1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
18 #include "free-space-cache.h"
19 #include "transaction.h"
21 #include "extent_io.h"
22 #include "space-info.h"
23 #include "block-group.h"
26 #include "inode-item.h"
27 #include "accessors.h"
28 #include "file-item.h"
32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
34 #define FORCE_EXTENT_THRESHOLD SZ_1M
36 static struct kmem_cache *btrfs_free_space_cachep;
37 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39 struct btrfs_trim_range {
42 struct list_head list;
45 static int link_free_space(struct btrfs_free_space_ctl *ctl,
46 struct btrfs_free_space *info);
47 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info, bool update_stat);
49 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *bitmap_info, u64 *offset,
51 u64 *bytes, bool for_alloc);
52 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
53 struct btrfs_free_space *bitmap_info);
54 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *info, u64 offset,
56 u64 bytes, bool update_stats);
58 static void btrfs_crc32c_final(u32 crc, u8 *result)
60 put_unaligned_le32(~crc, result);
63 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65 struct btrfs_free_space *info;
68 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
69 info = rb_entry(node, struct btrfs_free_space, offset_index);
71 unlink_free_space(ctl, info, true);
72 kmem_cache_free(btrfs_free_space_cachep, info);
74 free_bitmap(ctl, info);
77 cond_resched_lock(&ctl->tree_lock);
81 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
82 struct btrfs_path *path,
86 struct btrfs_key location;
87 struct btrfs_disk_key disk_key;
88 struct btrfs_free_space_header *header;
89 struct extent_buffer *leaf;
90 struct inode *inode = NULL;
94 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
98 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
102 btrfs_release_path(path);
103 return ERR_PTR(-ENOENT);
106 leaf = path->nodes[0];
107 header = btrfs_item_ptr(leaf, path->slots[0],
108 struct btrfs_free_space_header);
109 btrfs_free_space_key(leaf, header, &disk_key);
110 btrfs_disk_key_to_cpu(&location, &disk_key);
111 btrfs_release_path(path);
114 * We are often under a trans handle at this point, so we need to make
115 * sure NOFS is set to keep us from deadlocking.
117 nofs_flag = memalloc_nofs_save();
118 inode = btrfs_iget_path(location.objectid, root, path);
119 btrfs_release_path(path);
120 memalloc_nofs_restore(nofs_flag);
124 mapping_set_gfp_mask(inode->i_mapping,
125 mapping_gfp_constraint(inode->i_mapping,
126 ~(__GFP_FS | __GFP_HIGHMEM)));
131 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
132 struct btrfs_path *path)
134 struct btrfs_fs_info *fs_info = block_group->fs_info;
135 struct inode *inode = NULL;
136 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 spin_lock(&block_group->lock);
139 if (block_group->inode)
140 inode = igrab(&block_group->inode->vfs_inode);
141 spin_unlock(&block_group->lock);
145 inode = __lookup_free_space_inode(fs_info->tree_root, path,
150 spin_lock(&block_group->lock);
151 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
152 btrfs_info(fs_info, "Old style space inode found, converting.");
153 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
154 BTRFS_INODE_NODATACOW;
155 block_group->disk_cache_state = BTRFS_DC_CLEAR;
158 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
159 block_group->inode = BTRFS_I(igrab(inode));
160 spin_unlock(&block_group->lock);
165 static int __create_free_space_inode(struct btrfs_root *root,
166 struct btrfs_trans_handle *trans,
167 struct btrfs_path *path,
170 struct btrfs_key key;
171 struct btrfs_disk_key disk_key;
172 struct btrfs_free_space_header *header;
173 struct btrfs_inode_item *inode_item;
174 struct extent_buffer *leaf;
175 /* We inline CRCs for the free disk space cache */
176 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
177 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
180 ret = btrfs_insert_empty_inode(trans, root, path, ino);
184 leaf = path->nodes[0];
185 inode_item = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_inode_item);
187 btrfs_item_key(leaf, &disk_key, path->slots[0]);
188 memzero_extent_buffer(leaf, (unsigned long)inode_item,
189 sizeof(*inode_item));
190 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
191 btrfs_set_inode_size(leaf, inode_item, 0);
192 btrfs_set_inode_nbytes(leaf, inode_item, 0);
193 btrfs_set_inode_uid(leaf, inode_item, 0);
194 btrfs_set_inode_gid(leaf, inode_item, 0);
195 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
196 btrfs_set_inode_flags(leaf, inode_item, flags);
197 btrfs_set_inode_nlink(leaf, inode_item, 1);
198 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
199 btrfs_set_inode_block_group(leaf, inode_item, offset);
200 btrfs_mark_buffer_dirty(trans, leaf);
201 btrfs_release_path(path);
203 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 sizeof(struct btrfs_free_space_header));
209 btrfs_release_path(path);
213 leaf = path->nodes[0];
214 header = btrfs_item_ptr(leaf, path->slots[0],
215 struct btrfs_free_space_header);
216 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
217 btrfs_set_free_space_key(leaf, header, &disk_key);
218 btrfs_mark_buffer_dirty(trans, leaf);
219 btrfs_release_path(path);
224 int create_free_space_inode(struct btrfs_trans_handle *trans,
225 struct btrfs_block_group *block_group,
226 struct btrfs_path *path)
231 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
235 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
236 ino, block_group->start);
240 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
241 * handles lookup, otherwise it takes ownership and iputs the inode.
242 * Don't reuse an inode pointer after passing it into this function.
244 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 struct btrfs_block_group *block_group)
248 struct btrfs_path *path;
249 struct btrfs_key key;
252 path = btrfs_alloc_path();
257 inode = lookup_free_space_inode(block_group, path);
259 if (PTR_ERR(inode) != -ENOENT)
260 ret = PTR_ERR(inode);
263 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265 btrfs_add_delayed_iput(BTRFS_I(inode));
269 /* One for the block groups ref */
270 spin_lock(&block_group->lock);
271 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
272 block_group->inode = NULL;
273 spin_unlock(&block_group->lock);
276 spin_unlock(&block_group->lock);
278 /* One for the lookup ref */
279 btrfs_add_delayed_iput(BTRFS_I(inode));
281 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 key.offset = block_group->start;
284 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
291 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293 btrfs_free_path(path);
297 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
298 struct btrfs_block_group *block_group,
299 struct inode *vfs_inode)
301 struct btrfs_truncate_control control = {
302 .inode = BTRFS_I(vfs_inode),
304 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
305 .min_type = BTRFS_EXTENT_DATA_KEY,
306 .clear_extent_range = true,
308 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
309 struct btrfs_root *root = inode->root;
310 struct extent_state *cached_state = NULL;
315 struct btrfs_path *path = btrfs_alloc_path();
322 mutex_lock(&trans->transaction->cache_write_mutex);
323 if (!list_empty(&block_group->io_list)) {
324 list_del_init(&block_group->io_list);
326 btrfs_wait_cache_io(trans, block_group, path);
327 btrfs_put_block_group(block_group);
331 * now that we've truncated the cache away, its no longer
334 spin_lock(&block_group->lock);
335 block_group->disk_cache_state = BTRFS_DC_CLEAR;
336 spin_unlock(&block_group->lock);
337 btrfs_free_path(path);
340 btrfs_i_size_write(inode, 0);
341 truncate_pagecache(vfs_inode, 0);
343 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
344 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
347 * We skip the throttling logic for free space cache inodes, so we don't
348 * need to check for -EAGAIN.
350 ret = btrfs_truncate_inode_items(trans, root, &control);
352 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
353 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
355 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
359 ret = btrfs_update_inode(trans, inode);
363 mutex_unlock(&trans->transaction->cache_write_mutex);
365 btrfs_abort_transaction(trans, ret);
370 static void readahead_cache(struct inode *inode)
372 struct file_ra_state ra;
373 unsigned long last_index;
375 file_ra_state_init(&ra, inode->i_mapping);
376 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
381 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
386 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388 /* Make sure we can fit our crcs and generation into the first page */
389 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
392 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
398 io_ctl->num_pages = num_pages;
399 io_ctl->fs_info = inode_to_fs_info(inode);
400 io_ctl->inode = inode;
404 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408 kfree(io_ctl->pages);
409 io_ctl->pages = NULL;
412 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
420 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422 ASSERT(io_ctl->index < io_ctl->num_pages);
423 io_ctl->page = io_ctl->pages[io_ctl->index++];
424 io_ctl->cur = page_address(io_ctl->page);
425 io_ctl->orig = io_ctl->cur;
426 io_ctl->size = PAGE_SIZE;
428 clear_page(io_ctl->cur);
431 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
435 io_ctl_unmap_page(io_ctl);
437 for (i = 0; i < io_ctl->num_pages; i++) {
438 if (io_ctl->pages[i]) {
439 btrfs_folio_clear_checked(io_ctl->fs_info,
440 page_folio(io_ctl->pages[i]),
441 page_offset(io_ctl->pages[i]),
443 unlock_page(io_ctl->pages[i]);
444 put_page(io_ctl->pages[i]);
449 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
452 struct inode *inode = io_ctl->inode;
453 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
456 for (i = 0; i < io_ctl->num_pages; i++) {
459 page = find_or_create_page(inode->i_mapping, i, mask);
461 io_ctl_drop_pages(io_ctl);
465 ret = set_page_extent_mapped(page);
469 io_ctl_drop_pages(io_ctl);
473 io_ctl->pages[i] = page;
474 if (uptodate && !PageUptodate(page)) {
475 btrfs_read_folio(NULL, page_folio(page));
477 if (page->mapping != inode->i_mapping) {
478 btrfs_err(BTRFS_I(inode)->root->fs_info,
479 "free space cache page truncated");
480 io_ctl_drop_pages(io_ctl);
483 if (!PageUptodate(page)) {
484 btrfs_err(BTRFS_I(inode)->root->fs_info,
485 "error reading free space cache");
486 io_ctl_drop_pages(io_ctl);
492 for (i = 0; i < io_ctl->num_pages; i++)
493 clear_page_dirty_for_io(io_ctl->pages[i]);
498 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500 io_ctl_map_page(io_ctl, 1);
503 * Skip the csum areas. If we don't check crcs then we just have a
504 * 64bit chunk at the front of the first page.
506 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
507 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509 put_unaligned_le64(generation, io_ctl->cur);
510 io_ctl->cur += sizeof(u64);
513 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
518 * Skip the crc area. If we don't check crcs then we just have a 64bit
519 * chunk at the front of the first page.
521 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
522 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524 cache_gen = get_unaligned_le64(io_ctl->cur);
525 if (cache_gen != generation) {
526 btrfs_err_rl(io_ctl->fs_info,
527 "space cache generation (%llu) does not match inode (%llu)",
528 cache_gen, generation);
529 io_ctl_unmap_page(io_ctl);
532 io_ctl->cur += sizeof(u64);
536 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
543 offset = sizeof(u32) * io_ctl->num_pages;
545 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
546 btrfs_crc32c_final(crc, (u8 *)&crc);
547 io_ctl_unmap_page(io_ctl);
548 tmp = page_address(io_ctl->pages[0]);
553 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
560 offset = sizeof(u32) * io_ctl->num_pages;
562 tmp = page_address(io_ctl->pages[0]);
566 io_ctl_map_page(io_ctl, 0);
567 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
568 btrfs_crc32c_final(crc, (u8 *)&crc);
570 btrfs_err_rl(io_ctl->fs_info,
571 "csum mismatch on free space cache");
572 io_ctl_unmap_page(io_ctl);
579 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
582 struct btrfs_free_space_entry *entry;
588 put_unaligned_le64(offset, &entry->offset);
589 put_unaligned_le64(bytes, &entry->bytes);
590 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
591 BTRFS_FREE_SPACE_EXTENT;
592 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
593 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
598 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
600 /* No more pages to map */
601 if (io_ctl->index >= io_ctl->num_pages)
604 /* map the next page */
605 io_ctl_map_page(io_ctl, 1);
609 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
615 * If we aren't at the start of the current page, unmap this one and
616 * map the next one if there is any left.
