1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
41 #include "dev-replace.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
55 #include "uuid-tree.h"
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
67 struct btrfs_ioctl_timespec_32 {
70 } __attribute__ ((__packed__));
72 struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 reserved[16]; /* in */
80 } __attribute__ ((__packed__));
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95 } __attribute__ ((__packed__));
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
100 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_ulong_t iovcnt;
107 __u64 unencoded_offset;
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
119 /* Mask out flags that are inappropriate for the given type of inode. */
120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
123 if (S_ISDIR(inode->i_mode))
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
167 * Update inode->i_flags based on the btrfs internal flags.
169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
174 if (binode->flags & BTRFS_INODE_SYNC)
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
180 if (binode->flags & BTRFS_INODE_NOATIME)
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
266 const char *comp = NULL;
269 if (btrfs_root_readonly(root))
272 if (fileattr_has_fsx(fa))
275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_fsflags, fsflags);
281 ret = check_fsflags_compatible(fs_info, fsflags);
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
305 binode_flags &= ~BTRFS_INODE_NOATIME;
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, 1);
312 return PTR_ERR(trans);
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
331 binode_flags |= BTRFS_INODE_NODATACOW;
335 * Revert back under same assumptions as above
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
356 if (IS_SWAPFILE(inode))
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362 comp = btrfs_compress_type2str(fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
373 trans = btrfs_start_transaction(root, 3);
375 return PTR_ERR(trans);
378 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
379 comp, strlen(comp), 0);
381 btrfs_abort_transaction(trans, ret);
385 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, BTRFS_I(inode));
401 btrfs_end_transaction(trans);
406 * Start exclusive operation @type, return true on success
408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
413 spin_lock(&fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
418 spin_unlock(&fs_info->super_lock);
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
437 spin_lock(&fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
443 spin_unlock(&fs_info->super_lock);
447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
449 spin_unlock(&fs_info->super_lock);
452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
454 spin_lock(&fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(&fs_info->super_lock);
457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(&fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(&fs_info->super_lock);
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(&fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(&fs_info->super_lock);
481 "invalid exclop balance operation %d requested", op);
485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
487 return put_user(inode->i_generation, arg);
490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
499 if (!capable(CAP_SYS_ADMIN))
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
507 if (btrfs_is_zoned(fs_info))
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
533 if (copy_from_user(&range, arg, sizeof(range)))
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
541 if (range.len < fs_info->sectorsize)
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, &range);
547 if (copy_to_user(arg, &range, sizeof(range)))
553 int __pure btrfs_is_empty_uuid(const u8 *uuid)
557 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
565 * Calculate the number of transaction items to reserve for creating a subvolume
566 * or snapshot, not including the inode, directory entries, or parent directory.
568 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
571 * 1 to add root block
574 * 1 to add root backref
576 * 1 to add qgroup info
577 * 1 to add qgroup limit
579 * Ideally the last two would only be accounted if qgroups are enabled,
580 * but that can change between now and the time we would insert them.
582 unsigned int num_items = 7;
585 /* 2 to add qgroup relations for each inherited qgroup */
586 num_items += 2 * inherit->num_qgroups;
591 static noinline int create_subvol(struct mnt_idmap *idmap,
592 struct inode *dir, struct dentry *dentry,
593 struct btrfs_qgroup_inherit *inherit)
595 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key key;
598 struct btrfs_root_item *root_item;
599 struct btrfs_inode_item *inode_item;
600 struct extent_buffer *leaf;
601 struct btrfs_root *root = BTRFS_I(dir)->root;
602 struct btrfs_root *new_root;
603 struct btrfs_block_rsv block_rsv;
604 struct timespec64 cur_time = current_time(dir);
605 struct btrfs_new_inode_args new_inode_args = {
610 unsigned int trans_num_items;
614 u64 qgroup_reserved = 0;
616 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
620 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
625 * Don't create subvolume whose level is not zero. Or qgroup will be
626 * screwed up since it assumes subvolume qgroup's level to be 0.
628 if (btrfs_qgroup_level(objectid)) {
633 ret = get_anon_bdev(&anon_dev);
637 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
638 if (!new_inode_args.inode) {
642 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
645 trans_num_items += create_subvol_num_items(inherit);
647 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
648 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
649 trans_num_items, false);
651 goto out_new_inode_args;
652 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
654 trans = btrfs_start_transaction(root, 0);
656 ret = PTR_ERR(trans);
657 goto out_release_rsv;
659 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
661 trans->block_rsv = &block_rsv;
662 trans->bytes_reserved = block_rsv.size;
664 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
668 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
669 0, BTRFS_NESTING_NORMAL);
675 btrfs_mark_buffer_dirty(trans, leaf);
677 inode_item = &root_item->inode;
678 btrfs_set_stack_inode_generation(inode_item, 1);
679 btrfs_set_stack_inode_size(inode_item, 3);
680 btrfs_set_stack_inode_nlink(inode_item, 1);
681 btrfs_set_stack_inode_nbytes(inode_item,
683 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
685 btrfs_set_root_flags(root_item, 0);
686 btrfs_set_root_limit(root_item, 0);
687 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
689 btrfs_set_root_bytenr(root_item, leaf->start);
690 btrfs_set_root_generation(root_item, trans->transid);
691 btrfs_set_root_level(root_item, 0);
692 btrfs_set_root_refs(root_item, 1);
693 btrfs_set_root_used(root_item, leaf->len);
694 btrfs_set_root_last_snapshot(root_item, 0);
696 btrfs_set_root_generation_v2(root_item,
697 btrfs_root_generation(root_item));
698 generate_random_guid(root_item->uuid);
699 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
700 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
701 root_item->ctime = root_item->otime;
702 btrfs_set_root_ctransid(root_item, trans->transid);
703 btrfs_set_root_otransid(root_item, trans->transid);
705 btrfs_tree_unlock(leaf);
707 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
709 key.objectid = objectid;
711 key.type = BTRFS_ROOT_ITEM_KEY;
712 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
718 * Since we don't abort the transaction in this case, free the
719 * tree block so that we don't leak space and leave the
720 * filesystem in an inconsistent state (an extent item in the
721 * extent tree with a backreference for a root that does not
724 btrfs_tree_lock(leaf);
725 btrfs_clear_buffer_dirty(trans, leaf);
726 btrfs_tree_unlock(leaf);
727 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
729 btrfs_abort_transaction(trans, ret2);
730 free_extent_buffer(leaf);
734 free_extent_buffer(leaf);
737 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
738 if (IS_ERR(new_root)) {
739 ret = PTR_ERR(new_root);
740 btrfs_abort_transaction(trans, ret);
743 /* anon_dev is owned by new_root now. */
745 BTRFS_I(new_inode_args.inode)->root = new_root;
746 /* ... and new_root is owned by new_inode_args.inode now. */
748 ret = btrfs_record_root_in_trans(trans, new_root);
750 btrfs_abort_transaction(trans, ret);
754 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
755 BTRFS_UUID_KEY_SUBVOL, objectid);
757 btrfs_abort_transaction(trans, ret);
761 ret = btrfs_create_new_inode(trans, &new_inode_args);
763 btrfs_abort_transaction(trans, ret);
767 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
769 d_instantiate_new(dentry, new_inode_args.inode);
770 new_inode_args.inode = NULL;
773 trans->block_rsv = NULL;
774 trans->bytes_reserved = 0;
775 btrfs_end_transaction(trans);
777 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781 btrfs_new_inode_args_destroy(&new_inode_args);
783 iput(new_inode_args.inode);
786 free_anon_bdev(anon_dev);
792 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
793 struct dentry *dentry, bool readonly,
794 struct btrfs_qgroup_inherit *inherit)
796 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 struct btrfs_pending_snapshot *pending_snapshot;
799 unsigned int trans_num_items;
800 struct btrfs_trans_handle *trans;
801 struct btrfs_block_rsv *block_rsv;
802 u64 qgroup_reserved = 0;
805 /* We do not support snapshotting right now. */
806 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 "extent tree v2 doesn't support snapshotting yet");
812 if (btrfs_root_refs(&root->root_item) == 0)
815 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
818 if (atomic_read(&root->nr_swapfiles)) {
820 "cannot snapshot subvolume with active swapfile");
824 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
825 if (!pending_snapshot)
828 ret = get_anon_bdev(&pending_snapshot->anon_dev);
831 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 pending_snapshot->path = btrfs_alloc_path();
834 if (!pending_snapshot->root_item || !pending_snapshot->path) {
839 block_rsv = &pending_snapshot->block_rsv;
840 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
844 * 1 to update parent inode item
846 trans_num_items = create_subvol_num_items(inherit) + 3;
847 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
848 trans_num_items, false);
851 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853 pending_snapshot->dentry = dentry;
854 pending_snapshot->root = root;
855 pending_snapshot->readonly = readonly;
856 pending_snapshot->dir = BTRFS_I(dir);
857 pending_snapshot->inherit = inherit;
859 trans = btrfs_start_transaction(root, 0);
861 ret = PTR_ERR(trans);
864 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 btrfs_end_transaction(trans);
869 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
872 trans->pending_snapshot = pending_snapshot;
874 ret = btrfs_commit_transaction(trans);
878 ret = pending_snapshot->error;
882 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
886 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 ret = PTR_ERR(inode);
892 d_instantiate(dentry, inode);
894 pending_snapshot->anon_dev = 0;
896 /* Prevent double freeing of anon_dev */
897 if (ret && pending_snapshot->snap)
898 pending_snapshot->snap->anon_dev = 0;
899 btrfs_put_root(pending_snapshot->snap);
900 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904 if (pending_snapshot->anon_dev)
905 free_anon_bdev(pending_snapshot->anon_dev);
906 kfree(pending_snapshot->root_item);
907 btrfs_free_path(pending_snapshot->path);
908 kfree(pending_snapshot);
913 /* copy of may_delete in fs/namei.c()
914 * Check whether we can remove a link victim from directory dir, check
915 * whether the type of victim is right.
916 * 1. We can't do it if dir is read-only (done in permission())
917 * 2. We should have write and exec permissions on dir
918 * 3. We can't remove anything from append-only dir
919 * 4. We can't do anything with immutable dir (done in permission())
920 * 5. If the sticky bit on dir is set we should either
921 * a. be owner of dir, or
922 * b. be owner of victim, or
923 * c. have CAP_FOWNER capability
924 * 6. If the victim is append-only or immutable we can't do anything with
925 * links pointing to it.
926 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
927 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
928 * 9. We can't remove a root or mountpoint.
929 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
930 * nfs_async_unlink().
