]> Git Repo - linux.git/blob - drivers/spi/spi.c
net: phy: fix phylib's dual eee_enabled
[linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_message *msg)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if (spi_valid_txbuf(msg, xfer))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if (spi_valid_rxbuf(msg, xfer))
334                 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336         u64_stats_update_end(&stats->syncp);
337         put_cpu();
338 }
339
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346         while (id->name[0]) {
347                 if (!strcmp(name, id->name))
348                         return id;
349                 id++;
350         }
351         return NULL;
352 }
353
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358         return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364         const void *match;
365
366         match = device_get_match_data(&sdev->dev);
367         if (match)
368                 return match;
369
370         return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376         const struct spi_device *spi = to_spi_device(dev);
377         const struct spi_driver *sdrv = to_spi_driver(drv);
378
379         /* Check override first, and if set, only use the named driver */
380         if (spi->driver_override)
381                 return strcmp(spi->driver_override, drv->name) == 0;
382
383         /* Attempt an OF style match */
384         if (of_driver_match_device(dev, drv))
385                 return 1;
386
387         /* Then try ACPI */
388         if (acpi_driver_match_device(dev, drv))
389                 return 1;
390
391         if (sdrv->id_table)
392                 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394         return strcmp(spi->modalias, drv->name) == 0;
395 }
396
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399         const struct spi_device         *spi = to_spi_device(dev);
400         int rc;
401
402         rc = acpi_device_uevent_modalias(dev, env);
403         if (rc != -ENODEV)
404                 return rc;
405
406         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
409 static int spi_probe(struct device *dev)
410 {
411         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
412         struct spi_device               *spi = to_spi_device(dev);
413         int ret;
414
415         ret = of_clk_set_defaults(dev->of_node, false);
416         if (ret)
417                 return ret;
418
419         if (dev->of_node) {
420                 spi->irq = of_irq_get(dev->of_node, 0);
421                 if (spi->irq == -EPROBE_DEFER)
422                         return -EPROBE_DEFER;
423                 if (spi->irq < 0)
424                         spi->irq = 0;
425         }
426
427         ret = dev_pm_domain_attach(dev, true);
428         if (ret)
429                 return ret;
430
431         if (sdrv->probe) {
432                 ret = sdrv->probe(spi);
433                 if (ret)
434                         dev_pm_domain_detach(dev, true);
435         }
436
437         return ret;
438 }
439
440 static void spi_remove(struct device *dev)
441 {
442         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
443
444         if (sdrv->remove)
445                 sdrv->remove(to_spi_device(dev));
446
447         dev_pm_domain_detach(dev, true);
448 }
449
450 static void spi_shutdown(struct device *dev)
451 {
452         if (dev->driver) {
453                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
454
455                 if (sdrv->shutdown)
456                         sdrv->shutdown(to_spi_device(dev));
457         }
458 }
459
460 const struct bus_type spi_bus_type = {
461         .name           = "spi",
462         .dev_groups     = spi_dev_groups,
463         .match          = spi_match_device,
464         .uevent         = spi_uevent,
465         .probe          = spi_probe,
466         .remove         = spi_remove,
467         .shutdown       = spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470
471 /**
472  * __spi_register_driver - register a SPI driver
473  * @owner: owner module of the driver to register
474  * @sdrv: the driver to register
475  * Context: can sleep
476  *
477  * Return: zero on success, else a negative error code.
478  */
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481         sdrv->driver.owner = owner;
482         sdrv->driver.bus = &spi_bus_type;
483
484         /*
485          * For Really Good Reasons we use spi: modaliases not of:
486          * modaliases for DT so module autoloading won't work if we
487          * don't have a spi_device_id as well as a compatible string.
488          */
489         if (sdrv->driver.of_match_table) {
490                 const struct of_device_id *of_id;
491
492                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493                      of_id++) {
494                         const char *of_name;
495
496                         /* Strip off any vendor prefix */
497                         of_name = strnchr(of_id->compatible,
498                                           sizeof(of_id->compatible), ',');
499                         if (of_name)
500                                 of_name++;
501                         else
502                                 of_name = of_id->compatible;
503
504                         if (sdrv->id_table) {
505                                 const struct spi_device_id *spi_id;
506
507                                 spi_id = spi_match_id(sdrv->id_table, of_name);
508                                 if (spi_id)
509                                         continue;
510                         } else {
511                                 if (strcmp(sdrv->driver.name, of_name) == 0)
512                                         continue;
513                         }
514
515                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
516                                 sdrv->driver.name, of_id->compatible);
517                 }
518         }
519
520         return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523
524 /*-------------------------------------------------------------------------*/
525
526 /*
527  * SPI devices should normally not be created by SPI device drivers; that
528  * would make them board-specific.  Similarly with SPI controller drivers.
529  * Device registration normally goes into like arch/.../mach.../board-YYY.c
530  * with other readonly (flashable) information about mainboard devices.
531  */
532
533 struct boardinfo {
534         struct list_head        list;
535         struct spi_board_info   board_info;
536 };
537
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540
541 /*
542  * Used to protect add/del operation for board_info list and
543  * spi_controller list, and their matching process also used
544  * to protect object of type struct idr.
545  */
546 static DEFINE_MUTEX(board_lock);
547
548 /**
549  * spi_alloc_device - Allocate a new SPI device
550  * @ctlr: Controller to which device is connected
551  * Context: can sleep
552  *
553  * Allows a driver to allocate and initialize a spi_device without
554  * registering it immediately.  This allows a driver to directly
555  * fill the spi_device with device parameters before calling
556  * spi_add_device() on it.
557  *
558  * Caller is responsible to call spi_add_device() on the returned
559  * spi_device structure to add it to the SPI controller.  If the caller
560  * needs to discard the spi_device without adding it, then it should
561  * call spi_dev_put() on it.
562  *
563  * Return: a pointer to the new device, or NULL.
564  */
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567         struct spi_device       *spi;
568
569         if (!spi_controller_get(ctlr))
570                 return NULL;
571
572         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573         if (!spi) {
574                 spi_controller_put(ctlr);
575                 return NULL;
576         }
577
578         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579         if (!spi->pcpu_statistics) {
580                 kfree(spi);
581                 spi_controller_put(ctlr);
582                 return NULL;
583         }
584
585         spi->controller = ctlr;
586         spi->dev.parent = &ctlr->dev;
587         spi->dev.bus = &spi_bus_type;
588         spi->dev.release = spidev_release;
589         spi->mode = ctlr->buswidth_override_bits;
590
591         device_initialize(&spi->dev);
592         return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595
596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598         struct device *dev = &spi->dev;
599         struct fwnode_handle *fwnode = dev_fwnode(dev);
600
601         if (is_acpi_device_node(fwnode)) {
602                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603                 return;
604         }
605
606         if (is_software_node(fwnode)) {
607                 dev_set_name(dev, "spi-%pfwP", fwnode);
608                 return;
609         }
610
611         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612                      spi_get_chipselect(spi, 0));
613 }
614
615 /*
616  * Zero(0) is a valid physical CS value and can be located at any
617  * logical CS in the spi->chip_select[]. If all the physical CS
618  * are initialized to 0 then It would be difficult to differentiate
619  * between a valid physical CS 0 & an unused logical CS whose physical
620  * CS can be 0. As a solution to this issue initialize all the CS to -1.
621  * Now all the unused logical CS will have -1 physical CS value & can be
622  * ignored while performing physical CS validity checks.
623  */
624 #define SPI_INVALID_CS          ((s8)-1)
625
626 static inline bool is_valid_cs(s8 chip_select)
627 {
628         return chip_select != SPI_INVALID_CS;
629 }
630
631 static inline int spi_dev_check_cs(struct device *dev,
632                                    struct spi_device *spi, u8 idx,
633                                    struct spi_device *new_spi, u8 new_idx)
634 {
635         u8 cs, cs_new;
636         u8 idx_new;
637
638         cs = spi_get_chipselect(spi, idx);
639         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640                 cs_new = spi_get_chipselect(new_spi, idx_new);
641                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642                         dev_err(dev, "chipselect %u already in use\n", cs_new);
643                         return -EBUSY;
644                 }
645         }
646         return 0;
647 }
648
649 static int spi_dev_check(struct device *dev, void *data)
650 {
651         struct spi_device *spi = to_spi_device(dev);
652         struct spi_device *new_spi = data;
653         int status, idx;
654
655         if (spi->controller == new_spi->controller) {
656                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658                         if (status)
659                                 return status;
660                 }
661         }
662         return 0;
663 }
664
665 static void spi_cleanup(struct spi_device *spi)
666 {
667         if (spi->controller->cleanup)
668                 spi->controller->cleanup(spi);
669 }
670
671 static int __spi_add_device(struct spi_device *spi)
672 {
673         struct spi_controller *ctlr = spi->controller;
674         struct device *dev = ctlr->dev.parent;
675         int status, idx;
676         u8 cs;
677
678         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679                 /* Chipselects are numbered 0..max; validate. */
680                 cs = spi_get_chipselect(spi, idx);
681                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683                                 ctlr->num_chipselect);
684                         return -EINVAL;
685                 }
686         }
687
688         /*
689          * Make sure that multiple logical CS doesn't map to the same physical CS.
690          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691          */
692         if (!spi_controller_is_target(ctlr)) {
693                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694                         status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
695                         if (status)
696                                 return status;
697                 }
698         }
699
700         /* Set the bus ID string */
701         spi_dev_set_name(spi);
702
703         /*
704          * We need to make sure there's no other device with this
705          * chipselect **BEFORE** we call setup(), else we'll trash
706          * its configuration.
707          */
708         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709         if (status)
710                 return status;
711
712         /* Controller may unregister concurrently */
713         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714             !device_is_registered(&ctlr->dev)) {
715                 return -ENODEV;
716         }
717
718         if (ctlr->cs_gpiods) {
719                 u8 cs;
720
721                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722                         cs = spi_get_chipselect(spi, idx);
723                         if (is_valid_cs(cs))
724                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725                 }
726         }
727
728         /*
729          * Drivers may modify this initial i/o setup, but will
730          * normally rely on the device being setup.  Devices
731          * using SPI_CS_HIGH can't coexist well otherwise...
732          */
733         status = spi_setup(spi);
734         if (status < 0) {
735                 dev_err(dev, "can't setup %s, status %d\n",
736                                 dev_name(&spi->dev), status);
737                 return status;
738         }
739
740         /* Device may be bound to an active driver when this returns */
741         status = device_add(&spi->dev);
742         if (status < 0) {
743                 dev_err(dev, "can't add %s, status %d\n",
744                                 dev_name(&spi->dev), status);
745                 spi_cleanup(spi);
746         } else {
747                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748         }
749
750         return status;
751 }
752
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764         struct spi_controller *ctlr = spi->controller;
765         int status;
766
767         /* Set the bus ID string */
768         spi_dev_set_name(spi);
769
770         mutex_lock(&ctlr->add_lock);
771         status = __spi_add_device(spi);
772         mutex_unlock(&ctlr->add_lock);
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779         u8 idx;
780
781         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800                                   struct spi_board_info *chip)
801 {
802         struct spi_device       *proxy;
803         int                     status;
804
805         /*
806          * NOTE:  caller did any chip->bus_num checks necessary.
807          *
808          * Also, unless we change the return value convention to use
809          * error-or-pointer (not NULL-or-pointer), troubleshootability
810          * suggests syslogged diagnostics are best here (ugh).
811          */
812
813         proxy = spi_alloc_device(ctlr);
814         if (!proxy)
815                 return NULL;
816
817         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819         /* Use provided chip-select for proxy device */
820         spi_set_all_cs_unused(proxy);
821         spi_set_chipselect(proxy, 0, chip->chip_select);
822
823         proxy->max_speed_hz = chip->max_speed_hz;
824         proxy->mode = chip->mode;
825         proxy->irq = chip->irq;
826         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827         proxy->dev.platform_data = (void *) chip->platform_data;
828         proxy->controller_data = chip->controller_data;
829         proxy->controller_state = NULL;
830         /*
831          * By default spi->chip_select[0] will hold the physical CS number,
832          * so set bit 0 in spi->cs_index_mask.
833          */
834         proxy->cs_index_mask = BIT(0);
835
836         if (chip->swnode) {
837                 status = device_add_software_node(&proxy->dev, chip->swnode);
838                 if (status) {
839                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840                                 chip->modalias, status);
841                         goto err_dev_put;
842                 }
843         }
844
845         status = spi_add_device(proxy);
846         if (status < 0)
847                 goto err_dev_put;
848
849         return proxy;
850
851 err_dev_put:
852         device_remove_software_node(&proxy->dev);
853         spi_dev_put(proxy);
854         return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857
858 /**
859  * spi_unregister_device - unregister a single SPI device
860  * @spi: spi_device to unregister
861  *
862  * Start making the passed SPI device vanish. Normally this would be handled
863  * by spi_unregister_controller().
864  */
865 void spi_unregister_device(struct spi_device *spi)
866 {
867         if (!spi)
868                 return;
869
870         if (spi->dev.of_node) {
871                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872                 of_node_put(spi->dev.of_node);
873         }
874         if (ACPI_COMPANION(&spi->dev))
875                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876         device_remove_software_node(&spi->dev);
877         device_del(&spi->dev);
878         spi_cleanup(spi);
879         put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884                                               struct spi_board_info *bi)
885 {
886         struct spi_device *dev;
887
888         if (ctlr->bus_num != bi->bus_num)
889                 return;
890
891         dev = spi_new_device(ctlr, bi);
892         if (!dev)
893                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894                         bi->modalias);
895 }
896
897 /**
898  * spi_register_board_info - register SPI devices for a given board
899  * @info: array of chip descriptors
900  * @n: how many descriptors are provided
901  * Context: can sleep
902  *
903  * Board-specific early init code calls this (probably during arch_initcall)
904  * with segments of the SPI device table.  Any device nodes are created later,
905  * after the relevant parent SPI controller (bus_num) is defined.  We keep
906  * this table of devices forever, so that reloading a controller driver will
907  * not make Linux forget about these hard-wired devices.
908  *
909  * Other code can also call this, e.g. a particular add-on board might provide
910  * SPI devices through its expansion connector, so code initializing that board
911  * would naturally declare its SPI devices.
912  *
913  * The board info passed can safely be __initdata ... but be careful of
914  * any embedded pointers (platform_data, etc), they're copied as-is.
915  *
916  * Return: zero on success, else a negative error code.
917  */
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920         struct boardinfo *bi;
921         int i;
922
923         if (!n)
924                 return 0;
925
926         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927         if (!bi)
928                 return -ENOMEM;
929
930         for (i = 0; i < n; i++, bi++, info++) {
931                 struct spi_controller *ctlr;
932
933                 memcpy(&bi->board_info, info, sizeof(*info));
934
935                 mutex_lock(&board_lock);
936                 list_add_tail(&bi->list, &board_list);
937                 list_for_each_entry(ctlr, &spi_controller_list, list)
938                         spi_match_controller_to_boardinfo(ctlr,
939                                                           &bi->board_info);
940                 mutex_unlock(&board_lock);
941         }
942
943         return 0;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 /* Core methods for SPI resource management */
949
950 /**
951  * spi_res_alloc - allocate a spi resource that is life-cycle managed
952  *                 during the processing of a spi_message while using
953  *                 spi_transfer_one
954  * @spi:     the SPI device for which we allocate memory
955  * @release: the release code to execute for this resource
956  * @size:    size to alloc and return
957  * @gfp:     GFP allocation flags
958  *
959  * Return: the pointer to the allocated data
960  *
961  * This may get enhanced in the future to allocate from a memory pool
962  * of the @spi_device or @spi_controller to avoid repeated allocations.