618 if (io_ctl->cur != io_ctl->orig) {
619 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
620 if (io_ctl->index >= io_ctl->num_pages)
622 io_ctl_map_page(io_ctl, 0);
625 copy_page(io_ctl->cur, bitmap);
626 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
627 if (io_ctl->index < io_ctl->num_pages)
628 io_ctl_map_page(io_ctl, 0);
632 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
635 * If we're not on the boundary we know we've modified the page and we
636 * need to crc the page.
638 if (io_ctl->cur != io_ctl->orig)
639 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641 io_ctl_unmap_page(io_ctl);
643 while (io_ctl->index < io_ctl->num_pages) {
644 io_ctl_map_page(io_ctl, 1);
645 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
649 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
650 struct btrfs_free_space *entry, u8 *type)
652 struct btrfs_free_space_entry *e;
656 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
662 entry->offset = get_unaligned_le64(&e->offset);
663 entry->bytes = get_unaligned_le64(&e->bytes);
665 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
666 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
671 io_ctl_unmap_page(io_ctl);
676 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
677 struct btrfs_free_space *entry)
681 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
685 copy_page(entry->bitmap, io_ctl->cur);
686 io_ctl_unmap_page(io_ctl);
691 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693 struct btrfs_block_group *block_group = ctl->block_group;
697 u64 size = block_group->length;
698 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
699 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
701 max_bitmaps = max_t(u64, max_bitmaps, 1);
703 if (ctl->total_bitmaps > max_bitmaps)
704 btrfs_err(block_group->fs_info,
705 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
706 block_group->start, block_group->length,
707 ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 ASSERT(ctl->total_bitmaps <= max_bitmaps);
712 * We are trying to keep the total amount of memory used per 1GiB of
713 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
714 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
715 * bitmaps, we may end up using more memory than this.
718 max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
722 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
725 * we want the extent entry threshold to always be at most 1/2 the max
726 * bytes we can have, or whatever is less than that.
728 extent_bytes = max_bytes - bitmap_bytes;
729 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731 ctl->extents_thresh =
732 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
735 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
736 struct btrfs_free_space_ctl *ctl,
737 struct btrfs_path *path, u64 offset)
739 struct btrfs_fs_info *fs_info = root->fs_info;
740 struct btrfs_free_space_header *header;
741 struct extent_buffer *leaf;
742 struct btrfs_io_ctl io_ctl;
743 struct btrfs_key key;
744 struct btrfs_free_space *e, *n;
752 /* Nothing in the space cache, goodbye */
753 if (!i_size_read(inode))
756 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
764 btrfs_release_path(path);
770 leaf = path->nodes[0];
771 header = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_free_space_header);
773 num_entries = btrfs_free_space_entries(leaf, header);
774 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
775 generation = btrfs_free_space_generation(leaf, header);
776 btrfs_release_path(path);
778 if (!BTRFS_I(inode)->generation) {
780 "the free space cache file (%llu) is invalid, skip it",
785 if (BTRFS_I(inode)->generation != generation) {
787 "free space inode generation (%llu) did not match free space cache generation (%llu)",
788 BTRFS_I(inode)->generation, generation);
795 ret = io_ctl_init(&io_ctl, inode, 0);
799 readahead_cache(inode);
801 ret = io_ctl_prepare_pages(&io_ctl, true);
805 ret = io_ctl_check_crc(&io_ctl, 0);
809 ret = io_ctl_check_generation(&io_ctl, generation);
813 while (num_entries) {
814 e = kmem_cache_zalloc(btrfs_free_space_cachep,
821 ret = io_ctl_read_entry(&io_ctl, e, &type);
823 kmem_cache_free(btrfs_free_space_cachep, e);
829 kmem_cache_free(btrfs_free_space_cachep, e);
833 if (type == BTRFS_FREE_SPACE_EXTENT) {
834 spin_lock(&ctl->tree_lock);
835 ret = link_free_space(ctl, e);
836 spin_unlock(&ctl->tree_lock);
839 "Duplicate entries in free space cache, dumping");
840 kmem_cache_free(btrfs_free_space_cachep, e);
846 e->bitmap = kmem_cache_zalloc(
847 btrfs_free_space_bitmap_cachep, GFP_NOFS);
851 btrfs_free_space_cachep, e);
854 spin_lock(&ctl->tree_lock);
855 ret = link_free_space(ctl, e);
857 spin_unlock(&ctl->tree_lock);
859 "Duplicate entries in free space cache, dumping");
860 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
861 kmem_cache_free(btrfs_free_space_cachep, e);
864 ctl->total_bitmaps++;
865 recalculate_thresholds(ctl);
866 spin_unlock(&ctl->tree_lock);
867 list_add_tail(&e->list, &bitmaps);
873 io_ctl_unmap_page(&io_ctl);
876 * We add the bitmaps at the end of the entries in order that
877 * the bitmap entries are added to the cache.
879 list_for_each_entry_safe(e, n, &bitmaps, list) {
880 list_del_init(&e->list);
881 ret = io_ctl_read_bitmap(&io_ctl, e);
886 io_ctl_drop_pages(&io_ctl);
889 io_ctl_free(&io_ctl);
892 io_ctl_drop_pages(&io_ctl);
894 spin_lock(&ctl->tree_lock);
895 __btrfs_remove_free_space_cache(ctl);
896 spin_unlock(&ctl->tree_lock);
900 static int copy_free_space_cache(struct btrfs_block_group *block_group,
901 struct btrfs_free_space_ctl *ctl)
903 struct btrfs_free_space *info;
907 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
908 info = rb_entry(n, struct btrfs_free_space, offset_index);
910 const u64 offset = info->offset;
911 const u64 bytes = info->bytes;
913 unlink_free_space(ctl, info, true);
914 spin_unlock(&ctl->tree_lock);
915 kmem_cache_free(btrfs_free_space_cachep, info);
916 ret = btrfs_add_free_space(block_group, offset, bytes);
917 spin_lock(&ctl->tree_lock);
919 u64 offset = info->offset;
920 u64 bytes = ctl->unit;
922 ret = search_bitmap(ctl, info, &offset, &bytes, false);
924 bitmap_clear_bits(ctl, info, offset, bytes, true);
925 spin_unlock(&ctl->tree_lock);
926 ret = btrfs_add_free_space(block_group, offset,
928 spin_lock(&ctl->tree_lock);
930 free_bitmap(ctl, info);
934 cond_resched_lock(&ctl->tree_lock);
939 static struct lock_class_key btrfs_free_space_inode_key;
941 int load_free_space_cache(struct btrfs_block_group *block_group)
943 struct btrfs_fs_info *fs_info = block_group->fs_info;
944 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
945 struct btrfs_free_space_ctl tmp_ctl = {};
947 struct btrfs_path *path;
950 u64 used = block_group->used;
953 * Because we could potentially discard our loaded free space, we want
954 * to load everything into a temporary structure first, and then if it's
955 * valid copy it all into the actual free space ctl.
957 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
960 * If this block group has been marked to be cleared for one reason or
961 * another then we can't trust the on disk cache, so just return.
963 spin_lock(&block_group->lock);
964 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
965 spin_unlock(&block_group->lock);
968 spin_unlock(&block_group->lock);
970 path = btrfs_alloc_path();
973 path->search_commit_root = 1;
974 path->skip_locking = 1;
977 * We must pass a path with search_commit_root set to btrfs_iget in
978 * order to avoid a deadlock when allocating extents for the tree root.
980 * When we are COWing an extent buffer from the tree root, when looking
981 * for a free extent, at extent-tree.c:find_free_extent(), we can find
982 * block group without its free space cache loaded. When we find one
983 * we must load its space cache which requires reading its free space
984 * cache's inode item from the root tree. If this inode item is located
985 * in the same leaf that we started COWing before, then we end up in
986 * deadlock on the extent buffer (trying to read lock it when we
987 * previously write locked it).
989 * It's safe to read the inode item using the commit root because
990 * block groups, once loaded, stay in memory forever (until they are
991 * removed) as well as their space caches once loaded. New block groups
992 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
993 * we will never try to read their inode item while the fs is mounted.
995 inode = lookup_free_space_inode(block_group, path);
997 btrfs_free_path(path);
1001 /* We may have converted the inode and made the cache invalid. */
1002 spin_lock(&block_group->lock);
1003 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1004 spin_unlock(&block_group->lock);
1005 btrfs_free_path(path);
1008 spin_unlock(&block_group->lock);
1011 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1012 * free space inodes to prevent false positives related to locks for normal
1015 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1016 &btrfs_free_space_inode_key);
1018 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1019 path, block_group->start);
1020 btrfs_free_path(path);
1024 matched = (tmp_ctl.free_space == (block_group->length - used -
1025 block_group->bytes_super));
1028 spin_lock(&tmp_ctl.tree_lock);
1029 ret = copy_free_space_cache(block_group, &tmp_ctl);
1030 spin_unlock(&tmp_ctl.tree_lock);
1032 * ret == 1 means we successfully loaded the free space cache,
1033 * so we need to re-set it here.
1039 * We need to call the _locked variant so we don't try to update
1040 * the discard counters.
1042 spin_lock(&tmp_ctl.tree_lock);
1043 __btrfs_remove_free_space_cache(&tmp_ctl);
1044 spin_unlock(&tmp_ctl.tree_lock);
1046 "block group %llu has wrong amount of free space",
1047 block_group->start);
1052 /* This cache is bogus, make sure it gets cleared */
1053 spin_lock(&block_group->lock);
1054 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1055 spin_unlock(&block_group->lock);
1059 "failed to load free space cache for block group %llu, rebuilding it now",
1060 block_group->start);
1063 spin_lock(&ctl->tree_lock);
1064 btrfs_discard_update_discardable(block_group);
1065 spin_unlock(&ctl->tree_lock);
1070 static noinline_for_stack
1071 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1072 struct btrfs_free_space_ctl *ctl,
1073 struct btrfs_block_group *block_group,
1074 int *entries, int *bitmaps,
1075 struct list_head *bitmap_list)
1078 struct btrfs_free_cluster *cluster = NULL;
1079 struct btrfs_free_cluster *cluster_locked = NULL;
1080 struct rb_node *node = rb_first(&ctl->free_space_offset);
1081 struct btrfs_trim_range *trim_entry;
1083 /* Get the cluster for this block_group if it exists */
1084 if (block_group && !list_empty(&block_group->cluster_list)) {
1085 cluster = list_entry(block_group->cluster_list.next,
1086 struct btrfs_free_cluster,
1090 if (!node && cluster) {
1091 cluster_locked = cluster;
1092 spin_lock(&cluster_locked->lock);
1093 node = rb_first(&cluster->root);
1097 /* Write out the extent entries */
1099 struct btrfs_free_space *e;
1101 e = rb_entry(node, struct btrfs_free_space, offset_index);
1104 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1110 list_add_tail(&e->list, bitmap_list);
1113 node = rb_next(node);
1114 if (!node && cluster) {
1115 node = rb_first(&cluster->root);
1116 cluster_locked = cluster;
1117 spin_lock(&cluster_locked->lock);
1121 if (cluster_locked) {
1122 spin_unlock(&cluster_locked->lock);
1123 cluster_locked = NULL;
1127 * Make sure we don't miss any range that was removed from our rbtree
1128 * because trimming is running. Otherwise after a umount+mount (or crash
1129 * after committing the transaction) we would leak free space and get
1130 * an inconsistent free space cache report from fsck.
