        struct cifs_tcon *tcon,
1316                                        struct cifs_sb_info *cifs_sb,
1317                                        const char *linkpath)
1318 {
1319         char *treename, *dfspath, sep;
1320         int treenamelen, linkpathlen, rc;
1321
1322         treename = tcon->treeName;
1323         /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL
1324          * messages MUST be encoded with exactly one leading backslash, not two
1325          * leading backslashes.
1326          */
1327         sep = CIFS_DIR_SEP(cifs_sb);
1328         if (treename[0] == sep && treename[1] == sep)
1329                 treename++;
1330         linkpathlen = strlen(linkpath);
1331         treenamelen = strnlen(treename, MAX_TREE_SIZE + 1);
1332         dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL);
1333         if (!dfspath)
1334                 return -ENOMEM;
1335         if (treenamelen)
1336                 memcpy(dfspath, treename, treenamelen);
1337         memcpy(dfspath + treenamelen, linkpath, linkpathlen);
1338         rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls,
1339                             cifs_remap(cifs_sb), dfspath, NULL, NULL);
1340         if (rc == 0) {
1341                 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n",
1342                          dfspath);
1343                 rc = -EREMOTE;
1344         } else if (rc == -EEXIST) {
1345                 cifs_dbg(FYI, "DFS ref '%s' is not found, emulate -ENOENT\n",
1346                          dfspath);
1347                 rc = -ENOENT;
1348         } else {
1349                 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc);
1350         }
1351         kfree(dfspath);
1352         return rc;
1353 }
1354 #endif
This page took 0.108351 seconds and 4 git commands to generate.