963  */
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965                            size_t size, gfp_t gfp)
966 {
967         struct spi_res *sres;
968
969         sres = kzalloc(sizeof(*sres) + size, gfp);
970         if (!sres)
971                 return NULL;
972
973         INIT_LIST_HEAD(&sres->entry);
974         sres->release = release;
975
976         return sres->data;
977 }
978
979 /**
980  * spi_res_free - free an SPI resource
981  * @res: pointer to the custom data of a resource
982  */
983 static void spi_res_free(void *res)
984 {
985         struct spi_res *sres = container_of(res, struct spi_res, data);
986
987         if (!res)
988                 return;
989
990         WARN_ON(!list_empty(&sres->entry));
991         kfree(sres);
992 }
993
994 /**
995  * spi_res_add - add a spi_res to the spi_message
996  * @message: the SPI message
997  * @res:     the spi_resource
998  */
999 static void spi_res_add(struct spi_message *message, void *res)
1000 {
1001         struct spi_res *sres = container_of(res, struct spi_res, data);
1002
1003         WARN_ON(!list_empty(&sres->entry));
1004         list_add_tail(&sres->entry, &message->resources);
1005 }
1006
1007 /**
1008  * spi_res_release - release all SPI resources for this message
1009  * @ctlr:  the @spi_controller
1010  * @message: the @spi_message
1011  */
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1013 {
1014         struct spi_res *res, *tmp;
1015
1016         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1017                 if (res->release)
1018                         res->release(ctlr, message, res->data);
1019
1020                 list_del(&res->entry);
1021
1022                 kfree(res);
1023         }
1024 }
1025
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx)                         \
1028         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1029                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1030
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033         u8 idx;
1034         bool last = false;
1035
1036         spi_for_each_valid_cs(spi, idx) {
1037                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1038                         last = true;
1039         }
1040         return last;
1041 }
1042
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1044 {
1045         /*
1046          * Historically ACPI has no means of the GPIO polarity and
1047          * thus the SPISerialBus() resource defines it on the per-chip
1048          * basis. In order to avoid a chain of negations, the GPIO
1049          * polarity is considered being Active High. Even for the cases
1050          * when _DSD() is involved (in the updated versions of ACPI)
1051          * the GPIO CS polarity must be defined Active High to avoid
1052          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1053          * into account.
1054          */
1055         if (has_acpi_companion(&spi->dev))
1056                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1057         else
1058                 /* Polarity handled by GPIO library */
1059                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1060
1061         if (activate)
1062                 spi_delay_exec(&spi->cs_setup, NULL);
1063         else
1064                 spi_delay_exec(&spi->cs_inactive, NULL);
1065 }
1066
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1068 {
1069         bool activate = enable;
1070         u8 idx;
1071
1072         /*
1073          * Avoid calling into the driver (or doing delays) if the chip select
1074          * isn't actually changing from the last time this was called.
1075          */
1076         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077                         spi_is_last_cs(spi)) ||
1078                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079                         !spi_is_last_cs(spi))) &&
1080             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1081                 return;
1082
1083         trace_spi_set_cs(spi, activate);
1084
1085         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1089
1090         if (spi->mode & SPI_CS_HIGH)
1091                 enable = !enable;
1092
1093         /*
1094          * Handle chip select delays for GPIO based CS or controllers without
1095          * programmable chip select timing.
1096          */
1097         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098                 spi_delay_exec(&spi->cs_hold, NULL);
1099
1100         if (spi_is_csgpiod(spi)) {
1101                 if (!(spi->mode & SPI_NO_CS)) {
1102                         spi_for_each_valid_cs(spi, idx) {
1103                                 if (spi_get_csgpiod(spi, idx))
1104                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1105                         }
1106                 }
1107                 /* Some SPI masters need both GPIO CS & slave_select */
1108                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109                     spi->controller->set_cs)
1110                         spi->controller->set_cs(spi, !enable);
1111         } else if (spi->controller->set_cs) {
1112                 spi->controller->set_cs(spi, !enable);
1113         }
1114
1115         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1116                 if (activate)
1117                         spi_delay_exec(&spi->cs_setup, NULL);
1118                 else
1119                         spi_delay_exec(&spi->cs_inactive, NULL);
1120         }
1121 }
1122
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125                              struct sg_table *sgt, void *buf, size_t len,
1126                              enum dma_data_direction dir, unsigned long attrs)
1127 {
1128         const bool vmalloced_buf = is_vmalloc_addr(buf);
1129         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132                                 (unsigned long)buf < (PKMAP_BASE +
1133                                         (LAST_PKMAP * PAGE_SIZE)));
1134 #else
1135         const bool kmap_buf = false;
1136 #endif
1137         int desc_len;
1138         int sgs;
1139         struct page *vm_page;
1140         struct scatterlist *sg;
1141         void *sg_buf;
1142         size_t min;
1143         int i, ret;
1144
1145         if (vmalloced_buf || kmap_buf) {
1146                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148         } else if (virt_addr_valid(buf)) {
1149                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150                 sgs = DIV_ROUND_UP(len, desc_len);
1151         } else {
1152                 return -EINVAL;
1153         }
1154
1155         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1156         if (ret != 0)
1157                 return ret;
1158
1159         sg = &sgt->sgl[0];
1160         for (i = 0; i < sgs; i++) {
1161
1162                 if (vmalloced_buf || kmap_buf) {
1163                         /*
1164                          * Next scatterlist entry size is the minimum between
1165                          * the desc_len and the remaining buffer length that
1166                          * fits in a page.
1167                          */
1168                         min = min_t(size_t, desc_len,
1169                                     min_t(size_t, len,
1170                                           PAGE_SIZE - offset_in_page(buf)));
1171                         if (vmalloced_buf)
1172                                 vm_page = vmalloc_to_page(buf);
1173                         else
1174                                 vm_page = kmap_to_page(buf);
1175                         if (!vm_page) {
1176                                 sg_free_table(sgt);
1177                                 return -ENOMEM;
1178                         }
1179                         sg_set_page(sg, vm_page,
1180                                     min, offset_in_page(buf));
1181                 } else {
1182                         min = min_t(size_t, len, desc_len);
1183                         sg_buf = buf;
1184                         sg_set_buf(sg, sg_buf, min);
1185                 }
1186
1187                 buf += min;
1188                 len -= min;
1189                 sg = sg_next(sg);
1190         }
1191
1192         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1193         if (ret < 0) {
1194                 sg_free_table(sgt);
1195                 return ret;
1196         }
1197
1198         return 0;
1199 }
1200
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202                 struct sg_table *sgt, void *buf, size_t len,
1203                 enum dma_data_direction dir)
1204 {
1205         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1206 }
1207
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209                                 struct device *dev, struct sg_table *sgt,
1210                                 enum dma_data_direction dir,
1211                                 unsigned long attrs)
1212 {
1213         dma_unmap_sgtable(dev, sgt, dir, attrs);
1214         sg_free_table(sgt);
1215         sgt->orig_nents = 0;
1216         sgt->nents = 0;
1217 }
1218
1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1220                    struct sg_table *sgt, enum dma_data_direction dir)
1221 {
1222         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1223 }
1224
1225 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1226 {
1227         struct device *tx_dev, *rx_dev;
1228         struct spi_transfer *xfer;
1229         int ret;
1230
1231         if (!ctlr->can_dma)
1232                 return 0;
1233
1234         if (ctlr->dma_tx)
1235                 tx_dev = ctlr->dma_tx->device->dev;
1236         else if (ctlr->dma_map_dev)
1237                 tx_dev = ctlr->dma_map_dev;
1238         else
1239                 tx_dev = ctlr->dev.parent;
1240
1241         if (ctlr->dma_rx)
1242                 rx_dev = ctlr->dma_rx->device->dev;
1243         else if (ctlr->dma_map_dev)
1244                 rx_dev = ctlr->dma_map_dev;
1245         else
1246                 rx_dev = ctlr->dev.parent;
1247
1248         ret = -ENOMSG;
1249         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1250                 /* The sync is done before each transfer. */
1251                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1252
1253                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1254                         continue;
1255
1256                 if (xfer->tx_buf != NULL) {
1257                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1258                                                 (void *)xfer->tx_buf,
1259                                                 xfer->len, DMA_TO_DEVICE,
1260                                                 attrs);
1261                         if (ret != 0)
1262                                 return ret;
1263
1264                         xfer->tx_sg_mapped = true;
1265                 }
1266
1267                 if (xfer->rx_buf != NULL) {
1268                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1269                                                 xfer->rx_buf, xfer->len,
1270                                                 DMA_FROM_DEVICE, attrs);
1271                         if (ret != 0) {
1272                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1273                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1274                                                 attrs);
1275
1276                                 return ret;
1277                         }
1278
1279                         xfer->rx_sg_mapped = true;
1280                 }
1281         }
1282         /* No transfer has been mapped, bail out with success */
1283         if (ret)
1284                 return 0;
1285
1286         ctlr->cur_rx_dma_dev = rx_dev;
1287         ctlr->cur_tx_dma_dev = tx_dev;
1288
1289         return 0;
1290 }
1291
1292 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1293 {
1294         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1295         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1296         struct spi_transfer *xfer;
1297
1298         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299                 /* The sync has already been done after each transfer. */
1300                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1301
1302                 if (xfer->rx_sg_mapped)
1303                         spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1304                                             DMA_FROM_DEVICE, attrs);
1305                 xfer->rx_sg_mapped = false;
1306
1307                 if (xfer->tx_sg_mapped)
1308                         spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1309                                             DMA_TO_DEVICE, attrs);
1310                 xfer->tx_sg_mapped = false;
1311         }
1312
1313         return 0;
1314 }
1315
1316 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1317                                     struct spi_transfer *xfer)
1318 {
1319         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1320         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1321
1322         if (xfer->tx_sg_mapped)
1323                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1324         if (xfer->rx_sg_mapped)
1325                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1326 }
1327
1328 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1329                                  struct spi_transfer *xfer)
1330 {
1331         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1332         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1333
1334         if (xfer->rx_sg_mapped)
1335                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1336         if (xfer->tx_sg_mapped)
1337                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1338 }
1339 #else /* !CONFIG_HAS_DMA */
1340 static inline int __spi_map_msg(struct spi_controller *ctlr,
1341                                 struct spi_message *msg)
1342 {
1343         return 0;
1344 }
1345
1346 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1347                                   struct spi_message *msg)
1348 {
1349         return 0;
1350 }
1351
1352 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1353                                     struct spi_transfer *xfer)
1354 {
1355 }
1356
1357 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1358                                  struct spi_transfer *xfer)
1359 {
1360 }
1361 #endif /* !CONFIG_HAS_DMA */
1362
1363 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1364                                 struct spi_message *msg)
1365 {
1366         struct spi_transfer *xfer;
1367
1368         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1369                 /*
1370                  * Restore the original value of tx_buf or rx_buf if they are
1371                  * NULL.
1372                  */
1373                 if (xfer->tx_buf == ctlr->dummy_tx)
1374                         xfer->tx_buf = NULL;
1375                 if (xfer->rx_buf == ctlr->dummy_rx)
1376                         xfer->rx_buf = NULL;
1377         }
1378
1379         return __spi_unmap_msg(ctlr, msg);
1380 }
1381
1382 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1383 {
1384         struct spi_transfer *xfer;
1385         void *tmp;
1386         unsigned int max_tx, max_rx;
1387
1388         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1389                 && !(msg->spi->mode & SPI_3WIRE)) {
1390                 max_tx = 0;
1391                 max_rx = 0;
1392
1393                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1394                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1395                             !xfer->tx_buf)
1396                                 max_tx = max(xfer->len, max_tx);
1397                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1398                             !xfer->rx_buf)
1399                                 max_rx = max(xfer->len, max_rx);
1400                 }
1401
1402                 if (max_tx) {
1403                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1404                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1405                         if (!tmp)
1406                                 return -ENOMEM;
1407                         ctlr->dummy_tx = tmp;
1408                 }
1409
1410                 if (max_rx) {
1411                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1412                                        GFP_KERNEL | GFP_DMA);
1413                         if (!tmp)
1414                                 return -ENOMEM;
1415                         ctlr->dummy_rx = tmp;
1416                 }
1417
1418                 if (max_tx || max_rx) {
1419                         list_for_each_entry(xfer, &msg->transfers,
1420                                             transfer_list) {
1421                                 if (!xfer->len)
1422                                         continue;
1423                                 if (!xfer->tx_buf)
1424                                         xfer->tx_buf = ctlr->dummy_tx;
1425                                 if (!xfer->rx_buf)
1426                                         xfer->rx_buf = ctlr->dummy_rx;
1427                         }
1428                 }
1429         }
1430
1431         return __spi_map_msg(ctlr, msg);
1432 }
1433
1434 static int spi_transfer_wait(struct spi_controller *ctlr,
1435                              struct spi_message *msg,
1436                              struct spi_transfer *xfer)
1437 {
1438         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1439         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1440         u32 speed_hz = xfer->speed_hz;
1441         unsigned long long ms;
1442
1443         if (spi_controller_is_target(ctlr)) {
1444                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1445                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1446                         return -EINTR;
1447                 }
1448         } else {
1449                 if (!speed_hz)
1450                         speed_hz = 100000;
1451
1452                 /*
1453                  * For each byte we wait for 8 cycles of the SPI clock.
1454                  * Since speed is defined in Hz and we want milliseconds,
1455                  * use respective multiplier, but before the division,
1456                  * otherwise we may get 0 for short transfers.
1457                  */
1458                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1459                 do_div(ms, speed_hz);
1460
1461                 /*
1462                  * Increase it twice and add 200 ms tolerance, use
1463                  * predefined maximum in case of overflow.
1464                  */
1465                 ms += ms + 200;
1466                 if (ms > UINT_MAX)
1467                         ms = UINT_MAX;
1468
1469                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1470                                                  msecs_to_jiffies(ms));
1471
1472                 if (ms == 0) {
1473                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1474                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1475                         dev_err(&msg->spi->dev,
1476                                 "SPI transfer timed out\n");
1477                         return -ETIMEDOUT;
1478                 }
1479
1480                 if (xfer->error & SPI_TRANS_FAIL_IO)
1481                         return -EIO;
1482         }
1483
1484         return 0;
1485 }
1486
1487 static void _spi_transfer_delay_ns(u32 ns)
1488 {
1489         if (!ns)
1490                 return;
1491         if (ns <= NSEC_PER_USEC) {
1492                 ndelay(ns);
1493         } else {
1494                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1495
1496                 if (us <= 10)
1497                         udelay(us);
1498                 else
1499                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1500         }
1501 }
1502
1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1504 {
1505         u32 delay = _delay->value;
1506         u32 unit = _delay->unit;
1507         u32 hz;
1508
1509         if (!delay)
1510                 return 0;
1511
1512         switch (unit) {
1513         case SPI_DELAY_UNIT_USECS:
1514                 delay *= NSEC_PER_USEC;
1515                 break;
1516         case SPI_DELAY_UNIT_NSECS:
1517                 /* Nothing to do here */
1518                 break;
1519         case SPI_DELAY_UNIT_SCK:
1520                 /* Clock cycles need to be obtained from spi_transfer */
1521                 if (!xfer)
1522                         return -EINVAL;
1523                 /*
1524                  * If there is unknown effective speed, approximate it
1525                  * by underestimating with half of the requested Hz.
1526                  */
1527                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1528                 if (!hz)
1529                         return -EINVAL;
1530
1531                 /* Convert delay to nanoseconds */
1532                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1533                 break;
1534         default:
1535                 return -EINVAL;
1536         }
1537
1538         return delay;
1539 }
1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1541
1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1543 {
1544         int delay;
1545
1546         might_sleep();
1547
1548         if (!_delay)
1549                 return -EINVAL;
1550
1551         delay = spi_delay_to_ns(_delay, xfer);
1552         if (delay < 0)
1553                 return delay;
1554
1555         _spi_transfer_delay_ns(delay);
1556
1557         return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_exec);
1560
1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1562                                           struct spi_transfer *xfer)
1563 {
1564         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1565         u32 delay = xfer->cs_change_delay.value;
1566         u32 unit = xfer->cs_change_delay.unit;
1567         int ret;
1568
1569         /* Return early on "fast" mode - for everything but USECS */
1570         if (!delay) {
1571                 if (unit == SPI_DELAY_UNIT_USECS)
1572                         _spi_transfer_delay_ns(default_delay_ns);
1573                 return;
1574         }
1575
1576         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1577         if (ret) {
1578                 dev_err_once(&msg->spi->dev,
1579                              "Use of unsupported delay unit %i, using default of %luus\n",
1580                              unit, default_delay_ns / NSEC_PER_USEC);
1581                 _spi_transfer_delay_ns(default_delay_ns);
1582         }
1583 }
1584
1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1586                                                   struct spi_transfer *xfer)
1587 {
1588         _spi_transfer_cs_change_delay(msg, xfer);
1589 }
1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1591
1592 /*
1593  * spi_transfer_one_message - Default implementation of transfer_one_message()
1594  *
1595  * This is a standard implementation of transfer_one_message() for
1596  * drivers which implement a transfer_one() operation.  It provides
1597  * standard handling of delays and chip select management.