1132 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1133 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1134 trim_entry->bytes, NULL);
1143 spin_unlock(&cluster_locked->lock);
1147 static noinline_for_stack int
1148 update_cache_item(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root,
1150 struct inode *inode,
1151 struct btrfs_path *path, u64 offset,
1152 int entries, int bitmaps)
1154 struct btrfs_key key;
1155 struct btrfs_free_space_header *header;
1156 struct extent_buffer *leaf;
1159 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1160 key.offset = offset;
1163 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1166 EXTENT_DELALLOC, NULL);
1169 leaf = path->nodes[0];
1171 struct btrfs_key found_key;
1172 ASSERT(path->slots[0]);
1174 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1175 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1176 found_key.offset != offset) {
1177 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1178 inode->i_size - 1, EXTENT_DELALLOC,
1180 btrfs_release_path(path);
1185 BTRFS_I(inode)->generation = trans->transid;
1186 header = btrfs_item_ptr(leaf, path->slots[0],
1187 struct btrfs_free_space_header);
1188 btrfs_set_free_space_entries(leaf, header, entries);
1189 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1190 btrfs_set_free_space_generation(leaf, header, trans->transid);
1191 btrfs_mark_buffer_dirty(trans, leaf);
1192 btrfs_release_path(path);
1200 static noinline_for_stack int write_pinned_extent_entries(
1201 struct btrfs_trans_handle *trans,
1202 struct btrfs_block_group *block_group,
1203 struct btrfs_io_ctl *io_ctl,
1206 u64 start, extent_start, extent_end, len;
1207 struct extent_io_tree *unpin = NULL;
1214 * We want to add any pinned extents to our free space cache
1215 * so we don't leak the space
1217 * We shouldn't have switched the pinned extents yet so this is the
1220 unpin = &trans->transaction->pinned_extents;
1222 start = block_group->start;
1224 while (start < block_group->start + block_group->length) {
1225 if (!find_first_extent_bit(unpin, start,
1226 &extent_start, &extent_end,
1227 EXTENT_DIRTY, NULL))
1230 /* This pinned extent is out of our range */
1231 if (extent_start >= block_group->start + block_group->length)
1234 extent_start = max(extent_start, start);
1235 extent_end = min(block_group->start + block_group->length,
1237 len = extent_end - extent_start;
1240 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1250 static noinline_for_stack int
1251 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253 struct btrfs_free_space *entry, *next;
1256 /* Write out the bitmaps */
1257 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1258 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1261 list_del_init(&entry->list);
1267 static int flush_dirty_cache(struct inode *inode)
1271 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1274 EXTENT_DELALLOC, NULL);
1279 static void noinline_for_stack
1280 cleanup_bitmap_list(struct list_head *bitmap_list)
1282 struct btrfs_free_space *entry, *next;
1284 list_for_each_entry_safe(entry, next, bitmap_list, list)
1285 list_del_init(&entry->list);
1288 static void noinline_for_stack
1289 cleanup_write_cache_enospc(struct inode *inode,
1290 struct btrfs_io_ctl *io_ctl,
1291 struct extent_state **cached_state)
1293 io_ctl_drop_pages(io_ctl);
1294 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1298 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1299 struct btrfs_trans_handle *trans,
1300 struct btrfs_block_group *block_group,
1301 struct btrfs_io_ctl *io_ctl,
1302 struct btrfs_path *path, u64 offset)
1305 struct inode *inode = io_ctl->inode;
1310 /* Flush the dirty pages in the cache file. */
1311 ret = flush_dirty_cache(inode);
1315 /* Update the cache item to tell everyone this cache file is valid. */
1316 ret = update_cache_item(trans, root, inode, path, offset,
1317 io_ctl->entries, io_ctl->bitmaps);
1320 invalidate_inode_pages2(inode->i_mapping);
1321 BTRFS_I(inode)->generation = 0;
1323 btrfs_debug(root->fs_info,
1324 "failed to write free space cache for block group %llu error %d",
1325 block_group->start, ret);
1327 btrfs_update_inode(trans, BTRFS_I(inode));
1330 /* the dirty list is protected by the dirty_bgs_lock */
1331 spin_lock(&trans->transaction->dirty_bgs_lock);
1333 /* the disk_cache_state is protected by the block group lock */
1334 spin_lock(&block_group->lock);
1337 * only mark this as written if we didn't get put back on
1338 * the dirty list while waiting for IO. Otherwise our
1339 * cache state won't be right, and we won't get written again
1341 if (!ret && list_empty(&block_group->dirty_list))
1342 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344 block_group->disk_cache_state = BTRFS_DC_ERROR;
1346 spin_unlock(&block_group->lock);
1347 spin_unlock(&trans->transaction->dirty_bgs_lock);
1348 io_ctl->inode = NULL;
1356 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1357 struct btrfs_block_group *block_group,
1358 struct btrfs_path *path)
1360 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1361 block_group, &block_group->io_ctl,
1362 path, block_group->start);
1366 * Write out cached info to an inode.
1368 * @inode: freespace inode we are writing out
1369 * @ctl: free space cache we are going to write out
1370 * @block_group: block_group for this cache if it belongs to a block_group
1371 * @io_ctl: holds context for the io
1372 * @trans: the trans handle
1374 * This function writes out a free space cache struct to disk for quick recovery
1375 * on mount. This will return 0 if it was successful in writing the cache out,
1376 * or an errno if it was not.
1378 static int __btrfs_write_out_cache(struct inode *inode,
1379 struct btrfs_free_space_ctl *ctl,
1380 struct btrfs_block_group *block_group,
1381 struct btrfs_io_ctl *io_ctl,
1382 struct btrfs_trans_handle *trans)
1384 struct extent_state *cached_state = NULL;
1385 LIST_HEAD(bitmap_list);
1391 if (!i_size_read(inode))
1394 WARN_ON(io_ctl->pages);
1395 ret = io_ctl_init(io_ctl, inode, 1);
1399 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1400 down_write(&block_group->data_rwsem);
1401 spin_lock(&block_group->lock);
1402 if (block_group->delalloc_bytes) {
1403 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1404 spin_unlock(&block_group->lock);
1405 up_write(&block_group->data_rwsem);
1406 BTRFS_I(inode)->generation = 0;
1411 spin_unlock(&block_group->lock);
1414 /* Lock all pages first so we can lock the extent safely. */
1415 ret = io_ctl_prepare_pages(io_ctl, false);
1419 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422 io_ctl_set_generation(io_ctl, trans->transid);
1424 mutex_lock(&ctl->cache_writeout_mutex);
1425 /* Write out the extent entries in the free space cache */
1426 spin_lock(&ctl->tree_lock);
1427 ret = write_cache_extent_entries(io_ctl, ctl,
1428 block_group, &entries, &bitmaps,
1431 goto out_nospc_locked;
1434 * Some spaces that are freed in the current transaction are pinned,
1435 * they will be added into free space cache after the transaction is
1436 * committed, we shouldn't lose them.
1438 * If this changes while we are working we'll get added back to
1439 * the dirty list and redo it. No locking needed
1441 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1443 goto out_nospc_locked;
1446 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1447 * locked while doing it because a concurrent trim can be manipulating
1448 * or freeing the bitmap.
1450 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1451 spin_unlock(&ctl->tree_lock);
1452 mutex_unlock(&ctl->cache_writeout_mutex);
1456 /* Zero out the rest of the pages just to make sure */
1457 io_ctl_zero_remaining_pages(io_ctl);
1459 /* Everything is written out, now we dirty the pages in the file. */
1460 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1461 io_ctl->num_pages, 0, i_size_read(inode),
1462 &cached_state, false);
1466 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1467 up_write(&block_group->data_rwsem);
1469 * Release the pages and unlock the extent, we will flush
1472 io_ctl_drop_pages(io_ctl);
1473 io_ctl_free(io_ctl);
1475 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1479 * at this point the pages are under IO and we're happy,
1480 * The caller is responsible for waiting on them and updating
1481 * the cache and the inode
1483 io_ctl->entries = entries;
1484 io_ctl->bitmaps = bitmaps;
1486 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1493 cleanup_bitmap_list(&bitmap_list);
1494 spin_unlock(&ctl->tree_lock);
1495 mutex_unlock(&ctl->cache_writeout_mutex);
1498 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1501 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1502 up_write(&block_group->data_rwsem);
1505 io_ctl->inode = NULL;
1506 io_ctl_free(io_ctl);
1508 invalidate_inode_pages2(inode->i_mapping);
1509 BTRFS_I(inode)->generation = 0;
1511 btrfs_update_inode(trans, BTRFS_I(inode));
1517 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1518 struct btrfs_block_group *block_group,
1519 struct btrfs_path *path)
1521 struct btrfs_fs_info *fs_info = trans->fs_info;
1522 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1523 struct inode *inode;
1526 spin_lock(&block_group->lock);
1527 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1528 spin_unlock(&block_group->lock);
1531 spin_unlock(&block_group->lock);
1533 inode = lookup_free_space_inode(block_group, path);
1537 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1538 &block_group->io_ctl, trans);
1540 btrfs_debug(fs_info,
1541 "failed to write free space cache for block group %llu error %d",
1542 block_group->start, ret);
1543 spin_lock(&block_group->lock);
1544 block_group->disk_cache_state = BTRFS_DC_ERROR;
1545 spin_unlock(&block_group->lock);
1547 block_group->io_ctl.inode = NULL;
1552 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1553 * to wait for IO and put the inode
1559 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1562 ASSERT(offset >= bitmap_start);
1563 offset -= bitmap_start;
1564 return (unsigned long)(div_u64(offset, unit));
1567 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1569 return (unsigned long)(div_u64(bytes, unit));
1572 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1576 u64 bytes_per_bitmap;
1578 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1579 bitmap_start = offset - ctl->start;
1580 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1581 bitmap_start *= bytes_per_bitmap;
1582 bitmap_start += ctl->start;
1584 return bitmap_start;
1587 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1588 struct btrfs_free_cluster *cluster,
1589 struct btrfs_free_space *new_entry)
1591 struct rb_root *root;
1593 struct rb_node *parent = NULL;
1595 lockdep_assert_held(&ctl->tree_lock);
1598 lockdep_assert_held(&cluster->lock);
1599 root = &cluster->root;
1601 root = &ctl->free_space_offset;
1607 struct btrfs_free_space *info;
1610 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1612 if (new_entry->offset < info->offset) {
1614 } else if (new_entry->offset > info->offset) {
1615 p = &(*p)->rb_right;
1618 * we could have a bitmap entry and an extent entry
1619 * share the same offset. If this is the case, we want
1620 * the extent entry to always be found first if we do a
1621 * linear search through the tree, since we want to have
1622 * the quickest allocation time, and allocating from an
1623 * extent is faster than allocating from a bitmap. So
1624 * if we're inserting a bitmap and we find an entry at
1625 * this offset, we want to go right, or after this entry
1626 * logically. If we are inserting an extent and we've
1627 * found a bitmap, we want to go left, or before
1630 if (new_entry->bitmap) {
1635 p = &(*p)->rb_right;
1637 if (!info->bitmap) {
1646 rb_link_node(&new_entry->offset_index, parent, p);
1647 rb_insert_color(&new_entry->offset_index, root);
1653 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1654 * searched through the bitmap and figured out the largest ->max_extent_size,
1655 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1656 * allocator the wrong thing, we want to use the actual real max_extent_size
1657 * we've found already if it's larger, or we want to use ->bytes.