933 static int btrfs_may_delete(struct mnt_idmap *idmap,
934 struct inode *dir, struct dentry *victim, int isdir)
938 if (d_really_is_negative(victim))
941 /* The @victim is not inside @dir. */
942 if (d_inode(victim->d_parent) != dir)
944 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
951 if (check_sticky(idmap, dir, d_inode(victim)) ||
952 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
953 IS_SWAPFILE(d_inode(victim)))
956 if (!d_is_dir(victim))
960 } else if (d_is_dir(victim))
964 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
969 /* copy of may_create in fs/namei.c() */
970 static inline int btrfs_may_create(struct mnt_idmap *idmap,
971 struct inode *dir, struct dentry *child)
973 if (d_really_is_positive(child))
977 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
983 * Create a new subvolume below @parent. This is largely modeled after
984 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
985 * inside this filesystem so it's quite a bit simpler.
987 static noinline int btrfs_mksubvol(const struct path *parent,
988 struct mnt_idmap *idmap,
989 const char *name, int namelen,
990 struct btrfs_root *snap_src,
992 struct btrfs_qgroup_inherit *inherit)
994 struct inode *dir = d_inode(parent->dentry);
995 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
996 struct dentry *dentry;
997 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
1000 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1001 if (error == -EINTR)
1004 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1005 error = PTR_ERR(dentry);
1009 error = btrfs_may_create(idmap, dir, dentry);
1014 * even if this name doesn't exist, we may get hash collisions.
1015 * check for them now when we can safely fail
1017 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1018 dir->i_ino, &name_str);
1022 down_read(&fs_info->subvol_sem);
1024 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1028 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 error = create_subvol(idmap, dir, dentry, inherit);
1033 fsnotify_mkdir(dir, dentry);
1035 up_read(&fs_info->subvol_sem);
1039 btrfs_inode_unlock(BTRFS_I(dir), 0);
1043 static noinline int btrfs_mksnapshot(const struct path *parent,
1044 struct mnt_idmap *idmap,
1045 const char *name, int namelen,
1046 struct btrfs_root *root,
1048 struct btrfs_qgroup_inherit *inherit)
1051 bool snapshot_force_cow = false;
1054 * Force new buffered writes to reserve space even when NOCOW is
1055 * possible. This is to avoid later writeback (running dealloc) to
1056 * fallback to COW mode and unexpectedly fail with ENOSPC.
1058 btrfs_drew_read_lock(&root->snapshot_lock);
1060 ret = btrfs_start_delalloc_snapshot(root, false);
1065 * All previous writes have started writeback in NOCOW mode, so now
1066 * we force future writes to fallback to COW mode during snapshot
1069 atomic_inc(&root->snapshot_force_cow);
1070 snapshot_force_cow = true;
1072 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1074 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1075 root, readonly, inherit);
1077 if (snapshot_force_cow)
1078 atomic_dec(&root->snapshot_force_cow);
1079 btrfs_drew_read_unlock(&root->snapshot_lock);
1084 * Try to start exclusive operation @type or cancel it if it's running.
1087 * 0 - normal mode, newly claimed op started
1088 * >0 - normal mode, something else is running,
1089 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1090 * ECANCELED - cancel mode, successful cancel
1091 * ENOTCONN - cancel mode, operation not running anymore
1093 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1094 enum btrfs_exclusive_operation type, bool cancel)
1097 /* Start normal op */
1098 if (!btrfs_exclop_start(fs_info, type))
1099 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1100 /* Exclusive operation is now claimed */
1104 /* Cancel running op */
1105 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1107 * This blocks any exclop finish from setting it to NONE, so we
1108 * request cancellation. Either it runs and we will wait for it,
1109 * or it has finished and no waiting will happen.
1111 atomic_inc(&fs_info->reloc_cancel_req);
1112 btrfs_exclop_start_unlock(fs_info);
1114 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1115 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1116 TASK_INTERRUPTIBLE);
1121 /* Something else is running or none */
1125 static noinline int btrfs_ioctl_resize(struct file *file,
1128 BTRFS_DEV_LOOKUP_ARGS(args);
1129 struct inode *inode = file_inode(file);
1130 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_ioctl_vol_args *vol_args;
1136 struct btrfs_trans_handle *trans;
1137 struct btrfs_device *device = NULL;
1140 char *devstr = NULL;
1145 if (!capable(CAP_SYS_ADMIN))
1148 ret = mnt_want_write_file(file);
1153 * Read the arguments before checking exclusivity to be able to
1154 * distinguish regular resize and cancel
1156 vol_args = memdup_user(arg, sizeof(*vol_args));
1157 if (IS_ERR(vol_args)) {
1158 ret = PTR_ERR(vol_args);
1161 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1165 sizestr = vol_args->name;
1166 cancel = (strcmp("cancel", sizestr) == 0);
1167 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1170 /* Exclusive operation is now claimed */
1172 devstr = strchr(sizestr, ':');
1174 sizestr = devstr + 1;
1176 devstr = vol_args->name;
1177 ret = kstrtoull(devstr, 10, &devid);
1184 btrfs_info(fs_info, "resizing devid %llu", devid);
1188 device = btrfs_find_device(fs_info->fs_devices, &args);
1190 btrfs_info(fs_info, "resizer unable to find device %llu",
1196 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1198 "resizer unable to apply on readonly device %llu",
1204 if (!strcmp(sizestr, "max"))
1205 new_size = bdev_nr_bytes(device->bdev);
1207 if (sizestr[0] == '-') {
1210 } else if (sizestr[0] == '+') {
1214 new_size = memparse(sizestr, &retptr);
1215 if (*retptr != '\0' || new_size == 0) {
1221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1226 old_size = btrfs_device_get_total_bytes(device);
1229 if (new_size > old_size) {
1233 new_size = old_size - new_size;
1234 } else if (mod > 0) {
1235 if (new_size > ULLONG_MAX - old_size) {
1239 new_size = old_size + new_size;
1242 if (new_size < SZ_256M) {
1246 if (new_size > bdev_nr_bytes(device->bdev)) {
1251 new_size = round_down(new_size, fs_info->sectorsize);
1253 if (new_size > old_size) {
1254 trans = btrfs_start_transaction(root, 0);
1255 if (IS_ERR(trans)) {
1256 ret = PTR_ERR(trans);
1259 ret = btrfs_grow_device(trans, device, new_size);
1260 btrfs_commit_transaction(trans);
1261 } else if (new_size < old_size) {
1262 ret = btrfs_shrink_device(device, new_size);
1263 } /* equal, nothing need to do */
1265 if (ret == 0 && new_size != old_size)
1266 btrfs_info_in_rcu(fs_info,
1267 "resize device %s (devid %llu) from %llu to %llu",
1268 btrfs_dev_name(device), device->devid,
1269 old_size, new_size);
1271 btrfs_exclop_finish(fs_info);
1275 mnt_drop_write_file(file);
1279 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1280 struct mnt_idmap *idmap,
1281 const char *name, unsigned long fd, int subvol,
1283 struct btrfs_qgroup_inherit *inherit)
1288 if (!S_ISDIR(file_inode(file)->i_mode))
1291 ret = mnt_want_write_file(file);
1295 namelen = strlen(name);
1296 if (strchr(name, '/')) {
1298 goto out_drop_write;
1301 if (name[0] == '.' &&
1302 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1304 goto out_drop_write;
1308 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1309 namelen, NULL, readonly, inherit);
1311 struct fd src = fdget(fd);
1312 struct inode *src_inode;
1313 if (!fd_file(src)) {
1315 goto out_drop_write;
1318 src_inode = file_inode(fd_file(src));
1319 if (src_inode->i_sb != file_inode(file)->i_sb) {
1320 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1321 "Snapshot src from another FS");
1323 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1325 * Subvolume creation is not restricted, but snapshots
1326 * are limited to own subvolumes only
1329 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1331 * Snapshots must be made with the src_inode referring
1332 * to the subvolume inode, otherwise the permission
1333 * checking above is useless because we may have
1334 * permission on a lower directory but not the subvol
1339 ret = btrfs_mksnapshot(&file->f_path, idmap,
1341 BTRFS_I(src_inode)->root,
1347 mnt_drop_write_file(file);
1352 static noinline int btrfs_ioctl_snap_create(struct file *file,
1353 void __user *arg, int subvol)
1355 struct btrfs_ioctl_vol_args *vol_args;
1358 if (!S_ISDIR(file_inode(file)->i_mode))
1361 vol_args = memdup_user(arg, sizeof(*vol_args));
1362 if (IS_ERR(vol_args))
1363 return PTR_ERR(vol_args);
1364 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1368 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1369 vol_args->name, vol_args->fd, subvol,
1377 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1378 void __user *arg, int subvol)
1380 struct btrfs_ioctl_vol_args_v2 *vol_args;
1382 bool readonly = false;
1383 struct btrfs_qgroup_inherit *inherit = NULL;
1385 if (!S_ISDIR(file_inode(file)->i_mode))
1388 vol_args = memdup_user(arg, sizeof(*vol_args));
1389 if (IS_ERR(vol_args))
1390 return PTR_ERR(vol_args);
1391 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1395 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1400 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1402 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1403 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1405 if (vol_args->size < sizeof(*inherit) ||
1406 vol_args->size > PAGE_SIZE) {
1410 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1411 if (IS_ERR(inherit)) {
1412 ret = PTR_ERR(inherit);
1416 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1421 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1422 vol_args->name, vol_args->fd, subvol,
1433 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1436 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1437 struct btrfs_root *root = BTRFS_I(inode)->root;
1441 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1444 down_read(&fs_info->subvol_sem);
1445 if (btrfs_root_readonly(root))
1446 flags |= BTRFS_SUBVOL_RDONLY;
1447 up_read(&fs_info->subvol_sem);
1449 if (copy_to_user(arg, &flags, sizeof(flags)))
1455 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1458 struct inode *inode = file_inode(file);
1459 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
1461 struct btrfs_trans_handle *trans;
1466 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1469 ret = mnt_want_write_file(file);
1473 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1475 goto out_drop_write;
1478 if (copy_from_user(&flags, arg, sizeof(flags))) {
1480 goto out_drop_write;
1483 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1485 goto out_drop_write;
1488 down_write(&fs_info->subvol_sem);
1491 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1494 root_flags = btrfs_root_flags(&root->root_item);
1495 if (flags & BTRFS_SUBVOL_RDONLY) {
1496 btrfs_set_root_flags(&root->root_item,
1497 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1500 * Block RO -> RW transition if this subvolume is involved in
1503 spin_lock(&root->root_item_lock);
1504 if (root->send_in_progress == 0) {
1505 btrfs_set_root_flags(&root->root_item,
1506 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1507 spin_unlock(&root->root_item_lock);
1509 spin_unlock(&root->root_item_lock);
1511 "Attempt to set subvolume %llu read-write during send",
1512 btrfs_root_id(root));
1518 trans = btrfs_start_transaction(root, 1);
1519 if (IS_ERR(trans)) {
1520 ret = PTR_ERR(trans);
1524 ret = btrfs_update_root(trans, fs_info->tree_root,
1525 &root->root_key, &root->root_item);
1527 btrfs_end_transaction(trans);
1531 ret = btrfs_commit_transaction(trans);
1535 btrfs_set_root_flags(&root->root_item, root_flags);
1537 up_write(&fs_info->subvol_sem);
1539 mnt_drop_write_file(file);
1544 static noinline int key_in_sk(struct btrfs_key *key,
1545 struct btrfs_ioctl_search_key *sk)
1547 struct btrfs_key test;
1550 test.objectid = sk->min_objectid;
1551 test.type = sk->min_type;
1552 test.offset = sk->min_offset;
1554 ret = btrfs_comp_cpu_keys(key, &test);
1558 test.objectid = sk->max_objectid;
1559 test.type = sk->max_type;
1560 test.offset = sk->max_offset;
1562 ret = btrfs_comp_cpu_keys(key, &test);
1568 static noinline int copy_to_sk(struct btrfs_path *path,
1569 struct btrfs_key *key,
1570 struct btrfs_ioctl_search_key *sk,
1573 unsigned long *sk_offset,
1577 struct extent_buffer *leaf;
1578 struct btrfs_ioctl_search_header sh;
1579 struct btrfs_key test;
1580 unsigned long item_off;
1581 unsigned long item_len;
1587 leaf = path->nodes[0];
1588 slot = path->slots[0];
1589 nritems = btrfs_header_nritems(leaf);
1591 if (btrfs_header_generation(leaf) > sk->max_transid) {
1595 found_transid = btrfs_header_generation(leaf);
1597 for (i = slot; i < nritems; i++) {
1598 item_off = btrfs_item_ptr_offset(leaf, i);
1599 item_len = btrfs_item_size(leaf, i);
1601 btrfs_item_key_to_cpu(leaf, key, i);
1602 if (!key_in_sk(key, sk))
1605 if (sizeof(sh) + item_len > *buf_size) {
1612 * return one empty item back for v1, which does not
1616 *buf_size = sizeof(sh) + item_len;
1621 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1626 sh.objectid = key->objectid;
1627 sh.offset = key->offset;
1628 sh.type = key->type;
1630 sh.transid = found_transid;
1633 * Copy search result header. If we fault then loop again so we
1634 * can fault in the pages and -EFAULT there if there's a
1635 * problem. Otherwise we'll fault and then copy the buffer in
1636 * properly this next time through
1638 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1643 *sk_offset += sizeof(sh);
1646 char __user *up = ubuf + *sk_offset;
1648 * Copy the item, same behavior as above, but reset the
1649 * * sk_offset so we copy the full thing again.