1598  */
1599 static int spi_transfer_one_message(struct spi_controller *ctlr,
1600                                     struct spi_message *msg)
1601 {
1602         struct spi_transfer *xfer;
1603         bool keep_cs = false;
1604         int ret = 0;
1605         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1606         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1607
1608         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1609         spi_set_cs(msg->spi, !xfer->cs_off, false);
1610
1611         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1612         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1613
1614         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1615                 trace_spi_transfer_start(msg, xfer);
1616
1617                 spi_statistics_add_transfer_stats(statm, xfer, msg);
1618                 spi_statistics_add_transfer_stats(stats, xfer, msg);
1619
1620                 if (!ctlr->ptp_sts_supported) {
1621                         xfer->ptp_sts_word_pre = 0;
1622                         ptp_read_system_prets(xfer->ptp_sts);
1623                 }
1624
1625                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1626                         reinit_completion(&ctlr->xfer_completion);
1627
1628 fallback_pio:
1629                         spi_dma_sync_for_device(ctlr, xfer);
1630                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1631                         if (ret < 0) {
1632                                 spi_dma_sync_for_cpu(ctlr, xfer);
1633
1634                                 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1635                                     (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1636                                         __spi_unmap_msg(ctlr, msg);
1637                                         ctlr->fallback = true;
1638                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1639                                         goto fallback_pio;
1640                                 }
1641
1642                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1643                                                                errors);
1644                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1645                                                                errors);
1646                                 dev_err(&msg->spi->dev,
1647                                         "SPI transfer failed: %d\n", ret);
1648                                 goto out;
1649                         }
1650
1651                         if (ret > 0) {
1652                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1653                                 if (ret < 0)
1654                                         msg->status = ret;
1655                         }
1656
1657                         spi_dma_sync_for_cpu(ctlr, xfer);
1658                 } else {
1659                         if (xfer->len)
1660                                 dev_err(&msg->spi->dev,
1661                                         "Bufferless transfer has length %u\n",
1662                                         xfer->len);
1663                 }
1664
1665                 if (!ctlr->ptp_sts_supported) {
1666                         ptp_read_system_postts(xfer->ptp_sts);
1667                         xfer->ptp_sts_word_post = xfer->len;
1668                 }
1669
1670                 trace_spi_transfer_stop(msg, xfer);
1671
1672                 if (msg->status != -EINPROGRESS)
1673                         goto out;
1674
1675                 spi_transfer_delay_exec(xfer);
1676
1677                 if (xfer->cs_change) {
1678                         if (list_is_last(&xfer->transfer_list,
1679                                          &msg->transfers)) {
1680                                 keep_cs = true;
1681                         } else {
1682                                 if (!xfer->cs_off)
1683                                         spi_set_cs(msg->spi, false, false);
1684                                 _spi_transfer_cs_change_delay(msg, xfer);
1685                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1686                                         spi_set_cs(msg->spi, true, false);
1687                         }
1688                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1689                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1690                         spi_set_cs(msg->spi, xfer->cs_off, false);
1691                 }
1692
1693                 msg->actual_length += xfer->len;
1694         }
1695
1696 out:
1697         if (ret != 0 || !keep_cs)
1698                 spi_set_cs(msg->spi, false, false);
1699
1700         if (msg->status == -EINPROGRESS)
1701                 msg->status = ret;
1702
1703         if (msg->status && ctlr->handle_err)
1704                 ctlr->handle_err(ctlr, msg);
1705
1706         spi_finalize_current_message(ctlr);
1707
1708         return ret;
1709 }
1710
1711 /**
1712  * spi_finalize_current_transfer - report completion of a transfer
1713  * @ctlr: the controller reporting completion
1714  *
1715  * Called by SPI drivers using the core transfer_one_message()
1716  * implementation to notify it that the current interrupt driven
1717  * transfer has finished and the next one may be scheduled.
1718  */
1719 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1720 {
1721         complete(&ctlr->xfer_completion);
1722 }
1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1724
1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1726 {
1727         if (ctlr->auto_runtime_pm) {
1728                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1729                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1730         }
1731 }
1732
1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1734                 struct spi_message *msg, bool was_busy)
1735 {
1736         struct spi_transfer *xfer;
1737         int ret;
1738
1739         if (!was_busy && ctlr->auto_runtime_pm) {
1740                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1741                 if (ret < 0) {
1742                         pm_runtime_put_noidle(ctlr->dev.parent);
1743                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1744                                 ret);
1745
1746                         msg->status = ret;
1747                         spi_finalize_current_message(ctlr);
1748
1749                         return ret;
1750                 }
1751         }
1752
1753         if (!was_busy)
1754                 trace_spi_controller_busy(ctlr);
1755
1756         if (!was_busy && ctlr->prepare_transfer_hardware) {
1757                 ret = ctlr->prepare_transfer_hardware(ctlr);
1758                 if (ret) {
1759                         dev_err(&ctlr->dev,
1760                                 "failed to prepare transfer hardware: %d\n",
1761                                 ret);
1762
1763                         if (ctlr->auto_runtime_pm)
1764                                 pm_runtime_put(ctlr->dev.parent);
1765
1766                         msg->status = ret;
1767                         spi_finalize_current_message(ctlr);
1768
1769                         return ret;
1770                 }
1771         }
1772
1773         trace_spi_message_start(msg);
1774
1775         if (ctlr->prepare_message) {
1776                 ret = ctlr->prepare_message(ctlr, msg);
1777                 if (ret) {
1778                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1779                                 ret);
1780                         msg->status = ret;
1781                         spi_finalize_current_message(ctlr);
1782                         return ret;
1783                 }
1784                 msg->prepared = true;
1785         }
1786
1787         ret = spi_map_msg(ctlr, msg);
1788         if (ret) {
1789                 msg->status = ret;
1790                 spi_finalize_current_message(ctlr);
1791                 return ret;
1792         }
1793
1794         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1795                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1796                         xfer->ptp_sts_word_pre = 0;
1797                         ptp_read_system_prets(xfer->ptp_sts);
1798                 }
1799         }
1800
1801         /*
1802          * Drivers implementation of transfer_one_message() must arrange for
1803          * spi_finalize_current_message() to get called. Most drivers will do
1804          * this in the calling context, but some don't. For those cases, a
1805          * completion is used to guarantee that this function does not return
1806          * until spi_finalize_current_message() is done accessing
1807          * ctlr->cur_msg.
1808          * Use of the following two flags enable to opportunistically skip the
1809          * use of the completion since its use involves expensive spin locks.
1810          * In case of a race with the context that calls
1811          * spi_finalize_current_message() the completion will always be used,
1812          * due to strict ordering of these flags using barriers.
1813          */
1814         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1815         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1816         reinit_completion(&ctlr->cur_msg_completion);
1817         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1818
1819         ret = ctlr->transfer_one_message(ctlr, msg);
1820         if (ret) {
1821                 dev_err(&ctlr->dev,
1822                         "failed to transfer one message from queue\n");
1823                 return ret;
1824         }
1825
1826         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1827         smp_mb(); /* See spi_finalize_current_message()... */
1828         if (READ_ONCE(ctlr->cur_msg_incomplete))
1829                 wait_for_completion(&ctlr->cur_msg_completion);
1830
1831         return 0;
1832 }
1833
1834 /**
1835  * __spi_pump_messages - function which processes SPI message queue
1836  * @ctlr: controller to process queue for
1837  * @in_kthread: true if we are in the context of the message pump thread
1838  *
1839  * This function checks if there is any SPI message in the queue that
1840  * needs processing and if so call out to the driver to initialize hardware
1841  * and transfer each message.
1842  *
1843  * Note that it is called both from the kthread itself and also from
1844  * inside spi_sync(); the queue extraction handling at the top of the
1845  * function should deal with this safely.
1846  */
1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1848 {
1849         struct spi_message *msg;
1850         bool was_busy = false;
1851         unsigned long flags;
1852         int ret;
1853
1854         /* Take the I/O mutex */
1855         mutex_lock(&ctlr->io_mutex);
1856
1857         /* Lock queue */
1858         spin_lock_irqsave(&ctlr->queue_lock, flags);
1859
1860         /* Make sure we are not already running a message */
1861         if (ctlr->cur_msg)
1862                 goto out_unlock;
1863
1864         /* Check if the queue is idle */
1865         if (list_empty(&ctlr->queue) || !ctlr->running) {
1866                 if (!ctlr->busy)
1867                         goto out_unlock;
1868
1869                 /* Defer any non-atomic teardown to the thread */
1870                 if (!in_kthread) {
1871                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1872                             !ctlr->unprepare_transfer_hardware) {
1873                                 spi_idle_runtime_pm(ctlr);
1874                                 ctlr->busy = false;
1875                                 ctlr->queue_empty = true;
1876                                 trace_spi_controller_idle(ctlr);
1877                         } else {
1878                                 kthread_queue_work(ctlr->kworker,
1879                                                    &ctlr->pump_messages);
1880                         }
1881                         goto out_unlock;
1882                 }
1883
1884                 ctlr->busy = false;
1885                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1886
1887                 kfree(ctlr->dummy_rx);
1888                 ctlr->dummy_rx = NULL;
1889                 kfree(ctlr->dummy_tx);
1890                 ctlr->dummy_tx = NULL;
1891                 if (ctlr->unprepare_transfer_hardware &&
1892                     ctlr->unprepare_transfer_hardware(ctlr))
1893                         dev_err(&ctlr->dev,
1894                                 "failed to unprepare transfer hardware\n");
1895                 spi_idle_runtime_pm(ctlr);
1896                 trace_spi_controller_idle(ctlr);
1897
1898                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1899                 ctlr->queue_empty = true;
1900                 goto out_unlock;
1901         }
1902
1903         /* Extract head of queue */
1904         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1905         ctlr->cur_msg = msg;
1906
1907         list_del_init(&msg->queue);
1908         if (ctlr->busy)
1909                 was_busy = true;
1910         else
1911                 ctlr->busy = true;
1912         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913
1914         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1915         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1916
1917         ctlr->cur_msg = NULL;
1918         ctlr->fallback = false;
1919
1920         mutex_unlock(&ctlr->io_mutex);
1921
1922         /* Prod the scheduler in case transfer_one() was busy waiting */
1923         if (!ret)
1924                 cond_resched();
1925         return;
1926
1927 out_unlock:
1928         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929         mutex_unlock(&ctlr->io_mutex);
1930 }
1931
1932 /**
1933  * spi_pump_messages - kthread work function which processes spi message queue
1934  * @work: pointer to kthread work struct contained in the controller struct
1935  */
1936 static void spi_pump_messages(struct kthread_work *work)
1937 {
1938         struct spi_controller *ctlr =
1939                 container_of(work, struct spi_controller, pump_messages);
1940
1941         __spi_pump_messages(ctlr, true);
1942 }
1943
1944 /**
1945  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1946  * @ctlr: Pointer to the spi_controller structure of the driver
1947  * @xfer: Pointer to the transfer being timestamped
1948  * @progress: How many words (not bytes) have been transferred so far
1949  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1950  *            transfer, for less jitter in time measurement. Only compatible
1951  *            with PIO drivers. If true, must follow up with
1952  *            spi_take_timestamp_post or otherwise system will crash.
1953  *            WARNING: for fully predictable results, the CPU frequency must
1954  *            also be under control (governor).
1955  *
1956  * This is a helper for drivers to collect the beginning of the TX timestamp
1957  * for the requested byte from the SPI transfer. The frequency with which this
1958  * function must be called (once per word, once for the whole transfer, once
1959  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1960  * greater than or equal to the requested byte at the time of the call. The
1961  * timestamp is only taken once, at the first such call. It is assumed that
1962  * the driver advances its @tx buffer pointer monotonically.
1963  */
1964 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1965                             struct spi_transfer *xfer,
1966                             size_t progress, bool irqs_off)
1967 {
1968         if (!xfer->ptp_sts)
1969                 return;
1970
1971         if (xfer->timestamped)
1972                 return;
1973
1974         if (progress > xfer->ptp_sts_word_pre)
1975                 return;
1976
1977         /* Capture the resolution of the timestamp */
1978         xfer->ptp_sts_word_pre = progress;
1979
1980         if (irqs_off) {
1981                 local_irq_save(ctlr->irq_flags);
1982                 preempt_disable();
1983         }
1984
1985         ptp_read_system_prets(xfer->ptp_sts);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1988
1989 /**
1990  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1991  * @ctlr: Pointer to the spi_controller structure of the driver
1992  * @xfer: Pointer to the transfer being timestamped
1993  * @progress: How many words (not bytes) have been transferred so far
1994  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1995  *
1996  * This is a helper for drivers to collect the end of the TX timestamp for
1997  * the requested byte from the SPI transfer. Can be called with an arbitrary
1998  * frequency: only the first call where @tx exceeds or is equal to the
1999  * requested word will be timestamped.
2000  */
2001 void spi_take_timestamp_post(struct spi_controller *ctlr,
2002                              struct spi_transfer *xfer,
2003                              size_t progress, bool irqs_off)
2004 {
2005         if (!xfer->ptp_sts)
2006                 return;
2007
2008         if (xfer->timestamped)
2009                 return;
2010
2011         if (progress < xfer->ptp_sts_word_post)
2012                 return;
2013
2014         ptp_read_system_postts(xfer->ptp_sts);
2015
2016         if (irqs_off) {
2017                 local_irq_restore(ctlr->irq_flags);
2018                 preempt_enable();
2019         }
2020
2021         /* Capture the resolution of the timestamp */
2022         xfer->ptp_sts_word_post = progress;
2023
2024         xfer->timestamped = 1;
2025 }
2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2027
2028 /**
2029  * spi_set_thread_rt - set the controller to pump at realtime priority
2030  * @ctlr: controller to boost priority of
2031  *
2032  * This can be called because the controller requested realtime priority
2033  * (by setting the ->rt value before calling spi_register_controller()) or
2034  * because a device on the bus said that its transfers needed realtime
2035  * priority.
2036  *
2037  * NOTE: at the moment if any device on a bus says it needs realtime then
2038  * the thread will be at realtime priority for all transfers on that
2039  * controller.  If this eventually becomes a problem we may see if we can
2040  * find a way to boost the priority only temporarily during relevant
2041  * transfers.
2042  */
2043 static void spi_set_thread_rt(struct spi_controller *ctlr)
2044 {
2045         dev_info(&ctlr->dev,
2046                 "will run message pump with realtime priority\n");
2047         sched_set_fifo(ctlr->kworker->task);
2048 }
2049
2050 static int spi_init_queue(struct spi_controller *ctlr)
2051 {
2052         ctlr->running = false;
2053         ctlr->busy = false;
2054         ctlr->queue_empty = true;
2055
2056         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2057         if (IS_ERR(ctlr->kworker)) {
2058                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2059                 return PTR_ERR(ctlr->kworker);
2060         }
2061
2062         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2063
2064         /*
2065          * Controller config will indicate if this controller should run the
2066          * message pump with high (realtime) priority to reduce the transfer
2067          * latency on the bus by minimising the delay between a transfer
2068          * request and the scheduling of the message pump thread. Without this
2069          * setting the message pump thread will remain at default priority.
2070          */
2071         if (ctlr->rt)
2072                 spi_set_thread_rt(ctlr);
2073
2074         return 0;
2075 }
2076
2077 /**
2078  * spi_get_next_queued_message() - called by driver to check for queued
2079  * messages
2080  * @ctlr: the controller to check for queued messages
2081  *
2082  * If there are more messages in the queue, the next message is returned from
2083  * this call.
2084  *
2085  * Return: the next message in the queue, else NULL if the queue is empty.
2086  */
2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2088 {
2089         struct spi_message *next;
2090         unsigned long flags;
2091
2092         /* Get a pointer to the next message, if any */
2093         spin_lock_irqsave(&ctlr->queue_lock, flags);
2094         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2095                                         queue);
2096         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2097
2098         return next;
2099 }
2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2101
2102 /*
2103  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2104  *                            and spi_maybe_unoptimize_message()
2105  * @msg: the message to unoptimize
2106  *
2107  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2108  * core should use spi_maybe_unoptimize_message() rather than calling this
2109  * function directly.
2110  *
2111  * It is not valid to call this on a message that is not currently optimized.
2112  */
2113 static void __spi_unoptimize_message(struct spi_message *msg)
2114 {
2115         struct spi_controller *ctlr = msg->spi->controller;
2116
2117         if (ctlr->unoptimize_message)
2118                 ctlr->unoptimize_message(msg);
2119
2120         spi_res_release(ctlr, msg);
2121
2122         msg->optimized = false;
2123         msg->opt_state = NULL;
2124 }
2125
2126 /*
2127  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2128  * @msg: the message to unoptimize
2129  *
2130  * This function is used to unoptimize a message if and only if it was
2131  * optimized by the core (via spi_maybe_optimize_message()).
2132  */
2133 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2134 {
2135         if (!msg->pre_optimized && msg->optimized &&
2136             !msg->spi->controller->defer_optimize_message)
2137                 __spi_unoptimize_message(msg);
2138 }
2139
2140 /**
2141  * spi_finalize_current_message() - the current message is complete
2142  * @ctlr: the controller to return the message to
2143  *
2144  * Called by the driver to notify the core that the message in the front of the
2145  * queue is complete and can be removed from the queue.