1659 * This matters because find_free_space() will skip entries who's ->bytes is
1660 * less than the required bytes. So if we didn't search down this bitmap, we
1661 * may pick some previous entry that has a smaller ->max_extent_size than we
1662 * have. For example, assume we have two entries, one that has
1663 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1664 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1665 * call into find_free_space(), and return with max_extent_size == 4K, because
1666 * that first bitmap entry had ->max_extent_size set, but the second one did
1667 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1668 * 8K contiguous range.
1670 * Consider the other case, we have 2 8K chunks in that second entry and still
1671 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1672 * allocator comes in it'll fully search our second bitmap, and this time it'll
1673 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1674 * right allocation the next loop through.
1676 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1678 if (entry->bitmap && entry->max_extent_size)
1679 return entry->max_extent_size;
1680 return entry->bytes;
1684 * We want the largest entry to be leftmost, so this is inverted from what you'd
1687 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1689 const struct btrfs_free_space *entry, *exist;
1691 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1692 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1693 return get_max_extent_size(exist) < get_max_extent_size(entry);
1697 * searches the tree for the given offset.
1699 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1700 * want a section that has at least bytes size and comes at or after the given
1703 static struct btrfs_free_space *
1704 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1705 u64 offset, int bitmap_only, int fuzzy)
1707 struct rb_node *n = ctl->free_space_offset.rb_node;
1708 struct btrfs_free_space *entry = NULL, *prev = NULL;
1710 lockdep_assert_held(&ctl->tree_lock);
1712 /* find entry that is closest to the 'offset' */
1714 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1717 if (offset < entry->offset)
1719 else if (offset > entry->offset)
1734 * bitmap entry and extent entry may share same offset,
1735 * in that case, bitmap entry comes after extent entry.
1740 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1741 if (entry->offset != offset)
1744 WARN_ON(!entry->bitmap);
1747 if (entry->bitmap) {
1749 * if previous extent entry covers the offset,
1750 * we should return it instead of the bitmap entry
1752 n = rb_prev(&entry->offset_index);
1754 prev = rb_entry(n, struct btrfs_free_space,
1756 if (!prev->bitmap &&
1757 prev->offset + prev->bytes > offset)
1767 /* find last entry before the 'offset' */
1769 if (entry->offset > offset) {
1770 n = rb_prev(&entry->offset_index);
1772 entry = rb_entry(n, struct btrfs_free_space,
1774 ASSERT(entry->offset <= offset);
1783 if (entry->bitmap) {
1784 n = rb_prev(&entry->offset_index);
1786 prev = rb_entry(n, struct btrfs_free_space,
1788 if (!prev->bitmap &&
1789 prev->offset + prev->bytes > offset)
1792 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1794 } else if (entry->offset + entry->bytes > offset)
1801 n = rb_next(&entry->offset_index);
1804 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1805 if (entry->bitmap) {
1806 if (entry->offset + BITS_PER_BITMAP *
1810 if (entry->offset + entry->bytes > offset)
1817 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1818 struct btrfs_free_space *info,
1821 lockdep_assert_held(&ctl->tree_lock);
1823 rb_erase(&info->offset_index, &ctl->free_space_offset);
1824 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1825 ctl->free_extents--;
1827 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1828 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1829 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1833 ctl->free_space -= info->bytes;
1836 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1837 struct btrfs_free_space *info)
1841 lockdep_assert_held(&ctl->tree_lock);
1843 ASSERT(info->bytes || info->bitmap);
1844 ret = tree_insert_offset(ctl, NULL, info);
1848 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1850 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1851 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1852 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1855 ctl->free_space += info->bytes;
1856 ctl->free_extents++;
1860 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1861 struct btrfs_free_space *info)
1863 ASSERT(info->bitmap);
1866 * If our entry is empty it's because we're on a cluster and we don't
1867 * want to re-link it into our ctl bytes index.
1869 if (RB_EMPTY_NODE(&info->bytes_index))
1872 lockdep_assert_held(&ctl->tree_lock);
1874 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1875 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1878 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1879 struct btrfs_free_space *info,
1880 u64 offset, u64 bytes, bool update_stat)
1882 unsigned long start, count, end;
1883 int extent_delta = -1;
1885 start = offset_to_bit(info->offset, ctl->unit, offset);
1886 count = bytes_to_bits(bytes, ctl->unit);
1887 end = start + count;
1888 ASSERT(end <= BITS_PER_BITMAP);
1890 bitmap_clear(info->bitmap, start, count);
1892 info->bytes -= bytes;
1893 if (info->max_extent_size > ctl->unit)
1894 info->max_extent_size = 0;
1896 relink_bitmap_entry(ctl, info);
1898 if (start && test_bit(start - 1, info->bitmap))
1901 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1904 info->bitmap_extents += extent_delta;
1905 if (!btrfs_free_space_trimmed(info)) {
1906 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1907 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1911 ctl->free_space -= bytes;
1914 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1915 struct btrfs_free_space *info, u64 offset,
1918 unsigned long start, count, end;
1919 int extent_delta = 1;
1921 start = offset_to_bit(info->offset, ctl->unit, offset);
1922 count = bytes_to_bits(bytes, ctl->unit);
1923 end = start + count;
1924 ASSERT(end <= BITS_PER_BITMAP);
1926 bitmap_set(info->bitmap, start, count);
1929 * We set some bytes, we have no idea what the max extent size is
1932 info->max_extent_size = 0;
1933 info->bytes += bytes;
1934 ctl->free_space += bytes;
1936 relink_bitmap_entry(ctl, info);
1938 if (start && test_bit(start - 1, info->bitmap))
1941 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1944 info->bitmap_extents += extent_delta;
1945 if (!btrfs_free_space_trimmed(info)) {
1946 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1947 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1952 * If we can not find suitable extent, we will use bytes to record
1953 * the size of the max extent.
1955 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1956 struct btrfs_free_space *bitmap_info, u64 *offset,
1957 u64 *bytes, bool for_alloc)
1959 unsigned long found_bits = 0;
1960 unsigned long max_bits = 0;
1961 unsigned long bits, i;
1962 unsigned long next_zero;
1963 unsigned long extent_bits;
1966 * Skip searching the bitmap if we don't have a contiguous section that
1967 * is large enough for this allocation.
1970 bitmap_info->max_extent_size &&
1971 bitmap_info->max_extent_size < *bytes) {
1972 *bytes = bitmap_info->max_extent_size;
1976 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1977 max_t(u64, *offset, bitmap_info->offset));
1978 bits = bytes_to_bits(*bytes, ctl->unit);
1980 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1981 if (for_alloc && bits == 1) {
1985 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1986 BITS_PER_BITMAP, i);
1987 extent_bits = next_zero - i;
1988 if (extent_bits >= bits) {
1989 found_bits = extent_bits;
1991 } else if (extent_bits > max_bits) {
1992 max_bits = extent_bits;
1998 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1999 *bytes = (u64)(found_bits) * ctl->unit;
2003 *bytes = (u64)(max_bits) * ctl->unit;
2004 bitmap_info->max_extent_size = *bytes;
2005 relink_bitmap_entry(ctl, bitmap_info);
2009 /* Cache the size of the max extent in bytes */
2010 static struct btrfs_free_space *
2011 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2012 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2014 struct btrfs_free_space *entry;
2015 struct rb_node *node;
2020 if (!ctl->free_space_offset.rb_node)
2023 if (use_bytes_index) {
2024 node = rb_first_cached(&ctl->free_space_bytes);
2026 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2030 node = &entry->offset_index;
2033 for (; node; node = rb_next(node)) {
2034 if (use_bytes_index)
2035 entry = rb_entry(node, struct btrfs_free_space,
2038 entry = rb_entry(node, struct btrfs_free_space,
2042 * If we are using the bytes index then all subsequent entries
2043 * in this tree are going to be < bytes, so simply set the max
2044 * extent size and exit the loop.
2046 * If we're using the offset index then we need to keep going
2047 * through the rest of the tree.
2049 if (entry->bytes < *bytes) {
2050 *max_extent_size = max(get_max_extent_size(entry),
2052 if (use_bytes_index)
2057 /* make sure the space returned is big enough
2058 * to match our requested alignment
2060 if (*bytes >= align) {
2061 tmp = entry->offset - ctl->start + align - 1;
2062 tmp = div64_u64(tmp, align);
2063 tmp = tmp * align + ctl->start;
2064 align_off = tmp - entry->offset;
2067 tmp = entry->offset;
2071 * We don't break here if we're using the bytes index because we
2072 * may have another entry that has the correct alignment that is
2073 * the right size, so we don't want to miss that possibility.
2074 * At worst this adds another loop through the logic, but if we
2075 * broke here we could prematurely ENOSPC.
2077 if (entry->bytes < *bytes + align_off) {
2078 *max_extent_size = max(get_max_extent_size(entry),
2083 if (entry->bitmap) {
2084 struct rb_node *old_next = rb_next(node);
2087 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2094 max(get_max_extent_size(entry),
2099 * The bitmap may have gotten re-arranged in the space
2100 * index here because the max_extent_size may have been
2101 * updated. Start from the beginning again if this
2104 if (use_bytes_index && old_next != rb_next(node))
2110 *bytes = entry->bytes - align_off;
2117 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2118 struct btrfs_free_space *info, u64 offset)
2120 info->offset = offset_to_bitmap(ctl, offset);
2122 info->bitmap_extents = 0;
2123 INIT_LIST_HEAD(&info->list);
2124 link_free_space(ctl, info);
2125 ctl->total_bitmaps++;
2126 recalculate_thresholds(ctl);
2129 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2130 struct btrfs_free_space *bitmap_info)
2133 * Normally when this is called, the bitmap is completely empty. However,
2134 * if we are blowing up the free space cache for one reason or another
2135 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2136 * we may leave stats on the table.
2138 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2139 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2140 bitmap_info->bitmap_extents;
2141 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2144 unlink_free_space(ctl, bitmap_info, true);
2145 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2146 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2147 ctl->total_bitmaps--;
2148 recalculate_thresholds(ctl);
2151 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2152 struct btrfs_free_space *bitmap_info,
2153 u64 *offset, u64 *bytes)
2156 u64 search_start, search_bytes;
2160 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2163 * We need to search for bits in this bitmap. We could only cover some
2164 * of the extent in this bitmap thanks to how we add space, so we need
2165 * to search for as much as it as we can and clear that amount, and then
2166 * go searching for the next bit.
2168 search_start = *offset;
2169 search_bytes = ctl->unit;
2170 search_bytes = min(search_bytes, end - search_start + 1);
2171 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2173 if (ret < 0 || search_start != *offset)
2176 /* We may have found more bits than what we need */
2177 search_bytes = min(search_bytes, *bytes);
2179 /* Cannot clear past the end of the bitmap */
2180 search_bytes = min(search_bytes, end - search_start + 1);
2182 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2183 *offset += search_bytes;
2184 *bytes -= search_bytes;
2187 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2188 if (!bitmap_info->bytes)
2189 free_bitmap(ctl, bitmap_info);
2192 * no entry after this bitmap, but we still have bytes to
2193 * remove, so something has gone wrong.
2198 bitmap_info = rb_entry(next, struct btrfs_free_space,
2202 * if the next entry isn't a bitmap we need to return to let the
2203 * extent stuff do its work.
