]> Git Repo - linux.git/blob - mm/mmap.c
Bluetooth: btnxpuart: Enable Power Save feature on startup
[linux.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <[email protected]>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                                       struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397         struct file *file = vma->vm_file;
398         struct address_space *mapping;
399
400         if (file) {
401                 mapping = file->f_mapping;
402                 i_mmap_lock_write(mapping);
403                 __vma_link_file(vma, mapping);
404                 i_mmap_unlock_write(mapping);
405         }
406 }
407
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410         VMA_ITERATOR(vmi, mm, 0);
411
412         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413         if (vma_iter_prealloc(&vmi, vma))
414                 return -ENOMEM;
415
416         vma_start_write(vma);
417         vma_iter_store(&vmi, vma);
418         vma_link_file(vma);
419         mm->map_count++;
420         validate_mm(mm);
421         return 0;
422 }
423
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433                 struct vm_area_struct *vma, struct vm_area_struct *next,
434                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436         memset(vp, 0, sizeof(struct vma_prepare));
437         vp->vma = vma;
438         vp->anon_vma = vma->anon_vma;
439         vp->remove = remove;
440         vp->remove2 = remove2;
441         vp->adj_next = next;
442         if (!vp->anon_vma && next)
443                 vp->anon_vma = next->anon_vma;
444
445         vp->file = vma->vm_file;
446         if (vp->file)
447                 vp->mapping = vma->vm_file->f_mapping;
448
449 }
450
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457                                  struct vm_area_struct *vma)
458 {
459         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461
462
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469         if (vp->file) {
470                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472                 if (vp->adj_next)
473                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474                                       vp->adj_next->vm_end);
475
476                 i_mmap_lock_write(vp->mapping);
477                 if (vp->insert && vp->insert->vm_file) {
478                         /*
479                          * Put into interval tree now, so instantiated pages
480                          * are visible to arm/parisc __flush_dcache_page
481                          * throughout; but we cannot insert into address
482                          * space until vma start or end is updated.
483                          */
484                         __vma_link_file(vp->insert,
485                                         vp->insert->vm_file->f_mapping);
486                 }
487         }
488
489         if (vp->anon_vma) {
490                 anon_vma_lock_write(vp->anon_vma);
491                 anon_vma_interval_tree_pre_update_vma(vp->vma);
492                 if (vp->adj_next)
493                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494         }
495
496         if (vp->file) {
497                 flush_dcache_mmap_lock(vp->mapping);
498                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499                 if (vp->adj_next)
500                         vma_interval_tree_remove(vp->adj_next,
501                                                  &vp->mapping->i_mmap);
502         }
503
504 }
505
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515                                 struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517         if (vp->file) {
518                 if (vp->adj_next)
519                         vma_interval_tree_insert(vp->adj_next,
520                                                  &vp->mapping->i_mmap);
521                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522                 flush_dcache_mmap_unlock(vp->mapping);
523         }
524
525         if (vp->remove && vp->file) {
526                 __remove_shared_vm_struct(vp->remove, vp->mapping);
527                 if (vp->remove2)
528                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
529         } else if (vp->insert) {
530                 /*
531                  * split_vma has split insert from vma, and needs
532                  * us to insert it before dropping the locks
533                  * (it may either follow vma or precede it).
534                  */
535                 vma_iter_store(vmi, vp->insert);
536                 mm->map_count++;
537         }
538
539         if (vp->anon_vma) {
540                 anon_vma_interval_tree_post_update_vma(vp->vma);
541                 if (vp->adj_next)
542                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
543                 anon_vma_unlock_write(vp->anon_vma);
544         }
545
546         if (vp->file) {
547                 i_mmap_unlock_write(vp->mapping);
548                 uprobe_mmap(vp->vma);
549
550                 if (vp->adj_next)
551                         uprobe_mmap(vp->adj_next);
552         }
553
554         if (vp->remove) {
555 again:
556                 vma_mark_detached(vp->remove, true);
557                 if (vp->file) {
558                         uprobe_munmap(vp->remove, vp->remove->vm_start,
559                                       vp->remove->vm_end);
560                         fput(vp->file);
561                 }
562                 if (vp->remove->anon_vma)
563                         anon_vma_merge(vp->vma, vp->remove);
564                 mm->map_count--;
565                 mpol_put(vma_policy(vp->remove));
566                 if (!vp->remove2)
567                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568                 vm_area_free(vp->remove);
569
570                 /*
571                  * In mprotect's case 6 (see comments on vma_merge),
572                  * we are removing both mid and next vmas
573                  */
574                 if (vp->remove2) {
575                         vp->remove = vp->remove2;
576                         vp->remove2 = NULL;
577                         goto again;
578                 }
579         }
580         if (vp->insert && vp->file)
581                 uprobe_mmap(vp->insert);
582         validate_mm(mm);
583 }
584
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594                 struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596         /*
597          * Easily overlooked: when mprotect shifts the boundary, make sure the
598          * expanding vma has anon_vma set if the shrinking vma had, to cover any
599          * anon pages imported.
600          */
601         if (src->anon_vma && !dst->anon_vma) {
602                 int ret;
603
604                 vma_assert_write_locked(dst);
605                 dst->anon_vma = src->anon_vma;
606                 ret = anon_vma_clone(dst, src);
607                 if (ret)
608                         return ret;
609
610                 *dup = dst;
611         }
612
613         return 0;
614 }
615
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634                unsigned long start, unsigned long end, pgoff_t pgoff,
635                struct vm_area_struct *next)
636 {
637         struct vm_area_struct *anon_dup = NULL;
638         bool remove_next = false;
639         struct vma_prepare vp;
640
641         vma_start_write(vma);
642         if (next && (vma != next) && (end == next->vm_end)) {
643                 int ret;
644
645                 remove_next = true;
646                 vma_start_write(next);
647                 ret = dup_anon_vma(vma, next, &anon_dup);
648                 if (ret)
649                         return ret;
650         }
651
652         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653         /* Not merging but overwriting any part of next is not handled. */
654         VM_WARN_ON(next && !vp.remove &&
655                   next != vma && end > next->vm_start);
656         /* Only handles expanding */
657         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659         /* Note: vma iterator must be pointing to 'start' */
660         vma_iter_config(vmi, start, end);
661         if (vma_iter_prealloc(vmi, vma))
662                 goto nomem;
663
664         vma_prepare(&vp);
665         vma_adjust_trans_huge(vma, start, end, 0);
666         vma_set_range(vma, start, end, pgoff);
667         vma_iter_store(vmi, vma);
668
669         vma_complete(&vp, vmi, vma->vm_mm);
670         return 0;
671
672 nomem:
673         if (anon_dup)
674                 unlink_anon_vmas(anon_dup);
675         return -ENOMEM;
676 }
677
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688                unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690         struct vma_prepare vp;
691
692         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694         if (vma->vm_start < start)
695                 vma_iter_config(vmi, vma->vm_start, start);
696         else
697                 vma_iter_config(vmi, end, vma->vm_end);
698
699         if (vma_iter_prealloc(vmi, NULL))
700                 return -ENOMEM;
701
702         vma_start_write(vma);
703
704         init_vma_prep(&vp, vma);
705         vma_prepare(&vp);
706         vma_adjust_trans_huge(vma, start, end, 0);
707
708         vma_iter_clear(vmi);
709         vma_set_range(vma, start, end, pgoff);
710         vma_complete(&vp, vmi, vma->vm_mm);
711         return 0;
712 }
713
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720                 struct file *file, unsigned long vm_flags,
721                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722                 struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724         /*
725          * VM_SOFTDIRTY should not prevent from VMA merging, if we
726          * match the flags but dirty bit -- the caller should mark
727          * merged VMA as dirty. If dirty bit won't be excluded from
728          * comparison, we increase pressure on the memory system forcing
729          * the kernel to generate new VMAs when old one could be
730          * extended instead.
731          */
732         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733                 return false;
734         if (vma->vm_file != file)
735                 return false;
736         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737                 return false;
738         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739                 return false;
740         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741                 return false;
742         return true;
743 }
744
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748         /*
749          * The list_is_singular() test is to avoid merging VMA cloned from
750          * parents. This can improve scalability caused by anon_vma lock.
751          */
752         if ((!anon_vma1 || !anon_vma2) && (!vma ||
753                 list_is_singular(&vma->anon_vma_chain)))
754                 return true;
755         return anon_vma1 == anon_vma2;
756 }
757
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773                 struct anon_vma *anon_vma, struct file *file,
774                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775                 struct anon_vma_name *anon_name)
776 {
777         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779                 if (vma->vm_pgoff == vm_pgoff)
780                         return true;
781         }
782         return false;
783 }
784
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796                 struct anon_vma *anon_vma, struct file *file,
797                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798                 struct anon_vma_name *anon_name)
799 {
800         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802                 pgoff_t vm_pglen;
803                 vm_pglen = vma_pages(vma);
804                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805                         return true;
806         }
807         return false;
808 }
809
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864            struct vm_area_struct *src, unsigned long addr, unsigned long end,
865            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867            struct anon_vma_name *anon_name)
868 {
869         struct mm_struct *mm = src->vm_mm;
870         struct anon_vma *anon_vma = src->anon_vma;
871         struct file *file = src->vm_file;
872         struct vm_area_struct *curr, *next, *res;
873         struct vm_area_struct *vma, *adjust, *remove, *remove2;
874         struct vm_area_struct *anon_dup = NULL;
875         struct vma_prepare vp;
876         pgoff_t vma_pgoff;
877         int err = 0;
878         bool merge_prev = false;
879         bool merge_next = false;
880         bool vma_expanded = false;
881         unsigned long vma_start = addr;
882         unsigned long vma_end = end;
883         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884         long adj_start = 0;
885
886         /*
887          * We later require that vma->vm_flags == vm_flags,
888          * so this tests vma->vm_flags & VM_SPECIAL, too.
889          */
890         if (vm_flags & VM_SPECIAL)
891                 return NULL;
892
893         /* Does the input range span an existing VMA? (cases 5 - 8) */
894         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896         if (!curr ||                    /* cases 1 - 4 */
897             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
898                 next = vma_lookup(mm, end);
899         else
900                 next = NULL;            /* case 5 */
901
902         if (prev) {
903                 vma_start = prev->vm_start;
904                 vma_pgoff = prev->vm_pgoff;
905
906                 /* Can we merge the predecessor? */
907                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
910                         merge_prev = true;
911                         vma_prev(vmi);
912                 }
913         }
914
915         /* Can we merge the successor? */
916         if (next && mpol_equal(policy, vma_policy(next)) &&
917             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918                                  vm_userfaultfd_ctx, anon_name)) {
919                 merge_next = true;
920         }
921
922         /* Verify some invariant that must be enforced by the caller. */
923         VM_WARN_ON(prev && addr <= prev->vm_start);
924         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925         VM_WARN_ON(addr >= end);
926
927         if (!merge_prev && !merge_next)
928                 return NULL; /* Not mergeable. */
929
930         if (merge_prev)
931                 vma_start_write(prev);
932
933         res = vma = prev;
934         remove = remove2 = adjust = NULL;
935
936         /* Can we merge both the predecessor and the successor? */
937         if (merge_prev && merge_next &&
938             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939                 vma_start_write(next);
940                 remove = next;                          /* case 1 */
941                 vma_end = next->vm_end;
942                 err = dup_anon_vma(prev, next, &anon_dup);
943                 if (curr) {                             /* case 6 */
944                         vma_start_write(curr);
945                         remove = curr;
946                         remove2 = next;
947                         /*
948                          * Note that the dup_anon_vma below cannot overwrite err
949                          * since the first caller would do nothing unless next
950                          * has an anon_vma.
951                          */
952                         if (!next->anon_vma)
953                                 err = dup_anon_vma(prev, curr, &anon_dup);
954                 }
955         } else if (merge_prev) {                        /* case 2 */
956                 if (curr) {
957                         vma_start_write(curr);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 /*
960                                  * can_vma_merge_after() assumed we would not be
961                                  * removing prev vma, so it skipped the check
962                                  * for vm_ops->close, but we are removing curr
963                                  */
964                                 if (curr->vm_ops && curr->vm_ops->close)
965                                         err = -EINVAL;
966                                 remove = curr;
967                         } else {                        /* case 5 */
968                                 adjust = curr;
969                                 adj_start = (end - curr->vm_start);
970                         }
971                         if (!err)
972                                 err = dup_anon_vma(prev, curr, &anon_dup);
973                 }
974         } else { /* merge_next */
975                 vma_start_write(next);
976                 res = next;
977                 if (prev && addr < prev->vm_end) {      /* case 4 */
978                         vma_start_write(prev);
979                         vma_end = addr;
980                         adjust = next;
981                         adj_start = -(prev->vm_end - addr);
982                         err = dup_anon_vma(next, prev, &anon_dup);
983                 } else {
984                         /*
985                          * Note that cases 3 and 8 are the ONLY ones where prev
986                          * is permitted to be (but is not necessarily) NULL.
987                          */
988                         vma = next;                     /* case 3 */
989                         vma_start = addr;
990                         vma_end = next->vm_end;
991                         vma_pgoff = next->vm_pgoff - pglen;
992                         if (curr) {                     /* case 8 */
993                                 vma_pgoff = curr->vm_pgoff;
994                                 vma_start_write(curr);
995                                 remove = curr;
996                                 err = dup_anon_vma(next, curr, &anon_dup);
997                         }
998                 }
999         }
1000
1001         /* Error in anon_vma clone. */
1002         if (err)
1003                 goto anon_vma_fail;
1004
1005         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006                 vma_expanded = true;
1007
1008         if (vma_expanded) {
1009                 vma_iter_config(vmi, vma_start, vma_end);
1010         } else {
1011                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1012                                 adjust->vm_end);
1013         }
1014
1015         if (vma_iter_prealloc(vmi, vma))
1016                 goto prealloc_fail;
1017
1018         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020                    vp.anon_vma != adjust->anon_vma);
1021
1022         vma_prepare(&vp);
1023         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026         if (vma_expanded)
1027                 vma_iter_store(vmi, vma);
1028
1029         if (adj_start) {
1030                 adjust->vm_start += adj_start;
1031                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032                 if (adj_start < 0) {
1033                         WARN_ON(vma_expanded);
1034                         vma_iter_store(vmi, next);
1035                 }
1036         }
1037
1038         vma_complete(&vp, vmi, mm);
1039         khugepaged_enter_vma(res, vm_flags);
1040         return res;
1041
1042 prealloc_fail:
1043         if (anon_dup)
1044                 unlink_anon_vmas(anon_dup);
1045
1046 anon_vma_fail:
1047         vma_iter_set(vmi, addr);
1048         vma_iter_load(vmi);
1049         return NULL;
1050 }
1051
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067         return a->vm_end == b->vm_start &&
1068                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069                 a->vm_file == b->vm_file &&
1070                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098         if (anon_vma_compatible(a, b)) {
1099                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102                         return anon_vma;
1103         }
1104         return NULL;
1105 }
1106
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117         struct anon_vma *anon_vma = NULL;
1118         struct vm_area_struct *prev, *next;
1119         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120
1121         /* Try next first. */
1122         next = vma_iter_load(&vmi);
1123         if (next) {
1124                 anon_vma = reusable_anon_vma(next, vma, next);
1125                 if (anon_vma)
1126                         return anon_vma;
1127         }
1128
1129         prev = vma_prev(&vmi);
1130         VM_BUG_ON_VMA(prev != vma, vma);
1131         prev = vma_prev(&vmi);
1132         /* Try prev next. */
1133         if (prev)
1134                 anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136         /*
1137          * We might reach here with anon_vma == NULL if we can't find
1138          * any reusable anon_vma.
1139          * There's no absolute need to look only at touching neighbours:
1140          * we could search further afield for "compatible" anon_vmas.
1141          * But it would probably just be a waste of time searching,
1142          * or lead to too many vmas hanging off the same anon_vma.
1143          * We're trying to allow mprotect remerging later on,
1144          * not trying to minimize memory used for anon_vmas.
1145          */
1146         return anon_vma;
1147 }
1148
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155         hint &= PAGE_MASK;
1156         if (((void *)hint != NULL) &&
1157             (hint < mmap_min_addr))
1158                 return PAGE_ALIGN(mmap_min_addr);
1159         return hint;
1160 }
1161
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163                         unsigned long bytes)
1164 {
1165         unsigned long locked_pages, limit_pages;
1166
1167         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168                 return true;
1169
1170         locked_pages = bytes >> PAGE_SHIFT;
1171         locked_pages += mm->locked_vm;
1172
1173         limit_pages = rlimit(RLIMIT_MEMLOCK);
1174         limit_pages >>= PAGE_SHIFT;
1175
1176         return locked_pages <= limit_pages;
1177 }
1178
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181         if (S_ISREG(inode->i_mode))
1182                 return MAX_LFS_FILESIZE;
1183
1184         if (S_ISBLK(inode->i_mode))
1185                 return MAX_LFS_FILESIZE;
1186
1187         if (S_ISSOCK(inode->i_mode))
1188                 return MAX_LFS_FILESIZE;
1189
1190         /* Special "we do even unsigned file positions" case */
1191         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192                 return 0;
1193
1194         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195         return ULONG_MAX;
1196 }
1197
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199                                 unsigned long pgoff, unsigned long len)
1200 {
1201         u64 maxsize = file_mmap_size_max(file, inode);
1202
1203         if (maxsize && len > maxsize)
1204                 return false;
1205         maxsize -= len;
1206         if (pgoff > maxsize >> PAGE_SHIFT)
1207                 return false;
1208         return true;
1209 }
1210
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215                         unsigned long len, unsigned long prot,
1216                         unsigned long flags, vm_flags_t vm_flags,
1217                         unsigned long pgoff, unsigned long *populate,
1218                         struct list_head *uf)
1219 {
1220         struct mm_struct *mm = current->mm;
1221         int pkey = 0;
1222
1223         *populate = 0;
1224
1225         if (!len)
1226                 return -EINVAL;
1227
1228         /*
1229          * Does the application expect PROT_READ to imply PROT_EXEC?
1230          *
1231          * (the exception is when the underlying filesystem is noexec
1232          *  mounted, in which case we don't add PROT_EXEC.)
1233          */
1234         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235                 if (!(file && path_noexec(&file->f_path)))
1236                         prot |= PROT_EXEC;
1237
1238         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239         if (flags & MAP_FIXED_NOREPLACE)
1240                 flags |= MAP_FIXED;
1241
1242         if (!(flags & MAP_FIXED))
1243                 addr = round_hint_to_min(addr);
1244
1245         /* Careful about overflows.. */
1246         len = PAGE_ALIGN(len);
1247         if (!len)
1248                 return -ENOMEM;
1249
1250         /* offset overflow? */
1251         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252                 return -EOVERFLOW;
1253
1254         /* Too many mappings? */
1255         if (mm->map_count > sysctl_max_map_count)
1256                 return -ENOMEM;
1257
1258         /*
1259          * addr is returned from get_unmapped_area,
1260          * There are two cases:
1261          * 1> MAP_FIXED == false
1262          *      unallocated memory, no need to check sealing.
1263          * 1> MAP_FIXED == true
1264          *      sealing is checked inside mmap_region when
1265          *      do_vmi_munmap is called.
1266          */
1267
1268         if (prot == PROT_EXEC) {
1269                 pkey = execute_only_pkey(mm);
1270                 if (pkey < 0)
1271                         pkey = 0;
1272         }
1273
1274         /* Do simple checking here so the lower-level routines won't have
1275          * to. we assume access permissions have been handled by the open
1276          * of the memory object, so we don't do any here.
1277          */
1278         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1279                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280
1281         /* Obtain the address to map to. we verify (or select) it and ensure
1282          * that it represents a valid section of the address space.
1283          */
1284         addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1285         if (IS_ERR_VALUE(addr))
1286                 return addr;
1287
1288         if (flags & MAP_FIXED_NOREPLACE) {
1289                 if (find_vma_intersection(mm, addr, addr + len))
1290                         return -EEXIST;
1291         }
1292
1293         if (flags & MAP_LOCKED)
1294                 if (!can_do_mlock())
1295                         return -EPERM;
1296
1297         if (!mlock_future_ok(mm, vm_flags, len))
1298                 return -EAGAIN;
1299
1300         if (file) {
1301                 struct inode *inode = file_inode(file);
1302                 unsigned long flags_mask;
1303
1304                 if (!file_mmap_ok(file, inode, pgoff, len))
1305                         return -EOVERFLOW;
1306
1307                 flags_mask = LEGACY_MAP_MASK;
1308                 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1309                         flags_mask |= MAP_SYNC;
1310
1311                 switch (flags & MAP_TYPE) {
1312                 case MAP_SHARED:
1313                         /*
1314                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1315                          * flags. E.g. MAP_SYNC is dangerous to use with
1316                          * MAP_SHARED as you don't know which consistency model
1317                          * you will get. We silently ignore unsupported flags
1318                          * with MAP_SHARED to preserve backward compatibility.
1319                          */
1320                         flags &= LEGACY_MAP_MASK;
1321                         fallthrough;
1322                 case MAP_SHARED_VALIDATE:
1323                         if (flags & ~flags_mask)
1324                                 return -EOPNOTSUPP;
1325                         if (prot & PROT_WRITE) {
1326                                 if (!(file->f_mode & FMODE_WRITE))
1327                                         return -EACCES;
1328                                 if (IS_SWAPFILE(file->f_mapping->host))
1329                                         return -ETXTBSY;
1330                         }
1331
1332                         /*
1333                          * Make sure we don't allow writing to an append-only
1334                          * file..
1335                          */
1336                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337                                 return -EACCES;
1338
1339                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1340                         if (!(file->f_mode & FMODE_WRITE))
1341                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1342                         fallthrough;
1343                 case MAP_PRIVATE:
1344                         if (!(file->f_mode & FMODE_READ))
1345                                 return -EACCES;
1346                         if (path_noexec(&file->f_path)) {
1347                                 if (vm_flags & VM_EXEC)
1348                                         return -EPERM;
1349                                 vm_flags &= ~VM_MAYEXEC;
1350                         }
1351
1352                         if (!file->f_op->mmap)
1353                                 return -ENODEV;
1354                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355                                 return -EINVAL;
1356                         break;
1357
1358                 default:
1359                         return -EINVAL;
1360                 }
1361         } else {
1362                 switch (flags & MAP_TYPE) {
1363                 case MAP_SHARED:
1364                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365                                 return -EINVAL;
1366                         /*
1367                          * Ignore pgoff.
1368                          */
1369                         pgoff = 0;
1370                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1371                         break;
1372                 case MAP_PRIVATE:
1373                         /*
1374                          * Set pgoff according to addr for anon_vma.
1375                          */
1376                         pgoff = addr >> PAGE_SHIFT;
1377                         break;
1378                 default:
1379                         return -EINVAL;
1380                 }
1381         }
1382
1383         /*
1384          * Set 'VM_NORESERVE' if we should not account for the
1385          * memory use of this mapping.
1386          */
1387         if (flags & MAP_NORESERVE) {
1388                 /* We honor MAP_NORESERVE if allowed to overcommit */
1389                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390                         vm_flags |= VM_NORESERVE;
1391
1392                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393                 if (file && is_file_hugepages(file))
1394                         vm_flags |= VM_NORESERVE;
1395         }
1396
1397         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1398         if (!IS_ERR_VALUE(addr) &&
1399             ((vm_flags & VM_LOCKED) ||
1400              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401                 *populate = len;
1402         return addr;
1403 }
1404
1405 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406                               unsigned long prot, unsigned long flags,
1407                               unsigned long fd, unsigned long pgoff)
1408 {
1409         struct file *file = NULL;
1410         unsigned long retval;
1411
1412         if (!(flags & MAP_ANONYMOUS)) {
1413                 audit_mmap_fd(fd, flags);
1414                 file = fget(fd);
1415                 if (!file)
1416                         return -EBADF;
1417                 if (is_file_hugepages(file)) {
1418                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1419                 } else if (unlikely(flags & MAP_HUGETLB)) {
1420                         retval = -EINVAL;
1421                         goto out_fput;
1422                 }
1423         } else if (flags & MAP_HUGETLB) {
1424                 struct hstate *hs;
1425
1426                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427                 if (!hs)
1428                         return -EINVAL;
1429
1430                 len = ALIGN(len, huge_page_size(hs));
1431                 /*
1432                  * VM_NORESERVE is used because the reservations will be
1433                  * taken when vm_ops->mmap() is called
1434                  */
1435                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1436                                 VM_NORESERVE,
1437                                 HUGETLB_ANONHUGE_INODE,
1438                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1439                 if (IS_ERR(file))
1440                         return PTR_ERR(file);
1441         }
1442
1443         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444 out_fput:
1445         if (file)
1446                 fput(file);
1447         return retval;
1448 }
1449
1450 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1451                 unsigned long, prot, unsigned long, flags,
1452                 unsigned long, fd, unsigned long, pgoff)
1453 {
1454         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1455 }
1456
1457 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1458 struct mmap_arg_struct {
1459         unsigned long addr;
1460         unsigned long len;
1461         unsigned long prot;
1462         unsigned long flags;
1463         unsigned long fd;
1464         unsigned long offset;
1465 };
1466
1467 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468 {
1469         struct mmap_arg_struct a;
1470
1471         if (copy_from_user(&a, arg, sizeof(a)))
1472                 return -EFAULT;
1473         if (offset_in_page(a.offset))
1474                 return -EINVAL;
1475
1476         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1477                                a.offset >> PAGE_SHIFT);
1478 }
1479 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480
1481 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1482 {
1483         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1484 }
1485
1486 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1487 {
1488         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1489                 (VM_WRITE | VM_SHARED);
1490 }
1491
1492 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1493 {
1494         /* No managed pages to writeback. */
1495         if (vma->vm_flags & VM_PFNMAP)
1496                 return false;
1497
1498         return vma->vm_file && vma->vm_file->f_mapping &&
1499                 mapping_can_writeback(vma->vm_file->f_mapping);
1500 }
1501
1502 /*
1503  * Does this VMA require the underlying folios to have their dirty state
1504  * tracked?
1505  */
1506 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1507 {
1508         /* Only shared, writable VMAs require dirty tracking. */
1509         if (!vma_is_shared_writable(vma))
1510                 return false;
1511
1512         /* Does the filesystem need to be notified? */
1513         if (vm_ops_needs_writenotify(vma->vm_ops))
1514                 return true;
1515
1516         /*
1517          * Even if the filesystem doesn't indicate a need for writenotify, if it
1518          * can writeback, dirty tracking is still required.
1519          */
1520         return vma_fs_can_writeback(vma);
1521 }
1522
1523 /*
1524  * Some shared mappings will want the pages marked read-only
1525  * to track write events. If so, we'll downgrade vm_page_prot
1526  * to the private version (using protection_map[] without the
1527  * VM_SHARED bit).
1528  */
1529 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1530 {
1531         /* If it was private or non-writable, the write bit is already clear */
1532         if (!vma_is_shared_writable(vma))
1533                 return false;
1534
1535         /* The backer wishes to know when pages are first written to? */
1536         if (vm_ops_needs_writenotify(vma->vm_ops))
1537                 return true;
1538
1539         /* The open routine did something to the protections that pgprot_modify
1540          * won't preserve? */
1541         if (pgprot_val(vm_page_prot) !=
1542             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1543                 return false;
1544
1545         /*
1546          * Do we need to track softdirty? hugetlb does not support softdirty
1547          * tracking yet.
1548          */
1549         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1550                 return true;
1551
1552         /* Do we need write faults for uffd-wp tracking? */
1553         if (userfaultfd_wp(vma))
1554                 return true;
1555
1556         /* Can the mapping track the dirty pages? */
1557         return vma_fs_can_writeback(vma);
1558 }
1559
1560 /*
1561  * We account for memory if it's a private writeable mapping,
1562  * not hugepages and VM_NORESERVE wasn't set.
1563  */
1564 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1565 {
1566         /*
1567          * hugetlb has its own accounting separate from the core VM
1568          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1569          */
1570         if (file && is_file_hugepages(file))
1571                 return false;
1572
1573         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1574 }
1575
1576 /**
1577  * unmapped_area() - Find an area between the low_limit and the high_limit with
1578  * the correct alignment and offset, all from @info. Note: current->mm is used
1579  * for the search.
1580  *
1581  * @info: The unmapped area information including the range [low_limit -
1582  * high_limit), the alignment offset and mask.
1583  *
1584  * Return: A memory address or -ENOMEM.
1585  */
1586 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1587 {
1588         unsigned long length, gap;
1589         unsigned long low_limit, high_limit;
1590         struct vm_area_struct *tmp;
1591         VMA_ITERATOR(vmi, current->mm, 0);
1592
1593         /* Adjust search length to account for worst case alignment overhead */
1594         length = info->length + info->align_mask + info->start_gap;
1595         if (length < info->length)
1596                 return -ENOMEM;
1597
1598         low_limit = info->low_limit;
1599         if (low_limit < mmap_min_addr)
1600                 low_limit = mmap_min_addr;
1601         high_limit = info->high_limit;
1602 retry:
1603         if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1604                 return -ENOMEM;
1605
1606         /*
1607          * Adjust for the gap first so it doesn't interfere with the
1608          * later alignment. The first step is the minimum needed to
1609          * fulill the start gap, the next steps is the minimum to align
1610          * that. It is the minimum needed to fulill both.
1611          */
1612         gap = vma_iter_addr(&vmi) + info->start_gap;
1613         gap += (info->align_offset - gap) & info->align_mask;
1614         tmp = vma_next(&vmi);
1615         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1616                 if (vm_start_gap(tmp) < gap + length - 1) {
1617                         low_limit = tmp->vm_end;
1618                         vma_iter_reset(&vmi);
1619                         goto retry;
1620                 }
1621         } else {
1622                 tmp = vma_prev(&vmi);
1623                 if (tmp && vm_end_gap(tmp) > gap) {
1624                         low_limit = vm_end_gap(tmp);
1625                         vma_iter_reset(&vmi);
1626                         goto retry;
1627                 }
1628         }
1629
1630         return gap;
1631 }
1632
1633 /**
1634  * unmapped_area_topdown() - Find an area between the low_limit and the
1635  * high_limit with the correct alignment and offset at the highest available
1636  * address, all from @info. Note: current->mm is used for the search.
1637  *
1638  * @info: The unmapped area information including the range [low_limit -
1639  * high_limit), the alignment offset and mask.
1640  *
1641  * Return: A memory address or -ENOMEM.
1642  */
1643 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1644 {
1645         unsigned long length, gap, gap_end;
1646         unsigned long low_limit, high_limit;
1647         struct vm_area_struct *tmp;
1648         VMA_ITERATOR(vmi, current->mm, 0);
1649
1650         /* Adjust search length to account for worst case alignment overhead */
1651         length = info->length + info->align_mask + info->start_gap;
1652         if (length < info->length)
1653                 return -ENOMEM;
1654
1655         low_limit = info->low_limit;
1656         if (low_limit < mmap_min_addr)
1657                 low_limit = mmap_min_addr;
1658         high_limit = info->high_limit;
1659 retry:
1660         if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1661                 return -ENOMEM;
1662
1663         gap = vma_iter_end(&vmi) - info->length;
1664         gap -= (gap - info->align_offset) & info->align_mask;
1665         gap_end = vma_iter_end(&vmi);
1666         tmp = vma_next(&vmi);
1667         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1668                 if (vm_start_gap(tmp) < gap_end) {
1669                         high_limit = vm_start_gap(tmp);
1670                         vma_iter_reset(&vmi);
1671                         goto retry;
1672                 }
1673         } else {
1674                 tmp = vma_prev(&vmi);
1675                 if (tmp && vm_end_gap(tmp) > gap) {
1676                         high_limit = tmp->vm_start;
1677                         vma_iter_reset(&vmi);
1678                         goto retry;
1679                 }
1680         }
1681
1682         return gap;
1683 }
1684
1685 /*
1686  * Search for an unmapped address range.
1687  *
1688  * We are looking for a range that:
1689  * - does not intersect with any VMA;
1690  * - is contained within the [low_limit, high_limit) interval;
1691  * - is at least the desired size.
1692  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1693  */
1694 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1695 {
1696         unsigned long addr;
1697
1698         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1699                 addr = unmapped_area_topdown(info);
1700         else
1701                 addr = unmapped_area(info);
1702
1703         trace_vm_unmapped_area(addr, info);
1704         return addr;
1705 }
1706
1707 /* Get an address range which is currently unmapped.
1708  * For shmat() with addr=0.
1709  *
1710  * Ugly calling convention alert:
1711  * Return value with the low bits set means error value,
1712  * ie
1713  *      if (ret & ~PAGE_MASK)
1714  *              error = ret;
1715  *
1716  * This function "knows" that -ENOMEM has the bits set.
1717  */
1718 unsigned long
1719 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1720                           unsigned long len, unsigned long pgoff,
1721                           unsigned long flags)
1722 {
1723         struct mm_struct *mm = current->mm;
1724         struct vm_area_struct *vma, *prev;
1725         struct vm_unmapped_area_info info = {};
1726         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727
1728         if (len > mmap_end - mmap_min_addr)
1729                 return -ENOMEM;
1730
1731         if (flags & MAP_FIXED)
1732                 return addr;
1733
1734         if (addr) {
1735                 addr = PAGE_ALIGN(addr);
1736                 vma = find_vma_prev(mm, addr, &prev);
1737                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1738                     (!vma || addr + len <= vm_start_gap(vma)) &&
1739                     (!prev || addr >= vm_end_gap(prev)))
1740                         return addr;
1741         }
1742
1743         info.length = len;
1744         info.low_limit = mm->mmap_base;
1745         info.high_limit = mmap_end;
1746         return vm_unmapped_area(&info);
1747 }
1748
1749 #ifndef HAVE_ARCH_UNMAPPED_AREA
1750 unsigned long
1751 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1752                        unsigned long len, unsigned long pgoff,
1753                        unsigned long flags)
1754 {
1755         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1756 }
1757 #endif
1758
1759 /*
1760  * This mmap-allocator allocates new areas top-down from below the
1761  * stack's low limit (the base):
1762  */
1763 unsigned long
1764 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1765                                   unsigned long len, unsigned long pgoff,
1766                                   unsigned long flags)
1767 {
1768         struct vm_area_struct *vma, *prev;
1769         struct mm_struct *mm = current->mm;
1770         struct vm_unmapped_area_info info = {};
1771         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1772
1773         /* requested length too big for entire address space */
1774         if (len > mmap_end - mmap_min_addr)
1775                 return -ENOMEM;
1776
1777         if (flags & MAP_FIXED)
1778                 return addr;
1779
1780         /* requesting a specific address */
1781         if (addr) {
1782                 addr = PAGE_ALIGN(addr);
1783                 vma = find_vma_prev(mm, addr, &prev);
1784                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1785                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1786                                 (!prev || addr >= vm_end_gap(prev)))
1787                         return addr;
1788         }
1789
1790         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1791         info.length = len;
1792         info.low_limit = PAGE_SIZE;
1793         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1794         addr = vm_unmapped_area(&info);
1795
1796         /*
1797          * A failed mmap() very likely causes application failure,
1798          * so fall back to the bottom-up function here. This scenario
1799          * can happen with large stack limits and large mmap()
1800          * allocations.
1801          */
1802         if (offset_in_page(addr)) {
1803                 VM_BUG_ON(addr != -ENOMEM);
1804                 info.flags = 0;
1805                 info.low_limit = TASK_UNMAPPED_BASE;
1806                 info.high_limit = mmap_end;
1807                 addr = vm_unmapped_area(&info);
1808         }
1809
1810         return addr;
1811 }
1812
1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1814 unsigned long
1815 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1816                                unsigned long len, unsigned long pgoff,
1817                                unsigned long flags)
1818 {
1819         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1820 }
1821 #endif
1822
1823 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1824 unsigned long
1825 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1826                                unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1827 {
1828         return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1829 }
1830
1831 unsigned long
1832 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1833                                        unsigned long len, unsigned long pgoff,
1834                                        unsigned long flags, vm_flags_t vm_flags)
1835 {
1836         return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1837 }
1838 #endif
1839
1840 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1841                                            unsigned long addr, unsigned long len,
1842                                            unsigned long pgoff, unsigned long flags,
1843                                            vm_flags_t vm_flags)
1844 {
1845         if (test_bit(MMF_TOPDOWN, &mm->flags))
1846                 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1847                                                               flags, vm_flags);
1848         return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1849 }
1850
1851 unsigned long
1852 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1853                 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1854 {
1855         unsigned long (*get_area)(struct file *, unsigned long,
1856                                   unsigned long, unsigned long, unsigned long)
1857                                   = NULL;
1858
1859         unsigned long error = arch_mmap_check(addr, len, flags);
1860         if (error)
1861                 return error;
1862
1863         /* Careful about overflows.. */
1864         if (len > TASK_SIZE)
1865                 return -ENOMEM;
1866
1867         if (file) {
1868                 if (file->f_op->get_unmapped_area)
1869                         get_area = file->f_op->get_unmapped_area;
1870         } else if (flags & MAP_SHARED) {
1871                 /*
1872                  * mmap_region() will call shmem_zero_setup() to create a file,
1873                  * so use shmem's get_unmapped_area in case it can be huge.
1874                  */
1875                 get_area = shmem_get_unmapped_area;
1876         }
1877
1878         /* Always treat pgoff as zero for anonymous memory. */
1879         if (!file)
1880                 pgoff = 0;
1881
1882         if (get_area) {
1883                 addr = get_area(file, addr, len, pgoff, flags);
1884         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1885                 /* Ensures that larger anonymous mappings are THP aligned. */
1886                 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1887                                                      pgoff, flags, vm_flags);
1888         } else {
1889                 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1890                                                     pgoff, flags, vm_flags);
1891         }
1892         if (IS_ERR_VALUE(addr))
1893                 return addr;
1894
1895         if (addr > TASK_SIZE - len)
1896                 return -ENOMEM;
1897         if (offset_in_page(addr))
1898                 return -EINVAL;
1899
1900         error = security_mmap_addr(addr);
1901         return error ? error : addr;
1902 }
1903
1904 unsigned long
1905 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1906                      unsigned long addr, unsigned long len,
1907                      unsigned long pgoff, unsigned long flags)
1908 {
1909         if (test_bit(MMF_TOPDOWN, &mm->flags))
1910                 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1911         return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1912 }
1913 EXPORT_SYMBOL(mm_get_unmapped_area);
1914
1915 /**
1916  * find_vma_intersection() - Look up the first VMA which intersects the interval
1917  * @mm: The process address space.
1918  * @start_addr: The inclusive start user address.
1919  * @end_addr: The exclusive end user address.
1920  *
1921  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1922  * start_addr < end_addr.
1923  */
1924 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1925                                              unsigned long start_addr,
1926                                              unsigned long end_addr)
1927 {
1928         unsigned long index = start_addr;
1929
1930         mmap_assert_locked(mm);
1931         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1932 }
1933 EXPORT_SYMBOL(find_vma_intersection);
1934
1935 /**
1936  * find_vma() - Find the VMA for a given address, or the next VMA.
1937  * @mm: The mm_struct to check
1938  * @addr: The address
1939  *
1940  * Returns: The VMA associated with addr, or the next VMA.
1941  * May return %NULL in the case of no VMA at addr or above.
1942  */
1943 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1944 {
1945         unsigned long index = addr;
1946
1947         mmap_assert_locked(mm);
1948         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1949 }
1950 EXPORT_SYMBOL(find_vma);
1951
1952 /**
1953  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1954  * set %pprev to the previous VMA, if any.
1955  * @mm: The mm_struct to check
1956  * @addr: The address
1957  * @pprev: The pointer to set to the previous VMA
1958  *
1959  * Note that RCU lock is missing here since the external mmap_lock() is used
1960  * instead.
1961  *
1962  * Returns: The VMA associated with @addr, or the next vma.
1963  * May return %NULL in the case of no vma at addr or above.
1964  */
1965 struct vm_area_struct *
1966 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1967                         struct vm_area_struct **pprev)
1968 {
1969         struct vm_area_struct *vma;
1970         VMA_ITERATOR(vmi, mm, addr);
1971
1972         vma = vma_iter_load(&vmi);
1973         *pprev = vma_prev(&vmi);
1974         if (!vma)
1975                 vma = vma_next(&vmi);
1976         return vma;
1977 }
1978
1979 /*
1980  * Verify that the stack growth is acceptable and
1981  * update accounting. This is shared with both the
1982  * grow-up and grow-down cases.
1983  */
1984 static int acct_stack_growth(struct vm_area_struct *vma,
1985                              unsigned long size, unsigned long grow)
1986 {
1987         struct mm_struct *mm = vma->vm_mm;
1988         unsigned long new_start;
1989
1990         /* address space limit tests */
1991         if (!may_expand_vm(mm, vma->vm_flags, grow))
1992                 return -ENOMEM;
1993
1994         /* Stack limit test */
1995         if (size > rlimit(RLIMIT_STACK))
1996                 return -ENOMEM;
1997
1998         /* mlock limit tests */
1999         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2000                 return -ENOMEM;
2001
2002         /* Check to ensure the stack will not grow into a hugetlb-only region */
2003         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2004                         vma->vm_end - size;
2005         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2006                 return -EFAULT;
2007
2008         /*
2009          * Overcommit..  This must be the final test, as it will
2010          * update security statistics.
2011          */
2012         if (security_vm_enough_memory_mm(mm, grow))
2013                 return -ENOMEM;
2014
2015         return 0;
2016 }
2017
2018 #if defined(CONFIG_STACK_GROWSUP)
2019 /*
2020  * PA-RISC uses this for its stack.
2021  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2022  */
2023 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2024 {
2025         struct mm_struct *mm = vma->vm_mm;
2026         struct vm_area_struct *next;
2027         unsigned long gap_addr;
2028         int error = 0;
2029         VMA_ITERATOR(vmi, mm, vma->vm_start);
2030
2031         if (!(vma->vm_flags & VM_GROWSUP))
2032                 return -EFAULT;
2033
2034         /* Guard against exceeding limits of the address space. */
2035         address &= PAGE_MASK;
2036         if (address >= (TASK_SIZE & PAGE_MASK))
2037                 return -ENOMEM;
2038         address += PAGE_SIZE;
2039
2040         /* Enforce stack_guard_gap */
2041         gap_addr = address + stack_guard_gap;
2042
2043         /* Guard against overflow */
2044         if (gap_addr < address || gap_addr > TASK_SIZE)
2045                 gap_addr = TASK_SIZE;
2046
2047         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2048         if (next && vma_is_accessible(next)) {
2049                 if (!(next->vm_flags & VM_GROWSUP))
2050                         return -ENOMEM;
2051                 /* Check that both stack segments have the same anon_vma? */
2052         }
2053
2054         if (next)
2055                 vma_iter_prev_range_limit(&vmi, address);
2056
2057         vma_iter_config(&vmi, vma->vm_start, address);
2058         if (vma_iter_prealloc(&vmi, vma))
2059                 return -ENOMEM;
2060
2061         /* We must make sure the anon_vma is allocated. */
2062         if (unlikely(anon_vma_prepare(vma))) {
2063                 vma_iter_free(&vmi);
2064                 return -ENOMEM;
2065         }
2066
2067         /* Lock the VMA before expanding to prevent concurrent page faults */
2068         vma_start_write(vma);
2069         /*
2070          * vma->vm_start/vm_end cannot change under us because the caller
2071          * is required to hold the mmap_lock in read mode.  We need the
2072          * anon_vma lock to serialize against concurrent expand_stacks.
2073          */
2074         anon_vma_lock_write(vma->anon_vma);
2075
2076         /* Somebody else might have raced and expanded it already */
2077         if (address > vma->vm_end) {
2078                 unsigned long size, grow;
2079
2080                 size = address - vma->vm_start;
2081                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2082
2083                 error = -ENOMEM;
2084                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2085                         error = acct_stack_growth(vma, size, grow);
2086                         if (!error) {
2087                                 /*
2088                                  * We only hold a shared mmap_lock lock here, so
2089                                  * we need to protect against concurrent vma
2090                                  * expansions.  anon_vma_lock_write() doesn't
2091                                  * help here, as we don't guarantee that all
2092                                  * growable vmas in a mm share the same root
2093                                  * anon vma.  So, we reuse mm->page_table_lock
2094                                  * to guard against concurrent vma expansions.
2095                                  */
2096                                 spin_lock(&mm->page_table_lock);
2097                                 if (vma->vm_flags & VM_LOCKED)
2098                                         mm->locked_vm += grow;
2099                                 vm_stat_account(mm, vma->vm_flags, grow);
2100                                 anon_vma_interval_tree_pre_update_vma(vma);
2101                                 vma->vm_end = address;
2102                                 /* Overwrite old entry in mtree. */
2103                                 vma_iter_store(&vmi, vma);
2104                                 anon_vma_interval_tree_post_update_vma(vma);
2105                                 spin_unlock(&mm->page_table_lock);
2106
2107                                 perf_event_mmap(vma);
2108                         }
2109                 }
2110         }
2111         anon_vma_unlock_write(vma->anon_vma);
2112         vma_iter_free(&vmi);
2113         validate_mm(mm);
2114         return error;
2115 }
2116 #endif /* CONFIG_STACK_GROWSUP */
2117
2118 /*
2119  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2120  * mmap_lock held for writing.
2121  */
2122 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2123 {
2124         struct mm_struct *mm = vma->vm_mm;
2125         struct vm_area_struct *prev;
2126         int error = 0;
2127         VMA_ITERATOR(vmi, mm, vma->vm_start);
2128
2129         if (!(vma->vm_flags & VM_GROWSDOWN))
2130                 return -EFAULT;
2131
2132         address &= PAGE_MASK;
2133         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2134                 return -EPERM;
2135
2136         /* Enforce stack_guard_gap */
2137         prev = vma_prev(&vmi);
2138         /* Check that both stack segments have the same anon_vma? */
2139         if (prev) {
2140                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2141                     vma_is_accessible(prev) &&
2142                     (address - prev->vm_end < stack_guard_gap))
2143                         return -ENOMEM;
2144         }
2145
2146         if (prev)
2147                 vma_iter_next_range_limit(&vmi, vma->vm_start);
2148
2149         vma_iter_config(&vmi, address, vma->vm_end);
2150         if (vma_iter_prealloc(&vmi, vma))
2151                 return -ENOMEM;
2152
2153         /* We must make sure the anon_vma is allocated. */
2154         if (unlikely(anon_vma_prepare(vma))) {
2155                 vma_iter_free(&vmi);
2156                 return -ENOMEM;
2157         }
2158
2159         /* Lock the VMA before expanding to prevent concurrent page faults */
2160         vma_start_write(vma);
2161         /*
2162          * vma->vm_start/vm_end cannot change under us because the caller
2163          * is required to hold the mmap_lock in read mode.  We need the
2164          * anon_vma lock to serialize against concurrent expand_stacks.
2165          */
2166         anon_vma_lock_write(vma->anon_vma);
2167
2168         /* Somebody else might have raced and expanded it already */
2169         if (address < vma->vm_start) {
2170                 unsigned long size, grow;
2171
2172                 size = vma->vm_end - address;
2173                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2174
2175                 error = -ENOMEM;
2176                 if (grow <= vma->vm_pgoff) {
2177                         error = acct_stack_growth(vma, size, grow);
2178                         if (!error) {
2179                                 /*
2180                                  * We only hold a shared mmap_lock lock here, so
2181                                  * we need to protect against concurrent vma
2182                                  * expansions.  anon_vma_lock_write() doesn't
2183                                  * help here, as we don't guarantee that all
2184                                  * growable vmas in a mm share the same root
2185                                  * anon vma.  So, we reuse mm->page_table_lock
2186                                  * to guard against concurrent vma expansions.
2187                                  */
2188                                 spin_lock(&mm->page_table_lock);
2189                                 if (vma->vm_flags & VM_LOCKED)
2190                                         mm->locked_vm += grow;
2191                                 vm_stat_account(mm, vma->vm_flags, grow);
2192                                 anon_vma_interval_tree_pre_update_vma(vma);
2193                                 vma->vm_start = address;
2194                                 vma->vm_pgoff -= grow;
2195                                 /* Overwrite old entry in mtree. */
2196                                 vma_iter_store(&vmi, vma);
2197                                 anon_vma_interval_tree_post_update_vma(vma);
2198                                 spin_unlock(&mm->page_table_lock);
2199
2200                                 perf_event_mmap(vma);
2201                         }
2202                 }
2203         }
2204         anon_vma_unlock_write(vma->anon_vma);
2205         vma_iter_free(&vmi);
2206         validate_mm(mm);
2207         return error;
2208 }
2209
2210 /* enforced gap between the expanding stack and other mappings. */
2211 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2212
2213 static int __init cmdline_parse_stack_guard_gap(char *p)
2214 {
2215         unsigned long val;
2216         char *endptr;
2217
2218         val = simple_strtoul(p, &endptr, 10);
2219         if (!*endptr)
2220                 stack_guard_gap = val << PAGE_SHIFT;
2221
2222         return 1;
2223 }
2224 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2225
2226 #ifdef CONFIG_STACK_GROWSUP
2227 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2228 {
2229         return expand_upwards(vma, address);
2230 }
2231
2232 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2233 {
2234         struct vm_area_struct *vma, *prev;
2235
2236         addr &= PAGE_MASK;
2237         vma = find_vma_prev(mm, addr, &prev);
2238         if (vma && (vma->vm_start <= addr))
2239                 return vma;
2240         if (!prev)
2241                 return NULL;
2242         if (expand_stack_locked(prev, addr))
2243                 return NULL;
2244         if (prev->vm_flags & VM_LOCKED)
2245                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2246         return prev;
2247 }
2248 #else
2249 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2250 {
2251         return expand_downwards(vma, address);
2252 }
2253
2254 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2255 {
2256         struct vm_area_struct *vma;
2257         unsigned long start;
2258
2259         addr &= PAGE_MASK;
2260         vma = find_vma(mm, addr);
2261         if (!vma)
2262                 return NULL;
2263         if (vma->vm_start <= addr)
2264                 return vma;
2265         start = vma->vm_start;
2266         if (expand_stack_locked(vma, addr))
2267                 return NULL;
2268         if (vma->vm_flags & VM_LOCKED)
2269                 populate_vma_page_range(vma, addr, start, NULL);
2270         return vma;
2271 }
2272 #endif
2273
2274 #if defined(CONFIG_STACK_GROWSUP)
2275
2276 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2277 #define vma_expand_down(vma, addr) (-EFAULT)
2278
2279 #else
2280
2281 #define vma_expand_up(vma,addr) (-EFAULT)
2282 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2283
2284 #endif
2285
2286 /*
2287  * expand_stack(): legacy interface for page faulting. Don't use unless
2288  * you have to.
2289  *
2290  * This is called with the mm locked for reading, drops the lock, takes
2291  * the lock for writing, tries to look up a vma again, expands it if
2292  * necessary, and downgrades the lock to reading again.
2293  *
2294  * If no vma is found or it can't be expanded, it returns NULL and has
2295  * dropped the lock.
2296  */
2297 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2298 {
2299         struct vm_area_struct *vma, *prev;
2300
2301         mmap_read_unlock(mm);
2302         if (mmap_write_lock_killable(mm))
2303                 return NULL;
2304
2305         vma = find_vma_prev(mm, addr, &prev);
2306         if (vma && vma->vm_start <= addr)
2307                 goto success;
2308
2309         if (prev && !vma_expand_up(prev, addr)) {
2310                 vma = prev;
2311                 goto success;
2312         }
2313
2314         if (vma && !vma_expand_down(vma, addr))
2315                 goto success;
2316
2317         mmap_write_unlock(mm);
2318         return NULL;
2319
2320 success:
2321         mmap_write_downgrade(mm);
2322         return vma;
2323 }
2324
2325 /*
2326  * Ok - we have the memory areas we should free on a maple tree so release them,
2327  * and do the vma updates.
2328  *
2329  * Called with the mm semaphore held.
2330  */
2331 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2332 {
2333         unsigned long nr_accounted = 0;
2334         struct vm_area_struct *vma;
2335
2336         /* Update high watermark before we lower total_vm */
2337         update_hiwater_vm(mm);
2338         mas_for_each(mas, vma, ULONG_MAX) {
2339                 long nrpages = vma_pages(vma);
2340
2341                 if (vma->vm_flags & VM_ACCOUNT)
2342                         nr_accounted += nrpages;
2343                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2344                 remove_vma(vma, false);
2345         }
2346         vm_unacct_memory(nr_accounted);
2347 }
2348
2349 /*
2350  * Get rid of page table information in the indicated region.
2351  *
2352  * Called with the mm semaphore held.
2353  */
2354 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2355                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2356                 struct vm_area_struct *next, unsigned long start,
2357                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2358 {
2359         struct mmu_gather tlb;
2360         unsigned long mt_start = mas->index;
2361
2362         lru_add_drain();
2363         tlb_gather_mmu(&tlb, mm);
2364         update_hiwater_rss(mm);
2365         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2366         mas_set(mas, mt_start);
2367         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2368                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2369                                  mm_wr_locked);
2370         tlb_finish_mmu(&tlb);
2371 }
2372
2373 /*
2374  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2375  * has already been checked or doesn't make sense to fail.
2376  * VMA Iterator will point to the end VMA.
2377  */
2378 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2379                        unsigned long addr, int new_below)
2380 {
2381         struct vma_prepare vp;
2382         struct vm_area_struct *new;
2383         int err;
2384
2385         WARN_ON(vma->vm_start >= addr);
2386         WARN_ON(vma->vm_end <= addr);
2387
2388         if (vma->vm_ops && vma->vm_ops->may_split) {
2389                 err = vma->vm_ops->may_split(vma, addr);
2390                 if (err)
2391                         return err;
2392         }
2393
2394         new = vm_area_dup(vma);
2395         if (!new)
2396                 return -ENOMEM;
2397
2398         if (new_below) {
2399                 new->vm_end = addr;
2400         } else {
2401                 new->vm_start = addr;
2402                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2403         }
2404
2405         err = -ENOMEM;
2406         vma_iter_config(vmi, new->vm_start, new->vm_end);
2407         if (vma_iter_prealloc(vmi, new))
2408                 goto out_free_vma;
2409
2410         err = vma_dup_policy(vma, new);
2411         if (err)
2412                 goto out_free_vmi;
2413
2414         err = anon_vma_clone(new, vma);
2415         if (err)
2416                 goto out_free_mpol;
2417
2418         if (new->vm_file)
2419                 get_file(new->vm_file);
2420
2421         if (new->vm_ops && new->vm_ops->open)
2422                 new->vm_ops->open(new);
2423
2424         vma_start_write(vma);
2425         vma_start_write(new);
2426
2427         init_vma_prep(&vp, vma);
2428         vp.insert = new;
2429         vma_prepare(&vp);
2430         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2431
2432         if (new_below) {
2433                 vma->vm_start = addr;
2434                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2435         } else {
2436                 vma->vm_end = addr;
2437         }
2438
2439         /* vma_complete stores the new vma */
2440         vma_complete(&vp, vmi, vma->vm_mm);
2441
2442         /* Success. */
2443         if (new_below)
2444                 vma_next(vmi);
2445         return 0;
2446
2447 out_free_mpol:
2448         mpol_put(vma_policy(new));
2449 out_free_vmi:
2450         vma_iter_free(vmi);
2451 out_free_vma:
2452         vm_area_free(new);
2453         return err;
2454 }
2455
2456 /*
2457  * Split a vma into two pieces at address 'addr', a new vma is allocated
2458  * either for the first part or the tail.
2459  */
2460 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2461                      unsigned long addr, int new_below)
2462 {
2463         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2464                 return -ENOMEM;
2465
2466         return __split_vma(vmi, vma, addr, new_below);
2467 }
2468
2469 /*
2470  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2471  * context and anonymous VMA name within the range [start, end).
2472  *
2473  * As a result, we might be able to merge the newly modified VMA range with an
2474  * adjacent VMA with identical properties.
2475  *
2476  * If no merge is possible and the range does not span the entirety of the VMA,
2477  * we then need to split the VMA to accommodate the change.
2478  *
2479  * The function returns either the merged VMA, the original VMA if a split was
2480  * required instead, or an error if the split failed.
2481  */
2482 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2483                                   struct vm_area_struct *prev,
2484                                   struct vm_area_struct *vma,
2485                                   unsigned long start, unsigned long end,
2486                                   unsigned long vm_flags,
2487                                   struct mempolicy *policy,
2488                                   struct vm_userfaultfd_ctx uffd_ctx,
2489                                   struct anon_vma_name *anon_name)
2490 {
2491         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2492         struct vm_area_struct *merged;
2493
2494         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2495                            pgoff, policy, uffd_ctx, anon_name);
2496         if (merged)
2497                 return merged;
2498
2499         if (vma->vm_start < start) {
2500                 int err = split_vma(vmi, vma, start, 1);
2501
2502                 if (err)
2503                         return ERR_PTR(err);
2504         }
2505
2506         if (vma->vm_end > end) {
2507                 int err = split_vma(vmi, vma, end, 0);
2508
2509                 if (err)
2510                         return ERR_PTR(err);
2511         }
2512
2513         return vma;
2514 }
2515
2516 /*
2517  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2518  * must ensure that [start, end) does not overlap any existing VMA.
2519  */
2520 static struct vm_area_struct
2521 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2522                    struct vm_area_struct *vma, unsigned long start,
2523                    unsigned long end, pgoff_t pgoff)
2524 {
2525         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2526                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2527 }
2528
2529 /*
2530  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2531  * VMA with identical properties.
2532  */
2533 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2534                                         struct vm_area_struct *vma,
2535                                         unsigned long delta)
2536 {
2537         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2538
2539         /* vma is specified as prev, so case 1 or 2 will apply. */
2540         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2541                          vma->vm_flags, pgoff, vma_policy(vma),
2542                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2543 }
2544
2545 /*
2546  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2547  * @vmi: The vma iterator
2548  * @vma: The starting vm_area_struct
2549  * @mm: The mm_struct
2550  * @start: The aligned start address to munmap.
2551  * @end: The aligned end address to munmap.
2552  * @uf: The userfaultfd list_head
2553  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2554  * success.
2555  *
2556  * Return: 0 on success and drops the lock if so directed, error and leaves the
2557  * lock held otherwise.
2558  */
2559 static int
2560 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2561                     struct mm_struct *mm, unsigned long start,
2562                     unsigned long end, struct list_head *uf, bool unlock)
2563 {
2564         struct vm_area_struct *prev, *next = NULL;
2565         struct maple_tree mt_detach;
2566         int count = 0;
2567         int error = -ENOMEM;
2568         unsigned long locked_vm = 0;
2569         MA_STATE(mas_detach, &mt_detach, 0, 0);
2570         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2571         mt_on_stack(mt_detach);
2572
2573         /*
2574          * If we need to split any vma, do it now to save pain later.
2575          *
2576          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2577          * unmapped vm_area_struct will remain in use: so lower split_vma
2578          * places tmp vma above, and higher split_vma places tmp vma below.
2579          */
2580
2581         /* Does it split the first one? */
2582         if (start > vma->vm_start) {
2583
2584                 /*
2585                  * Make sure that map_count on return from munmap() will
2586                  * not exceed its limit; but let map_count go just above
2587                  * its limit temporarily, to help free resources as expected.
2588                  */
2589                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2590                         goto map_count_exceeded;
2591
2592                 error = __split_vma(vmi, vma, start, 1);
2593                 if (error)
2594                         goto start_split_failed;
2595         }
2596
2597         /*
2598          * Detach a range of VMAs from the mm. Using next as a temp variable as
2599          * it is always overwritten.
2600          */
2601         next = vma;
2602         do {
2603                 /* Does it split the end? */
2604                 if (next->vm_end > end) {
2605                         error = __split_vma(vmi, next, end, 0);
2606                         if (error)
2607                                 goto end_split_failed;
2608                 }
2609                 vma_start_write(next);
2610                 mas_set(&mas_detach, count);
2611                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2612                 if (error)
2613                         goto munmap_gather_failed;
2614                 vma_mark_detached(next, true);
2615                 if (next->vm_flags & VM_LOCKED)
2616                         locked_vm += vma_pages(next);
2617
2618                 count++;
2619                 if (unlikely(uf)) {
2620                         /*
2621                          * If userfaultfd_unmap_prep returns an error the vmas
2622                          * will remain split, but userland will get a
2623                          * highly unexpected error anyway. This is no
2624                          * different than the case where the first of the two
2625                          * __split_vma fails, but we don't undo the first
2626                          * split, despite we could. This is unlikely enough
2627                          * failure that it's not worth optimizing it for.
2628                          */
2629                         error = userfaultfd_unmap_prep(next, start, end, uf);
2630
2631                         if (error)
2632                                 goto userfaultfd_error;
2633                 }
2634 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2635                 BUG_ON(next->vm_start < start);
2636                 BUG_ON(next->vm_start > end);
2637 #endif
2638         } for_each_vma_range(*vmi, next, end);
2639
2640 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2641         /* Make sure no VMAs are about to be lost. */
2642         {
2643                 MA_STATE(test, &mt_detach, 0, 0);
2644                 struct vm_area_struct *vma_mas, *vma_test;
2645                 int test_count = 0;
2646
2647                 vma_iter_set(vmi, start);
2648                 rcu_read_lock();
2649                 vma_test = mas_find(&test, count - 1);
2650                 for_each_vma_range(*vmi, vma_mas, end) {
2651                         BUG_ON(vma_mas != vma_test);
2652                         test_count++;
2653                         vma_test = mas_next(&test, count - 1);
2654                 }
2655                 rcu_read_unlock();
2656                 BUG_ON(count != test_count);
2657         }
2658 #endif
2659
2660         while (vma_iter_addr(vmi) > start)
2661                 vma_iter_prev_range(vmi);
2662
2663         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2664         if (error)
2665                 goto clear_tree_failed;
2666
2667         /* Point of no return */
2668         mm->locked_vm -= locked_vm;
2669         mm->map_count -= count;
2670         if (unlock)
2671                 mmap_write_downgrade(mm);
2672
2673         prev = vma_iter_prev_range(vmi);
2674         next = vma_next(vmi);
2675         if (next)
2676                 vma_iter_prev_range(vmi);
2677
2678         /*
2679          * We can free page tables without write-locking mmap_lock because VMAs
2680          * were isolated before we downgraded mmap_lock.
2681          */
2682         mas_set(&mas_detach, 1);
2683         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2684                      !unlock);
2685         /* Statistics and freeing VMAs */
2686         mas_set(&mas_detach, 0);
2687         remove_mt(mm, &mas_detach);
2688         validate_mm(mm);
2689         if (unlock)
2690                 mmap_read_unlock(mm);
2691
2692         __mt_destroy(&mt_detach);
2693         return 0;
2694
2695 clear_tree_failed:
2696 userfaultfd_error:
2697 munmap_gather_failed:
2698 end_split_failed:
2699         mas_set(&mas_detach, 0);
2700         mas_for_each(&mas_detach, next, end)
2701                 vma_mark_detached(next, false);
2702
2703         __mt_destroy(&mt_detach);
2704 start_split_failed:
2705 map_count_exceeded:
2706         validate_mm(mm);
2707         return error;
2708 }
2709
2710 /*
2711  * do_vmi_munmap() - munmap a given range.
2712  * @vmi: The vma iterator
2713  * @mm: The mm_struct
2714  * @start: The start address to munmap
2715  * @len: The length of the range to munmap
2716  * @uf: The userfaultfd list_head
2717  * @unlock: set to true if the user wants to drop the mmap_lock on success
2718  *
2719  * This function takes a @mas that is either pointing to the previous VMA or set
2720  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2721  * aligned and any arch_unmap work will be preformed.
2722  *
2723  * Return: 0 on success and drops the lock if so directed, error and leaves the
2724  * lock held otherwise.
2725  */
2726 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2727                   unsigned long start, size_t len, struct list_head *uf,
2728                   bool unlock)
2729 {
2730         unsigned long end;
2731         struct vm_area_struct *vma;
2732
2733         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2734                 return -EINVAL;
2735
2736         end = start + PAGE_ALIGN(len);
2737         if (end == start)
2738                 return -EINVAL;
2739
2740         /*
2741          * Check if memory is sealed before arch_unmap.
2742          * Prevent unmapping a sealed VMA.
2743          * can_modify_mm assumes we have acquired the lock on MM.
2744          */
2745         if (unlikely(!can_modify_mm(mm, start, end)))
2746                 return -EPERM;
2747
2748          /* arch_unmap() might do unmaps itself.  */
2749         arch_unmap(mm, start, end);
2750
2751         /* Find the first overlapping VMA */
2752         vma = vma_find(vmi, end);
2753         if (!vma) {
2754                 if (unlock)
2755                         mmap_write_unlock(mm);
2756                 return 0;
2757         }
2758
2759         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2760 }
2761
2762 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2763  * @mm: The mm_struct
2764  * @start: The start address to munmap
2765  * @len: The length to be munmapped.
2766  * @uf: The userfaultfd list_head
2767  *
2768  * Return: 0 on success, error otherwise.
2769  */
2770 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2771               struct list_head *uf)
2772 {
2773         VMA_ITERATOR(vmi, mm, start);
2774
2775         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2776 }
2777
2778 unsigned long mmap_region(struct file *file, unsigned long addr,
2779                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2780                 struct list_head *uf)
2781 {
2782         struct mm_struct *mm = current->mm;
2783         struct vm_area_struct *vma = NULL;
2784         struct vm_area_struct *next, *prev, *merge;
2785         pgoff_t pglen = len >> PAGE_SHIFT;
2786         unsigned long charged = 0;
2787         unsigned long end = addr + len;
2788         unsigned long merge_start = addr, merge_end = end;
2789         bool writable_file_mapping = false;
2790         pgoff_t vm_pgoff;
2791         int error;
2792         VMA_ITERATOR(vmi, mm, addr);
2793
2794         /* Check against address space limit. */
2795         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2796                 unsigned long nr_pages;
2797
2798                 /*
2799                  * MAP_FIXED may remove pages of mappings that intersects with
2800                  * requested mapping. Account for the pages it would unmap.
2801                  */
2802                 nr_pages = count_vma_pages_range(mm, addr, end);
2803
2804                 if (!may_expand_vm(mm, vm_flags,
2805                                         (len >> PAGE_SHIFT) - nr_pages))
2806                         return -ENOMEM;
2807         }
2808
2809         /* Unmap any existing mapping in the area */
2810         error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2811         if (error == -EPERM)
2812                 return error;
2813         else if (error)
2814                 return -ENOMEM;
2815
2816         /*
2817          * Private writable mapping: check memory availability
2818          */
2819         if (accountable_mapping(file, vm_flags)) {
2820                 charged = len >> PAGE_SHIFT;
2821                 if (security_vm_enough_memory_mm(mm, charged))
2822                         return -ENOMEM;
2823                 vm_flags |= VM_ACCOUNT;
2824         }
2825
2826         next = vma_next(&vmi);
2827         prev = vma_prev(&vmi);
2828         if (vm_flags & VM_SPECIAL) {
2829                 if (prev)
2830                         vma_iter_next_range(&vmi);
2831                 goto cannot_expand;
2832         }
2833
2834         /* Attempt to expand an old mapping */
2835         /* Check next */
2836         if (next && next->vm_start == end && !vma_policy(next) &&
2837             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2838                                  NULL_VM_UFFD_CTX, NULL)) {
2839                 merge_end = next->vm_end;
2840                 vma = next;
2841                 vm_pgoff = next->vm_pgoff - pglen;
2842         }
2843
2844         /* Check prev */
2845         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2846             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2847                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2848                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2849                                        NULL_VM_UFFD_CTX, NULL))) {
2850                 merge_start = prev->vm_start;
2851                 vma = prev;
2852                 vm_pgoff = prev->vm_pgoff;
2853         } else if (prev) {
2854                 vma_iter_next_range(&vmi);
2855         }
2856
2857         /* Actually expand, if possible */
2858         if (vma &&
2859             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2860                 khugepaged_enter_vma(vma, vm_flags);
2861                 goto expanded;
2862         }
2863
2864         if (vma == prev)
2865                 vma_iter_set(&vmi, addr);
2866 cannot_expand:
2867
2868         /*
2869          * Determine the object being mapped and call the appropriate
2870          * specific mapper. the address has already been validated, but
2871          * not unmapped, but the maps are removed from the list.
2872          */
2873         vma = vm_area_alloc(mm);
2874         if (!vma) {
2875                 error = -ENOMEM;
2876                 goto unacct_error;
2877         }
2878
2879         vma_iter_config(&vmi, addr, end);
2880         vma_set_range(vma, addr, end, pgoff);
2881         vm_flags_init(vma, vm_flags);
2882         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2883
2884         if (file) {
2885                 vma->vm_file = get_file(file);
2886                 error = call_mmap(file, vma);
2887                 if (error)
2888                         goto unmap_and_free_vma;
2889
2890                 if (vma_is_shared_maywrite(vma)) {
2891                         error = mapping_map_writable(file->f_mapping);
2892                         if (error)
2893                                 goto close_and_free_vma;
2894
2895                         writable_file_mapping = true;
2896                 }
2897
2898                 /*
2899                  * Expansion is handled above, merging is handled below.
2900                  * Drivers should not alter the address of the VMA.
2901                  */
2902                 error = -EINVAL;
2903                 if (WARN_ON((addr != vma->vm_start)))
2904                         goto close_and_free_vma;
2905
2906                 vma_iter_config(&vmi, addr, end);
2907                 /*
2908                  * If vm_flags changed after call_mmap(), we should try merge
2909                  * vma again as we may succeed this time.
2910                  */
2911                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2912                         merge = vma_merge_new_vma(&vmi, prev, vma,
2913                                                   vma->vm_start, vma->vm_end,
2914                                                   vma->vm_pgoff);
2915                         if (merge) {
2916                                 /*
2917                                  * ->mmap() can change vma->vm_file and fput
2918                                  * the original file. So fput the vma->vm_file
2919                                  * here or we would add an extra fput for file
2920                                  * and cause general protection fault
2921                                  * ultimately.
2922                                  */
2923                                 fput(vma->vm_file);
2924                                 vm_area_free(vma);
2925                                 vma = merge;
2926                                 /* Update vm_flags to pick up the change. */
2927                                 vm_flags = vma->vm_flags;
2928                                 goto unmap_writable;
2929                         }
2930                 }
2931
2932                 vm_flags = vma->vm_flags;
2933         } else if (vm_flags & VM_SHARED) {
2934                 error = shmem_zero_setup(vma);
2935                 if (error)
2936                         goto free_vma;
2937         } else {
2938                 vma_set_anonymous(vma);
2939         }
2940
2941         if (map_deny_write_exec(vma, vma->vm_flags)) {
2942                 error = -EACCES;
2943                 goto close_and_free_vma;
2944         }
2945
2946         /* Allow architectures to sanity-check the vm_flags */
2947         error = -EINVAL;
2948         if (!arch_validate_flags(vma->vm_flags))
2949                 goto close_and_free_vma;
2950
2951         error = -ENOMEM;
2952         if (vma_iter_prealloc(&vmi, vma))
2953                 goto close_and_free_vma;
2954
2955         /* Lock the VMA since it is modified after insertion into VMA tree */
2956         vma_start_write(vma);
2957         vma_iter_store(&vmi, vma);
2958         mm->map_count++;
2959         vma_link_file(vma);
2960
2961         /*
2962          * vma_merge() calls khugepaged_enter_vma() either, the below
2963          * call covers the non-merge case.
2964          */
2965         khugepaged_enter_vma(vma, vma->vm_flags);
2966
2967         /* Once vma denies write, undo our temporary denial count */
2968 unmap_writable:
2969         if (writable_file_mapping)
2970                 mapping_unmap_writable(file->f_mapping);
2971         file = vma->vm_file;
2972         ksm_add_vma(vma);
2973 expanded:
2974         perf_event_mmap(vma);
2975
2976         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2977         if (vm_flags & VM_LOCKED) {
2978                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2979                                         is_vm_hugetlb_page(vma) ||
2980                                         vma == get_gate_vma(current->mm))
2981                         vm_flags_clear(vma, VM_LOCKED_MASK);
2982                 else
2983                         mm->locked_vm += (len >> PAGE_SHIFT);
2984         }
2985
2986         if (file)
2987                 uprobe_mmap(vma);
2988
2989         /*
2990          * New (or expanded) vma always get soft dirty status.
2991          * Otherwise user-space soft-dirty page tracker won't
2992          * be able to distinguish situation when vma area unmapped,
2993          * then new mapped in-place (which must be aimed as
2994          * a completely new data area).
2995          */
2996         vm_flags_set(vma, VM_SOFTDIRTY);
2997
2998         vma_set_page_prot(vma);
2999
3000         validate_mm(mm);
3001         return addr;
3002
3003 close_and_free_vma:
3004         if (file && vma->vm_ops && vma->vm_ops->close)
3005                 vma->vm_ops->close(vma);
3006
3007         if (file || vma->vm_file) {
3008 unmap_and_free_vma:
3009                 fput(vma->vm_file);
3010                 vma->vm_file = NULL;
3011
3012                 vma_iter_set(&vmi, vma->vm_end);
3013                 /* Undo any partial mapping done by a device driver. */
3014                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3015                              vma->vm_end, vma->vm_end, true);
3016         }
3017         if (writable_file_mapping)
3018                 mapping_unmap_writable(file->f_mapping);
3019 free_vma:
3020         vm_area_free(vma);
3021 unacct_error:
3022         if (charged)
3023                 vm_unacct_memory(charged);
3024         validate_mm(mm);
3025         return error;
3026 }
3027
3028 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3029 {
3030         int ret;
3031         struct mm_struct *mm = current->mm;
3032         LIST_HEAD(uf);
3033         VMA_ITERATOR(vmi, mm, start);
3034
3035         if (mmap_write_lock_killable(mm))
3036                 return -EINTR;
3037
3038         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3039         if (ret || !unlock)
3040                 mmap_write_unlock(mm);
3041
3042         userfaultfd_unmap_complete(mm, &uf);
3043         return ret;
3044 }
3045
3046 int vm_munmap(unsigned long start, size_t len)
3047 {
3048         return __vm_munmap(start, len, false);
3049 }
3050 EXPORT_SYMBOL(vm_munmap);
3051
3052 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3053 {
3054         addr = untagged_addr(addr);
3055         return __vm_munmap(addr, len, true);
3056 }
3057
3058
3059 /*
3060  * Emulation of deprecated remap_file_pages() syscall.
3061  */
3062 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3063                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3064 {
3065
3066         struct mm_struct *mm = current->mm;
3067         struct vm_area_struct *vma;
3068         unsigned long populate = 0;
3069         unsigned long ret = -EINVAL;
3070         struct file *file;
3071
3072         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3073                      current->comm, current->pid);
3074
3075         if (prot)
3076                 return ret;
3077         start = start & PAGE_MASK;
3078         size = size & PAGE_MASK;
3079
3080         if (start + size <= start)
3081                 return ret;
3082
3083         /* Does pgoff wrap? */
3084         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3085                 return ret;
3086
3087         if (mmap_write_lock_killable(mm))
3088                 return -EINTR;
3089
3090         vma = vma_lookup(mm, start);
3091
3092         if (!vma || !(vma->vm_flags & VM_SHARED))
3093                 goto out;
3094
3095         if (start + size > vma->vm_end) {
3096                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3097                 struct vm_area_struct *next, *prev = vma;
3098
3099                 for_each_vma_range(vmi, next, start + size) {
3100                         /* hole between vmas ? */
3101                         if (next->vm_start != prev->vm_end)
3102                                 goto out;
3103
3104                         if (next->vm_file != vma->vm_file)
3105                                 goto out;
3106
3107                         if (next->vm_flags != vma->vm_flags)
3108                                 goto out;
3109
3110                         if (start + size <= next->vm_end)
3111                                 break;
3112
3113                         prev = next;
3114                 }
3115
3116                 if (!next)
3117                         goto out;
3118         }
3119
3120         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3121         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3122         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3123
3124         flags &= MAP_NONBLOCK;
3125         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3126         if (vma->vm_flags & VM_LOCKED)
3127                 flags |= MAP_LOCKED;
3128
3129         file = get_file(vma->vm_file);
3130         ret = do_mmap(vma->vm_file, start, size,
3131                         prot, flags, 0, pgoff, &populate, NULL);
3132         fput(file);
3133 out:
3134         mmap_write_unlock(mm);
3135         if (populate)
3136                 mm_populate(ret, populate);
3137         if (!IS_ERR_VALUE(ret))
3138                 ret = 0;
3139         return ret;
3140 }
3141
3142 /*
3143  * do_vma_munmap() - Unmap a full or partial vma.
3144  * @vmi: The vma iterator pointing at the vma
3145  * @vma: The first vma to be munmapped
3146  * @start: the start of the address to unmap
3147  * @end: The end of the address to unmap
3148  * @uf: The userfaultfd list_head
3149  * @unlock: Drop the lock on success
3150  *
3151  * unmaps a VMA mapping when the vma iterator is already in position.
3152  * Does not handle alignment.
3153  *
3154  * Return: 0 on success drops the lock of so directed, error on failure and will
3155  * still hold the lock.
3156  */
3157 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3158                 unsigned long start, unsigned long end, struct list_head *uf,
3159                 bool unlock)
3160 {
3161         struct mm_struct *mm = vma->vm_mm;
3162
3163         /*
3164          * Check if memory is sealed before arch_unmap.
3165          * Prevent unmapping a sealed VMA.
3166          * can_modify_mm assumes we have acquired the lock on MM.
3167          */
3168         if (unlikely(!can_modify_mm(mm, start, end)))
3169                 return -EPERM;
3170
3171         arch_unmap(mm, start, end);
3172         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3173 }
3174
3175 /*
3176  * do_brk_flags() - Increase the brk vma if the flags match.
3177  * @vmi: The vma iterator
3178  * @addr: The start address
3179  * @len: The length of the increase
3180  * @vma: The vma,
3181  * @flags: The VMA Flags
3182  *
3183  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3184  * do not match then create a new anonymous VMA.  Eventually we may be able to
3185  * do some brk-specific accounting here.
3186  */
3187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3188                 unsigned long addr, unsigned long len, unsigned long flags)
3189 {
3190         struct mm_struct *mm = current->mm;
3191         struct vma_prepare vp;
3192
3193         /*
3194          * Check against address space limits by the changed size
3195          * Note: This happens *after* clearing old mappings in some code paths.
3196          */
3197         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3198         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3199                 return -ENOMEM;
3200
3201         if (mm->map_count > sysctl_max_map_count)
3202                 return -ENOMEM;
3203
3204         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3205                 return -ENOMEM;
3206
3207         /*
3208          * Expand the existing vma if possible; Note that singular lists do not
3209          * occur after forking, so the expand will only happen on new VMAs.
3210          */
3211         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3212             can_vma_merge_after(vma, flags, NULL, NULL,
3213                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3214                 vma_iter_config(vmi, vma->vm_start, addr + len);
3215                 if (vma_iter_prealloc(vmi, vma))
3216                         goto unacct_fail;
3217
3218                 vma_start_write(vma);
3219
3220                 init_vma_prep(&vp, vma);
3221                 vma_prepare(&vp);
3222                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3223                 vma->vm_end = addr + len;
3224                 vm_flags_set(vma, VM_SOFTDIRTY);
3225                 vma_iter_store(vmi, vma);
3226
3227                 vma_complete(&vp, vmi, mm);
3228                 khugepaged_enter_vma(vma, flags);
3229                 goto out;
3230         }
3231
3232         if (vma)
3233                 vma_iter_next_range(vmi);
3234         /* create a vma struct for an anonymous mapping */
3235         vma = vm_area_alloc(mm);
3236         if (!vma)
3237                 goto unacct_fail;
3238
3239         vma_set_anonymous(vma);
3240         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3241         vm_flags_init(vma, flags);
3242         vma->vm_page_prot = vm_get_page_prot(flags);
3243         vma_start_write(vma);
3244         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3245                 goto mas_store_fail;
3246
3247         mm->map_count++;
3248         validate_mm(mm);
3249         ksm_add_vma(vma);
3250 out:
3251         perf_event_mmap(vma);
3252         mm->total_vm += len >> PAGE_SHIFT;
3253         mm->data_vm += len >> PAGE_SHIFT;
3254         if (flags & VM_LOCKED)
3255                 mm->locked_vm += (len >> PAGE_SHIFT);
3256         vm_flags_set(vma, VM_SOFTDIRTY);
3257         return 0;
3258
3259 mas_store_fail:
3260         vm_area_free(vma);
3261 unacct_fail:
3262         vm_unacct_memory(len >> PAGE_SHIFT);
3263         return -ENOMEM;
3264 }
3265
3266 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3267 {
3268         struct mm_struct *mm = current->mm;
3269         struct vm_area_struct *vma = NULL;
3270         unsigned long len;
3271         int ret;
3272         bool populate;
3273         LIST_HEAD(uf);
3274         VMA_ITERATOR(vmi, mm, addr);
3275
3276         len = PAGE_ALIGN(request);
3277         if (len < request)
3278                 return -ENOMEM;
3279         if (!len)
3280                 return 0;
3281
3282         /* Until we need other flags, refuse anything except VM_EXEC. */
3283         if ((flags & (~VM_EXEC)) != 0)
3284                 return -EINVAL;
3285
3286         if (mmap_write_lock_killable(mm))
3287                 return -EINTR;
3288
3289         ret = check_brk_limits(addr, len);
3290         if (ret)
3291                 goto limits_failed;
3292
3293         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3294         if (ret)
3295                 goto munmap_failed;
3296
3297         vma = vma_prev(&vmi);
3298         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3299         populate = ((mm->def_flags & VM_LOCKED) != 0);
3300         mmap_write_unlock(mm);
3301         userfaultfd_unmap_complete(mm, &uf);
3302         if (populate && !ret)
3303                 mm_populate(addr, len);
3304         return ret;
3305
3306 munmap_failed:
3307 limits_failed:
3308         mmap_write_unlock(mm);
3309         return ret;
3310 }
3311 EXPORT_SYMBOL(vm_brk_flags);
3312
3313 /* Release all mmaps. */
3314 void exit_mmap(struct mm_struct *mm)
3315 {
3316         struct mmu_gather tlb;
3317         struct vm_area_struct *vma;
3318         unsigned long nr_accounted = 0;
3319         VMA_ITERATOR(vmi, mm, 0);
3320         int count = 0;
3321
3322         /* mm's last user has gone, and its about to be pulled down */
3323         mmu_notifier_release(mm);
3324
3325         mmap_read_lock(mm);
3326         arch_exit_mmap(mm);
3327
3328         vma = vma_next(&vmi);
3329         if (!vma || unlikely(xa_is_zero(vma))) {
3330                 /* Can happen if dup_mmap() received an OOM */
3331                 mmap_read_unlock(mm);
3332                 mmap_write_lock(mm);
3333                 goto destroy;
3334         }
3335
3336         lru_add_drain();
3337         flush_cache_mm(mm);
3338         tlb_gather_mmu_fullmm(&tlb, mm);
3339         /* update_hiwater_rss(mm) here? but nobody should be looking */
3340         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3341         unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3342         mmap_read_unlock(mm);
3343
3344         /*
3345          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3346          * because the memory has been already freed.
3347          */
3348         set_bit(MMF_OOM_SKIP, &mm->flags);
3349         mmap_write_lock(mm);
3350         mt_clear_in_rcu(&mm->mm_mt);
3351         vma_iter_set(&vmi, vma->vm_end);
3352         free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3353                       USER_PGTABLES_CEILING, true);
3354         tlb_finish_mmu(&tlb);
3355
3356         /*
3357          * Walk the list again, actually closing and freeing it, with preemption
3358          * enabled, without holding any MM locks besides the unreachable
3359          * mmap_write_lock.
3360          */
3361         vma_iter_set(&vmi, vma->vm_end);
3362         do {
3363                 if (vma->vm_flags & VM_ACCOUNT)
3364                         nr_accounted += vma_pages(vma);
3365                 remove_vma(vma, true);
3366                 count++;
3367                 cond_resched();
3368                 vma = vma_next(&vmi);
3369         } while (vma && likely(!xa_is_zero(vma)));
3370
3371         BUG_ON(count != mm->map_count);
3372
3373         trace_exit_mmap(mm);
3374 destroy:
3375         __mt_destroy(&mm->mm_mt);
3376         mmap_write_unlock(mm);
3377         vm_unacct_memory(nr_accounted);
3378 }
3379
3380 /* Insert vm structure into process list sorted by address
3381  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3382  * then i_mmap_rwsem is taken here.
3383  */
3384 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3385 {
3386         unsigned long charged = vma_pages(vma);
3387
3388
3389         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3390                 return -ENOMEM;
3391
3392         if ((vma->vm_flags & VM_ACCOUNT) &&
3393              security_vm_enough_memory_mm(mm, charged))
3394                 return -ENOMEM;
3395
3396         /*
3397          * The vm_pgoff of a purely anonymous vma should be irrelevant
3398          * until its first write fault, when page's anon_vma and index
3399          * are set.  But now set the vm_pgoff it will almost certainly
3400          * end up with (unless mremap moves it elsewhere before that
3401          * first wfault), so /proc/pid/maps tells a consistent story.
3402          *
3403          * By setting it to reflect the virtual start address of the
3404          * vma, merges and splits can happen in a seamless way, just
3405          * using the existing file pgoff checks and manipulations.
3406          * Similarly in do_mmap and in do_brk_flags.
3407          */
3408         if (vma_is_anonymous(vma)) {
3409                 BUG_ON(vma->anon_vma);
3410                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3411         }
3412
3413         if (vma_link(mm, vma)) {
3414                 if (vma->vm_flags & VM_ACCOUNT)
3415                         vm_unacct_memory(charged);
3416                 return -ENOMEM;
3417         }
3418
3419         return 0;
3420 }
3421
3422 /*
3423  * Copy the vma structure to a new location in the same mm,
3424  * prior to moving page table entries, to effect an mremap move.
3425  */
3426 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3427         unsigned long addr, unsigned long len, pgoff_t pgoff,
3428         bool *need_rmap_locks)
3429 {
3430         struct vm_area_struct *vma = *vmap;
3431         unsigned long vma_start = vma->vm_start;
3432         struct mm_struct *mm = vma->vm_mm;
3433         struct vm_area_struct *new_vma, *prev;
3434         bool faulted_in_anon_vma = true;
3435         VMA_ITERATOR(vmi, mm, addr);
3436
3437         /*
3438          * If anonymous vma has not yet been faulted, update new pgoff
3439          * to match new location, to increase its chance of merging.
3440          */
3441         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3442                 pgoff = addr >> PAGE_SHIFT;
3443                 faulted_in_anon_vma = false;
3444         }
3445
3446         new_vma = find_vma_prev(mm, addr, &prev);
3447         if (new_vma && new_vma->vm_start < addr + len)
3448                 return NULL;    /* should never get here */
3449
3450         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3451         if (new_vma) {
3452                 /*
3453                  * Source vma may have been merged into new_vma
3454                  */
3455                 if (unlikely(vma_start >= new_vma->vm_start &&
3456                              vma_start < new_vma->vm_end)) {
3457                         /*
3458                          * The only way we can get a vma_merge with
3459                          * self during an mremap is if the vma hasn't
3460                          * been faulted in yet and we were allowed to
3461                          * reset the dst vma->vm_pgoff to the
3462                          * destination address of the mremap to allow
3463                          * the merge to happen. mremap must change the
3464                          * vm_pgoff linearity between src and dst vmas
3465                          * (in turn preventing a vma_merge) to be
3466                          * safe. It is only safe to keep the vm_pgoff
3467                          * linear if there are no pages mapped yet.
3468                          */
3469                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3470                         *vmap = vma = new_vma;
3471                 }
3472                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3473         } else {
3474                 new_vma = vm_area_dup(vma);
3475                 if (!new_vma)
3476                         goto out;
3477                 vma_set_range(new_vma, addr, addr + len, pgoff);
3478                 if (vma_dup_policy(vma, new_vma))
3479                         goto out_free_vma;
3480                 if (anon_vma_clone(new_vma, vma))
3481                         goto out_free_mempol;
3482                 if (new_vma->vm_file)
3483                         get_file(new_vma->vm_file);
3484                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3485                         new_vma->vm_ops->open(new_vma);
3486                 if (vma_link(mm, new_vma))
3487                         goto out_vma_link;
3488                 *need_rmap_locks = false;
3489         }
3490         return new_vma;
3491
3492 out_vma_link:
3493         if (new_vma->vm_ops && new_vma->vm_ops->close)
3494                 new_vma->vm_ops->close(new_vma);
3495
3496         if (new_vma->vm_file)
3497                 fput(new_vma->vm_file);
3498
3499         unlink_anon_vmas(new_vma);
3500 out_free_mempol:
3501         mpol_put(vma_policy(new_vma));
3502 out_free_vma:
3503         vm_area_free(new_vma);
3504 out:
3505         return NULL;
3506 }
3507
3508 /*
3509  * Return true if the calling process may expand its vm space by the passed
3510  * number of pages
3511  */
3512 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3513 {
3514         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3515                 return false;
3516
3517         if (is_data_mapping(flags) &&
3518             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3519                 /* Workaround for Valgrind */
3520                 if (rlimit(RLIMIT_DATA) == 0 &&
3521                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3522                         return true;
3523
3524                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3525                              current->comm, current->pid,
3526                              (mm->data_vm + npages) << PAGE_SHIFT,
3527                              rlimit(RLIMIT_DATA),
3528                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3529
3530                 if (!ignore_rlimit_data)
3531                         return false;
3532         }
3533
3534         return true;
3535 }
3536
3537 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3538 {
3539         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3540
3541         if (is_exec_mapping(flags))
3542                 mm->exec_vm += npages;
3543         else if (is_stack_mapping(flags))
3544                 mm->stack_vm += npages;
3545         else if (is_data_mapping(flags))
3546                 mm->data_vm += npages;
3547 }
3548
3549 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3550
3551 /*
3552  * Having a close hook prevents vma merging regardless of flags.
3553  */
3554 static void special_mapping_close(struct vm_area_struct *vma)
3555 {
3556 }
3557
3558 static const char *special_mapping_name(struct vm_area_struct *vma)
3559 {
3560         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3561 }
3562
3563 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3564 {
3565         struct vm_special_mapping *sm = new_vma->vm_private_data;
3566
3567         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3568                 return -EFAULT;
3569
3570         if (sm->mremap)
3571                 return sm->mremap(sm, new_vma);
3572
3573         return 0;
3574 }
3575
3576 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3577 {
3578         /*
3579          * Forbid splitting special mappings - kernel has expectations over
3580          * the number of pages in mapping. Together with VM_DONTEXPAND
3581          * the size of vma should stay the same over the special mapping's
3582          * lifetime.
3583          */
3584         return -EINVAL;
3585 }
3586
3587 static const struct vm_operations_struct special_mapping_vmops = {
3588         .close = special_mapping_close,
3589         .fault = special_mapping_fault,
3590         .mremap = special_mapping_mremap,
3591         .name = special_mapping_name,
3592         /* vDSO code relies that VVAR can't be accessed remotely */
3593         .access = NULL,
3594         .may_split = special_mapping_split,
3595 };
3596
3597 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3598         .close = special_mapping_close,
3599         .fault = special_mapping_fault,
3600 };
3601
3602 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3603 {
3604         struct vm_area_struct *vma = vmf->vma;
3605         pgoff_t pgoff;
3606         struct page **pages;
3607
3608         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3609                 pages = vma->vm_private_data;
3610         } else {
3611                 struct vm_special_mapping *sm = vma->vm_private_data;
3612
3613                 if (sm->fault)
3614                         return sm->fault(sm, vmf->vma, vmf);
3615
3616                 pages = sm->pages;
3617         }
3618
3619         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3620                 pgoff--;
3621
3622         if (*pages) {
3623                 struct page *page = *pages;
3624                 get_page(page);
3625                 vmf->page = page;
3626                 return 0;
3627         }
3628
3629         return VM_FAULT_SIGBUS;
3630 }
3631
3632 static struct vm_area_struct *__install_special_mapping(
3633         struct mm_struct *mm,
3634         unsigned long addr, unsigned long len,
3635         unsigned long vm_flags, void *priv,
3636         const struct vm_operations_struct *ops)
3637 {
3638         int ret;
3639         struct vm_area_struct *vma;
3640
3641         vma = vm_area_alloc(mm);
3642         if (unlikely(vma == NULL))
3643                 return ERR_PTR(-ENOMEM);
3644
3645         vma_set_range(vma, addr, addr + len, 0);
3646         vm_flags_init(vma, (vm_flags | mm->def_flags |
3647                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3648         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3649
3650         vma->vm_ops = ops;
3651         vma->vm_private_data = priv;
3652
3653         ret = insert_vm_struct(mm, vma);
3654         if (ret)
3655                 goto out;
3656
3657         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3658
3659         perf_event_mmap(vma);
3660
3661         return vma;
3662
3663 out:
3664         vm_area_free(vma);
3665         return ERR_PTR(ret);
3666 }
3667
3668 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3669         const struct vm_special_mapping *sm)
3670 {
3671         return vma->vm_private_data == sm &&
3672                 (vma->vm_ops == &special_mapping_vmops ||
3673                  vma->vm_ops == &legacy_special_mapping_vmops);
3674 }
3675
3676 /*
3677  * Called with mm->mmap_lock held for writing.
3678  * Insert a new vma covering the given region, with the given flags.
3679  * Its pages are supplied by the given array of struct page *.
3680  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3681  * The region past the last page supplied will always produce SIGBUS.
3682  * The array pointer and the pages it points to are assumed to stay alive
3683  * for as long as this mapping might exist.
3684  */
3685 struct vm_area_struct *_install_special_mapping(
3686         struct mm_struct *mm,
3687         unsigned long addr, unsigned long len,
3688         unsigned long vm_flags, const struct vm_special_mapping *spec)
3689 {
3690         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3691                                         &special_mapping_vmops);
3692 }
3693
3694 int install_special_mapping(struct mm_struct *mm,
3695                             unsigned long addr, unsigned long len,
3696                             unsigned long vm_flags, struct page **pages)
3697 {
3698         struct vm_area_struct *vma = __install_special_mapping(
3699                 mm, addr, len, vm_flags, (void *)pages,
3700                 &legacy_special_mapping_vmops);
3701
3702         return PTR_ERR_OR_ZERO(vma);
3703 }
3704
3705 static DEFINE_MUTEX(mm_all_locks_mutex);
3706
3707 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3708 {
3709         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3710                 /*
3711                  * The LSB of head.next can't change from under us
3712                  * because we hold the mm_all_locks_mutex.
3713                  */
3714                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3715                 /*
3716                  * We can safely modify head.next after taking the
3717                  * anon_vma->root->rwsem. If some other vma in this mm shares
3718                  * the same anon_vma we won't take it again.
3719                  *
3720                  * No need of atomic instructions here, head.next
3721                  * can't change from under us thanks to the
3722                  * anon_vma->root->rwsem.
3723                  */
3724                 if (__test_and_set_bit(0, (unsigned long *)
3725                                        &anon_vma->root->rb_root.rb_root.rb_node))
3726                         BUG();
3727         }
3728 }
3729
3730 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3731 {
3732         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3733                 /*
3734                  * AS_MM_ALL_LOCKS can't change from under us because
3735                  * we hold the mm_all_locks_mutex.
3736                  *
3737                  * Operations on ->flags have to be atomic because
3738                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3739                  * mm_all_locks_mutex, there may be other cpus
3740                  * changing other bitflags in parallel to us.
3741                  */
3742                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3743                         BUG();
3744                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3745         }
3746 }
3747
3748 /*
3749  * This operation locks against the VM for all pte/vma/mm related
3750  * operations that could ever happen on a certain mm. This includes
3751  * vmtruncate, try_to_unmap, and all page faults.
3752  *
3753  * The caller must take the mmap_lock in write mode before calling
3754  * mm_take_all_locks(). The caller isn't allowed to release the
3755  * mmap_lock until mm_drop_all_locks() returns.
3756  *
3757  * mmap_lock in write mode is required in order to block all operations
3758  * that could modify pagetables and free pages without need of
3759  * altering the vma layout. It's also needed in write mode to avoid new
3760  * anon_vmas to be associated with existing vmas.
3761  *
3762  * A single task can't take more than one mm_take_all_locks() in a row
3763  * or it would deadlock.
3764  *
3765  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3766  * mapping->flags avoid to take the same lock twice, if more than one
3767  * vma in this mm is backed by the same anon_vma or address_space.
3768  *
3769  * We take locks in following order, accordingly to comment at beginning
3770  * of mm/rmap.c:
3771  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3772  *     hugetlb mapping);
3773  *   - all vmas marked locked
3774  *   - all i_mmap_rwsem locks;
3775  *   - all anon_vma->rwseml
3776  *
3777  * We can take all locks within these types randomly because the VM code
3778  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3779  * mm_all_locks_mutex.
3780  *
3781  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3782  * that may have to take thousand of locks.
3783  *
3784  * mm_take_all_locks() can fail if it's interrupted by signals.
3785  */
3786 int mm_take_all_locks(struct mm_struct *mm)
3787 {
3788         struct vm_area_struct *vma;
3789         struct anon_vma_chain *avc;
3790         VMA_ITERATOR(vmi, mm, 0);
3791
3792         mmap_assert_write_locked(mm);
3793
3794         mutex_lock(&mm_all_locks_mutex);
3795
3796         /*
3797          * vma_start_write() does not have a complement in mm_drop_all_locks()
3798          * because vma_start_write() is always asymmetrical; it marks a VMA as
3799          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3800          * is reached.
3801          */
3802         for_each_vma(vmi, vma) {
3803                 if (signal_pending(current))
3804                         goto out_unlock;
3805                 vma_start_write(vma);
3806         }
3807
3808         vma_iter_init(&vmi, mm, 0);
3809         for_each_vma(vmi, vma) {
3810                 if (signal_pending(current))
3811                         goto out_unlock;
3812                 if (vma->vm_file && vma->vm_file->f_mapping &&
3813                                 is_vm_hugetlb_page(vma))
3814                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3815         }
3816
3817         vma_iter_init(&vmi, mm, 0);
3818         for_each_vma(vmi, vma) {
3819                 if (signal_pending(current))
3820                         goto out_unlock;
3821                 if (vma->vm_file && vma->vm_file->f_mapping &&
3822                                 !is_vm_hugetlb_page(vma))
3823                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3824         }
3825
3826         vma_iter_init(&vmi, mm, 0);
3827         for_each_vma(vmi, vma) {
3828                 if (signal_pending(current))
3829                         goto out_unlock;
3830                 if (vma->anon_vma)
3831                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3832                                 vm_lock_anon_vma(mm, avc->anon_vma);
3833         }
3834
3835         return 0;
3836
3837 out_unlock:
3838         mm_drop_all_locks(mm);
3839         return -EINTR;
3840 }
3841
3842 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3843 {
3844         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3845                 /*
3846                  * The LSB of head.next can't change to 0 from under
3847                  * us because we hold the mm_all_locks_mutex.
3848                  *
3849                  * We must however clear the bitflag before unlocking
3850                  * the vma so the users using the anon_vma->rb_root will
3851                  * never see our bitflag.
3852                  *
3853                  * No need of atomic instructions here, head.next
3854                  * can't change from under us until we release the
3855                  * anon_vma->root->rwsem.
3856                  */
3857                 if (!__test_and_clear_bit(0, (unsigned long *)
3858                                           &anon_vma->root->rb_root.rb_root.rb_node))
3859                         BUG();
3860                 anon_vma_unlock_write(anon_vma);
3861         }
3862 }
3863
3864 static void vm_unlock_mapping(struct address_space *mapping)
3865 {
3866         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3867                 /*
3868                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3869                  * because we hold the mm_all_locks_mutex.
3870                  */
3871                 i_mmap_unlock_write(mapping);
3872                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3873                                         &mapping->flags))
3874                         BUG();
3875         }
3876 }
3877
3878 /*
3879  * The mmap_lock cannot be released by the caller until
3880  * mm_drop_all_locks() returns.
3881  */
3882 void mm_drop_all_locks(struct mm_struct *mm)
3883 {
3884         struct vm_area_struct *vma;
3885         struct anon_vma_chain *avc;
3886         VMA_ITERATOR(vmi, mm, 0);
3887
3888         mmap_assert_write_locked(mm);
3889         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3890
3891         for_each_vma(vmi, vma) {
3892                 if (vma->anon_vma)
3893                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3894                                 vm_unlock_anon_vma(avc->anon_vma);
3895                 if (vma->vm_file && vma->vm_file->f_mapping)
3896                         vm_unlock_mapping(vma->vm_file->f_mapping);
3897         }
3898
3899         mutex_unlock(&mm_all_locks_mutex);
3900 }
3901
3902 /*
3903  * initialise the percpu counter for VM
3904  */
3905 void __init mmap_init(void)
3906 {
3907         int ret;
3908
3909         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3910         VM_BUG_ON(ret);
3911 }
3912
3913 /*
3914  * Initialise sysctl_user_reserve_kbytes.
3915  *
3916  * This is intended to prevent a user from starting a single memory hogging
3917  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3918  * mode.
3919  *
3920  * The default value is min(3% of free memory, 128MB)
3921  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3922  */
3923 static int init_user_reserve(void)
3924 {
3925         unsigned long free_kbytes;
3926
3927         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3928
3929         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3930         return 0;
3931 }
3932 subsys_initcall(init_user_reserve);
3933
3934 /*
3935  * Initialise sysctl_admin_reserve_kbytes.
3936  *
3937  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3938  * to log in and kill a memory hogging process.
3939  *
3940  * Systems with more than 256MB will reserve 8MB, enough to recover
3941  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3942  * only reserve 3% of free pages by default.
3943  */
3944 static int init_admin_reserve(void)
3945 {
3946         unsigned long free_kbytes;
3947
3948         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3949
3950         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3951         return 0;
3952 }
3953 subsys_initcall(init_admin_reserve);
3954
3955 /*
3956  * Reinititalise user and admin reserves if memory is added or removed.
3957  *
3958  * The default user reserve max is 128MB, and the default max for the
3959  * admin reserve is 8MB. These are usually, but not always, enough to
3960  * enable recovery from a memory hogging process using login/sshd, a shell,
3961  * and tools like top. It may make sense to increase or even disable the
3962  * reserve depending on the existence of swap or variations in the recovery
3963  * tools. So, the admin may have changed them.
3964  *
3965  * If memory is added and the reserves have been eliminated or increased above
3966  * the default max, then we'll trust the admin.
3967  *
3968  * If memory is removed and there isn't enough free memory, then we
3969  * need to reset the reserves.
3970  *
3971  * Otherwise keep the reserve set by the admin.
3972  */
3973 static int reserve_mem_notifier(struct notifier_block *nb,
3974                              unsigned long action, void *data)
3975 {
3976         unsigned long tmp, free_kbytes;
3977
3978         switch (action) {
3979         case MEM_ONLINE:
3980                 /* Default max is 128MB. Leave alone if modified by operator. */
3981                 tmp = sysctl_user_reserve_kbytes;
3982                 if (tmp > 0 && tmp < SZ_128K)
3983                         init_user_reserve();
3984
3985                 /* Default max is 8MB.  Leave alone if modified by operator. */
3986                 tmp = sysctl_admin_reserve_kbytes;
3987                 if (tmp > 0 && tmp < SZ_8K)
3988                         init_admin_reserve();
3989
3990                 break;
3991         case MEM_OFFLINE:
3992                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3993
3994                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3995                         init_user_reserve();
3996                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3997                                 sysctl_user_reserve_kbytes);
3998                 }
3999
4000                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
4001                         init_admin_reserve();
4002                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4003                                 sysctl_admin_reserve_kbytes);
4004                 }
4005                 break;
4006         default:
4007                 break;
4008         }
4009         return NOTIFY_OK;
4010 }
4011
4012 static int __meminit init_reserve_notifier(void)
4013 {
4014         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4015                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4016
4017         return 0;
4018 }
4019 subsys_initcall(init_reserve_notifier);
This page took 0.247735 seconds and 4 git commands to generate.