2146  */
2147 void spi_finalize_current_message(struct spi_controller *ctlr)
2148 {
2149         struct spi_transfer *xfer;
2150         struct spi_message *mesg;
2151         int ret;
2152
2153         mesg = ctlr->cur_msg;
2154
2155         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2156                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2157                         ptp_read_system_postts(xfer->ptp_sts);
2158                         xfer->ptp_sts_word_post = xfer->len;
2159                 }
2160         }
2161
2162         if (unlikely(ctlr->ptp_sts_supported))
2163                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2164                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2165
2166         spi_unmap_msg(ctlr, mesg);
2167
2168         if (mesg->prepared && ctlr->unprepare_message) {
2169                 ret = ctlr->unprepare_message(ctlr, mesg);
2170                 if (ret) {
2171                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2172                                 ret);
2173                 }
2174         }
2175
2176         mesg->prepared = false;
2177
2178         spi_maybe_unoptimize_message(mesg);
2179
2180         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2181         smp_mb(); /* See __spi_pump_transfer_message()... */
2182         if (READ_ONCE(ctlr->cur_msg_need_completion))
2183                 complete(&ctlr->cur_msg_completion);
2184
2185         trace_spi_message_done(mesg);
2186
2187         mesg->state = NULL;
2188         if (mesg->complete)
2189                 mesg->complete(mesg->context);
2190 }
2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2192
2193 static int spi_start_queue(struct spi_controller *ctlr)
2194 {
2195         unsigned long flags;
2196
2197         spin_lock_irqsave(&ctlr->queue_lock, flags);
2198
2199         if (ctlr->running || ctlr->busy) {
2200                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201                 return -EBUSY;
2202         }
2203
2204         ctlr->running = true;
2205         ctlr->cur_msg = NULL;
2206         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2207
2208         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2209
2210         return 0;
2211 }
2212
2213 static int spi_stop_queue(struct spi_controller *ctlr)
2214 {
2215         unsigned int limit = 500;
2216         unsigned long flags;
2217
2218         /*
2219          * This is a bit lame, but is optimized for the common execution path.
2220          * A wait_queue on the ctlr->busy could be used, but then the common
2221          * execution path (pump_messages) would be required to call wake_up or
2222          * friends on every SPI message. Do this instead.
2223          */
2224         do {
2225                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2226                 if (list_empty(&ctlr->queue) && !ctlr->busy) {
2227                         ctlr->running = false;
2228                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229                         return 0;
2230                 }
2231                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232                 usleep_range(10000, 11000);
2233         } while (--limit);
2234
2235         return -EBUSY;
2236 }
2237
2238 static int spi_destroy_queue(struct spi_controller *ctlr)
2239 {
2240         int ret;
2241
2242         ret = spi_stop_queue(ctlr);
2243
2244         /*
2245          * kthread_flush_worker will block until all work is done.
2246          * If the reason that stop_queue timed out is that the work will never
2247          * finish, then it does no good to call flush/stop thread, so
2248          * return anyway.
2249          */
2250         if (ret) {
2251                 dev_err(&ctlr->dev, "problem destroying queue\n");
2252                 return ret;
2253         }
2254
2255         kthread_destroy_worker(ctlr->kworker);
2256
2257         return 0;
2258 }
2259
2260 static int __spi_queued_transfer(struct spi_device *spi,
2261                                  struct spi_message *msg,
2262                                  bool need_pump)
2263 {
2264         struct spi_controller *ctlr = spi->controller;
2265         unsigned long flags;
2266
2267         spin_lock_irqsave(&ctlr->queue_lock, flags);
2268
2269         if (!ctlr->running) {
2270                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2271                 return -ESHUTDOWN;
2272         }
2273         msg->actual_length = 0;
2274         msg->status = -EINPROGRESS;
2275
2276         list_add_tail(&msg->queue, &ctlr->queue);
2277         ctlr->queue_empty = false;
2278         if (!ctlr->busy && need_pump)
2279                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280
2281         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282         return 0;
2283 }
2284
2285 /**
2286  * spi_queued_transfer - transfer function for queued transfers
2287  * @spi: SPI device which is requesting transfer
2288  * @msg: SPI message which is to handled is queued to driver queue
2289  *
2290  * Return: zero on success, else a negative error code.
2291  */
2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 {
2294         return __spi_queued_transfer(spi, msg, true);
2295 }
2296
2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2298 {
2299         int ret;
2300
2301         ctlr->transfer = spi_queued_transfer;
2302         if (!ctlr->transfer_one_message)
2303                 ctlr->transfer_one_message = spi_transfer_one_message;
2304
2305         /* Initialize and start queue */
2306         ret = spi_init_queue(ctlr);
2307         if (ret) {
2308                 dev_err(&ctlr->dev, "problem initializing queue\n");
2309                 goto err_init_queue;
2310         }
2311         ctlr->queued = true;
2312         ret = spi_start_queue(ctlr);
2313         if (ret) {
2314                 dev_err(&ctlr->dev, "problem starting queue\n");
2315                 goto err_start_queue;
2316         }
2317
2318         return 0;
2319
2320 err_start_queue:
2321         spi_destroy_queue(ctlr);
2322 err_init_queue:
2323         return ret;
2324 }
2325
2326 /**
2327  * spi_flush_queue - Send all pending messages in the queue from the callers'
2328  *                   context
2329  * @ctlr: controller to process queue for
2330  *
2331  * This should be used when one wants to ensure all pending messages have been
2332  * sent before doing something. Is used by the spi-mem code to make sure SPI
2333  * memory operations do not preempt regular SPI transfers that have been queued
2334  * before the spi-mem operation.
2335  */
2336 void spi_flush_queue(struct spi_controller *ctlr)
2337 {
2338         if (ctlr->transfer == spi_queued_transfer)
2339                 __spi_pump_messages(ctlr, false);
2340 }
2341
2342 /*-------------------------------------------------------------------------*/
2343
2344 #if defined(CONFIG_OF)
2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2346                                      struct spi_delay *delay, const char *prop)
2347 {
2348         u32 value;
2349
2350         if (!of_property_read_u32(nc, prop, &value)) {
2351                 if (value > U16_MAX) {
2352                         delay->value = DIV_ROUND_UP(value, 1000);
2353                         delay->unit = SPI_DELAY_UNIT_USECS;
2354                 } else {
2355                         delay->value = value;
2356                         delay->unit = SPI_DELAY_UNIT_NSECS;
2357                 }
2358         }
2359 }
2360
2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2362                            struct device_node *nc)
2363 {
2364         u32 value, cs[SPI_CS_CNT_MAX];
2365         int rc, idx;
2366
2367         /* Mode (clock phase/polarity/etc.) */
2368         if (of_property_read_bool(nc, "spi-cpha"))
2369                 spi->mode |= SPI_CPHA;
2370         if (of_property_read_bool(nc, "spi-cpol"))
2371                 spi->mode |= SPI_CPOL;
2372         if (of_property_read_bool(nc, "spi-3wire"))
2373                 spi->mode |= SPI_3WIRE;
2374         if (of_property_read_bool(nc, "spi-lsb-first"))
2375                 spi->mode |= SPI_LSB_FIRST;
2376         if (of_property_read_bool(nc, "spi-cs-high"))
2377                 spi->mode |= SPI_CS_HIGH;
2378
2379         /* Device DUAL/QUAD mode */
2380         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2381                 switch (value) {
2382                 case 0:
2383                         spi->mode |= SPI_NO_TX;
2384                         break;
2385                 case 1:
2386                         break;
2387                 case 2:
2388                         spi->mode |= SPI_TX_DUAL;
2389                         break;
2390                 case 4:
2391                         spi->mode |= SPI_TX_QUAD;
2392                         break;
2393                 case 8:
2394                         spi->mode |= SPI_TX_OCTAL;
2395                         break;
2396                 default:
2397                         dev_warn(&ctlr->dev,
2398                                 "spi-tx-bus-width %d not supported\n",
2399                                 value);
2400                         break;
2401                 }
2402         }
2403
2404         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2405                 switch (value) {
2406                 case 0:
2407                         spi->mode |= SPI_NO_RX;
2408                         break;
2409                 case 1:
2410                         break;
2411                 case 2:
2412                         spi->mode |= SPI_RX_DUAL;
2413                         break;
2414                 case 4:
2415                         spi->mode |= SPI_RX_QUAD;
2416                         break;
2417                 case 8:
2418                         spi->mode |= SPI_RX_OCTAL;
2419                         break;
2420                 default:
2421                         dev_warn(&ctlr->dev,
2422                                 "spi-rx-bus-width %d not supported\n",
2423                                 value);
2424                         break;
2425                 }
2426         }
2427
2428         if (spi_controller_is_target(ctlr)) {
2429                 if (!of_node_name_eq(nc, "slave")) {
2430                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2431                                 nc);
2432                         return -EINVAL;
2433                 }
2434                 return 0;
2435         }
2436
2437         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2438                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2439                 return -EINVAL;
2440         }
2441
2442         spi_set_all_cs_unused(spi);
2443
2444         /* Device address */
2445         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2446                                                  SPI_CS_CNT_MAX);
2447         if (rc < 0) {
2448                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2449                         nc, rc);
2450                 return rc;
2451         }
2452         if (rc > ctlr->num_chipselect) {
2453                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2454                         nc, rc);
2455                 return rc;
2456         }
2457         if ((of_property_read_bool(nc, "parallel-memories")) &&
2458             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2459                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2460                 return -EINVAL;
2461         }
2462         for (idx = 0; idx < rc; idx++)
2463                 spi_set_chipselect(spi, idx, cs[idx]);
2464
2465         /*
2466          * By default spi->chip_select[0] will hold the physical CS number,
2467          * so set bit 0 in spi->cs_index_mask.
2468          */
2469         spi->cs_index_mask = BIT(0);
2470
2471         /* Device speed */
2472         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2473                 spi->max_speed_hz = value;
2474
2475         /* Device CS delays */
2476         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2477         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2478         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2479
2480         return 0;
2481 }
2482
2483 static struct spi_device *
2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 {
2486         struct spi_device *spi;
2487         int rc;
2488
2489         /* Alloc an spi_device */
2490         spi = spi_alloc_device(ctlr);
2491         if (!spi) {
2492                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2493                 rc = -ENOMEM;
2494                 goto err_out;
2495         }
2496
2497         /* Select device driver */
2498         rc = of_alias_from_compatible(nc, spi->modalias,
2499                                       sizeof(spi->modalias));
2500         if (rc < 0) {
2501                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2502                 goto err_out;
2503         }
2504
2505         rc = of_spi_parse_dt(ctlr, spi, nc);
2506         if (rc)
2507                 goto err_out;
2508
2509         /* Store a pointer to the node in the device structure */
2510         of_node_get(nc);
2511
2512         device_set_node(&spi->dev, of_fwnode_handle(nc));
2513
2514         /* Register the new device */
2515         rc = spi_add_device(spi);
2516         if (rc) {
2517                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2518                 goto err_of_node_put;
2519         }
2520
2521         return spi;
2522
2523 err_of_node_put:
2524         of_node_put(nc);
2525 err_out:
2526         spi_dev_put(spi);
2527         return ERR_PTR(rc);
2528 }
2529
2530 /**
2531  * of_register_spi_devices() - Register child devices onto the SPI bus
2532  * @ctlr:       Pointer to spi_controller device
2533  *
2534  * Registers an spi_device for each child node of controller node which
2535  * represents a valid SPI slave.
2536  */
2537 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 {
2539         struct spi_device *spi;
2540         struct device_node *nc;
2541
2542         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2543                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544                         continue;
2545                 spi = of_register_spi_device(ctlr, nc);
2546                 if (IS_ERR(spi)) {
2547                         dev_warn(&ctlr->dev,
2548                                  "Failed to create SPI device for %pOF\n", nc);
2549                         of_node_clear_flag(nc, OF_POPULATED);
2550                 }
2551         }
2552 }
2553 #else
2554 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2555 #endif
2556
2557 /**
2558  * spi_new_ancillary_device() - Register ancillary SPI device
2559  * @spi:         Pointer to the main SPI device registering the ancillary device
2560  * @chip_select: Chip Select of the ancillary device
2561  *
2562  * Register an ancillary SPI device; for example some chips have a chip-select
2563  * for normal device usage and another one for setup/firmware upload.
2564  *
2565  * This may only be called from main SPI device's probe routine.
2566  *
2567  * Return: 0 on success; negative errno on failure
2568  */
2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2570                                              u8 chip_select)
2571 {
2572         struct spi_controller *ctlr = spi->controller;
2573         struct spi_device *ancillary;
2574         int rc;
2575
2576         /* Alloc an spi_device */
2577         ancillary = spi_alloc_device(ctlr);
2578         if (!ancillary) {
2579                 rc = -ENOMEM;
2580                 goto err_out;
2581         }
2582
2583         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584
2585         /* Use provided chip-select for ancillary device */
2586         spi_set_all_cs_unused(ancillary);
2587         spi_set_chipselect(ancillary, 0, chip_select);
2588
2589         /* Take over SPI mode/speed from SPI main device */
2590         ancillary->max_speed_hz = spi->max_speed_hz;
2591         ancillary->mode = spi->mode;
2592         /*
2593          * By default spi->chip_select[0] will hold the physical CS number,
2594          * so set bit 0 in spi->cs_index_mask.
2595          */
2596         ancillary->cs_index_mask = BIT(0);
2597
2598         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599
2600         /* Register the new device */
2601         rc = __spi_add_device(ancillary);
2602         if (rc) {
2603                 dev_err(&spi->dev, "failed to register ancillary device\n");
2604                 goto err_out;
2605         }
2606
2607         return ancillary;
2608
2609 err_out:
2610         spi_dev_put(ancillary);
2611         return ERR_PTR(rc);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2614
2615 #ifdef CONFIG_ACPI
2616 struct acpi_spi_lookup {
2617         struct spi_controller   *ctlr;
2618         u32                     max_speed_hz;
2619         u32                     mode;
2620         int                     irq;
2621         u8                      bits_per_word;
2622         u8                      chip_select;
2623         int                     n;
2624         int                     index;
2625 };
2626
2627 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 {
2629         struct acpi_resource_spi_serialbus *sb;
2630         int *count = data;
2631
2632         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2633                 return 1;
2634
2635         sb = &ares->data.spi_serial_bus;
2636         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2637                 return 1;
2638
2639         *count = *count + 1;
2640
2641         return 1;
2642 }
2643
2644 /**
2645  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2646  * @adev:       ACPI device
2647  *
2648  * Return: the number of SpiSerialBus resources in the ACPI-device's
2649  * resource-list; or a negative error code.
2650  */
2651 int acpi_spi_count_resources(struct acpi_device *adev)
2652 {
2653         LIST_HEAD(r);
2654         int count = 0;
2655         int ret;
2656
2657         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2658         if (ret < 0)
2659                 return ret;
2660
2661         acpi_dev_free_resource_list(&r);
2662
2663         return count;
2664 }
2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666
2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2668                                             struct acpi_spi_lookup *lookup)
2669 {
2670         const union acpi_object *obj;
2671
2672         if (!x86_apple_machine)
2673                 return;
2674
2675         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2676             && obj->buffer.length >= 4)
2677                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678
2679         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2680             && obj->buffer.length == 8)
2681                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682
2683         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2684             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2685                 lookup->mode |= SPI_LSB_FIRST;
2686
2687         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2688             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2689                 lookup->mode |= SPI_CPOL;
2690
2691         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2692             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2693                 lookup->mode |= SPI_CPHA;
2694 }
2695
2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 {
2698         struct acpi_spi_lookup *lookup = data;
2699         struct spi_controller *ctlr = lookup->ctlr;
2700
2701         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2702                 struct acpi_resource_spi_serialbus *sb;
2703                 acpi_handle parent_handle;
2704                 acpi_status status;
2705
2706                 sb = &ares->data.spi_serial_bus;
2707                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708
2709                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2710                                 return 1;
2711
2712                         status = acpi_get_handle(NULL,
2713                                                  sb->resource_source.string_ptr,
2714                                                  &parent_handle);
2715
2716                         if (ACPI_FAILURE(status))
2717                                 return -ENODEV;
2718
2719                         if (ctlr) {
2720                                 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2721                                         return -ENODEV;
2722                         } else {
2723                                 struct acpi_device *adev;
2724
2725                                 adev = acpi_fetch_acpi_dev(parent_handle);
2726                                 if (!adev)
2727                                         return -ENODEV;
2728
2729                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2730                                 if (!ctlr)
2731                                         return -EPROBE_DEFER;
2732
2733                                 lookup->ctlr = ctlr;
2734                         }
2735
2736                         /*
2737                          * ACPI DeviceSelection numbering is handled by the
2738                          * host controller driver in Windows and can vary
2739                          * from driver to driver. In Linux we always expect
2740                          * 0 .. max - 1 so we need to ask the driver to
2741                          * translate between the two schemes.