2205 if (!bitmap_info->bitmap)
2209 * Ok the next item is a bitmap, but it may not actually hold
2210 * the information for the rest of this free space stuff, so
2211 * look for it, and if we don't find it return so we can try
2212 * everything over again.
2214 search_start = *offset;
2215 search_bytes = ctl->unit;
2216 ret = search_bitmap(ctl, bitmap_info, &search_start,
2217 &search_bytes, false);
2218 if (ret < 0 || search_start != *offset)
2222 } else if (!bitmap_info->bytes)
2223 free_bitmap(ctl, bitmap_info);
2228 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2229 struct btrfs_free_space *info, u64 offset,
2230 u64 bytes, enum btrfs_trim_state trim_state)
2232 u64 bytes_to_set = 0;
2236 * This is a tradeoff to make bitmap trim state minimal. We mark the
2237 * whole bitmap untrimmed if at any point we add untrimmed regions.
2239 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2240 if (btrfs_free_space_trimmed(info)) {
2241 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2242 info->bitmap_extents;
2243 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2245 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2248 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2250 bytes_to_set = min(end - offset, bytes);
2252 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2254 return bytes_to_set;
2258 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2259 struct btrfs_free_space *info)
2261 struct btrfs_block_group *block_group = ctl->block_group;
2262 struct btrfs_fs_info *fs_info = block_group->fs_info;
2263 bool forced = false;
2265 #ifdef CONFIG_BTRFS_DEBUG
2266 if (btrfs_should_fragment_free_space(block_group))
2270 /* This is a way to reclaim large regions from the bitmaps. */
2271 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2275 * If we are below the extents threshold then we can add this as an
2276 * extent, and don't have to deal with the bitmap
2278 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2280 * If this block group has some small extents we don't want to
2281 * use up all of our free slots in the cache with them, we want
2282 * to reserve them to larger extents, however if we have plenty
2283 * of cache left then go ahead an dadd them, no sense in adding
2284 * the overhead of a bitmap if we don't have to.
2286 if (info->bytes <= fs_info->sectorsize * 8) {
2287 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295 * The original block groups from mkfs can be really small, like 8
2296 * megabytes, so don't bother with a bitmap for those entries. However
2297 * some block groups can be smaller than what a bitmap would cover but
2298 * are still large enough that they could overflow the 32k memory limit,
2299 * so allow those block groups to still be allowed to have a bitmap
2302 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2308 static const struct btrfs_free_space_op free_space_op = {
2309 .use_bitmap = use_bitmap,
2312 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2313 struct btrfs_free_space *info)
2315 struct btrfs_free_space *bitmap_info;
2316 struct btrfs_block_group *block_group = NULL;
2318 u64 bytes, offset, bytes_added;
2319 enum btrfs_trim_state trim_state;
2322 bytes = info->bytes;
2323 offset = info->offset;
2324 trim_state = info->trim_state;
2326 if (!ctl->op->use_bitmap(ctl, info))
2329 if (ctl->op == &free_space_op)
2330 block_group = ctl->block_group;
2333 * Since we link bitmaps right into the cluster we need to see if we
2334 * have a cluster here, and if so and it has our bitmap we need to add
2335 * the free space to that bitmap.
2337 if (block_group && !list_empty(&block_group->cluster_list)) {
2338 struct btrfs_free_cluster *cluster;
2339 struct rb_node *node;
2340 struct btrfs_free_space *entry;
2342 cluster = list_entry(block_group->cluster_list.next,
2343 struct btrfs_free_cluster,
2345 spin_lock(&cluster->lock);
2346 node = rb_first(&cluster->root);
2348 spin_unlock(&cluster->lock);
2349 goto no_cluster_bitmap;
2352 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353 if (!entry->bitmap) {
2354 spin_unlock(&cluster->lock);
2355 goto no_cluster_bitmap;
2358 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2359 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2361 bytes -= bytes_added;
2362 offset += bytes_added;
2364 spin_unlock(&cluster->lock);
2372 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2379 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2381 bytes -= bytes_added;
2382 offset += bytes_added;
2392 if (info && info->bitmap) {
2393 add_new_bitmap(ctl, info, offset);
2398 spin_unlock(&ctl->tree_lock);
2400 /* no pre-allocated info, allocate a new one */
2402 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2405 spin_lock(&ctl->tree_lock);
2411 /* allocate the bitmap */
2412 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2414 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2415 spin_lock(&ctl->tree_lock);
2416 if (!info->bitmap) {
2426 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2428 kmem_cache_free(btrfs_free_space_cachep, info);
2435 * Free space merging rules:
2436 * 1) Merge trimmed areas together
2437 * 2) Let untrimmed areas coalesce with trimmed areas
2438 * 3) Always pull neighboring regions from bitmaps
2440 * The above rules are for when we merge free space based on btrfs_trim_state.
2441 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2442 * same reason: to promote larger extent regions which makes life easier for
2443 * find_free_extent(). Rule 2 enables coalescing based on the common path
2444 * being returning free space from btrfs_finish_extent_commit(). So when free
2445 * space is trimmed, it will prevent aggregating trimmed new region and
2446 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2447 * and provide find_free_extent() with the largest extents possible hoping for
2450 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2451 struct btrfs_free_space *info, bool update_stat)
2453 struct btrfs_free_space *left_info = NULL;
2454 struct btrfs_free_space *right_info;
2455 bool merged = false;
2456 u64 offset = info->offset;
2457 u64 bytes = info->bytes;
2458 const bool is_trimmed = btrfs_free_space_trimmed(info);
2459 struct rb_node *right_prev = NULL;
2462 * first we want to see if there is free space adjacent to the range we
2463 * are adding, if there is remove that struct and add a new one to
2464 * cover the entire range
2466 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2468 right_prev = rb_prev(&right_info->offset_index);
2471 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2472 else if (!right_info)
2473 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2475 /* See try_merge_free_space() comment. */
2476 if (right_info && !right_info->bitmap &&
2477 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2478 unlink_free_space(ctl, right_info, update_stat);
2479 info->bytes += right_info->bytes;
2480 kmem_cache_free(btrfs_free_space_cachep, right_info);
2484 /* See try_merge_free_space() comment. */
2485 if (left_info && !left_info->bitmap &&
2486 left_info->offset + left_info->bytes == offset &&
2487 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2488 unlink_free_space(ctl, left_info, update_stat);
2489 info->offset = left_info->offset;
2490 info->bytes += left_info->bytes;
2491 kmem_cache_free(btrfs_free_space_cachep, left_info);
2498 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2499 struct btrfs_free_space *info,
2502 struct btrfs_free_space *bitmap;
2505 const u64 end = info->offset + info->bytes;
2506 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2509 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2513 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2514 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2517 bytes = (j - i) * ctl->unit;
2518 info->bytes += bytes;
2520 /* See try_merge_free_space() comment. */
2521 if (!btrfs_free_space_trimmed(bitmap))
2522 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2524 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2527 free_bitmap(ctl, bitmap);
2532 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2533 struct btrfs_free_space *info,
2536 struct btrfs_free_space *bitmap;
2540 unsigned long prev_j;
2543 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2544 /* If we're on a boundary, try the previous logical bitmap. */
2545 if (bitmap_offset == info->offset) {
2546 if (info->offset == 0)
2548 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2551 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2555 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2557 prev_j = (unsigned long)-1;
2558 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566 if (prev_j == (unsigned long)-1)
2567 bytes = (i + 1) * ctl->unit;
2569 bytes = (i - prev_j) * ctl->unit;
2571 info->offset -= bytes;
2572 info->bytes += bytes;
2574 /* See try_merge_free_space() comment. */
2575 if (!btrfs_free_space_trimmed(bitmap))
2576 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2578 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2581 free_bitmap(ctl, bitmap);
2587 * We prefer always to allocate from extent entries, both for clustered and
2588 * non-clustered allocation requests. So when attempting to add a new extent
2589 * entry, try to see if there's adjacent free space in bitmap entries, and if
2590 * there is, migrate that space from the bitmaps to the extent.
2591 * Like this we get better chances of satisfying space allocation requests
2592 * because we attempt to satisfy them based on a single cache entry, and never
2593 * on 2 or more entries - even if the entries represent a contiguous free space
2594 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2597 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2598 struct btrfs_free_space *info,
2602 * Only work with disconnected entries, as we can change their offset,
2603 * and must be extent entries.
2605 ASSERT(!info->bitmap);
2606 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2608 if (ctl->total_bitmaps > 0) {
2610 bool stole_front = false;
2612 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2613 if (ctl->total_bitmaps > 0)
2614 stole_front = steal_from_bitmap_to_front(ctl, info,
2617 if (stole_end || stole_front)
2618 try_merge_free_space(ctl, info, update_stat);
2622 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2623 u64 offset, u64 bytes,
2624 enum btrfs_trim_state trim_state)
2626 struct btrfs_fs_info *fs_info = block_group->fs_info;
2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 struct btrfs_free_space *info;
2630 u64 filter_bytes = bytes;
2632 ASSERT(!btrfs_is_zoned(fs_info));
2634 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2638 info->offset = offset;
2639 info->bytes = bytes;
2640 info->trim_state = trim_state;
2641 RB_CLEAR_NODE(&info->offset_index);
2642 RB_CLEAR_NODE(&info->bytes_index);
2644 spin_lock(&ctl->tree_lock);
2646 if (try_merge_free_space(ctl, info, true))
2650 * There was no extent directly to the left or right of this new
2651 * extent then we know we're going to have to allocate a new extent, so
2652 * before we do that see if we need to drop this into a bitmap
2654 ret = insert_into_bitmap(ctl, info);
2663 * Only steal free space from adjacent bitmaps if we're sure we're not
2664 * going to add the new free space to existing bitmap entries - because
2665 * that would mean unnecessary work that would be reverted. Therefore
2666 * attempt to steal space from bitmaps if we're adding an extent entry.
2668 steal_from_bitmap(ctl, info, true);
2670 filter_bytes = max(filter_bytes, info->bytes);
2672 ret = link_free_space(ctl, info);
2674 kmem_cache_free(btrfs_free_space_cachep, info);
2676 btrfs_discard_update_discardable(block_group);
2677 spin_unlock(&ctl->tree_lock);
2680 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2681 ASSERT(ret != -EEXIST);
2684 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2685 btrfs_discard_check_filter(block_group, filter_bytes);
2686 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2692 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2693 u64 bytenr, u64 size, bool used)
2695 struct btrfs_space_info *sinfo = block_group->space_info;
2696 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2697 u64 offset = bytenr - block_group->start;
2698 u64 to_free, to_unusable;
2699 int bg_reclaim_threshold = 0;
2701 u64 reclaimable_unusable;
2703 spin_lock(&block_group->lock);
2705 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2706 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2708 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2713 to_free = block_group->zone_capacity;
2714 else if (offset >= block_group->alloc_offset)
2716 else if (offset + size <= block_group->alloc_offset)
2719 to_free = offset + size - block_group->alloc_offset;
2720 to_unusable = size - to_free;
2722 spin_lock(&ctl->tree_lock);
2723 ctl->free_space += to_free;
2724 spin_unlock(&ctl->tree_lock);
2726 * If the block group is read-only, we should account freed space into
2729 if (!block_group->ro) {
2730 block_group->zone_unusable += to_unusable;
2731 WARN_ON(block_group->zone_unusable > block_group->length);
2734 block_group->alloc_offset -= size;
2737 reclaimable_unusable = block_group->zone_unusable -
2738 (block_group->length - block_group->zone_capacity);
2739 /* All the region is now unusable. Mark it as unused and reclaim */
2740 if (block_group->zone_unusable == block_group->length) {
2741 btrfs_mark_bg_unused(block_group);
2742 } else if (bg_reclaim_threshold &&
2743 reclaimable_unusable >=
2744 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2745 btrfs_mark_bg_to_reclaim(block_group);
2748 spin_unlock(&block_group->lock);
2753 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2754 u64 bytenr, u64 size)
2756 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2758 if (btrfs_is_zoned(block_group->fs_info))
2759 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2762 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2763 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2765 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2768 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2769 u64 bytenr, u64 size)
2771 if (btrfs_is_zoned(block_group->fs_info))
2772 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2775 return btrfs_add_free_space(block_group, bytenr, size);
2779 * This is a subtle distinction because when adding free space back in general,
2780 * we want it to be added as untrimmed for async. But in the case where we add
2781 * it on loading of a block group, we want to consider it trimmed.