1651 if (read_extent_buffer_to_user_nofault(leaf, up,
1652 item_off, item_len)) {
1654 *sk_offset -= sizeof(sh);
1658 *sk_offset += item_len;
1662 if (ret) /* -EOVERFLOW from above */
1665 if (*num_found >= sk->nr_items) {
1672 test.objectid = sk->max_objectid;
1673 test.type = sk->max_type;
1674 test.offset = sk->max_offset;
1675 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1677 else if (key->offset < (u64)-1)
1679 else if (key->type < (u8)-1) {
1682 } else if (key->objectid < (u64)-1) {
1690 * 0: all items from this leaf copied, continue with next
1691 * 1: * more items can be copied, but unused buffer is too small
1692 * * all items were found
1693 * Either way, it will stops the loop which iterates to the next
1695 * -EOVERFLOW: item was to large for buffer
1696 * -EFAULT: could not copy extent buffer back to userspace
1701 static noinline int search_ioctl(struct inode *inode,
1702 struct btrfs_ioctl_search_key *sk,
1706 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1707 struct btrfs_root *root;
1708 struct btrfs_key key;
1709 struct btrfs_path *path;
1712 unsigned long sk_offset = 0;
1714 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1715 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1719 path = btrfs_alloc_path();
1723 if (sk->tree_id == 0) {
1724 /* search the root of the inode that was passed */
1725 root = btrfs_grab_root(BTRFS_I(inode)->root);
1727 root = btrfs_get_fs_root(info, sk->tree_id, true);
1729 btrfs_free_path(path);
1730 return PTR_ERR(root);
1734 key.objectid = sk->min_objectid;
1735 key.type = sk->min_type;
1736 key.offset = sk->min_offset;
1741 * Ensure that the whole user buffer is faulted in at sub-page
1742 * granularity, otherwise the loop may live-lock.
1744 if (fault_in_subpage_writeable(ubuf + sk_offset,
1745 *buf_size - sk_offset))
1748 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1754 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1755 &sk_offset, &num_found);
1756 btrfs_release_path(path);
1764 sk->nr_items = num_found;
1765 btrfs_put_root(root);
1766 btrfs_free_path(path);
1770 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1773 struct btrfs_ioctl_search_args __user *uargs = argp;
1774 struct btrfs_ioctl_search_key sk;
1778 if (!capable(CAP_SYS_ADMIN))
1781 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1784 buf_size = sizeof(uargs->buf);
1786 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1789 * In the origin implementation an overflow is handled by returning a
1790 * search header with a len of zero, so reset ret.
1792 if (ret == -EOVERFLOW)
1795 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1800 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1803 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1804 struct btrfs_ioctl_search_args_v2 args;
1807 const u64 buf_limit = SZ_16M;
1809 if (!capable(CAP_SYS_ADMIN))
1812 /* copy search header and buffer size */
1813 if (copy_from_user(&args, uarg, sizeof(args)))
1816 buf_size = args.buf_size;
1818 /* limit result size to 16MB */
1819 if (buf_size > buf_limit)
1820 buf_size = buf_limit;
1822 ret = search_ioctl(inode, &args.key, &buf_size,
1823 (char __user *)(&uarg->buf[0]));
1824 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1826 else if (ret == -EOVERFLOW &&
1827 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1834 * Search INODE_REFs to identify path name of 'dirid' directory
1835 * in a 'tree_id' tree. and sets path name to 'name'.
1837 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1838 u64 tree_id, u64 dirid, char *name)
1840 struct btrfs_root *root;
1841 struct btrfs_key key;
1847 struct btrfs_inode_ref *iref;
1848 struct extent_buffer *l;
1849 struct btrfs_path *path;
1851 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1856 path = btrfs_alloc_path();
1860 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1862 root = btrfs_get_fs_root(info, tree_id, true);
1864 ret = PTR_ERR(root);
1869 key.objectid = dirid;
1870 key.type = BTRFS_INODE_REF_KEY;
1871 key.offset = (u64)-1;
1874 ret = btrfs_search_backwards(root, &key, path);
1883 slot = path->slots[0];
1885 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1886 len = btrfs_inode_ref_name_len(l, iref);
1888 total_len += len + 1;
1890 ret = -ENAMETOOLONG;
1895 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1897 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1900 btrfs_release_path(path);
1901 key.objectid = key.offset;
1902 key.offset = (u64)-1;
1903 dirid = key.objectid;
1905 memmove(name, ptr, total_len);
1906 name[total_len] = '\0';
1909 btrfs_put_root(root);
1910 btrfs_free_path(path);
1914 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1915 struct inode *inode,
1916 struct btrfs_ioctl_ino_lookup_user_args *args)
1918 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1919 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1920 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1921 u64 dirid = args->dirid;
1922 unsigned long item_off;
1923 unsigned long item_len;
1924 struct btrfs_inode_ref *iref;
1925 struct btrfs_root_ref *rref;
1926 struct btrfs_root *root = NULL;
1927 struct btrfs_path *path;
1928 struct btrfs_key key, key2;
1929 struct extent_buffer *leaf;
1930 struct inode *temp_inode;
1937 path = btrfs_alloc_path();
1942 * If the bottom subvolume does not exist directly under upper_limit,
1943 * construct the path in from the bottom up.
1945 if (dirid != upper_limit) {
1946 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1948 root = btrfs_get_fs_root(fs_info, treeid, true);
1950 ret = PTR_ERR(root);
1954 key.objectid = dirid;
1955 key.type = BTRFS_INODE_REF_KEY;
1956 key.offset = (u64)-1;
1958 ret = btrfs_search_backwards(root, &key, path);
1966 leaf = path->nodes[0];
1967 slot = path->slots[0];
1969 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1970 len = btrfs_inode_ref_name_len(leaf, iref);
1972 total_len += len + 1;
1973 if (ptr < args->path) {
1974 ret = -ENAMETOOLONG;
1979 read_extent_buffer(leaf, ptr,
1980 (unsigned long)(iref + 1), len);
1982 /* Check the read+exec permission of this directory */
1983 ret = btrfs_previous_item(root, path, dirid,
1984 BTRFS_INODE_ITEM_KEY);
1987 } else if (ret > 0) {
1992 leaf = path->nodes[0];
1993 slot = path->slots[0];
1994 btrfs_item_key_to_cpu(leaf, &key2, slot);
1995 if (key2.objectid != dirid) {
2001 * We don't need the path anymore, so release it and
2002 * avoid deadlocks and lockdep warnings in case
2003 * btrfs_iget() needs to lookup the inode from its root
2004 * btree and lock the same leaf.
2006 btrfs_release_path(path);
2007 temp_inode = btrfs_iget(key2.objectid, root);
2008 if (IS_ERR(temp_inode)) {
2009 ret = PTR_ERR(temp_inode);
2012 ret = inode_permission(idmap, temp_inode,
2013 MAY_READ | MAY_EXEC);
2020 if (key.offset == upper_limit)
2022 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2027 key.objectid = key.offset;
2028 key.offset = (u64)-1;
2029 dirid = key.objectid;
2032 memmove(args->path, ptr, total_len);
2033 args->path[total_len] = '\0';
2034 btrfs_put_root(root);
2036 btrfs_release_path(path);
2039 /* Get the bottom subvolume's name from ROOT_REF */
2040 key.objectid = treeid;
2041 key.type = BTRFS_ROOT_REF_KEY;
2042 key.offset = args->treeid;
2043 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2046 } else if (ret > 0) {
2051 leaf = path->nodes[0];
2052 slot = path->slots[0];
2053 btrfs_item_key_to_cpu(leaf, &key, slot);
2055 item_off = btrfs_item_ptr_offset(leaf, slot);
2056 item_len = btrfs_item_size(leaf, slot);
2057 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2058 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2059 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2064 /* Copy subvolume's name */
2065 item_off += sizeof(struct btrfs_root_ref);
2066 item_len -= sizeof(struct btrfs_root_ref);
2067 read_extent_buffer(leaf, args->name, item_off, item_len);
2068 args->name[item_len] = 0;
2071 btrfs_put_root(root);
2073 btrfs_free_path(path);
2077 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2080 struct btrfs_ioctl_ino_lookup_args *args;
2083 args = memdup_user(argp, sizeof(*args));
2085 return PTR_ERR(args);
2088 * Unprivileged query to obtain the containing subvolume root id. The
2089 * path is reset so it's consistent with btrfs_search_path_in_tree.
2091 if (args->treeid == 0)
2092 args->treeid = btrfs_root_id(root);
2094 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2099 if (!capable(CAP_SYS_ADMIN)) {
2104 ret = btrfs_search_path_in_tree(root->fs_info,
2105 args->treeid, args->objectid,
2109 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2117 * Version of ino_lookup ioctl (unprivileged)
2119 * The main differences from ino_lookup ioctl are:
2121 * 1. Read + Exec permission will be checked using inode_permission() during
2122 * path construction. -EACCES will be returned in case of failure.
2123 * 2. Path construction will be stopped at the inode number which corresponds
2124 * to the fd with which this ioctl is called. If constructed path does not
2125 * exist under fd's inode, -EACCES will be returned.
2126 * 3. The name of bottom subvolume is also searched and filled.
2128 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2130 struct btrfs_ioctl_ino_lookup_user_args *args;
2131 struct inode *inode;
2134 args = memdup_user(argp, sizeof(*args));
2136 return PTR_ERR(args);
2138 inode = file_inode(file);
2140 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2141 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2143 * The subvolume does not exist under fd with which this is
2150 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2152 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2159 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2160 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2162 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2163 struct btrfs_fs_info *fs_info;
2164 struct btrfs_root *root;
2165 struct btrfs_path *path;
2166 struct btrfs_key key;
2167 struct btrfs_root_item *root_item;
2168 struct btrfs_root_ref *rref;
2169 struct extent_buffer *leaf;
2170 unsigned long item_off;
2171 unsigned long item_len;
2175 path = btrfs_alloc_path();
2179 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2181 btrfs_free_path(path);
2185 fs_info = BTRFS_I(inode)->root->fs_info;
2187 /* Get root_item of inode's subvolume */
2188 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2189 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2191 ret = PTR_ERR(root);
2194 root_item = &root->root_item;
2196 subvol_info->treeid = key.objectid;
2198 subvol_info->generation = btrfs_root_generation(root_item);
2199 subvol_info->flags = btrfs_root_flags(root_item);
2201 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2202 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2204 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2207 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2208 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2209 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2211 subvol_info->otransid = btrfs_root_otransid(root_item);
2212 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2213 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2215 subvol_info->stransid = btrfs_root_stransid(root_item);
2216 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2217 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2219 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2220 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2221 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2223 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2224 /* Search root tree for ROOT_BACKREF of this subvolume */
2225 key.type = BTRFS_ROOT_BACKREF_KEY;
2227 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2230 } else if (path->slots[0] >=
2231 btrfs_header_nritems(path->nodes[0])) {
2232 ret = btrfs_next_leaf(fs_info->tree_root, path);
2235 } else if (ret > 0) {
2241 leaf = path->nodes[0];
2242 slot = path->slots[0];
2243 btrfs_item_key_to_cpu(leaf, &key, slot);
2244 if (key.objectid == subvol_info->treeid &&
2245 key.type == BTRFS_ROOT_BACKREF_KEY) {
2246 subvol_info->parent_id = key.offset;
2248 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2249 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2251 item_off = btrfs_item_ptr_offset(leaf, slot)
2252 + sizeof(struct btrfs_root_ref);
2253 item_len = btrfs_item_size(leaf, slot)
2254 - sizeof(struct btrfs_root_ref);
2255 read_extent_buffer(leaf, subvol_info->name,
2256 item_off, item_len);
2263 btrfs_free_path(path);
2265 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2269 btrfs_put_root(root);
2271 btrfs_free_path(path);
2277 * Return ROOT_REF information of the subvolume containing this inode
2278 * except the subvolume name.
2280 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2283 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2284 struct btrfs_root_ref *rref;
2285 struct btrfs_path *path;
2286 struct btrfs_key key;
2287 struct extent_buffer *leaf;
2293 path = btrfs_alloc_path();
2297 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2298 if (IS_ERR(rootrefs)) {
2299 btrfs_free_path(path);
2300 return PTR_ERR(rootrefs);
2303 objectid = btrfs_root_id(root);
2304 key.objectid = objectid;
2305 key.type = BTRFS_ROOT_REF_KEY;
2306 key.offset = rootrefs->min_treeid;
2309 root = root->fs_info->tree_root;
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2313 } else if (path->slots[0] >=
2314 btrfs_header_nritems(path->nodes[0])) {
2315 ret = btrfs_next_leaf(root, path);
2318 } else if (ret > 0) {
2324 leaf = path->nodes[0];
2325 slot = path->slots[0];
2327 btrfs_item_key_to_cpu(leaf, &key, slot);
2328 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2333 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2338 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2339 rootrefs->rootref[found].treeid = key.offset;
2340 rootrefs->rootref[found].dirid =
2341 btrfs_root_ref_dirid(leaf, rref);
2344 ret = btrfs_next_item(root, path);
2347 } else if (ret > 0) {
2354 btrfs_free_path(path);
2356 if (!ret || ret == -EOVERFLOW) {
2357 rootrefs->num_items = found;
2358 /* update min_treeid for next search */
2360 rootrefs->min_treeid =
2361 rootrefs->rootref[found - 1].treeid + 1;
2362 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2371 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2375 struct dentry *parent = file->f_path.dentry;
2376 struct dentry *dentry;
2377 struct inode *dir = d_inode(parent);
2378 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2379 struct inode *inode;
2380 struct btrfs_root *root = BTRFS_I(dir)->root;
2381 struct btrfs_root *dest = NULL;
2382 struct btrfs_ioctl_vol_args *vol_args = NULL;
2383 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2384 struct mnt_idmap *idmap = file_mnt_idmap(file);
2385 char *subvol_name, *subvol_name_ptr = NULL;
2388 bool destroy_parent = false;
2390 /* We don't support snapshots with extent tree v2 yet. */
2391 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2393 "extent tree v2 doesn't support snapshot deletion yet");
2398 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2399 if (IS_ERR(vol_args2))
2400 return PTR_ERR(vol_args2);
2402 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2408 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2409 * name, same as v1 currently does.
2411 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2412 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2415 subvol_name = vol_args2->name;
2417 ret = mnt_want_write_file(file);
2421 struct inode *old_dir;
2423 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2428 ret = mnt_want_write_file(file);
2432 dentry = btrfs_get_dentry(fs_info->sb,
2433 BTRFS_FIRST_FREE_OBJECTID,
2434 vol_args2->subvolid, 0);
2435 if (IS_ERR(dentry)) {
2436 ret = PTR_ERR(dentry);
2437 goto out_drop_write;
2441 * Change the default parent since the subvolume being
2442 * deleted can be outside of the current mount point.
2444 parent = btrfs_get_parent(dentry);
2447 * At this point dentry->d_name can point to '/' if the
2448 * subvolume we want to destroy is outsite of the
2449 * current mount point, so we need to release the
2450 * current dentry and execute the lookup to return a new
2451 * one with ->d_name pointing to the
2452 * <mount point>/subvol_name.
2455 if (IS_ERR(parent)) {
2456 ret = PTR_ERR(parent);
2457 goto out_drop_write;
2460 dir = d_inode(parent);
2463 * If v2 was used with SPEC_BY_ID, a new parent was
2464 * allocated since the subvolume can be outside of the
2465 * current mount point. Later on we need to release this
2466 * new parent dentry.
2468 destroy_parent = true;
2471 * On idmapped mounts, deletion via subvolid is
2472 * restricted to subvolumes that are immediate
2473 * ancestors of the inode referenced by the file
2474 * descriptor in the ioctl. Otherwise the idmapping
2475 * could potentially be abused to delete subvolumes
2476 * anywhere in the filesystem the user wouldn't be able
2477 * to delete without an idmapped mount.
2479 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2484 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2485 fs_info, vol_args2->subvolid);
2486 if (IS_ERR(subvol_name_ptr)) {
2487 ret = PTR_ERR(subvol_name_ptr);
2490 /* subvol_name_ptr is already nul terminated */
2491 subvol_name = (char *)kbasename(subvol_name_ptr);
2494 vol_args = memdup_user(arg, sizeof(*vol_args));
2495 if (IS_ERR(vol_args))
2496 return PTR_ERR(vol_args);
2498 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2502 subvol_name = vol_args->name;
2504 ret = mnt_want_write_file(file);
2509 subvol_namelen = strlen(subvol_name);
2511 if (strchr(subvol_name, '/') ||
2512 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2514 goto free_subvol_name;
2517 if (!S_ISDIR(dir->i_mode)) {
2519 goto free_subvol_name;
2522 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2524 goto free_subvol_name;
2525 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2526 if (IS_ERR(dentry)) {
2527 ret = PTR_ERR(dentry);
2528 goto out_unlock_dir;
2531 if (d_really_is_negative(dentry)) {
2536 inode = d_inode(dentry);
2537 dest = BTRFS_I(inode)->root;
2538 if (!capable(CAP_SYS_ADMIN)) {
2540 * Regular user. Only allow this with a special mount
2541 * option, when the user has write+exec access to the
2542 * subvol root, and when rmdir(2) would have been
2545 * Note that this is _not_ check that the subvol is
2546 * empty or doesn't contain data that we wouldn't
2547 * otherwise be able to delete.
2549 * Users who want to delete empty subvols should try
2553 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2557 * Do not allow deletion if the parent dir is the same
2558 * as the dir to be deleted. That means the ioctl
2559 * must be called on the dentry referencing the root
2560 * of the subvol, not a random directory contained
2567 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2572 /* check if subvolume may be deleted by a user */
2573 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2577 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2582 btrfs_inode_lock(BTRFS_I(inode), 0);
2583 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2584 btrfs_inode_unlock(BTRFS_I(inode), 0);
2586 d_delete_notify(dir, dentry);
2591 btrfs_inode_unlock(BTRFS_I(dir), 0);
2593 kfree(subvol_name_ptr);
2598 mnt_drop_write_file(file);
2605 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2607 struct inode *inode = file_inode(file);
2608 struct btrfs_root *root = BTRFS_I(inode)->root;
2609 struct btrfs_ioctl_defrag_range_args range = {0};
2612 ret = mnt_want_write_file(file);
2616 if (btrfs_root_readonly(root)) {
2621 switch (inode->i_mode & S_IFMT) {
2623 if (!capable(CAP_SYS_ADMIN)) {
2627 ret = btrfs_defrag_root(root);
2631 * Note that this does not check the file descriptor for write
2632 * access. This prevents defragmenting executables that are
2633 * running and allows defrag on files open in read-only mode.
2635 if (!capable(CAP_SYS_ADMIN) &&
2636 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2642 if (copy_from_user(&range, argp, sizeof(range))) {
2646 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2650 /* compression requires us to start the IO */
2651 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2652 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2653 range.extent_thresh = (u32)-1;
2656 /* the rest are all set to zero by kzalloc */
2657 range.len = (u64)-1;
2659 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2660 &range, BTRFS_OLDEST_GENERATION, 0);
2668 mnt_drop_write_file(file);
2672 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2674 struct btrfs_ioctl_vol_args *vol_args;
2675 bool restore_op = false;
2678 if (!capable(CAP_SYS_ADMIN))
2681 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2682 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2686 if (fs_info->fs_devices->temp_fsid) {
2688 "device add not supported on cloned temp-fsid mount");
2692 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2693 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2694 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2697 * We can do the device add because we have a paused balanced,
2698 * change the exclusive op type and remember we should bring
2699 * back the paused balance
2701 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2702 btrfs_exclop_start_unlock(fs_info);
2706 vol_args = memdup_user(arg, sizeof(*vol_args));
2707 if (IS_ERR(vol_args)) {
2708 ret = PTR_ERR(vol_args);
2712 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2716 ret = btrfs_init_new_device(fs_info, vol_args->name);
2719 btrfs_info(fs_info, "disk added %s", vol_args->name);
2725 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2727 btrfs_exclop_finish(fs_info);
2731 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2733 BTRFS_DEV_LOOKUP_ARGS(args);
2734 struct inode *inode = file_inode(file);
2735 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2736 struct btrfs_ioctl_vol_args_v2 *vol_args;
2737 struct file *bdev_file = NULL;
2739 bool cancel = false;
2741 if (!capable(CAP_SYS_ADMIN))
2744 vol_args = memdup_user(arg, sizeof(*vol_args));
2745 if (IS_ERR(vol_args))
2746 return PTR_ERR(vol_args);
2748 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2753 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2757 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2758 args.devid = vol_args->devid;
2759 } else if (!strcmp("cancel", vol_args->name)) {
2762 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2767 ret = mnt_want_write_file(file);
2771 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2776 /* Exclusive operation is now claimed */
2777 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2779 btrfs_exclop_finish(fs_info);
2782 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2783 btrfs_info(fs_info, "device deleted: id %llu",
2786 btrfs_info(fs_info, "device deleted: %s",
2790 mnt_drop_write_file(file);
2794 btrfs_put_dev_args_from_path(&args);
2799 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2801 BTRFS_DEV_LOOKUP_ARGS(args);
2802 struct inode *inode = file_inode(file);
2803 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2804 struct btrfs_ioctl_vol_args *vol_args;
2805 struct file *bdev_file = NULL;
2807 bool cancel = false;
2809 if (!capable(CAP_SYS_ADMIN))
2812 vol_args = memdup_user(arg, sizeof(*vol_args));
2813 if (IS_ERR(vol_args))
2814 return PTR_ERR(vol_args);
2816 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2820 if (!strcmp("cancel", vol_args->name)) {
2823 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2828 ret = mnt_want_write_file(file);
2832 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2835 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2837 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2838 btrfs_exclop_finish(fs_info);
2841 mnt_drop_write_file(file);
2845 btrfs_put_dev_args_from_path(&args);
2851 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2854 struct btrfs_ioctl_fs_info_args *fi_args;
2855 struct btrfs_device *device;
2856 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2860 fi_args = memdup_user(arg, sizeof(*fi_args));
2861 if (IS_ERR(fi_args))
2862 return PTR_ERR(fi_args);
2864 flags_in = fi_args->flags;
2865 memset(fi_args, 0, sizeof(*fi_args));
2868 fi_args->num_devices = fs_devices->num_devices;
2870 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2871 if (device->devid > fi_args->max_id)
2872 fi_args->max_id = device->devid;
2876 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2877 fi_args->nodesize = fs_info->nodesize;
2878 fi_args->sectorsize = fs_info->sectorsize;
2879 fi_args->clone_alignment = fs_info->sectorsize;
2881 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2882 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2883 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2884 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2887 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2888 fi_args->generation = btrfs_get_fs_generation(fs_info);
2889 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2892 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2893 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2894 sizeof(fi_args->metadata_uuid));
2895 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2898 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2905 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2908 BTRFS_DEV_LOOKUP_ARGS(args);
2909 struct btrfs_ioctl_dev_info_args *di_args;
2910 struct btrfs_device *dev;
2913 di_args = memdup_user(arg, sizeof(*di_args));
2914 if (IS_ERR(di_args))
2915 return PTR_ERR(di_args);
2917 args.devid = di_args->devid;
2918 if (!btrfs_is_empty_uuid(di_args->uuid))
2919 args.uuid = di_args->uuid;
2922 dev = btrfs_find_device(fs_info->fs_devices, &args);
2928 di_args->devid = dev->devid;
2929 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2930 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2931 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2932 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2934 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2936 di_args->path[0] = '\0';
2940 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2947 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2949 struct inode *inode = file_inode(file);
2950 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2951 struct btrfs_root *root = BTRFS_I(inode)->root;
2952 struct btrfs_root *new_root;
2953 struct btrfs_dir_item *di;
2954 struct btrfs_trans_handle *trans;
2955 struct btrfs_path *path = NULL;
2956 struct btrfs_disk_key disk_key;
2957 struct fscrypt_str name = FSTR_INIT("default", 7);
2962 if (!capable(CAP_SYS_ADMIN))
2965 ret = mnt_want_write_file(file);
2969 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2975 objectid = BTRFS_FS_TREE_OBJECTID;
2977 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2978 if (IS_ERR(new_root)) {
2979 ret = PTR_ERR(new_root);
2982 if (!is_fstree(btrfs_root_id(new_root))) {
2987 path = btrfs_alloc_path();
2993 trans = btrfs_start_transaction(root, 1);
2994 if (IS_ERR(trans)) {
2995 ret = PTR_ERR(trans);
2999 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3000 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3002 if (IS_ERR_OR_NULL(di)) {
3003 btrfs_release_path(path);
3004 btrfs_end_transaction(trans);
3006 "Umm, you don't have the default diritem, this isn't going to work");
3011 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3012 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3013 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3014 btrfs_release_path(path);
3016 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3017 btrfs_end_transaction(trans);
3019 btrfs_put_root(new_root);
3020 btrfs_free_path(path);
3022 mnt_drop_write_file(file);
3026 static void get_block_group_info(struct list_head *groups_list,
3027 struct btrfs_ioctl_space_info *space)
3029 struct btrfs_block_group *block_group;
3031 space->total_bytes = 0;
3032 space->used_bytes = 0;
3034 list_for_each_entry(block_group, groups_list, list) {
3035 space->flags = block_group->flags;
3036 space->total_bytes += block_group->length;
3037 space->used_bytes += block_group->used;
3041 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3044 struct btrfs_ioctl_space_args space_args = { 0 };
3045 struct btrfs_ioctl_space_info space;
3046 struct btrfs_ioctl_space_info *dest;
3047 struct btrfs_ioctl_space_info *dest_orig;
3048 struct btrfs_ioctl_space_info __user *user_dest;
3049 struct btrfs_space_info *info;
3050 static const u64 types[] = {
3051 BTRFS_BLOCK_GROUP_DATA,
3052 BTRFS_BLOCK_GROUP_SYSTEM,
3053 BTRFS_BLOCK_GROUP_METADATA,
3054 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3062 if (copy_from_user(&space_args,
3063 (struct btrfs_ioctl_space_args __user *)arg,
3064 sizeof(space_args)))
3067 for (i = 0; i < num_types; i++) {
3068 struct btrfs_space_info *tmp;
3071 list_for_each_entry(tmp, &fs_info->space_info, list) {
3072 if (tmp->flags == types[i]) {
3081 down_read(&info->groups_sem);
3082 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3083 if (!list_empty(&info->block_groups[c]))
3086 up_read(&info->groups_sem);
3090 * Global block reserve, exported as a space_info
3094 /* space_slots == 0 means they are asking for a count */
3095 if (space_args.space_slots == 0) {
3096 space_args.total_spaces = slot_count;
3100 slot_count = min_t(u64, space_args.space_slots, slot_count);
3102 alloc_size = sizeof(*dest) * slot_count;
3104 /* we generally have at most 6 or so space infos, one for each raid
3105 * level. So, a whole page should be more than enough for everyone
3107 if (alloc_size > PAGE_SIZE)
3110 space_args.total_spaces = 0;
3111 dest = kmalloc(alloc_size, GFP_KERNEL);
3116 /* now we have a buffer to copy into */
3117 for (i = 0; i < num_types; i++) {
3118 struct btrfs_space_info *tmp;
3124 list_for_each_entry(tmp, &fs_info->space_info, list) {
3125 if (tmp->flags == types[i]) {
3133 down_read(&info->groups_sem);
3134 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3135 if (!list_empty(&info->block_groups[c])) {
3136 get_block_group_info(&info->block_groups[c],
3138 memcpy(dest, &space, sizeof(space));
3140 space_args.total_spaces++;
3146 up_read(&info->groups_sem);
3150 * Add global block reserve
3153 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3155 spin_lock(&block_rsv->lock);
3156 space.total_bytes = block_rsv->size;
3157 space.used_bytes = block_rsv->size - block_rsv->reserved;
3158 spin_unlock(&block_rsv->lock);
3159 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3160 memcpy(dest, &space, sizeof(space));
3161 space_args.total_spaces++;
3164 user_dest = (struct btrfs_ioctl_space_info __user *)
3165 (arg + sizeof(struct btrfs_ioctl_space_args));
3167 if (copy_to_user(user_dest, dest_orig, alloc_size))
3172 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3178 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3181 struct btrfs_trans_handle *trans;
3185 * Start orphan cleanup here for the given root in case it hasn't been
3186 * started already by other means. Errors are handled in the other
3187 * functions during transaction commit.
3189 btrfs_orphan_cleanup(root);
3191 trans = btrfs_attach_transaction_barrier(root);
3192 if (IS_ERR(trans)) {
3193 if (PTR_ERR(trans) != -ENOENT)
3194 return PTR_ERR(trans);
3196 /* No running transaction, don't bother */
3197 transid = btrfs_get_last_trans_committed(root->fs_info);
3200 transid = trans->transid;
3201 btrfs_commit_transaction_async(trans);
3204 if (copy_to_user(argp, &transid, sizeof(transid)))
3209 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3212 /* By default wait for the current transaction. */
3216 if (copy_from_user(&transid, argp, sizeof(transid)))
3219 return btrfs_wait_for_commit(fs_info, transid);
3222 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3224 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3225 struct btrfs_ioctl_scrub_args *sa;
3228 if (!capable(CAP_SYS_ADMIN))
3231 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3232 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3236 sa = memdup_user(arg, sizeof(*sa));
3240 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3245 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3246 ret = mnt_want_write_file(file);
3251 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3252 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3256 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3257 * error. This is important as it allows user space to know how much
3258 * progress scrub has done. For example, if scrub is canceled we get
3259 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3260 * space. Later user space can inspect the progress from the structure
3261 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3262 * previously (btrfs-progs does this).
3263 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3264 * then return -EFAULT to signal the structure was not copied or it may
3265 * be corrupt and unreliable due to a partial copy.
3267 if (copy_to_user(arg, sa, sizeof(*sa)))
3270 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3271 mnt_drop_write_file(file);
3277 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3279 if (!capable(CAP_SYS_ADMIN))
3282 return btrfs_scrub_cancel(fs_info);
3285 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3288 struct btrfs_ioctl_scrub_args *sa;
3291 if (!capable(CAP_SYS_ADMIN))
3294 sa = memdup_user(arg, sizeof(*sa));
3298 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3300 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3307 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3310 struct btrfs_ioctl_get_dev_stats *sa;
3313 sa = memdup_user(arg, sizeof(*sa));
3317 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3322 ret = btrfs_get_dev_stats(fs_info, sa);
3324 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3331 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3334 struct btrfs_ioctl_dev_replace_args *p;
3337 if (!capable(CAP_SYS_ADMIN))
3340 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3341 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3345 p = memdup_user(arg, sizeof(*p));
3350 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3351 if (sb_rdonly(fs_info->sb)) {
3355 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3356 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3358 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3359 btrfs_exclop_finish(fs_info);
3362 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3363 btrfs_dev_replace_status(fs_info, p);
3366 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3367 p->result = btrfs_dev_replace_cancel(fs_info);
3375 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3382 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3388 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3389 struct inode_fs_paths *ipath = NULL;
3390 struct btrfs_path *path;
3392 if (!capable(CAP_DAC_READ_SEARCH))
3395 path = btrfs_alloc_path();
3401 ipa = memdup_user(arg, sizeof(*ipa));
3408 size = min_t(u32, ipa->size, 4096);
3409 ipath = init_ipath(size, root, path);
3410 if (IS_ERR(ipath)) {
3411 ret = PTR_ERR(ipath);
3416 ret = paths_from_inode(ipa->inum, ipath);
3420 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3421 rel_ptr = ipath->fspath->val[i] -
3422 (u64)(unsigned long)ipath->fspath->val;
3423 ipath->fspath->val[i] = rel_ptr;
3426 btrfs_free_path(path);
3428 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3429 ipath->fspath, size);
3436 btrfs_free_path(path);
3443 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3444 void __user *arg, int version)
3448 struct btrfs_ioctl_logical_ino_args *loi;
3449 struct btrfs_data_container *inodes = NULL;
3450 struct btrfs_path *path = NULL;
3453 if (!capable(CAP_SYS_ADMIN))
3456 loi = memdup_user(arg, sizeof(*loi));
3458 return PTR_ERR(loi);
3461 ignore_offset = false;
3462 size = min_t(u32, loi->size, SZ_64K);
3464 /* All reserved bits must be 0 for now */
3465 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3469 /* Only accept flags we have defined so far */
3470 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3474 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3475 size = min_t(u32, loi->size, SZ_16M);
3478 inodes = init_data_container(size);
3479 if (IS_ERR(inodes)) {
3480 ret = PTR_ERR(inodes);
3484 path = btrfs_alloc_path();
3489 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3490 inodes, ignore_offset);
3491 btrfs_free_path(path);
3497 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3510 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3511 struct btrfs_ioctl_balance_args *bargs)
3513 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3515 bargs->flags = bctl->flags;
3517 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3518 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3519 if (atomic_read(&fs_info->balance_pause_req))
3520 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3521 if (atomic_read(&fs_info->balance_cancel_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3524 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3525 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3526 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3528 spin_lock(&fs_info->balance_lock);
3529 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3530 spin_unlock(&fs_info->balance_lock);
3534 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3537 * @fs_info: the filesystem
3538 * @excl_acquired: ptr to boolean value which is set to false in case balance
3541 * Return 0 on success in which case both fs_info::balance is acquired as well
3542 * as exclusive ops are blocked. In case of failure return an error code.
3544 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3549 * Exclusive operation is locked. Three possibilities:
3550 * (1) some other op is running
3551 * (2) balance is running
3552 * (3) balance is paused -- special case (think resume)
3555 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3556 *excl_acquired = true;
3557 mutex_lock(&fs_info->balance_mutex);
3561 mutex_lock(&fs_info->balance_mutex);
3562 if (fs_info->balance_ctl) {
3563 /* This is either (2) or (3) */
3564 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3570 mutex_unlock(&fs_info->balance_mutex);
3572 * Lock released to allow other waiters to
3573 * continue, we'll reexamine the status again.
3575 mutex_lock(&fs_info->balance_mutex);
3577 if (fs_info->balance_ctl &&
3578 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3580 *excl_acquired = false;
3586 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3590 mutex_unlock(&fs_info->balance_mutex);
3594 mutex_unlock(&fs_info->balance_mutex);
3595 *excl_acquired = false;
3599 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3601 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3602 struct btrfs_fs_info *fs_info = root->fs_info;
3603 struct btrfs_ioctl_balance_args *bargs;
3604 struct btrfs_balance_control *bctl;
3605 bool need_unlock = true;
3608 if (!capable(CAP_SYS_ADMIN))
3611 ret = mnt_want_write_file(file);
3615 bargs = memdup_user(arg, sizeof(*bargs));
3616 if (IS_ERR(bargs)) {
3617 ret = PTR_ERR(bargs);
3622 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3626 lockdep_assert_held(&fs_info->balance_mutex);
3628 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3629 if (!fs_info->balance_ctl) {
3634 bctl = fs_info->balance_ctl;
3635 spin_lock(&fs_info->balance_lock);
3636 bctl->flags |= BTRFS_BALANCE_RESUME;
3637 spin_unlock(&fs_info->balance_lock);
3638 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3643 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3648 if (fs_info->balance_ctl) {
3653 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3659 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3660 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3661 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3663 bctl->flags = bargs->flags;
3666 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3667 * bctl is freed in reset_balance_state, or, if restriper was paused
3668 * all the way until unmount, in free_fs_info. The flag should be
3669 * cleared after reset_balance_state.
3671 need_unlock = false;
3673 ret = btrfs_balance(fs_info, bctl, bargs);
3676 if (ret == 0 || ret == -ECANCELED) {
3677 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3683 mutex_unlock(&fs_info->balance_mutex);
3685 btrfs_exclop_finish(fs_info);
3687 mnt_drop_write_file(file);
3692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3694 if (!capable(CAP_SYS_ADMIN))
3698 case BTRFS_BALANCE_CTL_PAUSE:
3699 return btrfs_pause_balance(fs_info);
3700 case BTRFS_BALANCE_CTL_CANCEL:
3701 return btrfs_cancel_balance(fs_info);
3707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3710 struct btrfs_ioctl_balance_args *bargs;
3713 if (!capable(CAP_SYS_ADMIN))
3716 mutex_lock(&fs_info->balance_mutex);
3717 if (!fs_info->balance_ctl) {
3722 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3728 btrfs_update_ioctl_balance_args(fs_info, bargs);
3730 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3735 mutex_unlock(&fs_info->balance_mutex);
3739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3741 struct inode *inode = file_inode(file);
3742 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3743 struct btrfs_ioctl_quota_ctl_args *sa;
3746 if (!capable(CAP_SYS_ADMIN))
3749 ret = mnt_want_write_file(file);
3753 sa = memdup_user(arg, sizeof(*sa));
3760 case BTRFS_QUOTA_CTL_ENABLE:
3761 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3762 down_write(&fs_info->subvol_sem);
3763 ret = btrfs_quota_enable(fs_info, sa);
3764 up_write(&fs_info->subvol_sem);
3766 case BTRFS_QUOTA_CTL_DISABLE:
3768 * Lock the cleaner mutex to prevent races with concurrent
3769 * relocation, because relocation may be building backrefs for
3770 * blocks of the quota root while we are deleting the root. This
3771 * is like dropping fs roots of deleted snapshots/subvolumes, we
3772 * need the same protection.
3774 * This also prevents races between concurrent tasks trying to
3775 * disable quotas, because we will unlock and relock
3776 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3778 * We take this here because we have the dependency of
3780 * inode_lock -> subvol_sem
3782 * because of rename. With relocation we can prealloc extents,
3783 * so that makes the dependency chain
3785 * cleaner_mutex -> inode_lock -> subvol_sem
3787 * so we must take the cleaner_mutex here before we take the
3788 * subvol_sem. The deadlock can't actually happen, but this
3791 mutex_lock(&fs_info->cleaner_mutex);
3792 down_write(&fs_info->subvol_sem);
3793 ret = btrfs_quota_disable(fs_info);
3794 up_write(&fs_info->subvol_sem);
3795 mutex_unlock(&fs_info->cleaner_mutex);
3804 mnt_drop_write_file(file);
3809 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3810 * done before any operations.
3812 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3816 mutex_lock(&fs_info->qgroup_ioctl_lock);
3817 if (!fs_info->quota_root)
3819 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3824 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3826 struct inode *inode = file_inode(file);
3827 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3828 struct btrfs_root *root = BTRFS_I(inode)->root;
3829 struct btrfs_ioctl_qgroup_assign_args *sa;
3830 struct btrfs_qgroup_list *prealloc = NULL;
3831 struct btrfs_trans_handle *trans;
3835 if (!capable(CAP_SYS_ADMIN))
3838 if (!qgroup_enabled(root->fs_info))
3841 ret = mnt_want_write_file(file);
3845 sa = memdup_user(arg, sizeof(*sa));
3852 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3859 trans = btrfs_join_transaction(root);
3860 if (IS_ERR(trans)) {
3861 ret = PTR_ERR(trans);
3866 * Prealloc ownership is moved to the relation handler, there it's used
3867 * or freed on error.
3870 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3873 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3876 /* update qgroup status and info */
3877 mutex_lock(&fs_info->qgroup_ioctl_lock);
3878 err = btrfs_run_qgroups(trans);
3879 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3882 "qgroup status update failed after %s relation, marked as inconsistent",
3883 sa->assign ? "adding" : "deleting");
3884 err = btrfs_end_transaction(trans);
3892 mnt_drop_write_file(file);
3896 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3898 struct inode *inode = file_inode(file);
3899 struct btrfs_root *root = BTRFS_I(inode)->root;
3900 struct btrfs_ioctl_qgroup_create_args *sa;
3901 struct btrfs_trans_handle *trans;
3905 if (!capable(CAP_SYS_ADMIN))
3908 if (!qgroup_enabled(root->fs_info))
3911 ret = mnt_want_write_file(file);
3915 sa = memdup_user(arg, sizeof(*sa));
3921 if (!sa->qgroupid) {
3926 if (sa->create && is_fstree(sa->qgroupid)) {
3931 trans = btrfs_join_transaction(root);
3932 if (IS_ERR(trans)) {
3933 ret = PTR_ERR(trans);
3938 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3940 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3943 err = btrfs_end_transaction(trans);
3950 mnt_drop_write_file(file);
3954 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3956 struct inode *inode = file_inode(file);
3957 struct btrfs_root *root = BTRFS_I(inode)->root;
3958 struct btrfs_ioctl_qgroup_limit_args *sa;
3959 struct btrfs_trans_handle *trans;
3964 if (!capable(CAP_SYS_ADMIN))
3967 if (!qgroup_enabled(root->fs_info))
3970 ret = mnt_want_write_file(file);
3974 sa = memdup_user(arg, sizeof(*sa));
3980 trans = btrfs_join_transaction(root);
3981 if (IS_ERR(trans)) {
3982 ret = PTR_ERR(trans);
3986 qgroupid = sa->qgroupid;
3988 /* take the current subvol as qgroup */
3989 qgroupid = btrfs_root_id(root);
3992 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3994 err = btrfs_end_transaction(trans);
4001 mnt_drop_write_file(file);
4005 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4007 struct inode *inode = file_inode(file);
4008 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4009 struct btrfs_ioctl_quota_rescan_args *qsa;
4012 if (!capable(CAP_SYS_ADMIN))
4015 if (!qgroup_enabled(fs_info))
4018 ret = mnt_want_write_file(file);
4022 qsa = memdup_user(arg, sizeof(*qsa));
4033 ret = btrfs_qgroup_rescan(fs_info);
4038 mnt_drop_write_file(file);
4042 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4045 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4047 if (!capable(CAP_SYS_ADMIN))
4050 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4052 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4055 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4061 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4064 if (!capable(CAP_SYS_ADMIN))
4067 return btrfs_qgroup_wait_for_completion(fs_info, true);
4070 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4071 struct mnt_idmap *idmap,
4072 struct btrfs_ioctl_received_subvol_args *sa)
4074 struct inode *inode = file_inode(file);
4075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4076 struct btrfs_root *root = BTRFS_I(inode)->root;
4077 struct btrfs_root_item *root_item = &root->root_item;
4078 struct btrfs_trans_handle *trans;
4079 struct timespec64 ct = current_time(inode);
4081 int received_uuid_changed;
4083 if (!inode_owner_or_capable(idmap, inode))
4086 ret = mnt_want_write_file(file);
4090 down_write(&fs_info->subvol_sem);
4092 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4097 if (btrfs_root_readonly(root)) {
4104 * 2 - uuid items (received uuid + subvol uuid)
4106 trans = btrfs_start_transaction(root, 3);
4107 if (IS_ERR(trans)) {
4108 ret = PTR_ERR(trans);
4113 sa->rtransid = trans->transid;
4114 sa->rtime.sec = ct.tv_sec;
4115 sa->rtime.nsec = ct.tv_nsec;
4117 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4119 if (received_uuid_changed &&
4120 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4121 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4122 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4123 btrfs_root_id(root));
4124 if (ret && ret != -ENOENT) {
4125 btrfs_abort_transaction(trans, ret);
4126 btrfs_end_transaction(trans);
4130 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4131 btrfs_set_root_stransid(root_item, sa->stransid);
4132 btrfs_set_root_rtransid(root_item, sa->rtransid);
4133 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4134 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4135 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4136 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4138 ret = btrfs_update_root(trans, fs_info->tree_root,
4139 &root->root_key, &root->root_item);
4141 btrfs_end_transaction(trans);
4144 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4145 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4146 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4147 btrfs_root_id(root));
4148 if (ret < 0 && ret != -EEXIST) {
4149 btrfs_abort_transaction(trans, ret);
4150 btrfs_end_transaction(trans);
4154 ret = btrfs_commit_transaction(trans);
4156 up_write(&fs_info->subvol_sem);
4157 mnt_drop_write_file(file);
4162 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4165 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4166 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4169 args32 = memdup_user(arg, sizeof(*args32));
4171 return PTR_ERR(args32);
4173 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4179 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4180 args64->stransid = args32->stransid;
4181 args64->rtransid = args32->rtransid;
4182 args64->stime.sec = args32->stime.sec;
4183 args64->stime.nsec = args32->stime.nsec;
4184 args64->rtime.sec = args32->rtime.sec;
4185 args64->rtime.nsec = args32->rtime.nsec;
4186 args64->flags = args32->flags;
4188 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4192 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4193 args32->stransid = args64->stransid;
4194 args32->rtransid = args64->rtransid;
4195 args32->stime.sec = args64->stime.sec;
4196 args32->stime.nsec = args64->stime.nsec;
4197 args32->rtime.sec = args64->rtime.sec;
4198 args32->rtime.nsec = args64->rtime.nsec;
4199 args32->flags = args64->flags;
4201 ret = copy_to_user(arg, args32, sizeof(*args32));
4212 static long btrfs_ioctl_set_received_subvol(struct file *file,
4215 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4218 sa = memdup_user(arg, sizeof(*sa));
4222 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4227 ret = copy_to_user(arg, sa, sizeof(*sa));
4236 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4241 char label[BTRFS_LABEL_SIZE];
4243 spin_lock(&fs_info->super_lock);
4244 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4245 spin_unlock(&fs_info->super_lock);
4247 len = strnlen(label, BTRFS_LABEL_SIZE);
4249 if (len == BTRFS_LABEL_SIZE) {
4251 "label is too long, return the first %zu bytes",
4255 ret = copy_to_user(arg, label, len);
4257 return ret ? -EFAULT : 0;
4260 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4262 struct inode *inode = file_inode(file);
4263 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4264 struct btrfs_root *root = BTRFS_I(inode)->root;
4265 struct btrfs_super_block *super_block = fs_info->super_copy;
4266 struct btrfs_trans_handle *trans;
4267 char label[BTRFS_LABEL_SIZE];
4270 if (!capable(CAP_SYS_ADMIN))
4273 if (copy_from_user(label, arg, sizeof(label)))
4276 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4278 "unable to set label with more than %d bytes",
4279 BTRFS_LABEL_SIZE - 1);
4283 ret = mnt_want_write_file(file);
4287 trans = btrfs_start_transaction(root, 0);
4288 if (IS_ERR(trans)) {
4289 ret = PTR_ERR(trans);
4293 spin_lock(&fs_info->super_lock);
4294 strcpy(super_block->label, label);
4295 spin_unlock(&fs_info->super_lock);
4296 ret = btrfs_commit_transaction(trans);
4299 mnt_drop_write_file(file);
4303 #define INIT_FEATURE_FLAGS(suffix) \
4304 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4305 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4306 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4308 int btrfs_ioctl_get_supported_features(void __user *arg)
4310 static const struct btrfs_ioctl_feature_flags features[3] = {
4311 INIT_FEATURE_FLAGS(SUPP),
4312 INIT_FEATURE_FLAGS(SAFE_SET),
4313 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4316 if (copy_to_user(arg, &features, sizeof(features)))
4322 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4325 struct btrfs_super_block *super_block = fs_info->super_copy;
4326 struct btrfs_ioctl_feature_flags features;
4328 features.compat_flags = btrfs_super_compat_flags(super_block);
4329 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4330 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4332 if (copy_to_user(arg, &features, sizeof(features)))
4338 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4339 enum btrfs_feature_set set,
4340 u64 change_mask, u64 flags, u64 supported_flags,
4341 u64 safe_set, u64 safe_clear)
4343 const char *type = btrfs_feature_set_name(set);
4345 u64 disallowed, unsupported;
4346 u64 set_mask = flags & change_mask;
4347 u64 clear_mask = ~flags & change_mask;
4349 unsupported = set_mask & ~supported_flags;
4351 names = btrfs_printable_features(set, unsupported);
4354 "this kernel does not support the %s feature bit%s",
4355 names, strchr(names, ',') ? "s" : "");
4359 "this kernel does not support %s bits 0x%llx",
4364 disallowed = set_mask & ~safe_set;
4366 names = btrfs_printable_features(set, disallowed);
4369 "can't set the %s feature bit%s while mounted",
4370 names, strchr(names, ',') ? "s" : "");
4374 "can't set %s bits 0x%llx while mounted",
4379 disallowed = clear_mask & ~safe_clear;
4381 names = btrfs_printable_features(set, disallowed);
4384 "can't clear the %s feature bit%s while mounted",
4385 names, strchr(names, ',') ? "s" : "");
4389 "can't clear %s bits 0x%llx while mounted",
4397 #define check_feature(fs_info, change_mask, flags, mask_base) \
4398 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4399 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4400 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4401 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4403 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4405 struct inode *inode = file_inode(file);
4406 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4407 struct btrfs_root *root = BTRFS_I(inode)->root;
4408 struct btrfs_super_block *super_block = fs_info->super_copy;
4409 struct btrfs_ioctl_feature_flags flags[2];
4410 struct btrfs_trans_handle *trans;
4414 if (!capable(CAP_SYS_ADMIN))
4417 if (copy_from_user(flags, arg, sizeof(flags)))
4421 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4422 !flags[0].incompat_flags)
4425 ret = check_feature(fs_info, flags[0].compat_flags,
4426 flags[1].compat_flags, COMPAT);
4430 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4431 flags[1].compat_ro_flags, COMPAT_RO);
4435 ret = check_feature(fs_info, flags[0].incompat_flags,
4436 flags[1].incompat_flags, INCOMPAT);
4440 ret = mnt_want_write_file(file);
4444 trans = btrfs_start_transaction(root, 0);
4445 if (IS_ERR(trans)) {
4446 ret = PTR_ERR(trans);
4447 goto out_drop_write;
4450 spin_lock(&fs_info->super_lock);
4451 newflags = btrfs_super_compat_flags(super_block);
4452 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4453 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4454 btrfs_set_super_compat_flags(super_block, newflags);
4456 newflags = btrfs_super_compat_ro_flags(super_block);
4457 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4458 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4459 btrfs_set_super_compat_ro_flags(super_block, newflags);
4461 newflags = btrfs_super_incompat_flags(super_block);
4462 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4463 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4464 btrfs_set_super_incompat_flags(super_block, newflags);
4465 spin_unlock(&fs_info->super_lock);
4467 ret = btrfs_commit_transaction(trans);
4469 mnt_drop_write_file(file);
4474 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4476 struct btrfs_ioctl_send_args *arg;
4480 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4481 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4483 ret = copy_from_user(&args32, argp, sizeof(args32));
4486 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4489 arg->send_fd = args32.send_fd;
4490 arg->clone_sources_count = args32.clone_sources_count;
4491 arg->clone_sources = compat_ptr(args32.clone_sources);
4492 arg->parent_root = args32.parent_root;
4493 arg->flags = args32.flags;
4494 arg->version = args32.version;
4495 memcpy(arg->reserved, args32.reserved,
4496 sizeof(args32.reserved));
4501 arg = memdup_user(argp, sizeof(*arg));
4503 return PTR_ERR(arg);
4505 ret = btrfs_ioctl_send(inode, arg);
4510 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4513 struct btrfs_ioctl_encoded_io_args args = { 0 };
4514 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4517 struct iovec iovstack[UIO_FASTIOV];
4518 struct iovec *iov = iovstack;
4519 struct iov_iter iter;
4524 if (!capable(CAP_SYS_ADMIN)) {
4530 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4531 struct btrfs_ioctl_encoded_io_args_32 args32;
4533 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4535 if (copy_from_user(&args32, argp, copy_end)) {
4539 args.iov = compat_ptr(args32.iov);
4540 args.iovcnt = args32.iovcnt;
4541 args.offset = args32.offset;
4542 args.flags = args32.flags;
4547 copy_end = copy_end_kernel;
4548 if (copy_from_user(&args, argp, copy_end)) {
4553 if (args.flags != 0) {
4558 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4563 if (iov_iter_count(&iter) == 0) {
4568 ret = rw_verify_area(READ, file, &pos, args.len);
4572 init_sync_kiocb(&kiocb, file);
4575 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4577 fsnotify_access(file);
4578 if (copy_to_user(argp + copy_end,
4579 (char *)&args + copy_end_kernel,
4580 sizeof(args) - copy_end_kernel))
4588 add_rchar(current, ret);
4593 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4595 struct btrfs_ioctl_encoded_io_args args;
4596 struct iovec iovstack[UIO_FASTIOV];
4597 struct iovec *iov = iovstack;
4598 struct iov_iter iter;
4603 if (!capable(CAP_SYS_ADMIN)) {
4608 if (!(file->f_mode & FMODE_WRITE)) {
4614 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4615 struct btrfs_ioctl_encoded_io_args_32 args32;
4617 if (copy_from_user(&args32, argp, sizeof(args32))) {
4621 args.iov = compat_ptr(args32.iov);
4622 args.iovcnt = args32.iovcnt;
4623 args.offset = args32.offset;
4624 args.flags = args32.flags;
4625 args.len = args32.len;
4626 args.unencoded_len = args32.unencoded_len;
4627 args.unencoded_offset = args32.unencoded_offset;
4628 args.compression = args32.compression;
4629 args.encryption = args32.encryption;
4630 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4635 if (copy_from_user(&args, argp, sizeof(args))) {
4642 if (args.flags != 0)
4644 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4646 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4647 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4649 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4650 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4652 if (args.unencoded_offset > args.unencoded_len)
4654 if (args.len > args.unencoded_len - args.unencoded_offset)
4657 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4662 if (iov_iter_count(&iter) == 0) {
4667 ret = rw_verify_area(WRITE, file, &pos, args.len);
4671 init_sync_kiocb(&kiocb, file);
4672 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4677 file_start_write(file);
4679 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4681 fsnotify_modify(file);
4683 file_end_write(file);
4688 add_wchar(current, ret);
4693 long btrfs_ioctl(struct file *file, unsigned int
4694 cmd, unsigned long arg)
4696 struct inode *inode = file_inode(file);
4697 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4698 struct btrfs_root *root = BTRFS_I(inode)->root;
4699 void __user *argp = (void __user *)arg;
4702 case FS_IOC_GETVERSION:
4703 return btrfs_ioctl_getversion(inode, argp);
4704 case FS_IOC_GETFSLABEL:
4705 return btrfs_ioctl_get_fslabel(fs_info, argp);
4706 case FS_IOC_SETFSLABEL:
4707 return btrfs_ioctl_set_fslabel(file, argp);
4709 return btrfs_ioctl_fitrim(fs_info, argp);
4710 case BTRFS_IOC_SNAP_CREATE:
4711 return btrfs_ioctl_snap_create(file, argp, 0);
4712 case BTRFS_IOC_SNAP_CREATE_V2:
4713 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4714 case BTRFS_IOC_SUBVOL_CREATE:
4715 return btrfs_ioctl_snap_create(file, argp, 1);
4716 case BTRFS_IOC_SUBVOL_CREATE_V2:
4717 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4718 case BTRFS_IOC_SNAP_DESTROY:
4719 return btrfs_ioctl_snap_destroy(file, argp, false);
4720 case BTRFS_IOC_SNAP_DESTROY_V2:
4721 return btrfs_ioctl_snap_destroy(file, argp, true);
4722 case BTRFS_IOC_SUBVOL_GETFLAGS:
4723 return btrfs_ioctl_subvol_getflags(inode, argp);
4724 case BTRFS_IOC_SUBVOL_SETFLAGS:
4725 return btrfs_ioctl_subvol_setflags(file, argp);
4726 case BTRFS_IOC_DEFAULT_SUBVOL:
4727 return btrfs_ioctl_default_subvol(file, argp);
4728 case BTRFS_IOC_DEFRAG:
4729 return btrfs_ioctl_defrag(file, NULL);
4730 case BTRFS_IOC_DEFRAG_RANGE:
4731 return btrfs_ioctl_defrag(file, argp);
4732 case BTRFS_IOC_RESIZE:
4733 return btrfs_ioctl_resize(file, argp);
4734 case BTRFS_IOC_ADD_DEV:
4735 return btrfs_ioctl_add_dev(fs_info, argp);
4736 case BTRFS_IOC_RM_DEV:
4737 return btrfs_ioctl_rm_dev(file, argp);
4738 case BTRFS_IOC_RM_DEV_V2:
4739 return btrfs_ioctl_rm_dev_v2(file, argp);
4740 case BTRFS_IOC_FS_INFO:
4741 return btrfs_ioctl_fs_info(fs_info, argp);
4742 case BTRFS_IOC_DEV_INFO:
4743 return btrfs_ioctl_dev_info(fs_info, argp);
4744 case BTRFS_IOC_TREE_SEARCH:
4745 return btrfs_ioctl_tree_search(inode, argp);
4746 case BTRFS_IOC_TREE_SEARCH_V2:
4747 return btrfs_ioctl_tree_search_v2(inode, argp);
4748 case BTRFS_IOC_INO_LOOKUP:
4749 return btrfs_ioctl_ino_lookup(root, argp);
4750 case BTRFS_IOC_INO_PATHS:
4751 return btrfs_ioctl_ino_to_path(root, argp);
4752 case BTRFS_IOC_LOGICAL_INO:
4753 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4754 case BTRFS_IOC_LOGICAL_INO_V2:
4755 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4756 case BTRFS_IOC_SPACE_INFO:
4757 return btrfs_ioctl_space_info(fs_info, argp);
4758 case BTRFS_IOC_SYNC: {
4761 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4764 ret = btrfs_sync_fs(inode->i_sb, 1);
4766 * There may be work for the cleaner kthread to do (subvolume
4767 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
4769 wake_up_process(fs_info->cleaner_kthread);
4772 case BTRFS_IOC_START_SYNC:
4773 return btrfs_ioctl_start_sync(root, argp);
4774 case BTRFS_IOC_WAIT_SYNC:
4775 return btrfs_ioctl_wait_sync(fs_info, argp);
4776 case BTRFS_IOC_SCRUB:
4777 return btrfs_ioctl_scrub(file, argp);
4778 case BTRFS_IOC_SCRUB_CANCEL:
4779 return btrfs_ioctl_scrub_cancel(fs_info);
4780 case BTRFS_IOC_SCRUB_PROGRESS:
4781 return btrfs_ioctl_scrub_progress(fs_info, argp);
4782 case BTRFS_IOC_BALANCE_V2:
4783 return btrfs_ioctl_balance(file, argp);
4784 case BTRFS_IOC_BALANCE_CTL:
4785 return btrfs_ioctl_balance_ctl(fs_info, arg);
4786 case BTRFS_IOC_BALANCE_PROGRESS:
4787 return btrfs_ioctl_balance_progress(fs_info, argp);
4788 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4789 return btrfs_ioctl_set_received_subvol(file, argp);
4791 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4792 return btrfs_ioctl_set_received_subvol_32(file, argp);
4794 case BTRFS_IOC_SEND:
4795 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
4796 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4797 case BTRFS_IOC_SEND_32:
4798 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
4800 case BTRFS_IOC_GET_DEV_STATS:
4801 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4802 case BTRFS_IOC_QUOTA_CTL:
4803 return btrfs_ioctl_quota_ctl(file, argp);
4804 case BTRFS_IOC_QGROUP_ASSIGN:
4805 return btrfs_ioctl_qgroup_assign(file, argp);
4806 case BTRFS_IOC_QGROUP_CREATE:
4807 return btrfs_ioctl_qgroup_create(file, argp);
4808 case BTRFS_IOC_QGROUP_LIMIT:
4809 return btrfs_ioctl_qgroup_limit(file, argp);
4810 case BTRFS_IOC_QUOTA_RESCAN:
4811 return btrfs_ioctl_quota_rescan(file, argp);
4812 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4813 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4814 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4815 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4816 case BTRFS_IOC_DEV_REPLACE:
4817 return btrfs_ioctl_dev_replace(fs_info, argp);
4818 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4819 return btrfs_ioctl_get_supported_features(argp);
4820 case BTRFS_IOC_GET_FEATURES:
4821 return btrfs_ioctl_get_features(fs_info, argp);
4822 case BTRFS_IOC_SET_FEATURES:
4823 return btrfs_ioctl_set_features(file, argp);
4824 case BTRFS_IOC_GET_SUBVOL_INFO:
4825 return btrfs_ioctl_get_subvol_info(inode, argp);
4826 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4827 return btrfs_ioctl_get_subvol_rootref(root, argp);
4828 case BTRFS_IOC_INO_LOOKUP_USER:
4829 return btrfs_ioctl_ino_lookup_user(file, argp);
4830 case FS_IOC_ENABLE_VERITY:
4831 return fsverity_ioctl_enable(file, (const void __user *)argp);
4832 case FS_IOC_MEASURE_VERITY:
4833 return fsverity_ioctl_measure(file, argp);
4834 case BTRFS_IOC_ENCODED_READ:
4835 return btrfs_ioctl_encoded_read(file, argp, false);
4836 case BTRFS_IOC_ENCODED_WRITE:
4837 return btrfs_ioctl_encoded_write(file, argp, false);
4838 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4839 case BTRFS_IOC_ENCODED_READ_32:
4840 return btrfs_ioctl_encoded_read(file, argp, true);
4841 case BTRFS_IOC_ENCODED_WRITE_32:
4842 return btrfs_ioctl_encoded_write(file, argp, true);
4849 #ifdef CONFIG_COMPAT
4850 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4853 * These all access 32-bit values anyway so no further
4854 * handling is necessary.
4857 case FS_IOC32_GETVERSION:
4858 cmd = FS_IOC_GETVERSION;
4862 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));