2742                          */
2743                         if (ctlr->fw_translate_cs) {
2744                                 int cs = ctlr->fw_translate_cs(ctlr,
2745                                                 sb->device_selection);
2746                                 if (cs < 0)
2747                                         return cs;
2748                                 lookup->chip_select = cs;
2749                         } else {
2750                                 lookup->chip_select = sb->device_selection;
2751                         }
2752
2753                         lookup->max_speed_hz = sb->connection_speed;
2754                         lookup->bits_per_word = sb->data_bit_length;
2755
2756                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2757                                 lookup->mode |= SPI_CPHA;
2758                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2759                                 lookup->mode |= SPI_CPOL;
2760                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2761                                 lookup->mode |= SPI_CS_HIGH;
2762                 }
2763         } else if (lookup->irq < 0) {
2764                 struct resource r;
2765
2766                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2767                         lookup->irq = r.start;
2768         }
2769
2770         /* Always tell the ACPI core to skip this resource */
2771         return 1;
2772 }
2773
2774 /**
2775  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2776  * @ctlr: controller to which the spi device belongs
2777  * @adev: ACPI Device for the spi device
2778  * @index: Index of the spi resource inside the ACPI Node
2779  *
2780  * This should be used to allocate a new SPI device from and ACPI Device node.
2781  * The caller is responsible for calling spi_add_device to register the SPI device.
2782  *
2783  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2784  * using the resource.
2785  * If index is set to -1, index is not used.
2786  * Note: If index is -1, ctlr must be set.
2787  *
2788  * Return: a pointer to the new device, or ERR_PTR on error.
2789  */
2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2791                                          struct acpi_device *adev,
2792                                          int index)
2793 {
2794         acpi_handle parent_handle = NULL;
2795         struct list_head resource_list;
2796         struct acpi_spi_lookup lookup = {};
2797         struct spi_device *spi;
2798         int ret;
2799
2800         if (!ctlr && index == -1)
2801                 return ERR_PTR(-EINVAL);
2802
2803         lookup.ctlr             = ctlr;
2804         lookup.irq              = -1;
2805         lookup.index            = index;
2806         lookup.n                = 0;
2807
2808         INIT_LIST_HEAD(&resource_list);
2809         ret = acpi_dev_get_resources(adev, &resource_list,
2810                                      acpi_spi_add_resource, &lookup);
2811         acpi_dev_free_resource_list(&resource_list);
2812
2813         if (ret < 0)
2814                 /* Found SPI in _CRS but it points to another controller */
2815                 return ERR_PTR(ret);
2816
2817         if (!lookup.max_speed_hz &&
2818             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2819             device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2820                 /* Apple does not use _CRS but nested devices for SPI slaves */
2821                 acpi_spi_parse_apple_properties(adev, &lookup);
2822         }
2823
2824         if (!lookup.max_speed_hz)
2825                 return ERR_PTR(-ENODEV);
2826
2827         spi = spi_alloc_device(lookup.ctlr);
2828         if (!spi) {
2829                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2830                         dev_name(&adev->dev));
2831                 return ERR_PTR(-ENOMEM);
2832         }
2833
2834         spi_set_all_cs_unused(spi);
2835         spi_set_chipselect(spi, 0, lookup.chip_select);
2836
2837         ACPI_COMPANION_SET(&spi->dev, adev);
2838         spi->max_speed_hz       = lookup.max_speed_hz;
2839         spi->mode               |= lookup.mode;
2840         spi->irq                = lookup.irq;
2841         spi->bits_per_word      = lookup.bits_per_word;
2842         /*
2843          * By default spi->chip_select[0] will hold the physical CS number,
2844          * so set bit 0 in spi->cs_index_mask.
2845          */
2846         spi->cs_index_mask      = BIT(0);
2847
2848         return spi;
2849 }
2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851
2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2853                                             struct acpi_device *adev)
2854 {
2855         struct spi_device *spi;
2856
2857         if (acpi_bus_get_status(adev) || !adev->status.present ||
2858             acpi_device_enumerated(adev))
2859                 return AE_OK;
2860
2861         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862         if (IS_ERR(spi)) {
2863                 if (PTR_ERR(spi) == -ENOMEM)
2864                         return AE_NO_MEMORY;
2865                 else
2866                         return AE_OK;
2867         }
2868
2869         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2870                           sizeof(spi->modalias));
2871
2872         if (spi->irq < 0)
2873                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2874
2875         acpi_device_set_enumerated(adev);
2876
2877         adev->power.flags.ignore_parent = true;
2878         if (spi_add_device(spi)) {
2879                 adev->power.flags.ignore_parent = false;
2880                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2881                         dev_name(&adev->dev));
2882                 spi_dev_put(spi);
2883         }
2884
2885         return AE_OK;
2886 }
2887
2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2889                                        void *data, void **return_value)
2890 {
2891         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2892         struct spi_controller *ctlr = data;
2893
2894         if (!adev)
2895                 return AE_OK;
2896
2897         return acpi_register_spi_device(ctlr, adev);
2898 }
2899
2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2901
2902 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2903 {
2904         acpi_status status;
2905         acpi_handle handle;
2906
2907         handle = ACPI_HANDLE(ctlr->dev.parent);
2908         if (!handle)
2909                 return;
2910
2911         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2912                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2913                                      acpi_spi_add_device, NULL, ctlr, NULL);
2914         if (ACPI_FAILURE(status))
2915                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2916 }
2917 #else
2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2919 #endif /* CONFIG_ACPI */
2920
2921 static void spi_controller_release(struct device *dev)
2922 {
2923         struct spi_controller *ctlr;
2924
2925         ctlr = container_of(dev, struct spi_controller, dev);
2926         kfree(ctlr);
2927 }
2928
2929 static struct class spi_master_class = {
2930         .name           = "spi_master",
2931         .dev_release    = spi_controller_release,
2932         .dev_groups     = spi_master_groups,
2933 };
2934
2935 #ifdef CONFIG_SPI_SLAVE
2936 /**
2937  * spi_target_abort - abort the ongoing transfer request on an SPI slave
2938  *                   controller
2939  * @spi: device used for the current transfer
2940  */
2941 int spi_target_abort(struct spi_device *spi)
2942 {
2943         struct spi_controller *ctlr = spi->controller;
2944
2945         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2946                 return ctlr->target_abort(ctlr);
2947
2948         return -ENOTSUPP;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_target_abort);
2951
2952 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2953                           char *buf)
2954 {
2955         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2956                                                    dev);
2957         struct device *child;
2958
2959         child = device_find_any_child(&ctlr->dev);
2960         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2961 }
2962
2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2964                            const char *buf, size_t count)
2965 {
2966         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967                                                    dev);
2968         struct spi_device *spi;
2969         struct device *child;
2970         char name[32];
2971         int rc;
2972
2973         rc = sscanf(buf, "%31s", name);
2974         if (rc != 1 || !name[0])
2975                 return -EINVAL;
2976
2977         child = device_find_any_child(&ctlr->dev);
2978         if (child) {
2979                 /* Remove registered slave */
2980                 device_unregister(child);
2981                 put_device(child);
2982         }
2983
2984         if (strcmp(name, "(null)")) {
2985                 /* Register new slave */
2986                 spi = spi_alloc_device(ctlr);
2987                 if (!spi)
2988                         return -ENOMEM;
2989
2990                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2991
2992                 rc = spi_add_device(spi);
2993                 if (rc) {
2994                         spi_dev_put(spi);
2995                         return rc;
2996                 }
2997         }
2998
2999         return count;
3000 }
3001
3002 static DEVICE_ATTR_RW(slave);
3003
3004 static struct attribute *spi_slave_attrs[] = {
3005         &dev_attr_slave.attr,
3006         NULL,
3007 };
3008
3009 static const struct attribute_group spi_slave_group = {
3010         .attrs = spi_slave_attrs,
3011 };
3012
3013 static const struct attribute_group *spi_slave_groups[] = {
3014         &spi_controller_statistics_group,
3015         &spi_slave_group,
3016         NULL,
3017 };
3018
3019 static struct class spi_slave_class = {
3020         .name           = "spi_slave",
3021         .dev_release    = spi_controller_release,
3022         .dev_groups     = spi_slave_groups,
3023 };
3024 #else
3025 extern struct class spi_slave_class;    /* dummy */
3026 #endif
3027
3028 /**
3029  * __spi_alloc_controller - allocate an SPI master or slave controller
3030  * @dev: the controller, possibly using the platform_bus
3031  * @size: how much zeroed driver-private data to allocate; the pointer to this
3032  *      memory is in the driver_data field of the returned device, accessible
3033  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3034  *      drivers granting DMA access to portions of their private data need to
3035  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3036  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3037  *      slave (true) controller
3038  * Context: can sleep
3039  *
3040  * This call is used only by SPI controller drivers, which are the
3041  * only ones directly touching chip registers.  It's how they allocate
3042  * an spi_controller structure, prior to calling spi_register_controller().
3043  *
3044  * This must be called from context that can sleep.
3045  *
3046  * The caller is responsible for assigning the bus number and initializing the
3047  * controller's methods before calling spi_register_controller(); and (after
3048  * errors adding the device) calling spi_controller_put() to prevent a memory
3049  * leak.
3050  *
3051  * Return: the SPI controller structure on success, else NULL.
3052  */
3053 struct spi_controller *__spi_alloc_controller(struct device *dev,
3054                                               unsigned int size, bool slave)
3055 {
3056         struct spi_controller   *ctlr;
3057         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3058
3059         if (!dev)
3060                 return NULL;
3061
3062         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3063         if (!ctlr)
3064                 return NULL;
3065
3066         device_initialize(&ctlr->dev);
3067         INIT_LIST_HEAD(&ctlr->queue);
3068         spin_lock_init(&ctlr->queue_lock);
3069         spin_lock_init(&ctlr->bus_lock_spinlock);
3070         mutex_init(&ctlr->bus_lock_mutex);
3071         mutex_init(&ctlr->io_mutex);
3072         mutex_init(&ctlr->add_lock);
3073         ctlr->bus_num = -1;
3074         ctlr->num_chipselect = 1;
3075         ctlr->slave = slave;
3076         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3077                 ctlr->dev.class = &spi_slave_class;
3078         else
3079                 ctlr->dev.class = &spi_master_class;
3080         ctlr->dev.parent = dev;
3081         pm_suspend_ignore_children(&ctlr->dev, true);
3082         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3083
3084         return ctlr;
3085 }
3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3087
3088 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3089 {
3090         spi_controller_put(*(struct spi_controller **)ctlr);
3091 }
3092
3093 /**
3094  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3095  * @dev: physical device of SPI controller
3096  * @size: how much zeroed driver-private data to allocate
3097  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3098  * Context: can sleep
3099  *
3100  * Allocate an SPI controller and automatically release a reference on it
3101  * when @dev is unbound from its driver.  Drivers are thus relieved from
3102  * having to call spi_controller_put().
3103  *
3104  * The arguments to this function are identical to __spi_alloc_controller().
3105  *
3106  * Return: the SPI controller structure on success, else NULL.
3107  */
3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3109                                                    unsigned int size,
3110                                                    bool slave)
3111 {
3112         struct spi_controller **ptr, *ctlr;
3113
3114         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3115                            GFP_KERNEL);
3116         if (!ptr)
3117                 return NULL;
3118
3119         ctlr = __spi_alloc_controller(dev, size, slave);
3120         if (ctlr) {
3121                 ctlr->devm_allocated = true;
3122                 *ptr = ctlr;
3123                 devres_add(dev, ptr);
3124         } else {
3125                 devres_free(ptr);
3126         }
3127
3128         return ctlr;
3129 }
3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3131
3132 /**
3133  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3134  * @ctlr: The SPI master to grab GPIO descriptors for
3135  */
3136 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3137 {
3138         int nb, i;
3139         struct gpio_desc **cs;
3140         struct device *dev = &ctlr->dev;
3141         unsigned long native_cs_mask = 0;
3142         unsigned int num_cs_gpios = 0;
3143
3144         nb = gpiod_count(dev, "cs");
3145         if (nb < 0) {
3146                 /* No GPIOs at all is fine, else return the error */
3147                 if (nb == -ENOENT)
3148                         return 0;
3149                 return nb;
3150         }
3151
3152         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3153
3154         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3155                           GFP_KERNEL);
3156         if (!cs)
3157                 return -ENOMEM;
3158         ctlr->cs_gpiods = cs;
3159
3160         for (i = 0; i < nb; i++) {
3161                 /*
3162                  * Most chipselects are active low, the inverted
3163                  * semantics are handled by special quirks in gpiolib,
3164                  * so initializing them GPIOD_OUT_LOW here means
3165                  * "unasserted", in most cases this will drive the physical
3166                  * line high.
3167                  */
3168                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3169                                                       GPIOD_OUT_LOW);
3170                 if (IS_ERR(cs[i]))
3171                         return PTR_ERR(cs[i]);
3172
3173                 if (cs[i]) {
3174                         /*
3175                          * If we find a CS GPIO, name it after the device and
3176                          * chip select line.
3177                          */
3178                         char *gpioname;
3179
3180                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3181                                                   dev_name(dev), i);
3182                         if (!gpioname)
3183                                 return -ENOMEM;
3184                         gpiod_set_consumer_name(cs[i], gpioname);
3185                         num_cs_gpios++;
3186                         continue;
3187                 }
3188
3189                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3190                         dev_err(dev, "Invalid native chip select %d\n", i);
3191                         return -EINVAL;
3192                 }
3193                 native_cs_mask |= BIT(i);
3194         }
3195
3196         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3197
3198         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3199             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3200                 dev_err(dev, "No unused native chip select available\n");
3201                 return -EINVAL;
3202         }
3203
3204         return 0;
3205 }
3206
3207 static int spi_controller_check_ops(struct spi_controller *ctlr)
3208 {
3209         /*
3210          * The controller may implement only the high-level SPI-memory like
3211          * operations if it does not support regular SPI transfers, and this is
3212          * valid use case.
3213          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3214          * one of the ->transfer_xxx() method be implemented.
3215          */
3216         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3217                 if (!ctlr->transfer && !ctlr->transfer_one &&
3218                    !ctlr->transfer_one_message) {
3219                         return -EINVAL;
3220                 }
3221         }
3222
3223         return 0;
3224 }
3225
3226 /* Allocate dynamic bus number using Linux idr */
3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3228 {
3229         int id;
3230
3231         mutex_lock(&board_lock);
3232         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3233         mutex_unlock(&board_lock);
3234         if (WARN(id < 0, "couldn't get idr"))
3235                 return id == -ENOSPC ? -EBUSY : id;
3236         ctlr->bus_num = id;
3237         return 0;
3238 }
3239
3240 /**
3241  * spi_register_controller - register SPI master or slave controller
3242  * @ctlr: initialized master, originally from spi_alloc_master() or
3243  *      spi_alloc_slave()
3244  * Context: can sleep
3245  *
3246  * SPI controllers connect to their drivers using some non-SPI bus,
3247  * such as the platform bus.  The final stage of probe() in that code
3248  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3249  *
3250  * SPI controllers use board specific (often SOC specific) bus numbers,
3251  * and board-specific addressing for SPI devices combines those numbers
3252  * with chip select numbers.  Since SPI does not directly support dynamic
3253  * device identification, boards need configuration tables telling which
3254  * chip is at which address.
3255  *
3256  * This must be called from context that can sleep.  It returns zero on
3257  * success, else a negative error code (dropping the controller's refcount).
3258  * After a successful return, the caller is responsible for calling
3259  * spi_unregister_controller().
3260  *
3261  * Return: zero on success, else a negative error code.
3262  */
3263 int spi_register_controller(struct spi_controller *ctlr)
3264 {
3265         struct device           *dev = ctlr->dev.parent;
3266         struct boardinfo        *bi;
3267         int                     first_dynamic;
3268         int                     status;
3269         int                     idx;
3270
3271         if (!dev)
3272                 return -ENODEV;
3273
3274         /*
3275          * Make sure all necessary hooks are implemented before registering
3276          * the SPI controller.
3277          */
3278         status = spi_controller_check_ops(ctlr);
3279         if (status)
3280                 return status;
3281
3282         if (ctlr->bus_num < 0)
3283                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3284         if (ctlr->bus_num >= 0) {
3285                 /* Devices with a fixed bus num must check-in with the num */
3286                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3287                 if (status)
3288                         return status;
3289         }
3290         if (ctlr->bus_num < 0) {
3291                 first_dynamic = of_alias_get_highest_id("spi");
3292                 if (first_dynamic < 0)
3293                         first_dynamic = 0;
3294                 else
3295                         first_dynamic++;
3296
3297                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3298                 if (status)
3299                         return status;
3300         }
3301         ctlr->bus_lock_flag = 0;
3302         init_completion(&ctlr->xfer_completion);
3303         init_completion(&ctlr->cur_msg_completion);
3304         if (!ctlr->max_dma_len)
3305                 ctlr->max_dma_len = INT_MAX;
3306
3307         /*
3308          * Register the device, then userspace will see it.
3309          * Registration fails if the bus ID is in use.
3310          */
3311         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3312
3313         if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3314                 status = spi_get_gpio_descs(ctlr);
3315                 if (status)
3316                         goto free_bus_id;
3317                 /*
3318                  * A controller using GPIO descriptors always
3319                  * supports SPI_CS_HIGH if need be.
3320                  */
3321                 ctlr->mode_bits |= SPI_CS_HIGH;
3322         }
3323
3324         /*
3325          * Even if it's just one always-selected device, there must
3326          * be at least one chipselect.
3327          */
3328         if (!ctlr->num_chipselect) {
3329                 status = -EINVAL;
3330                 goto free_bus_id;
3331         }
3332
3333         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3334         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3335                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3336
3337         status = device_add(&ctlr->dev);
3338         if (status < 0)
3339                 goto free_bus_id;
3340         dev_dbg(dev, "registered %s %s\n",
3341                         spi_controller_is_target(ctlr) ? "target" : "host",
3342                         dev_name(&ctlr->dev));
3343
3344         /*
3345          * If we're using a queued driver, start the queue. Note that we don't
3346          * need the queueing logic if the driver is only supporting high-level
3347          * memory operations.
3348          */
3349         if (ctlr->transfer) {
3350                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3351         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3352                 status = spi_controller_initialize_queue(ctlr);
3353                 if (status) {
3354                         device_del(&ctlr->dev);
3355                         goto free_bus_id;
3356                 }
3357         }
3358         /* Add statistics */
3359         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3360         if (!ctlr->pcpu_statistics) {
3361                 dev_err(dev, "Error allocating per-cpu statistics\n");
3362                 status = -ENOMEM;
3363                 goto destroy_queue;
3364         }
3365
3366         mutex_lock(&board_lock);
3367         list_add_tail(&ctlr->list, &spi_controller_list);
3368         list_for_each_entry(bi, &board_list, list)
3369                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3370         mutex_unlock(&board_lock);
3371
3372         /* Register devices from the device tree and ACPI */
3373         of_register_spi_devices(ctlr);
3374         acpi_register_spi_devices(ctlr);
3375         return status;
3376
3377 destroy_queue:
3378         spi_destroy_queue(ctlr);
3379 free_bus_id:
3380         mutex_lock(&board_lock);
3381         idr_remove(&spi_master_idr, ctlr->bus_num);
3382         mutex_unlock(&board_lock);
3383         return status;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_register_controller);
3386
3387 static void devm_spi_unregister(struct device *dev, void *res)
3388 {
3389         spi_unregister_controller(*(struct spi_controller **)res);
3390 }
3391
3392 /**
3393  * devm_spi_register_controller - register managed SPI master or slave
3394  *      controller
3395  * @dev:    device managing SPI controller
3396  * @ctlr: initialized controller, originally from spi_alloc_master() or
3397  *      spi_alloc_slave()
3398  * Context: can sleep
3399  *
3400  * Register a SPI device as with spi_register_controller() which will
3401  * automatically be unregistered and freed.
3402  *
3403  * Return: zero on success, else a negative error code.
3404  */
3405 int devm_spi_register_controller(struct device *dev,
3406                                  struct spi_controller *ctlr)
3407 {
3408         struct spi_controller **ptr;
3409         int ret;
3410
3411         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3412         if (!ptr)
3413                 return -ENOMEM;
3414
3415         ret = spi_register_controller(ctlr);
3416         if (!ret) {
3417                 *ptr = ctlr;
3418                 devres_add(dev, ptr);
3419         } else {
3420                 devres_free(ptr);
3421         }
3422
3423         return ret;
3424 }
3425 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3426
3427 static int __unregister(struct device *dev, void *null)
3428 {
3429         spi_unregister_device(to_spi_device(dev));
3430         return 0;
3431 }
3432
3433 /**
3434  * spi_unregister_controller - unregister SPI master or slave controller
3435  * @ctlr: the controller being unregistered
3436  * Context: can sleep
3437  *
3438  * This call is used only by SPI controller drivers, which are the
3439  * only ones directly touching chip registers.
3440  *
3441  * This must be called from context that can sleep.
3442  *
3443  * Note that this function also drops a reference to the controller.
3444  */
3445 void spi_unregister_controller(struct spi_controller *ctlr)
3446 {
3447         struct spi_controller *found;
3448         int id = ctlr->bus_num;
3449
3450         /* Prevent addition of new devices, unregister existing ones */
3451         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3452                 mutex_lock(&ctlr->add_lock);
3453
3454         device_for_each_child(&ctlr->dev, NULL, __unregister);
3455
3456         /* First make sure that this controller was ever added */
3457         mutex_lock(&board_lock);
3458         found = idr_find(&spi_master_idr, id);
3459         mutex_unlock(&board_lock);
3460         if (ctlr->queued) {
3461                 if (spi_destroy_queue(ctlr))
3462                         dev_err(&ctlr->dev, "queue remove failed\n");
3463         }
3464         mutex_lock(&board_lock);
3465         list_del(&ctlr->list);
3466         mutex_unlock(&board_lock);
3467
3468         device_del(&ctlr->dev);
3469
3470         /* Free bus id */
3471         mutex_lock(&board_lock);
3472         if (found == ctlr)
3473                 idr_remove(&spi_master_idr, id);
3474         mutex_unlock(&board_lock);
3475
3476         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3477                 mutex_unlock(&ctlr->add_lock);
3478
3479         /*
3480          * Release the last reference on the controller if its driver
3481          * has not yet been converted to devm_spi_alloc_master/slave().
3482          */
3483         if (!ctlr->devm_allocated)
3484                 put_device(&ctlr->dev);
3485 }
3486 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3487
3488 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3489 {
3490         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3491 }
3492
3493 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3494 {
3495         mutex_lock(&ctlr->bus_lock_mutex);
3496         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3497         mutex_unlock(&ctlr->bus_lock_mutex);
3498 }
3499
3500 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3501 {
3502         mutex_lock(&ctlr->bus_lock_mutex);
3503         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3504         mutex_unlock(&ctlr->bus_lock_mutex);
3505 }
3506
3507 int spi_controller_suspend(struct spi_controller *ctlr)
3508 {
3509         int ret = 0;
3510
3511         /* Basically no-ops for non-queued controllers */
3512         if (ctlr->queued) {
3513                 ret = spi_stop_queue(ctlr);
3514                 if (ret)
3515                         dev_err(&ctlr->dev, "queue stop failed\n");
3516         }
3517
3518         __spi_mark_suspended(ctlr);
3519         return ret;
3520 }
3521 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3522
3523 int spi_controller_resume(struct spi_controller *ctlr)
3524 {
3525         int ret = 0;
3526
3527         __spi_mark_resumed(ctlr);
3528
3529         if (ctlr->queued) {
3530                 ret = spi_start_queue(ctlr);
3531                 if (ret)
3532                         dev_err(&ctlr->dev, "queue restart failed\n");
3533         }
3534         return ret;
3535 }
3536 EXPORT_SYMBOL_GPL(spi_controller_resume);
3537
3538 /*-------------------------------------------------------------------------*/
3539
3540 /* Core methods for spi_message alterations */
3541
3542 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3543                                             struct spi_message *msg,
3544                                             void *res)
3545 {
3546         struct spi_replaced_transfers *rxfer = res;
3547         size_t i;
3548
3549         /* Call extra callback if requested */
3550         if (rxfer->release)
3551                 rxfer->release(ctlr, msg, res);
3552
3553         /* Insert replaced transfers back into the message */
3554         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3555
3556         /* Remove the formerly inserted entries */
3557         for (i = 0; i < rxfer->inserted; i++)
3558                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3559 }
3560
3561 /**
3562  * spi_replace_transfers - replace transfers with several transfers
3563  *                         and register change with spi_message.resources
3564  * @msg:           the spi_message we work upon
3565  * @xfer_first:    the first spi_transfer we want to replace
3566  * @remove:        number of transfers to remove
3567  * @insert:        the number of transfers we want to insert instead
3568  * @release:       extra release code necessary in some circumstances
3569  * @extradatasize: extra data to allocate (with alignment guarantees
3570  *                 of struct @spi_transfer)
3571  * @gfp:           gfp flags
3572  *
3573  * Returns: pointer to @spi_replaced_transfers,
3574  *          PTR_ERR(...) in case of errors.
3575  */
3576 static struct spi_replaced_transfers *spi_replace_transfers(
3577         struct spi_message *msg,
3578         struct spi_transfer *xfer_first,
3579         size_t remove,
3580         size_t insert,
3581         spi_replaced_release_t release,
3582         size_t extradatasize,
3583         gfp_t gfp)
3584 {
3585         struct spi_replaced_transfers *rxfer;
3586         struct spi_transfer *xfer;
3587         size_t i;
3588
3589         /* Allocate the structure using spi_res */
3590         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3591                               struct_size(rxfer, inserted_transfers, insert)
3592                               + extradatasize,
3593                               gfp);
3594         if (!rxfer)
3595                 return ERR_PTR(-ENOMEM);
3596
3597         /* The release code to invoke before running the generic release */
3598         rxfer->release = release;
3599
3600         /* Assign extradata */
3601         if (extradatasize)
3602                 rxfer->extradata =
3603                         &rxfer->inserted_transfers[insert];
3604
3605         /* Init the replaced_transfers list */
3606         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3607
3608         /*
3609          * Assign the list_entry after which we should reinsert
3610          * the @replaced_transfers - it may be spi_message.messages!
3611          */
3612         rxfer->replaced_after = xfer_first->transfer_list.prev;
3613
3614         /* Remove the requested number of transfers */
3615         for (i = 0; i < remove; i++) {
3616                 /*
3617                  * If the entry after replaced_after it is msg->transfers
3618                  * then we have been requested to remove more transfers
3619                  * than are in the list.
3620                  */
3621                 if (rxfer->replaced_after->next == &msg->transfers) {
3622                         dev_err(&msg->spi->dev,
3623                                 "requested to remove more spi_transfers than are available\n");
3624                         /* Insert replaced transfers back into the message */
3625                         list_splice(&rxfer->replaced_transfers,
3626                                     rxfer->replaced_after);
3627
3628                         /* Free the spi_replace_transfer structure... */
3629                         spi_res_free(rxfer);
3630
3631                         /* ...and return with an error */
3632                         return ERR_PTR(-EINVAL);
3633                 }
3634
3635                 /*
3636                  * Remove the entry after replaced_after from list of
3637                  * transfers and add it to list of replaced_transfers.
3638                  */
3639                 list_move_tail(rxfer->replaced_after->next,
3640                                &rxfer->replaced_transfers);
3641         }
3642
3643         /*
3644          * Create copy of the given xfer with identical settings
3645          * based on the first transfer to get removed.
3646          */
3647         for (i = 0; i < insert; i++) {
3648                 /* We need to run in reverse order */
3649                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3650
3651                 /* Copy all spi_transfer data */
3652                 memcpy(xfer, xfer_first, sizeof(*xfer));
3653
3654                 /* Add to list */
3655                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3656
3657                 /* Clear cs_change and delay for all but the last */
3658                 if (i) {
3659                         xfer->cs_change = false;
3660                         xfer->delay.value = 0;
3661                 }
3662         }
3663
3664         /* Set up inserted... */
3665         rxfer->inserted = insert;
3666
3667         /* ...and register it with spi_res/spi_message */
3668         spi_res_add(msg, rxfer);
3669
3670         return rxfer;
3671 }
3672
3673 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3674                                         struct spi_message *msg,
3675                                         struct spi_transfer **xferp,
3676                                         size_t maxsize)
3677 {
3678         struct spi_transfer *xfer = *xferp, *xfers;
3679         struct spi_replaced_transfers *srt;
3680         size_t offset;
3681         size_t count, i;
3682
3683         /* Calculate how many we have to replace */
3684         count = DIV_ROUND_UP(xfer->len, maxsize);
3685
3686         /* Create replacement */
3687         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3688         if (IS_ERR(srt))
3689                 return PTR_ERR(srt);
3690         xfers = srt->inserted_transfers;
3691
3692         /*
3693          * Now handle each of those newly inserted spi_transfers.
3694          * Note that the replacements spi_transfers all are preset
3695          * to the same values as *xferp, so tx_buf, rx_buf and len
3696          * are all identical (as well as most others)
3697          * so we just have to fix up len and the pointers.
3698          */
3699
3700         /*
3701          * The first transfer just needs the length modified, so we
3702          * run it outside the loop.
3703          */
3704         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3705
3706         /* All the others need rx_buf/tx_buf also set */
3707         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3708                 /* Update rx_buf, tx_buf and DMA */
3709                 if (xfers[i].rx_buf)
3710                         xfers[i].rx_buf += offset;
3711                 if (xfers[i].tx_buf)
3712                         xfers[i].tx_buf += offset;
3713
3714                 /* Update length */
3715                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3716         }
3717
3718         /*
3719          * We set up xferp to the last entry we have inserted,
3720          * so that we skip those already split transfers.
3721          */
3722         *xferp = &xfers[count - 1];
3723
3724         /* Increment statistics counters */
3725         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3726                                        transfers_split_maxsize);
3727         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3728                                        transfers_split_maxsize);
3729
3730         return 0;
3731 }
3732
3733 /**
3734  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3735  *                               when an individual transfer exceeds a
3736  *                               certain size
3737  * @ctlr:    the @spi_controller for this transfer
3738  * @msg:   the @spi_message to transform
3739  * @maxsize:  the maximum when to apply this
3740  *
3741  * This function allocates resources that are automatically freed during the
3742  * spi message unoptimize phase so this function should only be called from
3743  * optimize_message callbacks.
3744  *
3745  * Return: status of transformation
3746  */
3747 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3748                                 struct spi_message *msg,
3749                                 size_t maxsize)
3750 {
3751         struct spi_transfer *xfer;
3752         int ret;
3753
3754         /*
3755          * Iterate over the transfer_list,
3756          * but note that xfer is advanced to the last transfer inserted
3757          * to avoid checking sizes again unnecessarily (also xfer does
3758          * potentially belong to a different list by the time the
3759          * replacement has happened).
3760          */
3761         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3762                 if (xfer->len > maxsize) {
3763                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3764                                                            maxsize);
3765                         if (ret)
3766                                 return ret;
3767                 }
3768         }
3769
3770         return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3773
3774
3775 /**
3776  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3777  *                                when an individual transfer exceeds a
3778  *                                certain number of SPI words
3779  * @ctlr:     the @spi_controller for this transfer
3780  * @msg:      the @spi_message to transform
3781  * @maxwords: the number of words to limit each transfer to
3782  *
3783  * This function allocates resources that are automatically freed during the
3784  * spi message unoptimize phase so this function should only be called from
3785  * optimize_message callbacks.
3786  *
3787  * Return: status of transformation
3788  */
3789 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3790                                  struct spi_message *msg,
3791                                  size_t maxwords)
3792 {
3793         struct spi_transfer *xfer;
3794
3795         /*
3796          * Iterate over the transfer_list,
3797          * but note that xfer is advanced to the last transfer inserted
3798          * to avoid checking sizes again unnecessarily (also xfer does
3799          * potentially belong to a different list by the time the
3800          * replacement has happened).
3801          */
3802         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3803                 size_t maxsize;
3804                 int ret;
3805
3806                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3807                 if (xfer->len > maxsize) {
3808                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3809                                                            maxsize);
3810                         if (ret)
3811                                 return ret;
3812                 }
3813         }
3814
3815         return 0;
3816 }
3817 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3818
3819 /*-------------------------------------------------------------------------*/
3820
3821 /*
3822  * Core methods for SPI controller protocol drivers. Some of the
3823  * other core methods are currently defined as inline functions.
3824  */
3825
3826 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3827                                         u8 bits_per_word)
3828 {
3829         if (ctlr->bits_per_word_mask) {
3830                 /* Only 32 bits fit in the mask */
3831                 if (bits_per_word > 32)
3832                         return -EINVAL;
3833                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3834                         return -EINVAL;
3835         }
3836
3837         return 0;
3838 }
3839
3840 /**
3841  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3842  * @spi: the device that requires specific CS timing configuration
3843  *
3844  * Return: zero on success, else a negative error code.