2783 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2784 u64 bytenr, u64 size)
2786 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2788 if (btrfs_is_zoned(block_group->fs_info))
2789 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2792 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2793 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2794 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2796 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2799 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2800 u64 offset, u64 bytes)
2802 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2803 struct btrfs_free_space *info;
2805 bool re_search = false;
2807 if (btrfs_is_zoned(block_group->fs_info)) {
2809 * This can happen with conventional zones when replaying log.
2810 * Since the allocation info of tree-log nodes are not recorded
2811 * to the extent-tree, calculate_alloc_pointer() failed to
2812 * advance the allocation pointer after last allocated tree log
2815 * This function is called from
2816 * btrfs_pin_extent_for_log_replay() when replaying the log.
2817 * Advance the pointer not to overwrite the tree-log nodes.
2819 if (block_group->start + block_group->alloc_offset <
2821 block_group->alloc_offset =
2822 offset + bytes - block_group->start;
2827 spin_lock(&ctl->tree_lock);
2834 info = tree_search_offset(ctl, offset, 0, 0);
2837 * oops didn't find an extent that matched the space we wanted
2838 * to remove, look for a bitmap instead
2840 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2844 * If we found a partial bit of our free space in a
2845 * bitmap but then couldn't find the other part this may
2846 * be a problem, so WARN about it.
2854 if (!info->bitmap) {
2855 unlink_free_space(ctl, info, true);
2856 if (offset == info->offset) {
2857 u64 to_free = min(bytes, info->bytes);
2859 info->bytes -= to_free;
2860 info->offset += to_free;
2862 ret = link_free_space(ctl, info);
2865 kmem_cache_free(btrfs_free_space_cachep, info);
2872 u64 old_end = info->bytes + info->offset;
2874 info->bytes = offset - info->offset;
2875 ret = link_free_space(ctl, info);
2880 /* Not enough bytes in this entry to satisfy us */
2881 if (old_end < offset + bytes) {
2882 bytes -= old_end - offset;
2885 } else if (old_end == offset + bytes) {
2889 spin_unlock(&ctl->tree_lock);
2891 ret = __btrfs_add_free_space(block_group,
2893 old_end - (offset + bytes),
2900 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2901 if (ret == -EAGAIN) {
2906 btrfs_discard_update_discardable(block_group);
2907 spin_unlock(&ctl->tree_lock);
2912 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2915 struct btrfs_fs_info *fs_info = block_group->fs_info;
2916 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2917 struct btrfs_free_space *info;
2922 * Zoned btrfs does not use free space tree and cluster. Just print
2923 * out the free space after the allocation offset.
2925 if (btrfs_is_zoned(fs_info)) {
2926 btrfs_info(fs_info, "free space %llu active %d",
2927 block_group->zone_capacity - block_group->alloc_offset,
2928 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2929 &block_group->runtime_flags));
2933 spin_lock(&ctl->tree_lock);
2934 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2935 info = rb_entry(n, struct btrfs_free_space, offset_index);
2936 if (info->bytes >= bytes && !block_group->ro)
2938 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2939 info->offset, info->bytes,
2940 (info->bitmap) ? "yes" : "no");
2942 spin_unlock(&ctl->tree_lock);
2943 btrfs_info(fs_info, "block group has cluster?: %s",
2944 list_empty(&block_group->cluster_list) ? "no" : "yes");
2946 "%d free space entries at or bigger than %llu bytes",
2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2951 struct btrfs_free_space_ctl *ctl)
2953 struct btrfs_fs_info *fs_info = block_group->fs_info;
2955 spin_lock_init(&ctl->tree_lock);
2956 ctl->unit = fs_info->sectorsize;
2957 ctl->start = block_group->start;
2958 ctl->block_group = block_group;
2959 ctl->op = &free_space_op;
2960 ctl->free_space_bytes = RB_ROOT_CACHED;
2961 INIT_LIST_HEAD(&ctl->trimming_ranges);
2962 mutex_init(&ctl->cache_writeout_mutex);
2965 * we only want to have 32k of ram per block group for keeping
2966 * track of free space, and if we pass 1/2 of that we want to
2967 * start converting things over to using bitmaps
2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2973 * for a given cluster, put all of its extents back into the free
2974 * space cache. If the block group passed doesn't match the block group
2975 * pointed to by the cluster, someone else raced in and freed the
2976 * cluster already. In that case, we just return without changing anything
2978 static void __btrfs_return_cluster_to_free_space(
2979 struct btrfs_block_group *block_group,
2980 struct btrfs_free_cluster *cluster)
2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2983 struct rb_node *node;
2985 lockdep_assert_held(&ctl->tree_lock);
2987 spin_lock(&cluster->lock);
2988 if (cluster->block_group != block_group) {
2989 spin_unlock(&cluster->lock);
2993 cluster->block_group = NULL;
2994 cluster->window_start = 0;
2995 list_del_init(&cluster->block_group_list);
2997 node = rb_first(&cluster->root);
2999 struct btrfs_free_space *entry;
3001 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002 node = rb_next(&entry->offset_index);
3003 rb_erase(&entry->offset_index, &cluster->root);
3004 RB_CLEAR_NODE(&entry->offset_index);
3006 if (!entry->bitmap) {
3007 /* Merging treats extents as if they were new */
3008 if (!btrfs_free_space_trimmed(entry)) {
3009 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3014 try_merge_free_space(ctl, entry, false);
3015 steal_from_bitmap(ctl, entry, false);
3017 /* As we insert directly, update these statistics */
3018 if (!btrfs_free_space_trimmed(entry)) {
3019 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3020 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3024 tree_insert_offset(ctl, NULL, entry);
3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3028 cluster->root = RB_ROOT;
3029 spin_unlock(&cluster->lock);
3030 btrfs_put_block_group(block_group);
3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3036 struct btrfs_free_cluster *cluster;
3037 struct list_head *head;
3039 spin_lock(&ctl->tree_lock);
3040 while ((head = block_group->cluster_list.next) !=
3041 &block_group->cluster_list) {
3042 cluster = list_entry(head, struct btrfs_free_cluster,
3045 WARN_ON(cluster->block_group != block_group);
3046 __btrfs_return_cluster_to_free_space(block_group, cluster);
3048 cond_resched_lock(&ctl->tree_lock);
3050 __btrfs_remove_free_space_cache(ctl);
3051 btrfs_discard_update_discardable(block_group);
3052 spin_unlock(&ctl->tree_lock);
3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062 struct btrfs_free_space *info;
3063 struct rb_node *node;
3066 spin_lock(&ctl->tree_lock);
3067 node = rb_first(&ctl->free_space_offset);
3070 info = rb_entry(node, struct btrfs_free_space, offset_index);
3072 if (!btrfs_free_space_trimmed(info)) {
3077 node = rb_next(node);
3080 spin_unlock(&ctl->tree_lock);
3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3085 u64 offset, u64 bytes, u64 empty_size,
3086 u64 *max_extent_size)
3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 struct btrfs_discard_ctl *discard_ctl =
3090 &block_group->fs_info->discard_ctl;
3091 struct btrfs_free_space *entry = NULL;
3092 u64 bytes_search = bytes + empty_size;
3095 u64 align_gap_len = 0;
3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3097 bool use_bytes_index = (offset == block_group->start);
3099 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3101 spin_lock(&ctl->tree_lock);
3102 entry = find_free_space(ctl, &offset, &bytes_search,
3103 block_group->full_stripe_len, max_extent_size,
3109 if (entry->bitmap) {
3110 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3112 if (!btrfs_free_space_trimmed(entry))
3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3116 free_bitmap(ctl, entry);
3118 unlink_free_space(ctl, entry, true);
3119 align_gap_len = offset - entry->offset;
3120 align_gap = entry->offset;
3121 align_gap_trim_state = entry->trim_state;
3123 if (!btrfs_free_space_trimmed(entry))
3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3126 entry->offset = offset + bytes;
3127 WARN_ON(entry->bytes < bytes + align_gap_len);
3129 entry->bytes -= bytes + align_gap_len;
3131 kmem_cache_free(btrfs_free_space_cachep, entry);
3133 link_free_space(ctl, entry);
3136 btrfs_discard_update_discardable(block_group);
3137 spin_unlock(&ctl->tree_lock);
3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3141 align_gap_trim_state);
3146 * given a cluster, put all of its extents back into the free space
3147 * cache. If a block group is passed, this function will only free
3148 * a cluster that belongs to the passed block group.
3150 * Otherwise, it'll get a reference on the block group pointed to by the
3151 * cluster and remove the cluster from it.
3153 void btrfs_return_cluster_to_free_space(
3154 struct btrfs_block_group *block_group,
3155 struct btrfs_free_cluster *cluster)
3157 struct btrfs_free_space_ctl *ctl;
3159 /* first, get a safe pointer to the block group */
3160 spin_lock(&cluster->lock);
3162 block_group = cluster->block_group;
3164 spin_unlock(&cluster->lock);
3167 } else if (cluster->block_group != block_group) {
3168 /* someone else has already freed it don't redo their work */
3169 spin_unlock(&cluster->lock);
3172 btrfs_get_block_group(block_group);
3173 spin_unlock(&cluster->lock);
3175 ctl = block_group->free_space_ctl;
3177 /* now return any extents the cluster had on it */
3178 spin_lock(&ctl->tree_lock);
3179 __btrfs_return_cluster_to_free_space(block_group, cluster);
3180 spin_unlock(&ctl->tree_lock);
3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3184 /* finally drop our ref */
3185 btrfs_put_block_group(block_group);
3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3189 struct btrfs_free_cluster *cluster,
3190 struct btrfs_free_space *entry,
3191 u64 bytes, u64 min_start,
3192 u64 *max_extent_size)
3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3196 u64 search_start = cluster->window_start;
3197 u64 search_bytes = bytes;
3200 search_start = min_start;
3201 search_bytes = bytes;
3203 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3205 *max_extent_size = max(get_max_extent_size(entry),
3211 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3217 * given a cluster, try to allocate 'bytes' from it, returns 0
3218 * if it couldn't find anything suitably large, or a logical disk offset
3219 * if things worked out
3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3222 struct btrfs_free_cluster *cluster, u64 bytes,
3223 u64 min_start, u64 *max_extent_size)
3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3226 struct btrfs_discard_ctl *discard_ctl =
3227 &block_group->fs_info->discard_ctl;
3228 struct btrfs_free_space *entry = NULL;
3229 struct rb_node *node;
3232 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3234 spin_lock(&cluster->lock);
3235 if (bytes > cluster->max_size)
3238 if (cluster->block_group != block_group)
3241 node = rb_first(&cluster->root);
3245 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3247 if (entry->bytes < bytes)
3248 *max_extent_size = max(get_max_extent_size(entry),
3251 if (entry->bytes < bytes ||
3252 (!entry->bitmap && entry->offset < min_start)) {
3253 node = rb_next(&entry->offset_index);
3256 entry = rb_entry(node, struct btrfs_free_space,
3261 if (entry->bitmap) {
3262 ret = btrfs_alloc_from_bitmap(block_group,
3263 cluster, entry, bytes,
3264 cluster->window_start,
3267 node = rb_next(&entry->offset_index);
3270 entry = rb_entry(node, struct btrfs_free_space,
3274 cluster->window_start += bytes;
3276 ret = entry->offset;
3278 entry->offset += bytes;
3279 entry->bytes -= bytes;
3285 spin_unlock(&cluster->lock);
3290 spin_lock(&ctl->tree_lock);
3292 if (!btrfs_free_space_trimmed(entry))
3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3295 ctl->free_space -= bytes;
3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3299 spin_lock(&cluster->lock);
3300 if (entry->bytes == 0) {
3301 rb_erase(&entry->offset_index, &cluster->root);
3302 ctl->free_extents--;
3303 if (entry->bitmap) {
3304 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3306 ctl->total_bitmaps--;
3307 recalculate_thresholds(ctl);
3308 } else if (!btrfs_free_space_trimmed(entry)) {
3309 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3311 kmem_cache_free(btrfs_free_space_cachep, entry);
3314 spin_unlock(&cluster->lock);
3315 spin_unlock(&ctl->tree_lock);
3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3321 struct btrfs_free_space *entry,
3322 struct btrfs_free_cluster *cluster,
3323 u64 offset, u64 bytes,
3324 u64 cont1_bytes, u64 min_bytes)
3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3327 unsigned long next_zero;
3329 unsigned long want_bits;
3330 unsigned long min_bits;
3331 unsigned long found_bits;
3332 unsigned long max_bits = 0;
3333 unsigned long start = 0;
3334 unsigned long total_found = 0;
3337 lockdep_assert_held(&ctl->tree_lock);
3339 i = offset_to_bit(entry->offset, ctl->unit,
3340 max_t(u64, offset, entry->offset));
3341 want_bits = bytes_to_bits(bytes, ctl->unit);
3342 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3345 * Don't bother looking for a cluster in this bitmap if it's heavily
3348 if (entry->max_extent_size &&
3349 entry->max_extent_size < cont1_bytes)
3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3354 next_zero = find_next_zero_bit(entry->bitmap,
3355 BITS_PER_BITMAP, i);
3356 if (next_zero - i >= min_bits) {
3357 found_bits = next_zero - i;
3358 if (found_bits > max_bits)
3359 max_bits = found_bits;
3362 if (next_zero - i > max_bits)
3363 max_bits = next_zero - i;
3368 entry->max_extent_size = (u64)max_bits * ctl->unit;
3374 cluster->max_size = 0;
3377 total_found += found_bits;
3379 if (cluster->max_size < found_bits * ctl->unit)
3380 cluster->max_size = found_bits * ctl->unit;
3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3387 cluster->window_start = start * ctl->unit + entry->offset;
3388 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3392 * We need to know if we're currently on the normal space index when we
3393 * manipulate the bitmap so that we know we need to remove and re-insert
3394 * it into the space_index tree. Clear the bytes_index node here so the
3395 * bitmap manipulation helpers know not to mess with the space_index
3396 * until this bitmap entry is added back into the normal cache.
3398 RB_CLEAR_NODE(&entry->bytes_index);
3400 ret = tree_insert_offset(ctl, cluster, entry);
3401 ASSERT(!ret); /* -EEXIST; Logic error */
3403 trace_btrfs_setup_cluster(block_group, cluster,
3404 total_found * ctl->unit, 1);
3409 * This searches the block group for just extents to fill the cluster with.
3410 * Try to find a cluster with at least bytes total bytes, at least one
3411 * extent of cont1_bytes, and other clusters of at least min_bytes.
3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3415 struct btrfs_free_cluster *cluster,
3416 struct list_head *bitmaps, u64 offset, u64 bytes,
3417 u64 cont1_bytes, u64 min_bytes)
3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3420 struct btrfs_free_space *first = NULL;
3421 struct btrfs_free_space *entry = NULL;
3422 struct btrfs_free_space *last;
3423 struct rb_node *node;
3428 lockdep_assert_held(&ctl->tree_lock);
3430 entry = tree_search_offset(ctl, offset, 0, 1);
3435 * We don't want bitmaps, so just move along until we find a normal
3438 while (entry->bitmap || entry->bytes < min_bytes) {
3439 if (entry->bitmap && list_empty(&entry->list))
3440 list_add_tail(&entry->list, bitmaps);
3441 node = rb_next(&entry->offset_index);
3444 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3447 window_free = entry->bytes;
3448 max_extent = entry->bytes;
3452 for (node = rb_next(&entry->offset_index); node;
3453 node = rb_next(&entry->offset_index)) {
3454 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3456 if (entry->bitmap) {
3457 if (list_empty(&entry->list))
3458 list_add_tail(&entry->list, bitmaps);
3462 if (entry->bytes < min_bytes)
3466 window_free += entry->bytes;
3467 if (entry->bytes > max_extent)
3468 max_extent = entry->bytes;
3471 if (window_free < bytes || max_extent < cont1_bytes)
3474 cluster->window_start = first->offset;
3476 node = &first->offset_index;
3479 * now we've found our entries, pull them out of the free space
3480 * cache and put them into the cluster rbtree
3485 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3486 node = rb_next(&entry->offset_index);
3487 if (entry->bitmap || entry->bytes < min_bytes)
3490 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3492 ret = tree_insert_offset(ctl, cluster, entry);
3493 total_size += entry->bytes;
3494 ASSERT(!ret); /* -EEXIST; Logic error */
3495 } while (node && entry != last);
3497 cluster->max_size = max_extent;
3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3503 * This specifically looks for bitmaps that may work in the cluster, we assume
3504 * that we have already failed to find extents that will work.
3507 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3508 struct btrfs_free_cluster *cluster,
3509 struct list_head *bitmaps, u64 offset, u64 bytes,
3510 u64 cont1_bytes, u64 min_bytes)
3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 struct btrfs_free_space *entry = NULL;
3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3517 if (ctl->total_bitmaps == 0)
3521 * The bitmap that covers offset won't be in the list unless offset
3522 * is just its start offset.
3524 if (!list_empty(bitmaps))
3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3527 if (!entry || entry->offset != bitmap_offset) {
3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3529 if (entry && list_empty(&entry->list))
3530 list_add(&entry->list, bitmaps);
3533 list_for_each_entry(entry, bitmaps, list) {
3534 if (entry->bytes < bytes)
3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3537 bytes, cont1_bytes, min_bytes);
3543 * The bitmaps list has all the bitmaps that record free space
3544 * starting after offset, so no more search is required.
3550 * here we try to find a cluster of blocks in a block group. The goal
3551 * is to find at least bytes+empty_size.
3552 * We might not find them all in one contiguous area.
3554 * returns zero and sets up cluster if things worked out, otherwise
3555 * it returns -enospc
3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3558 struct btrfs_free_cluster *cluster,
3559 u64 offset, u64 bytes, u64 empty_size)
3561 struct btrfs_fs_info *fs_info = block_group->fs_info;
3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563 struct btrfs_free_space *entry, *tmp;
3570 * Choose the minimum extent size we'll require for this
3571 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3572 * For metadata, allow allocates with smaller extents. For
3573 * data, keep it dense.
3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3576 cont1_bytes = bytes + empty_size;
3577 min_bytes = cont1_bytes;
3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3579 cont1_bytes = bytes;
3580 min_bytes = fs_info->sectorsize;
3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3583 min_bytes = fs_info->sectorsize;
3586 spin_lock(&ctl->tree_lock);
3589 * If we know we don't have enough space to make a cluster don't even
3590 * bother doing all the work to try and find one.
3592 if (ctl->free_space < bytes) {
3593 spin_unlock(&ctl->tree_lock);
3597 spin_lock(&cluster->lock);
3599 /* someone already found a cluster, hooray */
3600 if (cluster->block_group) {
3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3610 cont1_bytes, min_bytes);
3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3613 offset, bytes + empty_size,
3614 cont1_bytes, min_bytes);
3616 /* Clear our temporary list */
3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3618 list_del_init(&entry->list);
3621 btrfs_get_block_group(block_group);
3622 list_add_tail(&cluster->block_group_list,
3623 &block_group->cluster_list);
3624 cluster->block_group = block_group;
3626 trace_btrfs_failed_cluster_setup(block_group);
3629 spin_unlock(&cluster->lock);
3630 spin_unlock(&ctl->tree_lock);
3636 * simple code to zero out a cluster
3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3640 spin_lock_init(&cluster->lock);
3641 spin_lock_init(&cluster->refill_lock);
3642 cluster->root = RB_ROOT;
3643 cluster->max_size = 0;
3644 cluster->fragmented = false;
3645 INIT_LIST_HEAD(&cluster->block_group_list);
3646 cluster->block_group = NULL;
3649 static int do_trimming(struct btrfs_block_group *block_group,
3650 u64 *total_trimmed, u64 start, u64 bytes,
3651 u64 reserved_start, u64 reserved_bytes,
3652 enum btrfs_trim_state reserved_trim_state,
3653 struct btrfs_trim_range *trim_entry)
3655 struct btrfs_space_info *space_info = block_group->space_info;
3656 struct btrfs_fs_info *fs_info = block_group->fs_info;
3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3660 const u64 end = start + bytes;
3661 const u64 reserved_end = reserved_start + reserved_bytes;
3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3665 spin_lock(&space_info->lock);
3666 spin_lock(&block_group->lock);
3667 if (!block_group->ro) {
3668 block_group->reserved += reserved_bytes;
3669 space_info->bytes_reserved += reserved_bytes;
3672 spin_unlock(&block_group->lock);
3673 spin_unlock(&space_info->lock);
3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3677 *total_trimmed += trimmed;
3678 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3681 mutex_lock(&ctl->cache_writeout_mutex);
3682 if (reserved_start < start)
3683 __btrfs_add_free_space(block_group, reserved_start,
3684 start - reserved_start,
3685 reserved_trim_state);
3686 if (end < reserved_end)
3687 __btrfs_add_free_space(block_group, end, reserved_end - end,
3688 reserved_trim_state);
3689 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3690 list_del(&trim_entry->list);
3691 mutex_unlock(&ctl->cache_writeout_mutex);
3694 spin_lock(&space_info->lock);
3695 spin_lock(&block_group->lock);
3696 if (block_group->ro)
3697 space_info->bytes_readonly += reserved_bytes;
3698 block_group->reserved -= reserved_bytes;
3699 space_info->bytes_reserved -= reserved_bytes;
3700 spin_unlock(&block_group->lock);
3701 spin_unlock(&space_info->lock);
3708 * If @async is set, then we will trim 1 region and return.