3845  */
3846 static int spi_set_cs_timing(struct spi_device *spi)
3847 {
3848         struct device *parent = spi->controller->dev.parent;
3849         int status = 0;
3850
3851         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3852                 if (spi->controller->auto_runtime_pm) {
3853                         status = pm_runtime_get_sync(parent);
3854                         if (status < 0) {
3855                                 pm_runtime_put_noidle(parent);
3856                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3857                                         status);
3858                                 return status;
3859                         }
3860
3861                         status = spi->controller->set_cs_timing(spi);
3862                         pm_runtime_mark_last_busy(parent);
3863                         pm_runtime_put_autosuspend(parent);
3864                 } else {
3865                         status = spi->controller->set_cs_timing(spi);
3866                 }
3867         }
3868         return status;
3869 }
3870
3871 /**
3872  * spi_setup - setup SPI mode and clock rate
3873  * @spi: the device whose settings are being modified
3874  * Context: can sleep, and no requests are queued to the device
3875  *
3876  * SPI protocol drivers may need to update the transfer mode if the
3877  * device doesn't work with its default.  They may likewise need
3878  * to update clock rates or word sizes from initial values.  This function
3879  * changes those settings, and must be called from a context that can sleep.
3880  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3881  * effect the next time the device is selected and data is transferred to
3882  * or from it.  When this function returns, the SPI device is deselected.
3883  *
3884  * Note that this call will fail if the protocol driver specifies an option
3885  * that the underlying controller or its driver does not support.  For
3886  * example, not all hardware supports wire transfers using nine bit words,
3887  * LSB-first wire encoding, or active-high chipselects.
3888  *
3889  * Return: zero on success, else a negative error code.
3890  */
3891 int spi_setup(struct spi_device *spi)
3892 {
3893         unsigned        bad_bits, ugly_bits;
3894         int             status;
3895
3896         /*
3897          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3898          * are set at the same time.
3899          */
3900         if ((hweight_long(spi->mode &
3901                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3902             (hweight_long(spi->mode &
3903                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3904                 dev_err(&spi->dev,
3905                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3906                 return -EINVAL;
3907         }
3908         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3909         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3910                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3911                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3912                 return -EINVAL;
3913         /* Check against conflicting MOSI idle configuration */
3914         if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3915                 dev_err(&spi->dev,
3916                         "setup: MOSI configured to idle low and high at the same time.\n");
3917                 return -EINVAL;
3918         }
3919         /*
3920          * Help drivers fail *cleanly* when they need options
3921          * that aren't supported with their current controller.
3922          * SPI_CS_WORD has a fallback software implementation,
3923          * so it is ignored here.
3924          */
3925         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3926                                  SPI_NO_TX | SPI_NO_RX);
3927         ugly_bits = bad_bits &
3928                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3929                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3930         if (ugly_bits) {
3931                 dev_warn(&spi->dev,
3932                          "setup: ignoring unsupported mode bits %x\n",
3933                          ugly_bits);
3934                 spi->mode &= ~ugly_bits;
3935                 bad_bits &= ~ugly_bits;
3936         }
3937         if (bad_bits) {
3938                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3939                         bad_bits);
3940                 return -EINVAL;
3941         }
3942
3943         if (!spi->bits_per_word) {
3944                 spi->bits_per_word = 8;
3945         } else {
3946                 /*
3947                  * Some controllers may not support the default 8 bits-per-word
3948                  * so only perform the check when this is explicitly provided.
3949                  */
3950                 status = __spi_validate_bits_per_word(spi->controller,
3951                                                       spi->bits_per_word);
3952                 if (status)
3953                         return status;
3954         }
3955
3956         if (spi->controller->max_speed_hz &&
3957             (!spi->max_speed_hz ||
3958              spi->max_speed_hz > spi->controller->max_speed_hz))
3959                 spi->max_speed_hz = spi->controller->max_speed_hz;
3960
3961         mutex_lock(&spi->controller->io_mutex);
3962
3963         if (spi->controller->setup) {
3964                 status = spi->controller->setup(spi);
3965                 if (status) {
3966                         mutex_unlock(&spi->controller->io_mutex);
3967                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3968                                 status);
3969                         return status;
3970                 }
3971         }
3972
3973         status = spi_set_cs_timing(spi);
3974         if (status) {
3975                 mutex_unlock(&spi->controller->io_mutex);
3976                 return status;
3977         }
3978
3979         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3980                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3981                 if (status < 0) {
3982                         mutex_unlock(&spi->controller->io_mutex);
3983                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3984                                 status);
3985                         return status;
3986                 }
3987
3988                 /*
3989                  * We do not want to return positive value from pm_runtime_get,
3990                  * there are many instances of devices calling spi_setup() and
3991                  * checking for a non-zero return value instead of a negative
3992                  * return value.
3993                  */
3994                 status = 0;
3995
3996                 spi_set_cs(spi, false, true);
3997                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3998                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3999         } else {
4000                 spi_set_cs(spi, false, true);
4001         }
4002
4003         mutex_unlock(&spi->controller->io_mutex);
4004
4005         if (spi->rt && !spi->controller->rt) {
4006                 spi->controller->rt = true;
4007                 spi_set_thread_rt(spi->controller);
4008         }
4009
4010         trace_spi_setup(spi, status);
4011
4012         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4013                         spi->mode & SPI_MODE_X_MASK,
4014                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4015                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4016                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4017                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4018                         spi->bits_per_word, spi->max_speed_hz,
4019                         status);
4020
4021         return status;
4022 }
4023 EXPORT_SYMBOL_GPL(spi_setup);
4024
4025 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4026                                        struct spi_device *spi)
4027 {
4028         int delay1, delay2;
4029
4030         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4031         if (delay1 < 0)
4032                 return delay1;
4033
4034         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4035         if (delay2 < 0)
4036                 return delay2;
4037
4038         if (delay1 < delay2)
4039                 memcpy(&xfer->word_delay, &spi->word_delay,
4040                        sizeof(xfer->word_delay));
4041
4042         return 0;
4043 }
4044
4045 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4046 {
4047         struct spi_controller *ctlr = spi->controller;
4048         struct spi_transfer *xfer;
4049         int w_size;
4050
4051         if (list_empty(&message->transfers))
4052                 return -EINVAL;
4053
4054         message->spi = spi;
4055
4056         /*
4057          * Half-duplex links include original MicroWire, and ones with
4058          * only one data pin like SPI_3WIRE (switches direction) or where
4059          * either MOSI or MISO is missing.  They can also be caused by
4060          * software limitations.
4061          */
4062         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4063             (spi->mode & SPI_3WIRE)) {
4064                 unsigned flags = ctlr->flags;
4065
4066                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4067                         if (xfer->rx_buf && xfer->tx_buf)
4068                                 return -EINVAL;
4069                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4070                                 return -EINVAL;
4071                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4072                                 return -EINVAL;
4073                 }
4074         }
4075
4076         /*
4077          * Set transfer bits_per_word and max speed as spi device default if
4078          * it is not set for this transfer.
4079          * Set transfer tx_nbits and rx_nbits as single transfer default
4080          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4081          * Ensure transfer word_delay is at least as long as that required by
4082          * device itself.
4083          */
4084         message->frame_length = 0;
4085         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4086                 xfer->effective_speed_hz = 0;
4087                 message->frame_length += xfer->len;
4088                 if (!xfer->bits_per_word)
4089                         xfer->bits_per_word = spi->bits_per_word;
4090
4091                 if (!xfer->speed_hz)
4092                         xfer->speed_hz = spi->max_speed_hz;
4093
4094                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4095                         xfer->speed_hz = ctlr->max_speed_hz;
4096
4097                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4098                         return -EINVAL;
4099
4100                 /*
4101                  * SPI transfer length should be multiple of SPI word size
4102                  * where SPI word size should be power-of-two multiple.
4103                  */
4104                 if (xfer->bits_per_word <= 8)
4105                         w_size = 1;
4106                 else if (xfer->bits_per_word <= 16)
4107                         w_size = 2;
4108                 else
4109                         w_size = 4;
4110
4111                 /* No partial transfers accepted */
4112                 if (xfer->len % w_size)
4113                         return -EINVAL;
4114
4115                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4116                     xfer->speed_hz < ctlr->min_speed_hz)
4117                         return -EINVAL;
4118
4119                 if (xfer->tx_buf && !xfer->tx_nbits)
4120                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4121                 if (xfer->rx_buf && !xfer->rx_nbits)
4122                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4123                 /*
4124                  * Check transfer tx/rx_nbits:
4125                  * 1. check the value matches one of single, dual and quad
4126                  * 2. check tx/rx_nbits match the mode in spi_device
4127                  */
4128                 if (xfer->tx_buf) {
4129                         if (spi->mode & SPI_NO_TX)
4130                                 return -EINVAL;
4131                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4132                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4133                                 xfer->tx_nbits != SPI_NBITS_QUAD &&
4134                                 xfer->tx_nbits != SPI_NBITS_OCTAL)
4135                                 return -EINVAL;
4136                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4137                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4138                                 return -EINVAL;
4139                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4140                                 !(spi->mode & SPI_TX_QUAD))
4141                                 return -EINVAL;
4142                 }
4143                 /* Check transfer rx_nbits */
4144                 if (xfer->rx_buf) {
4145                         if (spi->mode & SPI_NO_RX)
4146                                 return -EINVAL;
4147                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4148                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4149                                 xfer->rx_nbits != SPI_NBITS_QUAD &&
4150                                 xfer->rx_nbits != SPI_NBITS_OCTAL)
4151                                 return -EINVAL;
4152                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4153                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4154                                 return -EINVAL;
4155                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4156                                 !(spi->mode & SPI_RX_QUAD))
4157                                 return -EINVAL;
4158                 }
4159
4160                 if (_spi_xfer_word_delay_update(xfer, spi))
4161                         return -EINVAL;
4162         }
4163
4164         message->status = -EINPROGRESS;
4165
4166         return 0;
4167 }
4168
4169 /*
4170  * spi_split_transfers - generic handling of transfer splitting
4171  * @msg: the message to split
4172  *
4173  * Under certain conditions, a SPI controller may not support arbitrary
4174  * transfer sizes or other features required by a peripheral. This function
4175  * will split the transfers in the message into smaller transfers that are
4176  * supported by the controller.
4177  *
4178  * Controllers with special requirements not covered here can also split
4179  * transfers in the optimize_message() callback.
4180  *
4181  * Context: can sleep
4182  * Return: zero on success, else a negative error code
4183  */
4184 static int spi_split_transfers(struct spi_message *msg)
4185 {
4186         struct spi_controller *ctlr = msg->spi->controller;
4187         struct spi_transfer *xfer;
4188         int ret;
4189
4190         /*
4191          * If an SPI controller does not support toggling the CS line on each
4192          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4193          * for the CS line, we can emulate the CS-per-word hardware function by
4194          * splitting transfers into one-word transfers and ensuring that
4195          * cs_change is set for each transfer.
4196          */
4197         if ((msg->spi->mode & SPI_CS_WORD) &&
4198             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4199                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4200                 if (ret)
4201                         return ret;
4202
4203                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4204                         /* Don't change cs_change on the last entry in the list */
4205                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4206                                 break;
4207
4208                         xfer->cs_change = 1;
4209                 }
4210         } else {
4211                 ret = spi_split_transfers_maxsize(ctlr, msg,
4212                                                   spi_max_transfer_size(msg->spi));
4213                 if (ret)
4214                         return ret;
4215         }
4216
4217         return 0;
4218 }
4219
4220 /*
4221  * __spi_optimize_message - shared implementation for spi_optimize_message()
4222  *                          and spi_maybe_optimize_message()
4223  * @spi: the device that will be used for the message
4224  * @msg: the message to optimize
4225  *
4226  * Peripheral drivers will call spi_optimize_message() and the spi core will
4227  * call spi_maybe_optimize_message() instead of calling this directly.
4228  *
4229  * It is not valid to call this on a message that has already been optimized.
4230  *
4231  * Return: zero on success, else a negative error code
4232  */
4233 static int __spi_optimize_message(struct spi_device *spi,
4234                                   struct spi_message *msg)
4235 {
4236         struct spi_controller *ctlr = spi->controller;
4237         int ret;
4238
4239         ret = __spi_validate(spi, msg);
4240         if (ret)
4241                 return ret;
4242
4243         ret = spi_split_transfers(msg);
4244         if (ret)
4245                 return ret;
4246
4247         if (ctlr->optimize_message) {
4248                 ret = ctlr->optimize_message(msg);
4249                 if (ret) {
4250                         spi_res_release(ctlr, msg);
4251                         return ret;
4252                 }
4253         }
4254
4255         msg->optimized = true;
4256
4257         return 0;
4258 }
4259
4260 /*
4261  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4262  * @spi: the device that will be used for the message
4263  * @msg: the message to optimize
4264  * Return: zero on success, else a negative error code
4265  */
4266 static int spi_maybe_optimize_message(struct spi_device *spi,
4267                                       struct spi_message *msg)
4268 {
4269         if (spi->controller->defer_optimize_message) {
4270                 msg->spi = spi;
4271                 return 0;
4272         }
4273
4274         if (msg->pre_optimized)
4275                 return 0;
4276
4277         return __spi_optimize_message(spi, msg);
4278 }
4279
4280 /**
4281  * spi_optimize_message - do any one-time validation and setup for a SPI message
4282  * @spi: the device that will be used for the message
4283  * @msg: the message to optimize
4284  *
4285  * Peripheral drivers that reuse the same message repeatedly may call this to
4286  * perform as much message prep as possible once, rather than repeating it each
4287  * time a message transfer is performed to improve throughput and reduce CPU
4288  * usage.
4289  *
4290  * Once a message has been optimized, it cannot be modified with the exception
4291  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4292  * only the data in the memory it points to).
4293  *
4294  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4295  * to avoid leaking resources.
4296  *
4297  * Context: can sleep
4298  * Return: zero on success, else a negative error code
4299  */
4300 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4301 {
4302         int ret;
4303
4304         /*
4305          * Pre-optimization is not supported and optimization is deferred e.g.
4306          * when using spi-mux.
4307          */
4308         if (spi->controller->defer_optimize_message)
4309                 return 0;
4310
4311         ret = __spi_optimize_message(spi, msg);
4312         if (ret)
4313                 return ret;
4314
4315         /*
4316          * This flag indicates that the peripheral driver called spi_optimize_message()
4317          * and therefore we shouldn't unoptimize message automatically when finalizing
4318          * the message but rather wait until spi_unoptimize_message() is called
4319          * by the peripheral driver.
4320          */
4321         msg->pre_optimized = true;
4322
4323         return 0;
4324 }
4325 EXPORT_SYMBOL_GPL(spi_optimize_message);
4326
4327 /**
4328  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4329  * @msg: the message to unoptimize
4330  *
4331  * Calls to this function must be balanced with calls to spi_optimize_message().
4332  *
4333  * Context: can sleep
4334  */
4335 void spi_unoptimize_message(struct spi_message *msg)
4336 {
4337         if (msg->spi->controller->defer_optimize_message)
4338                 return;
4339
4340         __spi_unoptimize_message(msg);
4341         msg->pre_optimized = false;
4342 }
4343 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4344
4345 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4346 {
4347         struct spi_controller *ctlr = spi->controller;
4348         struct spi_transfer *xfer;
4349
4350         /*
4351          * Some controllers do not support doing regular SPI transfers. Return
4352          * ENOTSUPP when this is the case.
4353          */
4354         if (!ctlr->transfer)
4355                 return -ENOTSUPP;
4356
4357         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4358         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4359
4360         trace_spi_message_submit(message);
4361
4362         if (!ctlr->ptp_sts_supported) {
4363                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4364                         xfer->ptp_sts_word_pre = 0;
4365                         ptp_read_system_prets(xfer->ptp_sts);
4366                 }
4367         }
4368
4369         return ctlr->transfer(spi, message);
4370 }
4371
4372 static void devm_spi_unoptimize_message(void *msg)
4373 {
4374         spi_unoptimize_message(msg);
4375 }
4376
4377 /**
4378  * devm_spi_optimize_message - managed version of spi_optimize_message()
4379  * @dev: the device that manages @msg (usually @spi->dev)
4380  * @spi: the device that will be used for the message
4381  * @msg: the message to optimize
4382  * Return: zero on success, else a negative error code
4383  *
4384  * spi_unoptimize_message() will automatically be called when the device is
4385  * removed.
4386  */
4387 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4388                               struct spi_message *msg)
4389 {
4390         int ret;
4391
4392         ret = spi_optimize_message(spi, msg);
4393         if (ret)
4394                 return ret;
4395
4396         return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4397 }
4398 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4399
4400 /**
4401  * spi_async - asynchronous SPI transfer
4402  * @spi: device with which data will be exchanged
4403  * @message: describes the data transfers, including completion callback
4404  * Context: any (IRQs may be blocked, etc)
4405  *
4406  * This call may be used in_irq and other contexts which can't sleep,
4407  * as well as from task contexts which can sleep.
4408  *
4409  * The completion callback is invoked in a context which can't sleep.
4410  * Before that invocation, the value of message->status is undefined.
4411  * When the callback is issued, message->status holds either zero (to
4412  * indicate complete success) or a negative error code.  After that
4413  * callback returns, the driver which issued the transfer request may
4414  * deallocate the associated memory; it's no longer in use by any SPI
4415  * core or controller driver code.
4416  *
4417  * Note that although all messages to a spi_device are handled in
4418  * FIFO order, messages may go to different devices in other orders.
4419  * Some device might be higher priority, or have various "hard" access
4420  * time requirements, for example.
4421  *
4422  * On detection of any fault during the transfer, processing of
4423  * the entire message is aborted, and the device is deselected.
4424  * Until returning from the associated message completion callback,
4425  * no other spi_message queued to that device will be processed.
4426  * (This rule applies equally to all the synchronous transfer calls,
4427  * which are wrappers around this core asynchronous primitive.)
4428  *
4429  * Return: zero on success, else a negative error code.
4430  */
4431 int spi_async(struct spi_device *spi, struct spi_message *message)
4432 {
4433         struct spi_controller *ctlr = spi->controller;
4434         int ret;
4435         unsigned long flags;
4436
4437         ret = spi_maybe_optimize_message(spi, message);
4438         if (ret)
4439                 return ret;
4440
4441         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4442
4443         if (ctlr->bus_lock_flag)
4444                 ret = -EBUSY;
4445         else
4446                 ret = __spi_async(spi, message);
4447
4448         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4449
4450         return ret;
4451 }
4452 EXPORT_SYMBOL_GPL(spi_async);
4453
4454 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4455 {
4456         bool was_busy;
4457         int ret;
4458
4459         mutex_lock(&ctlr->io_mutex);
4460
4461         was_busy = ctlr->busy;
4462
4463         ctlr->cur_msg = msg;
4464         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4465         if (ret)
4466                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4467         ctlr->cur_msg = NULL;
4468         ctlr->fallback = false;
4469
4470         if (!was_busy) {
4471                 kfree(ctlr->dummy_rx);
4472                 ctlr->dummy_rx = NULL;
4473                 kfree(ctlr->dummy_tx);
4474                 ctlr->dummy_tx = NULL;
4475                 if (ctlr->unprepare_transfer_hardware &&
4476                     ctlr->unprepare_transfer_hardware(ctlr))
4477                         dev_err(&ctlr->dev,
4478                                 "failed to unprepare transfer hardware\n");
4479                 spi_idle_runtime_pm(ctlr);
4480         }
4481
4482         mutex_unlock(&ctlr->io_mutex);
4483 }
4484
4485 /*-------------------------------------------------------------------------*/
4486
4487 /*
4488  * Utility methods for SPI protocol drivers, layered on
4489  * top of the core.  Some other utility methods are defined as
4490  * inline functions.
4491  */
4492
4493 static void spi_complete(void *arg)
4494 {
4495         complete(arg);
4496 }
4497
4498 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4499 {
4500         DECLARE_COMPLETION_ONSTACK(done);
4501         unsigned long flags;
4502         int status;
4503         struct spi_controller *ctlr = spi->controller;
4504
4505         if (__spi_check_suspended(ctlr)) {
4506                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4507                 return -ESHUTDOWN;
4508         }
4509
4510         status = spi_maybe_optimize_message(spi, message);
4511         if (status)
4512                 return status;
4513
4514         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4515         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4516
4517         /*
4518          * Checking queue_empty here only guarantees async/sync message
4519          * ordering when coming from the same context. It does not need to
4520          * guard against reentrancy from a different context. The io_mutex
4521          * will catch those cases.
4522          */
4523         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4524                 message->actual_length = 0;
4525                 message->status = -EINPROGRESS;
4526
4527                 trace_spi_message_submit(message);
4528
4529                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4530                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4531
4532                 __spi_transfer_message_noqueue(ctlr, message);
4533
4534                 return message->status;
4535         }
4536
4537         /*
4538          * There are messages in the async queue that could have originated
4539          * from the same context, so we need to preserve ordering.
4540          * Therefor we send the message to the async queue and wait until they
4541          * are completed.
4542          */
4543         message->complete = spi_complete;
4544         message->context = &done;
4545
4546         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4547         status = __spi_async(spi, message);
4548         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4549
4550         if (status == 0) {
4551                 wait_for_completion(&done);
4552                 status = message->status;
4553         }
4554         message->complete = NULL;
4555         message->context = NULL;
4556
4557         return status;
4558 }
4559
4560 /**
4561  * spi_sync - blocking/synchronous SPI data transfers
4562  * @spi: device with which data will be exchanged
4563  * @message: describes the data transfers
4564  * Context: can sleep
4565  *
4566  * This call may only be used from a context that may sleep.  The sleep
4567  * is non-interruptible, and has no timeout.  Low-overhead controller
4568  * drivers may DMA directly into and out of the message buffers.
4569  *
4570  * Note that the SPI device's chip select is active during the message,
4571  * and then is normally disabled between messages.  Drivers for some
4572  * frequently-used devices may want to minimize costs of selecting a chip,
4573  * by leaving it selected in anticipation that the next message will go
4574  * to the same chip.  (That may increase power usage.)
4575  *
4576  * Also, the caller is guaranteeing that the memory associated with the
4577  * message will not be freed before this call returns.
4578  *
4579  * Return: zero on success, else a negative error code.
4580  */
4581 int spi_sync(struct spi_device *spi, struct spi_message *message)
4582 {
4583         int ret;
4584
4585         mutex_lock(&spi->controller->bus_lock_mutex);
4586         ret = __spi_sync(spi, message);
4587         mutex_unlock(&spi->controller->bus_lock_mutex);
4588
4589         return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(spi_sync);
4592
4593 /**
4594  * spi_sync_locked - version of spi_sync with exclusive bus usage
4595  * @spi: device with which data will be exchanged
4596  * @message: describes the data transfers
4597  * Context: can sleep
4598  *
4599  * This call may only be used from a context that may sleep.  The sleep
4600  * is non-interruptible, and has no timeout.  Low-overhead controller
4601  * drivers may DMA directly into and out of the message buffers.
4602  *
4603  * This call should be used by drivers that require exclusive access to the
4604  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4605  * be released by a spi_bus_unlock call when the exclusive access is over.
4606  *
4607  * Return: zero on success, else a negative error code.
4608  */
4609 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4610 {
4611         return __spi_sync(spi, message);
4612 }
4613 EXPORT_SYMBOL_GPL(spi_sync_locked);
4614
4615 /**
4616  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4617  * @ctlr: SPI bus master that should be locked for exclusive bus access
4618  * Context: can sleep
4619  *
4620  * This call may only be used from a context that may sleep.  The sleep
4621  * is non-interruptible, and has no timeout.
4622  *
4623  * This call should be used by drivers that require exclusive access to the
4624  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4625  * exclusive access is over. Data transfer must be done by spi_sync_locked
4626  * and spi_async_locked calls when the SPI bus lock is held.
4627  *
4628  * Return: always zero.
4629  */
4630 int spi_bus_lock(struct spi_controller *ctlr)
4631 {
4632         unsigned long flags;
4633
4634         mutex_lock(&ctlr->bus_lock_mutex);
4635
4636         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4637         ctlr->bus_lock_flag = 1;
4638         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4639
4640         /* Mutex remains locked until spi_bus_unlock() is called */
4641
4642         return 0;
4643 }
4644 EXPORT_SYMBOL_GPL(spi_bus_lock);
4645
4646 /**
4647  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4648  * @ctlr: SPI bus master that was locked for exclusive bus access
4649  * Context: can sleep
4650  *
4651  * This call may only be used from a context that may sleep.  The sleep
4652  * is non-interruptible, and has no timeout.
4653  *
4654  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4655  * call.
4656  *
4657  * Return: always zero.
4658  */
4659 int spi_bus_unlock(struct spi_controller *ctlr)
4660 {
4661         ctlr->bus_lock_flag = 0;
4662
4663         mutex_unlock(&ctlr->bus_lock_mutex);
4664
4665         return 0;
4666 }
4667 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4668
4669 /* Portable code must never pass more than 32 bytes */
4670 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4671
4672 static u8       *buf;
4673
4674 /**
4675  * spi_write_then_read - SPI synchronous write followed by read
4676  * @spi: device with which data will be exchanged
4677  * @txbuf: data to be written (need not be DMA-safe)
4678  * @n_tx: size of txbuf, in bytes
4679  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4680  * @n_rx: size of rxbuf, in bytes
4681  * Context: can sleep
4682  *
4683  * This performs a half duplex MicroWire style transaction with the
4684  * device, sending txbuf and then reading rxbuf.  The return value
4685  * is zero for success, else a negative errno status code.
4686  * This call may only be used from a context that may sleep.
4687  *
4688  * Parameters to this routine are always copied using a small buffer.
4689  * Performance-sensitive or bulk transfer code should instead use
4690  * spi_{async,sync}() calls with DMA-safe buffers.
4691  *
4692  * Return: zero on success, else a negative error code.
4693  */
4694 int spi_write_then_read(struct spi_device *spi,
4695                 const void *txbuf, unsigned n_tx,
4696                 void *rxbuf, unsigned n_rx)
4697 {
4698         static DEFINE_MUTEX(lock);
4699
4700         int                     status;
4701         struct spi_message      message;
4702         struct spi_transfer     x[2];
4703         u8                      *local_buf;
4704
4705         /*
4706          * Use preallocated DMA-safe buffer if we can. We can't avoid
4707          * copying here, (as a pure convenience thing), but we can
4708          * keep heap costs out of the hot path unless someone else is
4709          * using the pre-allocated buffer or the transfer is too large.
4710          */
4711         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4712                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4713                                     GFP_KERNEL | GFP_DMA);
4714                 if (!local_buf)
4715                         return -ENOMEM;
4716         } else {
4717                 local_buf = buf;
4718         }
4719
4720         spi_message_init(&message);
4721         memset(x, 0, sizeof(x));
4722         if (n_tx) {
4723                 x[0].len = n_tx;
4724                 spi_message_add_tail(&x[0], &message);
4725         }
4726         if (n_rx) {
4727                 x[1].len = n_rx;
4728                 spi_message_add_tail(&x[1], &message);
4729         }
4730
4731         memcpy(local_buf, txbuf, n_tx);
4732         x[0].tx_buf = local_buf;
4733         x[1].rx_buf = local_buf + n_tx;
4734
4735         /* Do the I/O */
4736         status = spi_sync(spi, &message);
4737         if (status == 0)
4738                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4739
4740         if (x[0].tx_buf == buf)
4741                 mutex_unlock(&lock);
4742         else
4743                 kfree(local_buf);
4744
4745         return status;
4746 }
4747 EXPORT_SYMBOL_GPL(spi_write_then_read);
4748
4749 /*-------------------------------------------------------------------------*/
4750
4751 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4752 /* Must call put_device() when done with returned spi_device device */
4753 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4754 {
4755         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4756
4757         return dev ? to_spi_device(dev) : NULL;
4758 }
4759
4760 /* The spi controllers are not using spi_bus, so we find it with another way */
4761 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4762 {
4763         struct device *dev;
4764
4765         dev = class_find_device_by_of_node(&spi_master_class, node);
4766         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4767                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4768         if (!dev)
4769                 return NULL;
4770
4771         /* Reference got in class_find_device */
4772         return container_of(dev, struct spi_controller, dev);
4773 }
4774
4775 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4776                          void *arg)
4777 {
4778         struct of_reconfig_data *rd = arg;
4779         struct spi_controller *ctlr;
4780         struct spi_device *spi;
4781
4782         switch (of_reconfig_get_state_change(action, arg)) {
4783         case OF_RECONFIG_CHANGE_ADD:
4784                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4785                 if (ctlr == NULL)
4786                         return NOTIFY_OK;       /* Not for us */
4787
4788                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4789                         put_device(&ctlr->dev);
4790                         return NOTIFY_OK;
4791                 }
4792
4793                 /*
4794                  * Clear the flag before adding the device so that fw_devlink
4795                  * doesn't skip adding consumers to this device.
4796                  */
4797                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4798                 spi = of_register_spi_device(ctlr, rd->dn);
4799                 put_device(&ctlr->dev);
4800
4801                 if (IS_ERR(spi)) {
4802                         pr_err("%s: failed to create for '%pOF'\n",
4803                                         __func__, rd->dn);
4804                         of_node_clear_flag(rd->dn, OF_POPULATED);
4805                         return notifier_from_errno(PTR_ERR(spi));
4806                 }
4807                 break;
4808
4809         case OF_RECONFIG_CHANGE_REMOVE:
4810                 /* Already depopulated? */
4811                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4812                         return NOTIFY_OK;
4813
4814                 /* Find our device by node */
4815                 spi = of_find_spi_device_by_node(rd->dn);
4816                 if (spi == NULL)
4817                         return NOTIFY_OK;       /* No? not meant for us */
4818
4819                 /* Unregister takes one ref away */
4820                 spi_unregister_device(spi);
4821
4822                 /* And put the reference of the find */
4823                 put_device(&spi->dev);
4824                 break;
4825         }
4826
4827         return NOTIFY_OK;
4828 }
4829
4830 static struct notifier_block spi_of_notifier = {
4831         .notifier_call = of_spi_notify,
4832 };
4833 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4834 extern struct notifier_block spi_of_notifier;
4835 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4836
4837 #if IS_ENABLED(CONFIG_ACPI)
4838 static int spi_acpi_controller_match(struct device *dev, const void *data)
4839 {
4840         return ACPI_COMPANION(dev->parent) == data;
4841 }
4842
4843 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4844 {
4845         struct device *dev;
4846
4847         dev = class_find_device(&spi_master_class, NULL, adev,
4848                                 spi_acpi_controller_match);
4849         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4850                 dev = class_find_device(&spi_slave_class, NULL, adev,
4851                                         spi_acpi_controller_match);
4852         if (!dev)
4853                 return NULL;
4854
4855         return container_of(dev, struct spi_controller, dev);
4856 }
4857 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4858
4859 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4860 {
4861         struct device *dev;
4862
4863         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4864         return to_spi_device(dev);
4865 }
4866
4867 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4868                            void *arg)
4869 {
4870         struct acpi_device *adev = arg;
4871         struct spi_controller *ctlr;
4872         struct spi_device *spi;
4873
4874         switch (value) {
4875         case ACPI_RECONFIG_DEVICE_ADD:
4876                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4877                 if (!ctlr)
4878                         break;
4879
4880                 acpi_register_spi_device(ctlr, adev);
4881                 put_device(&ctlr->dev);
4882                 break;
4883         case ACPI_RECONFIG_DEVICE_REMOVE:
4884                 if (!acpi_device_enumerated(adev))
4885                         break;
4886
4887                 spi = acpi_spi_find_device_by_adev(adev);
4888                 if (!spi)
4889                         break;
4890
4891                 spi_unregister_device(spi);
4892                 put_device(&spi->dev);
4893                 break;
4894         }
4895
4896         return NOTIFY_OK;
4897 }
4898
4899 static struct notifier_block spi_acpi_notifier = {
4900         .notifier_call = acpi_spi_notify,
4901 };
4902 #else
4903 extern struct notifier_block spi_acpi_notifier;
4904 #endif
4905
4906 static int __init spi_init(void)
4907 {
4908         int     status;
4909
4910         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4911         if (!buf) {
4912                 status = -ENOMEM;
4913                 goto err0;
4914         }
4915
4916         status = bus_register(&spi_bus_type);
4917         if (status < 0)
4918                 goto err1;
4919
4920         status = class_register(&spi_master_class);
4921         if (status < 0)
4922                 goto err2;
4923
4924         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4925                 status = class_register(&spi_slave_class);
4926                 if (status < 0)
4927                         goto err3;
4928         }
4929
4930         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4931                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4932         if (IS_ENABLED(CONFIG_ACPI))
4933                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4934
4935         return 0;
4936
4937 err3:
4938         class_unregister(&spi_master_class);
4939 err2:
4940         bus_unregister(&spi_bus_type);
4941 err1:
4942         kfree(buf);
4943         buf = NULL;
4944 err0:
4945         return status;
4946 }
4947
4948 /*
4949  * A board_info is normally registered in arch_initcall(),
4950  * but even essential drivers wait till later.
4951  *
4952  * REVISIT only boardinfo really needs static linking. The rest (device and
4953  * driver registration) _could_ be dynamically linked (modular) ... Costs
4954  * include needing to have boardinfo data structures be much more public.
4955  */
4956 postcore_initcall(spi_init);
This page took 0.364516 seconds and 4 git commands to generate.