3710 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3714 struct btrfs_discard_ctl *discard_ctl =
3715 &block_group->fs_info->discard_ctl;
3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3717 struct btrfs_free_space *entry;
3718 struct rb_node *node;
3722 enum btrfs_trim_state extent_trim_state;
3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3726 while (start < end) {
3727 struct btrfs_trim_range trim_entry;
3729 mutex_lock(&ctl->cache_writeout_mutex);
3730 spin_lock(&ctl->tree_lock);
3732 if (ctl->free_space < minlen)
3735 entry = tree_search_offset(ctl, start, 0, 1);
3739 /* Skip bitmaps and if async, already trimmed entries */
3740 while (entry->bitmap ||
3741 (async && btrfs_free_space_trimmed(entry))) {
3742 node = rb_next(&entry->offset_index);
3745 entry = rb_entry(node, struct btrfs_free_space,
3749 if (entry->offset >= end)
3752 extent_start = entry->offset;
3753 extent_bytes = entry->bytes;
3754 extent_trim_state = entry->trim_state;
3756 start = entry->offset;
3757 bytes = entry->bytes;
3758 if (bytes < minlen) {
3759 spin_unlock(&ctl->tree_lock);
3760 mutex_unlock(&ctl->cache_writeout_mutex);
3763 unlink_free_space(ctl, entry, true);
3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3767 * X when we come back around. So trim it now.
3769 if (max_discard_size &&
3770 bytes >= (max_discard_size +
3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3772 bytes = max_discard_size;
3773 extent_bytes = max_discard_size;
3774 entry->offset += max_discard_size;
3775 entry->bytes -= max_discard_size;
3776 link_free_space(ctl, entry);
3778 kmem_cache_free(btrfs_free_space_cachep, entry);
3781 start = max(start, extent_start);
3782 bytes = min(extent_start + extent_bytes, end) - start;
3783 if (bytes < minlen) {
3784 spin_unlock(&ctl->tree_lock);
3785 mutex_unlock(&ctl->cache_writeout_mutex);
3789 unlink_free_space(ctl, entry, true);
3790 kmem_cache_free(btrfs_free_space_cachep, entry);
3793 spin_unlock(&ctl->tree_lock);
3794 trim_entry.start = extent_start;
3795 trim_entry.bytes = extent_bytes;
3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3797 mutex_unlock(&ctl->cache_writeout_mutex);
3799 ret = do_trimming(block_group, total_trimmed, start, bytes,
3800 extent_start, extent_bytes, extent_trim_state,
3803 block_group->discard_cursor = start + bytes;
3808 block_group->discard_cursor = start;
3809 if (async && *total_trimmed)
3812 if (fatal_signal_pending(current)) {
3823 block_group->discard_cursor = btrfs_block_group_end(block_group);
3824 spin_unlock(&ctl->tree_lock);
3825 mutex_unlock(&ctl->cache_writeout_mutex);
3831 * If we break out of trimming a bitmap prematurely, we should reset the
3832 * trimming bit. In a rather contrieved case, it's possible to race here so
3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3835 * start = start of bitmap
3836 * end = near end of bitmap
3838 * Thread 1: Thread 2:
3839 * trim_bitmaps(start)
3841 * end_trimming_bitmap()
3842 * reset_trimming_bitmap()
3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3846 struct btrfs_free_space *entry;
3848 spin_lock(&ctl->tree_lock);
3849 entry = tree_search_offset(ctl, offset, 1, 0);
3851 if (btrfs_free_space_trimmed(entry)) {
3852 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3853 entry->bitmap_extents;
3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3859 spin_unlock(&ctl->tree_lock);
3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3863 struct btrfs_free_space *entry)
3865 if (btrfs_free_space_trimming_bitmap(entry)) {
3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3867 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3868 entry->bitmap_extents;
3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3874 * If @async is set, then we will trim 1 region and return.
3876 static int trim_bitmaps(struct btrfs_block_group *block_group,
3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3878 u64 maxlen, bool async)
3880 struct btrfs_discard_ctl *discard_ctl =
3881 &block_group->fs_info->discard_ctl;
3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3883 struct btrfs_free_space *entry;
3887 u64 offset = offset_to_bitmap(ctl, start);
3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3890 while (offset < end) {
3891 bool next_bitmap = false;
3892 struct btrfs_trim_range trim_entry;
3894 mutex_lock(&ctl->cache_writeout_mutex);
3895 spin_lock(&ctl->tree_lock);
3897 if (ctl->free_space < minlen) {
3898 block_group->discard_cursor =
3899 btrfs_block_group_end(block_group);
3900 spin_unlock(&ctl->tree_lock);
3901 mutex_unlock(&ctl->cache_writeout_mutex);
3905 entry = tree_search_offset(ctl, offset, 1, 0);
3907 * Bitmaps are marked trimmed lossily now to prevent constant
3908 * discarding of the same bitmap (the reason why we are bound
3909 * by the filters). So, retrim the block group bitmaps when we
3910 * are preparing to punt to the unused_bgs list. This uses
3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3912 * which is the only discard index which sets minlen to 0.
3914 if (!entry || (async && minlen && start == offset &&
3915 btrfs_free_space_trimmed(entry))) {
3916 spin_unlock(&ctl->tree_lock);
3917 mutex_unlock(&ctl->cache_writeout_mutex);
3923 * Async discard bitmap trimming begins at by setting the start
3924 * to be key.objectid and the offset_to_bitmap() aligns to the
3925 * start of the bitmap. This lets us know we are fully
3926 * scanning the bitmap rather than only some portion of it.
3928 if (start == offset)
3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3933 if (ret2 || start >= end) {
3935 * We lossily consider a bitmap trimmed if we only skip
3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3939 end_trimming_bitmap(ctl, entry);
3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3942 spin_unlock(&ctl->tree_lock);
3943 mutex_unlock(&ctl->cache_writeout_mutex);
3949 * We already trimmed a region, but are using the locking above
3950 * to reset the trim_state.
3952 if (async && *total_trimmed) {
3953 spin_unlock(&ctl->tree_lock);
3954 mutex_unlock(&ctl->cache_writeout_mutex);
3958 bytes = min(bytes, end - start);
3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3960 spin_unlock(&ctl->tree_lock);
3961 mutex_unlock(&ctl->cache_writeout_mutex);
3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3967 * If X < @minlen, we won't trim X when we come back around.
3968 * So trim it now. We differ here from trimming extents as we
3969 * don't keep individual state per bit.
3973 bytes > (max_discard_size + minlen))
3974 bytes = max_discard_size;
3976 bitmap_clear_bits(ctl, entry, start, bytes, true);
3977 if (entry->bytes == 0)
3978 free_bitmap(ctl, entry);
3980 spin_unlock(&ctl->tree_lock);
3981 trim_entry.start = start;
3982 trim_entry.bytes = bytes;
3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3984 mutex_unlock(&ctl->cache_writeout_mutex);
3986 ret = do_trimming(block_group, total_trimmed, start, bytes,
3987 start, bytes, 0, &trim_entry);
3989 reset_trimming_bitmap(ctl, offset);
3990 block_group->discard_cursor =
3991 btrfs_block_group_end(block_group);
3996 offset += BITS_PER_BITMAP * ctl->unit;
4001 block_group->discard_cursor = start;
4003 if (fatal_signal_pending(current)) {
4004 if (start != offset)
4005 reset_trimming_bitmap(ctl, offset);
4014 block_group->discard_cursor = end;
4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4021 u64 *trimmed, u64 start, u64 end, u64 minlen)
4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4027 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4031 spin_lock(&block_group->lock);
4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4033 spin_unlock(&block_group->lock);
4036 btrfs_freeze_block_group(block_group);
4037 spin_unlock(&block_group->lock);
4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4045 /* If we ended in the middle of a bitmap, reset the trimming flag */
4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4049 btrfs_unfreeze_block_group(block_group);
4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4054 u64 *trimmed, u64 start, u64 end, u64 minlen,
4061 spin_lock(&block_group->lock);
4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4063 spin_unlock(&block_group->lock);
4066 btrfs_freeze_block_group(block_group);
4067 spin_unlock(&block_group->lock);
4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4070 btrfs_unfreeze_block_group(block_group);
4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4076 u64 *trimmed, u64 start, u64 end, u64 minlen,
4077 u64 maxlen, bool async)
4083 spin_lock(&block_group->lock);
4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4085 spin_unlock(&block_group->lock);
4088 btrfs_freeze_block_group(block_group);
4089 spin_unlock(&block_group->lock);
4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4094 btrfs_unfreeze_block_group(block_group);
4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4101 return btrfs_super_cache_generation(fs_info->super_copy);
4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4105 struct btrfs_trans_handle *trans)
4107 struct btrfs_block_group *block_group;
4108 struct rb_node *node;
4111 btrfs_info(fs_info, "cleaning free space cache v1");
4113 node = rb_first_cached(&fs_info->block_group_cache_tree);
4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4119 node = rb_next(node);
4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4127 struct btrfs_trans_handle *trans;
4131 * update_super_roots will appropriately set or unset
4132 * super_copy->cache_generation based on SPACE_CACHE and
4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4134 * transaction commit whether we are enabling space cache v1 and don't
4135 * have any other work to do, or are disabling it and removing free
4138 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4140 return PTR_ERR(trans);
4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4144 ret = cleanup_free_space_cache_v1(fs_info, trans);
4146 btrfs_abort_transaction(trans, ret);
4147 btrfs_end_transaction(trans);
4152 ret = btrfs_commit_transaction(trans);
4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4159 int __init btrfs_free_space_init(void)
4161 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4162 if (!btrfs_free_space_cachep)
4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166 PAGE_SIZE, PAGE_SIZE,
4168 if (!btrfs_free_space_bitmap_cachep) {
4169 kmem_cache_destroy(btrfs_free_space_cachep);
4176 void __cold btrfs_free_space_exit(void)
4178 kmem_cache_destroy(btrfs_free_space_cachep);
4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4182 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4189 int test_add_free_space_entry(struct btrfs_block_group *cache,
4190 u64 offset, u64 bytes, bool bitmap)
4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193 struct btrfs_free_space *info = NULL, *bitmap_info;
4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4207 spin_lock(&ctl->tree_lock);
4208 info->offset = offset;
4209 info->bytes = bytes;
4210 info->max_extent_size = 0;
4211 ret = link_free_space(ctl, info);
4212 spin_unlock(&ctl->tree_lock);
4214 kmem_cache_free(btrfs_free_space_cachep, info);
4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4221 kmem_cache_free(btrfs_free_space_cachep, info);
4226 spin_lock(&ctl->tree_lock);
4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4232 add_new_bitmap(ctl, info, offset);
4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4240 bytes -= bytes_added;
4241 offset += bytes_added;
4242 spin_unlock(&ctl->tree_lock);
4248 kmem_cache_free(btrfs_free_space_cachep, info);
4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4255 * Checks to see if the given range is in the free space cache. This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4259 int test_check_exists(struct btrfs_block_group *cache,
4260 u64 offset, u64 bytes)
4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263 struct btrfs_free_space *info;
4266 spin_lock(&ctl->tree_lock);
4267 info = tree_search_offset(ctl, offset, 0, 0);
4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4277 u64 bit_off, bit_bytes;
4279 struct btrfs_free_space *tmp;
4282 bit_bytes = ctl->unit;
4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4285 if (bit_off == offset) {
4288 } else if (bit_off > offset &&
4289 offset + bytes > bit_off) {
4295 n = rb_prev(&info->offset_index);
4297 tmp = rb_entry(n, struct btrfs_free_space,
4299 if (tmp->offset + tmp->bytes < offset)
4301 if (offset + bytes < tmp->offset) {
4302 n = rb_prev(&tmp->offset_index);
4309 n = rb_next(&info->offset_index);
4311 tmp = rb_entry(n, struct btrfs_free_space,
4313 if (offset + bytes < tmp->offset)
4315 if (tmp->offset + tmp->bytes < offset) {
4316 n = rb_next(&tmp->offset_index);
4327 if (info->offset == offset) {
4332 if (offset > info->offset && offset < info->offset + info->bytes)
4335 spin_unlock(&ctl->tree_lock);
4338 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */