]> Git Repo - linux.git/blob - security/selinux/hooks.c
selinux: correctly handle sa_family cases in selinux_sctp_bind_connect()
[linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <[email protected]>
7  *            Chris Vance, <[email protected]>
8  *            Wayne Salamon, <[email protected]>
9  *            James Morris <[email protected]>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <[email protected]>
13  *                                         Eric Paris <[email protected]>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <[email protected]>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <[email protected]>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <[email protected]>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *      This program is free software; you can redistribute it and/or modify
23  *      it under the terms of the GNU General Public License version 2,
24  *      as published by the Free Software Foundation.
25  */
26
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>             /* for local_port_range[] */
56 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>    /* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>           /* for Unix socket types */
74 #include <net/af_unix.h>        /* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/selinux.h>
83 #include <linux/mutex.h>
84 #include <linux/posix-timers.h>
85 #include <linux/syslog.h>
86 #include <linux/user_namespace.h>
87 #include <linux/export.h>
88 #include <linux/msg.h>
89 #include <linux/shm.h>
90 #include <linux/bpf.h>
91
92 #include "avc.h"
93 #include "objsec.h"
94 #include "netif.h"
95 #include "netnode.h"
96 #include "netport.h"
97 #include "ibpkey.h"
98 #include "xfrm.h"
99 #include "netlabel.h"
100 #include "audit.h"
101 #include "avc_ss.h"
102
103 struct selinux_state selinux_state;
104
105 /* SECMARK reference count */
106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109 static int selinux_enforcing_boot;
110
111 static int __init enforcing_setup(char *str)
112 {
113         unsigned long enforcing;
114         if (!kstrtoul(str, 0, &enforcing))
115                 selinux_enforcing_boot = enforcing ? 1 : 0;
116         return 1;
117 }
118 __setup("enforcing=", enforcing_setup);
119 #else
120 #define selinux_enforcing_boot 1
121 #endif
122
123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126 static int __init selinux_enabled_setup(char *str)
127 {
128         unsigned long enabled;
129         if (!kstrtoul(str, 0, &enabled))
130                 selinux_enabled = enabled ? 1 : 0;
131         return 1;
132 }
133 __setup("selinux=", selinux_enabled_setup);
134 #else
135 int selinux_enabled = 1;
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot))
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147         return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150
151 static struct kmem_cache *sel_inode_cache;
152 static struct kmem_cache *file_security_cache;
153
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167         return (selinux_policycap_alwaysnetwork() ||
168                 atomic_read(&selinux_secmark_refcount));
169 }
170
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183         return (selinux_policycap_alwaysnetwork() ||
184                 netlbl_enabled() || selinux_xfrm_enabled());
185 }
186
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189         if (event == AVC_CALLBACK_RESET) {
190                 sel_netif_flush();
191                 sel_netnode_flush();
192                 sel_netport_flush();
193                 synchronize_net();
194         }
195         return 0;
196 }
197
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200         if (event == AVC_CALLBACK_RESET) {
201                 sel_ib_pkey_flush();
202                 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203         }
204
205         return 0;
206 }
207
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213         struct cred *cred = (struct cred *) current->real_cred;
214         struct task_security_struct *tsec;
215
216         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217         if (!tsec)
218                 panic("SELinux:  Failed to initialize initial task.\n");
219
220         tsec->osid = tsec->sid = SECINITSID_KERNEL;
221         cred->security = tsec;
222 }
223
224 /*
225  * get the security ID of a set of credentials
226  */
227 static inline u32 cred_sid(const struct cred *cred)
228 {
229         const struct task_security_struct *tsec;
230
231         tsec = cred->security;
232         return tsec->sid;
233 }
234
235 /*
236  * get the objective security ID of a task
237  */
238 static inline u32 task_sid(const struct task_struct *task)
239 {
240         u32 sid;
241
242         rcu_read_lock();
243         sid = cred_sid(__task_cred(task));
244         rcu_read_unlock();
245         return sid;
246 }
247
248 /* Allocate and free functions for each kind of security blob. */
249
250 static int inode_alloc_security(struct inode *inode)
251 {
252         struct inode_security_struct *isec;
253         u32 sid = current_sid();
254
255         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256         if (!isec)
257                 return -ENOMEM;
258
259         spin_lock_init(&isec->lock);
260         INIT_LIST_HEAD(&isec->list);
261         isec->inode = inode;
262         isec->sid = SECINITSID_UNLABELED;
263         isec->sclass = SECCLASS_FILE;
264         isec->task_sid = sid;
265         isec->initialized = LABEL_INVALID;
266         inode->i_security = isec;
267
268         return 0;
269 }
270
271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273 /*
274  * Try reloading inode security labels that have been marked as invalid.  The
275  * @may_sleep parameter indicates when sleeping and thus reloading labels is
276  * allowed; when set to false, returns -ECHILD when the label is
277  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
278  * when no dentry is available, set it to NULL instead.
279  */
280 static int __inode_security_revalidate(struct inode *inode,
281                                        struct dentry *opt_dentry,
282                                        bool may_sleep)
283 {
284         struct inode_security_struct *isec = inode->i_security;
285
286         might_sleep_if(may_sleep);
287
288         if (selinux_state.initialized &&
289             isec->initialized != LABEL_INITIALIZED) {
290                 if (!may_sleep)
291                         return -ECHILD;
292
293                 /*
294                  * Try reloading the inode security label.  This will fail if
295                  * @opt_dentry is NULL and no dentry for this inode can be
296                  * found; in that case, continue using the old label.
297                  */
298                 inode_doinit_with_dentry(inode, opt_dentry);
299         }
300         return 0;
301 }
302
303 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304 {
305         return inode->i_security;
306 }
307
308 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309 {
310         int error;
311
312         error = __inode_security_revalidate(inode, NULL, !rcu);
313         if (error)
314                 return ERR_PTR(error);
315         return inode->i_security;
316 }
317
318 /*
319  * Get the security label of an inode.
320  */
321 static struct inode_security_struct *inode_security(struct inode *inode)
322 {
323         __inode_security_revalidate(inode, NULL, true);
324         return inode->i_security;
325 }
326
327 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328 {
329         struct inode *inode = d_backing_inode(dentry);
330
331         return inode->i_security;
332 }
333
334 /*
335  * Get the security label of a dentry's backing inode.
336  */
337 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338 {
339         struct inode *inode = d_backing_inode(dentry);
340
341         __inode_security_revalidate(inode, dentry, true);
342         return inode->i_security;
343 }
344
345 static void inode_free_rcu(struct rcu_head *head)
346 {
347         struct inode_security_struct *isec;
348
349         isec = container_of(head, struct inode_security_struct, rcu);
350         kmem_cache_free(sel_inode_cache, isec);
351 }
352
353 static void inode_free_security(struct inode *inode)
354 {
355         struct inode_security_struct *isec = inode->i_security;
356         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358         /*
359          * As not all inode security structures are in a list, we check for
360          * empty list outside of the lock to make sure that we won't waste
361          * time taking a lock doing nothing.
362          *
363          * The list_del_init() function can be safely called more than once.
364          * It should not be possible for this function to be called with
365          * concurrent list_add(), but for better safety against future changes
366          * in the code, we use list_empty_careful() here.
367          */
368         if (!list_empty_careful(&isec->list)) {
369                 spin_lock(&sbsec->isec_lock);
370                 list_del_init(&isec->list);
371                 spin_unlock(&sbsec->isec_lock);
372         }
373
374         /*
375          * The inode may still be referenced in a path walk and
376          * a call to selinux_inode_permission() can be made
377          * after inode_free_security() is called. Ideally, the VFS
378          * wouldn't do this, but fixing that is a much harder
379          * job. For now, simply free the i_security via RCU, and
380          * leave the current inode->i_security pointer intact.
381          * The inode will be freed after the RCU grace period too.
382          */
383         call_rcu(&isec->rcu, inode_free_rcu);
384 }
385
386 static int file_alloc_security(struct file *file)
387 {
388         struct file_security_struct *fsec;
389         u32 sid = current_sid();
390
391         fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392         if (!fsec)
393                 return -ENOMEM;
394
395         fsec->sid = sid;
396         fsec->fown_sid = sid;
397         file->f_security = fsec;
398
399         return 0;
400 }
401
402 static void file_free_security(struct file *file)
403 {
404         struct file_security_struct *fsec = file->f_security;
405         file->f_security = NULL;
406         kmem_cache_free(file_security_cache, fsec);
407 }
408
409 static int superblock_alloc_security(struct super_block *sb)
410 {
411         struct superblock_security_struct *sbsec;
412
413         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414         if (!sbsec)
415                 return -ENOMEM;
416
417         mutex_init(&sbsec->lock);
418         INIT_LIST_HEAD(&sbsec->isec_head);
419         spin_lock_init(&sbsec->isec_lock);
420         sbsec->sb = sb;
421         sbsec->sid = SECINITSID_UNLABELED;
422         sbsec->def_sid = SECINITSID_FILE;
423         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424         sb->s_security = sbsec;
425
426         return 0;
427 }
428
429 static void superblock_free_security(struct super_block *sb)
430 {
431         struct superblock_security_struct *sbsec = sb->s_security;
432         sb->s_security = NULL;
433         kfree(sbsec);
434 }
435
436 static inline int inode_doinit(struct inode *inode)
437 {
438         return inode_doinit_with_dentry(inode, NULL);
439 }
440
441 enum {
442         Opt_error = -1,
443         Opt_context = 1,
444         Opt_fscontext = 2,
445         Opt_defcontext = 3,
446         Opt_rootcontext = 4,
447         Opt_labelsupport = 5,
448         Opt_nextmntopt = 6,
449 };
450
451 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
452
453 static const match_table_t tokens = {
454         {Opt_context, CONTEXT_STR "%s"},
455         {Opt_fscontext, FSCONTEXT_STR "%s"},
456         {Opt_defcontext, DEFCONTEXT_STR "%s"},
457         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458         {Opt_labelsupport, LABELSUPP_STR},
459         {Opt_error, NULL},
460 };
461
462 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
463
464 static int may_context_mount_sb_relabel(u32 sid,
465                         struct superblock_security_struct *sbsec,
466                         const struct cred *cred)
467 {
468         const struct task_security_struct *tsec = cred->security;
469         int rc;
470
471         rc = avc_has_perm(&selinux_state,
472                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473                           FILESYSTEM__RELABELFROM, NULL);
474         if (rc)
475                 return rc;
476
477         rc = avc_has_perm(&selinux_state,
478                           tsec->sid, sid, SECCLASS_FILESYSTEM,
479                           FILESYSTEM__RELABELTO, NULL);
480         return rc;
481 }
482
483 static int may_context_mount_inode_relabel(u32 sid,
484                         struct superblock_security_struct *sbsec,
485                         const struct cred *cred)
486 {
487         const struct task_security_struct *tsec = cred->security;
488         int rc;
489         rc = avc_has_perm(&selinux_state,
490                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491                           FILESYSTEM__RELABELFROM, NULL);
492         if (rc)
493                 return rc;
494
495         rc = avc_has_perm(&selinux_state,
496                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
497                           FILESYSTEM__ASSOCIATE, NULL);
498         return rc;
499 }
500
501 static int selinux_is_sblabel_mnt(struct super_block *sb)
502 {
503         struct superblock_security_struct *sbsec = sb->s_security;
504
505         return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506                 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507                 sbsec->behavior == SECURITY_FS_USE_TASK ||
508                 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509                 /* Special handling. Genfs but also in-core setxattr handler */
510                 !strcmp(sb->s_type->name, "sysfs") ||
511                 !strcmp(sb->s_type->name, "pstore") ||
512                 !strcmp(sb->s_type->name, "debugfs") ||
513                 !strcmp(sb->s_type->name, "tracefs") ||
514                 !strcmp(sb->s_type->name, "rootfs") ||
515                 (selinux_policycap_cgroupseclabel() &&
516                  (!strcmp(sb->s_type->name, "cgroup") ||
517                   !strcmp(sb->s_type->name, "cgroup2")));
518 }
519
520 static int sb_finish_set_opts(struct super_block *sb)
521 {
522         struct superblock_security_struct *sbsec = sb->s_security;
523         struct dentry *root = sb->s_root;
524         struct inode *root_inode = d_backing_inode(root);
525         int rc = 0;
526
527         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528                 /* Make sure that the xattr handler exists and that no
529                    error other than -ENODATA is returned by getxattr on
530                    the root directory.  -ENODATA is ok, as this may be
531                    the first boot of the SELinux kernel before we have
532                    assigned xattr values to the filesystem. */
533                 if (!(root_inode->i_opflags & IOP_XATTR)) {
534                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535                                "xattr support\n", sb->s_id, sb->s_type->name);
536                         rc = -EOPNOTSUPP;
537                         goto out;
538                 }
539
540                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541                 if (rc < 0 && rc != -ENODATA) {
542                         if (rc == -EOPNOTSUPP)
543                                 printk(KERN_WARNING "SELinux: (dev %s, type "
544                                        "%s) has no security xattr handler\n",
545                                        sb->s_id, sb->s_type->name);
546                         else
547                                 printk(KERN_WARNING "SELinux: (dev %s, type "
548                                        "%s) getxattr errno %d\n", sb->s_id,
549                                        sb->s_type->name, -rc);
550                         goto out;
551                 }
552         }
553
554         sbsec->flags |= SE_SBINITIALIZED;
555
556         /*
557          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
558          * leave the flag untouched because sb_clone_mnt_opts might be handing
559          * us a superblock that needs the flag to be cleared.
560          */
561         if (selinux_is_sblabel_mnt(sb))
562                 sbsec->flags |= SBLABEL_MNT;
563         else
564                 sbsec->flags &= ~SBLABEL_MNT;
565
566         /* Initialize the root inode. */
567         rc = inode_doinit_with_dentry(root_inode, root);
568
569         /* Initialize any other inodes associated with the superblock, e.g.
570            inodes created prior to initial policy load or inodes created
571            during get_sb by a pseudo filesystem that directly
572            populates itself. */
573         spin_lock(&sbsec->isec_lock);
574 next_inode:
575         if (!list_empty(&sbsec->isec_head)) {
576                 struct inode_security_struct *isec =
577                                 list_entry(sbsec->isec_head.next,
578                                            struct inode_security_struct, list);
579                 struct inode *inode = isec->inode;
580                 list_del_init(&isec->list);
581                 spin_unlock(&sbsec->isec_lock);
582                 inode = igrab(inode);
583                 if (inode) {
584                         if (!IS_PRIVATE(inode))
585                                 inode_doinit(inode);
586                         iput(inode);
587                 }
588                 spin_lock(&sbsec->isec_lock);
589                 goto next_inode;
590         }
591         spin_unlock(&sbsec->isec_lock);
592 out:
593         return rc;
594 }
595
596 /*
597  * This function should allow an FS to ask what it's mount security
598  * options were so it can use those later for submounts, displaying
599  * mount options, or whatever.
600  */
601 static int selinux_get_mnt_opts(const struct super_block *sb,
602                                 struct security_mnt_opts *opts)
603 {
604         int rc = 0, i;
605         struct superblock_security_struct *sbsec = sb->s_security;
606         char *context = NULL;
607         u32 len;
608         char tmp;
609
610         security_init_mnt_opts(opts);
611
612         if (!(sbsec->flags & SE_SBINITIALIZED))
613                 return -EINVAL;
614
615         if (!selinux_state.initialized)
616                 return -EINVAL;
617
618         /* make sure we always check enough bits to cover the mask */
619         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621         tmp = sbsec->flags & SE_MNTMASK;
622         /* count the number of mount options for this sb */
623         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624                 if (tmp & 0x01)
625                         opts->num_mnt_opts++;
626                 tmp >>= 1;
627         }
628         /* Check if the Label support flag is set */
629         if (sbsec->flags & SBLABEL_MNT)
630                 opts->num_mnt_opts++;
631
632         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633         if (!opts->mnt_opts) {
634                 rc = -ENOMEM;
635                 goto out_free;
636         }
637
638         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639         if (!opts->mnt_opts_flags) {
640                 rc = -ENOMEM;
641                 goto out_free;
642         }
643
644         i = 0;
645         if (sbsec->flags & FSCONTEXT_MNT) {
646                 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647                                              &context, &len);
648                 if (rc)
649                         goto out_free;
650                 opts->mnt_opts[i] = context;
651                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652         }
653         if (sbsec->flags & CONTEXT_MNT) {
654                 rc = security_sid_to_context(&selinux_state,
655                                              sbsec->mntpoint_sid,
656                                              &context, &len);
657                 if (rc)
658                         goto out_free;
659                 opts->mnt_opts[i] = context;
660                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661         }
662         if (sbsec->flags & DEFCONTEXT_MNT) {
663                 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664                                              &context, &len);
665                 if (rc)
666                         goto out_free;
667                 opts->mnt_opts[i] = context;
668                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669         }
670         if (sbsec->flags & ROOTCONTEXT_MNT) {
671                 struct dentry *root = sbsec->sb->s_root;
672                 struct inode_security_struct *isec = backing_inode_security(root);
673
674                 rc = security_sid_to_context(&selinux_state, isec->sid,
675                                              &context, &len);
676                 if (rc)
677                         goto out_free;
678                 opts->mnt_opts[i] = context;
679                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680         }
681         if (sbsec->flags & SBLABEL_MNT) {
682                 opts->mnt_opts[i] = NULL;
683                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684         }
685
686         BUG_ON(i != opts->num_mnt_opts);
687
688         return 0;
689
690 out_free:
691         security_free_mnt_opts(opts);
692         return rc;
693 }
694
695 static int bad_option(struct superblock_security_struct *sbsec, char flag,
696                       u32 old_sid, u32 new_sid)
697 {
698         char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700         /* check if the old mount command had the same options */
701         if (sbsec->flags & SE_SBINITIALIZED)
702                 if (!(sbsec->flags & flag) ||
703                     (old_sid != new_sid))
704                         return 1;
705
706         /* check if we were passed the same options twice,
707          * aka someone passed context=a,context=b
708          */
709         if (!(sbsec->flags & SE_SBINITIALIZED))
710                 if (mnt_flags & flag)
711                         return 1;
712         return 0;
713 }
714
715 /*
716  * Allow filesystems with binary mount data to explicitly set mount point
717  * labeling information.
718  */
719 static int selinux_set_mnt_opts(struct super_block *sb,
720                                 struct security_mnt_opts *opts,
721                                 unsigned long kern_flags,
722                                 unsigned long *set_kern_flags)
723 {
724         const struct cred *cred = current_cred();
725         int rc = 0, i;
726         struct superblock_security_struct *sbsec = sb->s_security;
727         const char *name = sb->s_type->name;
728         struct dentry *root = sbsec->sb->s_root;
729         struct inode_security_struct *root_isec;
730         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731         u32 defcontext_sid = 0;
732         char **mount_options = opts->mnt_opts;
733         int *flags = opts->mnt_opts_flags;
734         int num_opts = opts->num_mnt_opts;
735
736         mutex_lock(&sbsec->lock);
737
738         if (!selinux_state.initialized) {
739                 if (!num_opts) {
740                         /* Defer initialization until selinux_complete_init,
741                            after the initial policy is loaded and the security
742                            server is ready to handle calls. */
743                         goto out;
744                 }
745                 rc = -EINVAL;
746                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747                         "before the security server is initialized\n");
748                 goto out;
749         }
750         if (kern_flags && !set_kern_flags) {
751                 /* Specifying internal flags without providing a place to
752                  * place the results is not allowed */
753                 rc = -EINVAL;
754                 goto out;
755         }
756
757         /*
758          * Binary mount data FS will come through this function twice.  Once
759          * from an explicit call and once from the generic calls from the vfs.
760          * Since the generic VFS calls will not contain any security mount data
761          * we need to skip the double mount verification.
762          *
763          * This does open a hole in which we will not notice if the first
764          * mount using this sb set explict options and a second mount using
765          * this sb does not set any security options.  (The first options
766          * will be used for both mounts)
767          */
768         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769             && (num_opts == 0))
770                 goto out;
771
772         root_isec = backing_inode_security_novalidate(root);
773
774         /*
775          * parse the mount options, check if they are valid sids.
776          * also check if someone is trying to mount the same sb more
777          * than once with different security options.
778          */
779         for (i = 0; i < num_opts; i++) {
780                 u32 sid;
781
782                 if (flags[i] == SBLABEL_MNT)
783                         continue;
784                 rc = security_context_str_to_sid(&selinux_state,
785                                                  mount_options[i], &sid,
786                                                  GFP_KERNEL);
787                 if (rc) {
788                         printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789                                "(%s) failed for (dev %s, type %s) errno=%d\n",
790                                mount_options[i], sb->s_id, name, rc);
791                         goto out;
792                 }
793                 switch (flags[i]) {
794                 case FSCONTEXT_MNT:
795                         fscontext_sid = sid;
796
797                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798                                         fscontext_sid))
799                                 goto out_double_mount;
800
801                         sbsec->flags |= FSCONTEXT_MNT;
802                         break;
803                 case CONTEXT_MNT:
804                         context_sid = sid;
805
806                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807                                         context_sid))
808                                 goto out_double_mount;
809
810                         sbsec->flags |= CONTEXT_MNT;
811                         break;
812                 case ROOTCONTEXT_MNT:
813                         rootcontext_sid = sid;
814
815                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816                                         rootcontext_sid))
817                                 goto out_double_mount;
818
819                         sbsec->flags |= ROOTCONTEXT_MNT;
820
821                         break;
822                 case DEFCONTEXT_MNT:
823                         defcontext_sid = sid;
824
825                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826                                         defcontext_sid))
827                                 goto out_double_mount;
828
829                         sbsec->flags |= DEFCONTEXT_MNT;
830
831                         break;
832                 default:
833                         rc = -EINVAL;
834                         goto out;
835                 }
836         }
837
838         if (sbsec->flags & SE_SBINITIALIZED) {
839                 /* previously mounted with options, but not on this attempt? */
840                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841                         goto out_double_mount;
842                 rc = 0;
843                 goto out;
844         }
845
846         if (strcmp(sb->s_type->name, "proc") == 0)
847                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849         if (!strcmp(sb->s_type->name, "debugfs") ||
850             !strcmp(sb->s_type->name, "tracefs") ||
851             !strcmp(sb->s_type->name, "sysfs") ||
852             !strcmp(sb->s_type->name, "pstore") ||
853             !strcmp(sb->s_type->name, "cgroup") ||
854             !strcmp(sb->s_type->name, "cgroup2"))
855                 sbsec->flags |= SE_SBGENFS;
856
857         if (!sbsec->behavior) {
858                 /*
859                  * Determine the labeling behavior to use for this
860                  * filesystem type.
861                  */
862                 rc = security_fs_use(&selinux_state, sb);
863                 if (rc) {
864                         printk(KERN_WARNING
865                                 "%s: security_fs_use(%s) returned %d\n",
866                                         __func__, sb->s_type->name, rc);
867                         goto out;
868                 }
869         }
870
871         /*
872          * If this is a user namespace mount and the filesystem type is not
873          * explicitly whitelisted, then no contexts are allowed on the command
874          * line and security labels must be ignored.
875          */
876         if (sb->s_user_ns != &init_user_ns &&
877             strcmp(sb->s_type->name, "tmpfs") &&
878             strcmp(sb->s_type->name, "ramfs") &&
879             strcmp(sb->s_type->name, "devpts")) {
880                 if (context_sid || fscontext_sid || rootcontext_sid ||
881                     defcontext_sid) {
882                         rc = -EACCES;
883                         goto out;
884                 }
885                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887                         rc = security_transition_sid(&selinux_state,
888                                                      current_sid(),
889                                                      current_sid(),
890                                                      SECCLASS_FILE, NULL,
891                                                      &sbsec->mntpoint_sid);
892                         if (rc)
893                                 goto out;
894                 }
895                 goto out_set_opts;
896         }
897
898         /* sets the context of the superblock for the fs being mounted. */
899         if (fscontext_sid) {
900                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901                 if (rc)
902                         goto out;
903
904                 sbsec->sid = fscontext_sid;
905         }
906
907         /*
908          * Switch to using mount point labeling behavior.
909          * sets the label used on all file below the mountpoint, and will set
910          * the superblock context if not already set.
911          */
912         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915         }
916
917         if (context_sid) {
918                 if (!fscontext_sid) {
919                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
920                                                           cred);
921                         if (rc)
922                                 goto out;
923                         sbsec->sid = context_sid;
924                 } else {
925                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
926                                                              cred);
927                         if (rc)
928                                 goto out;
929                 }
930                 if (!rootcontext_sid)
931                         rootcontext_sid = context_sid;
932
933                 sbsec->mntpoint_sid = context_sid;
934                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935         }
936
937         if (rootcontext_sid) {
938                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939                                                      cred);
940                 if (rc)
941                         goto out;
942
943                 root_isec->sid = rootcontext_sid;
944                 root_isec->initialized = LABEL_INITIALIZED;
945         }
946
947         if (defcontext_sid) {
948                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950                         rc = -EINVAL;
951                         printk(KERN_WARNING "SELinux: defcontext option is "
952                                "invalid for this filesystem type\n");
953                         goto out;
954                 }
955
956                 if (defcontext_sid != sbsec->def_sid) {
957                         rc = may_context_mount_inode_relabel(defcontext_sid,
958                                                              sbsec, cred);
959                         if (rc)
960                                 goto out;
961                 }
962
963                 sbsec->def_sid = defcontext_sid;
964         }
965
966 out_set_opts:
967         rc = sb_finish_set_opts(sb);
968 out:
969         mutex_unlock(&sbsec->lock);
970         return rc;
971 out_double_mount:
972         rc = -EINVAL;
973         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
974                "security settings for (dev %s, type %s)\n", sb->s_id, name);
975         goto out;
976 }
977
978 static int selinux_cmp_sb_context(const struct super_block *oldsb,
979                                     const struct super_block *newsb)
980 {
981         struct superblock_security_struct *old = oldsb->s_security;
982         struct superblock_security_struct *new = newsb->s_security;
983         char oldflags = old->flags & SE_MNTMASK;
984         char newflags = new->flags & SE_MNTMASK;
985
986         if (oldflags != newflags)
987                 goto mismatch;
988         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989                 goto mismatch;
990         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991                 goto mismatch;
992         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993                 goto mismatch;
994         if (oldflags & ROOTCONTEXT_MNT) {
995                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997                 if (oldroot->sid != newroot->sid)
998                         goto mismatch;
999         }
1000         return 0;
1001 mismatch:
1002         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003                             "different security settings for (dev %s, "
1004                             "type %s)\n", newsb->s_id, newsb->s_type->name);
1005         return -EBUSY;
1006 }
1007
1008 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009                                         struct super_block *newsb,
1010                                         unsigned long kern_flags,
1011                                         unsigned long *set_kern_flags)
1012 {
1013         int rc = 0;
1014         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015         struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
1018         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
1019         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021         /*
1022          * if the parent was able to be mounted it clearly had no special lsm
1023          * mount options.  thus we can safely deal with this superblock later
1024          */
1025         if (!selinux_state.initialized)
1026                 return 0;
1027
1028         /*
1029          * Specifying internal flags without providing a place to
1030          * place the results is not allowed.
1031          */
1032         if (kern_flags && !set_kern_flags)
1033                 return -EINVAL;
1034
1035         /* how can we clone if the old one wasn't set up?? */
1036         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038         /* if fs is reusing a sb, make sure that the contexts match */
1039         if (newsbsec->flags & SE_SBINITIALIZED)
1040                 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042         mutex_lock(&newsbsec->lock);
1043
1044         newsbsec->flags = oldsbsec->flags;
1045
1046         newsbsec->sid = oldsbsec->sid;
1047         newsbsec->def_sid = oldsbsec->def_sid;
1048         newsbsec->behavior = oldsbsec->behavior;
1049
1050         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052                 rc = security_fs_use(&selinux_state, newsb);
1053                 if (rc)
1054                         goto out;
1055         }
1056
1057         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060         }
1061
1062         if (set_context) {
1063                 u32 sid = oldsbsec->mntpoint_sid;
1064
1065                 if (!set_fscontext)
1066                         newsbsec->sid = sid;
1067                 if (!set_rootcontext) {
1068                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069                         newisec->sid = sid;
1070                 }
1071                 newsbsec->mntpoint_sid = sid;
1072         }
1073         if (set_rootcontext) {
1074                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077                 newisec->sid = oldisec->sid;
1078         }
1079
1080         sb_finish_set_opts(newsb);
1081 out:
1082         mutex_unlock(&newsbsec->lock);
1083         return rc;
1084 }
1085
1086 static int selinux_parse_opts_str(char *options,
1087                                   struct security_mnt_opts *opts)
1088 {
1089         char *p;
1090         char *context = NULL, *defcontext = NULL;
1091         char *fscontext = NULL, *rootcontext = NULL;
1092         int rc, num_mnt_opts = 0;
1093
1094         opts->num_mnt_opts = 0;
1095
1096         /* Standard string-based options. */
1097         while ((p = strsep(&options, "|")) != NULL) {
1098                 int token;
1099                 substring_t args[MAX_OPT_ARGS];
1100
1101                 if (!*p)
1102                         continue;
1103
1104                 token = match_token(p, tokens, args);
1105
1106                 switch (token) {
1107                 case Opt_context:
1108                         if (context || defcontext) {
1109                                 rc = -EINVAL;
1110                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111                                 goto out_err;
1112                         }
1113                         context = match_strdup(&args[0]);
1114                         if (!context) {
1115                                 rc = -ENOMEM;
1116                                 goto out_err;
1117                         }
1118                         break;
1119
1120                 case Opt_fscontext:
1121                         if (fscontext) {
1122                                 rc = -EINVAL;
1123                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124                                 goto out_err;
1125                         }
1126                         fscontext = match_strdup(&args[0]);
1127                         if (!fscontext) {
1128                                 rc = -ENOMEM;
1129                                 goto out_err;
1130                         }
1131                         break;
1132
1133                 case Opt_rootcontext:
1134                         if (rootcontext) {
1135                                 rc = -EINVAL;
1136                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137                                 goto out_err;
1138                         }
1139                         rootcontext = match_strdup(&args[0]);
1140                         if (!rootcontext) {
1141                                 rc = -ENOMEM;
1142                                 goto out_err;
1143                         }
1144                         break;
1145
1146                 case Opt_defcontext:
1147                         if (context || defcontext) {
1148                                 rc = -EINVAL;
1149                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150                                 goto out_err;
1151                         }
1152                         defcontext = match_strdup(&args[0]);
1153                         if (!defcontext) {
1154                                 rc = -ENOMEM;
1155                                 goto out_err;
1156                         }
1157                         break;
1158                 case Opt_labelsupport:
1159                         break;
1160                 default:
1161                         rc = -EINVAL;
1162                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163                         goto out_err;
1164
1165                 }
1166         }
1167
1168         rc = -ENOMEM;
1169         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170         if (!opts->mnt_opts)
1171                 goto out_err;
1172
1173         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174                                        GFP_KERNEL);
1175         if (!opts->mnt_opts_flags)
1176                 goto out_err;
1177
1178         if (fscontext) {
1179                 opts->mnt_opts[num_mnt_opts] = fscontext;
1180                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181         }
1182         if (context) {
1183                 opts->mnt_opts[num_mnt_opts] = context;
1184                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185         }
1186         if (rootcontext) {
1187                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189         }
1190         if (defcontext) {
1191                 opts->mnt_opts[num_mnt_opts] = defcontext;
1192                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193         }
1194
1195         opts->num_mnt_opts = num_mnt_opts;
1196         return 0;
1197
1198 out_err:
1199         security_free_mnt_opts(opts);
1200         kfree(context);
1201         kfree(defcontext);
1202         kfree(fscontext);
1203         kfree(rootcontext);
1204         return rc;
1205 }
1206 /*
1207  * string mount options parsing and call set the sbsec
1208  */
1209 static int superblock_doinit(struct super_block *sb, void *data)
1210 {
1211         int rc = 0;
1212         char *options = data;
1213         struct security_mnt_opts opts;
1214
1215         security_init_mnt_opts(&opts);
1216
1217         if (!data)
1218                 goto out;
1219
1220         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222         rc = selinux_parse_opts_str(options, &opts);
1223         if (rc)
1224                 goto out_err;
1225
1226 out:
1227         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229 out_err:
1230         security_free_mnt_opts(&opts);
1231         return rc;
1232 }
1233
1234 static void selinux_write_opts(struct seq_file *m,
1235                                struct security_mnt_opts *opts)
1236 {
1237         int i;
1238         char *prefix;
1239
1240         for (i = 0; i < opts->num_mnt_opts; i++) {
1241                 char *has_comma;
1242
1243                 if (opts->mnt_opts[i])
1244                         has_comma = strchr(opts->mnt_opts[i], ',');
1245                 else
1246                         has_comma = NULL;
1247
1248                 switch (opts->mnt_opts_flags[i]) {
1249                 case CONTEXT_MNT:
1250                         prefix = CONTEXT_STR;
1251                         break;
1252                 case FSCONTEXT_MNT:
1253                         prefix = FSCONTEXT_STR;
1254                         break;
1255                 case ROOTCONTEXT_MNT:
1256                         prefix = ROOTCONTEXT_STR;
1257                         break;
1258                 case DEFCONTEXT_MNT:
1259                         prefix = DEFCONTEXT_STR;
1260                         break;
1261                 case SBLABEL_MNT:
1262                         seq_putc(m, ',');
1263                         seq_puts(m, LABELSUPP_STR);
1264                         continue;
1265                 default:
1266                         BUG();
1267                         return;
1268                 };
1269                 /* we need a comma before each option */
1270                 seq_putc(m, ',');
1271                 seq_puts(m, prefix);
1272                 if (has_comma)
1273                         seq_putc(m, '\"');
1274                 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275                 if (has_comma)
1276                         seq_putc(m, '\"');
1277         }
1278 }
1279
1280 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281 {
1282         struct security_mnt_opts opts;
1283         int rc;
1284
1285         rc = selinux_get_mnt_opts(sb, &opts);
1286         if (rc) {
1287                 /* before policy load we may get EINVAL, don't show anything */
1288                 if (rc == -EINVAL)
1289                         rc = 0;
1290                 return rc;
1291         }
1292
1293         selinux_write_opts(m, &opts);
1294
1295         security_free_mnt_opts(&opts);
1296
1297         return rc;
1298 }
1299
1300 static inline u16 inode_mode_to_security_class(umode_t mode)
1301 {
1302         switch (mode & S_IFMT) {
1303         case S_IFSOCK:
1304                 return SECCLASS_SOCK_FILE;
1305         case S_IFLNK:
1306                 return SECCLASS_LNK_FILE;
1307         case S_IFREG:
1308                 return SECCLASS_FILE;
1309         case S_IFBLK:
1310                 return SECCLASS_BLK_FILE;
1311         case S_IFDIR:
1312                 return SECCLASS_DIR;
1313         case S_IFCHR:
1314                 return SECCLASS_CHR_FILE;
1315         case S_IFIFO:
1316                 return SECCLASS_FIFO_FILE;
1317
1318         }
1319
1320         return SECCLASS_FILE;
1321 }
1322
1323 static inline int default_protocol_stream(int protocol)
1324 {
1325         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326 }
1327
1328 static inline int default_protocol_dgram(int protocol)
1329 {
1330         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331 }
1332
1333 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334 {
1335         int extsockclass = selinux_policycap_extsockclass();
1336
1337         switch (family) {
1338         case PF_UNIX:
1339                 switch (type) {
1340                 case SOCK_STREAM:
1341                 case SOCK_SEQPACKET:
1342                         return SECCLASS_UNIX_STREAM_SOCKET;
1343                 case SOCK_DGRAM:
1344                 case SOCK_RAW:
1345                         return SECCLASS_UNIX_DGRAM_SOCKET;
1346                 }
1347                 break;
1348         case PF_INET:
1349         case PF_INET6:
1350                 switch (type) {
1351                 case SOCK_STREAM:
1352                 case SOCK_SEQPACKET:
1353                         if (default_protocol_stream(protocol))
1354                                 return SECCLASS_TCP_SOCKET;
1355                         else if (extsockclass && protocol == IPPROTO_SCTP)
1356                                 return SECCLASS_SCTP_SOCKET;
1357                         else
1358                                 return SECCLASS_RAWIP_SOCKET;
1359                 case SOCK_DGRAM:
1360                         if (default_protocol_dgram(protocol))
1361                                 return SECCLASS_UDP_SOCKET;
1362                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363                                                   protocol == IPPROTO_ICMPV6))
1364                                 return SECCLASS_ICMP_SOCKET;
1365                         else
1366                                 return SECCLASS_RAWIP_SOCKET;
1367                 case SOCK_DCCP:
1368                         return SECCLASS_DCCP_SOCKET;
1369                 default:
1370                         return SECCLASS_RAWIP_SOCKET;
1371                 }
1372                 break;
1373         case PF_NETLINK:
1374                 switch (protocol) {
1375                 case NETLINK_ROUTE:
1376                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1377                 case NETLINK_SOCK_DIAG:
1378                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379                 case NETLINK_NFLOG:
1380                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1381                 case NETLINK_XFRM:
1382                         return SECCLASS_NETLINK_XFRM_SOCKET;
1383                 case NETLINK_SELINUX:
1384                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1385                 case NETLINK_ISCSI:
1386                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1387                 case NETLINK_AUDIT:
1388                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1389                 case NETLINK_FIB_LOOKUP:
1390                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391                 case NETLINK_CONNECTOR:
1392                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393                 case NETLINK_NETFILTER:
1394                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395                 case NETLINK_DNRTMSG:
1396                         return SECCLASS_NETLINK_DNRT_SOCKET;
1397                 case NETLINK_KOBJECT_UEVENT:
1398                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399                 case NETLINK_GENERIC:
1400                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1401                 case NETLINK_SCSITRANSPORT:
1402                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403                 case NETLINK_RDMA:
1404                         return SECCLASS_NETLINK_RDMA_SOCKET;
1405                 case NETLINK_CRYPTO:
1406                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407                 default:
1408                         return SECCLASS_NETLINK_SOCKET;
1409                 }
1410         case PF_PACKET:
1411                 return SECCLASS_PACKET_SOCKET;
1412         case PF_KEY:
1413                 return SECCLASS_KEY_SOCKET;
1414         case PF_APPLETALK:
1415                 return SECCLASS_APPLETALK_SOCKET;
1416         }
1417
1418         if (extsockclass) {
1419                 switch (family) {
1420                 case PF_AX25:
1421                         return SECCLASS_AX25_SOCKET;
1422                 case PF_IPX:
1423                         return SECCLASS_IPX_SOCKET;
1424                 case PF_NETROM:
1425                         return SECCLASS_NETROM_SOCKET;
1426                 case PF_ATMPVC:
1427                         return SECCLASS_ATMPVC_SOCKET;
1428                 case PF_X25:
1429                         return SECCLASS_X25_SOCKET;
1430                 case PF_ROSE:
1431                         return SECCLASS_ROSE_SOCKET;
1432                 case PF_DECnet:
1433                         return SECCLASS_DECNET_SOCKET;
1434                 case PF_ATMSVC:
1435                         return SECCLASS_ATMSVC_SOCKET;
1436                 case PF_RDS:
1437                         return SECCLASS_RDS_SOCKET;
1438                 case PF_IRDA:
1439                         return SECCLASS_IRDA_SOCKET;
1440                 case PF_PPPOX:
1441                         return SECCLASS_PPPOX_SOCKET;
1442                 case PF_LLC:
1443                         return SECCLASS_LLC_SOCKET;
1444                 case PF_CAN:
1445                         return SECCLASS_CAN_SOCKET;
1446                 case PF_TIPC:
1447                         return SECCLASS_TIPC_SOCKET;
1448                 case PF_BLUETOOTH:
1449                         return SECCLASS_BLUETOOTH_SOCKET;
1450                 case PF_IUCV:
1451                         return SECCLASS_IUCV_SOCKET;
1452                 case PF_RXRPC:
1453                         return SECCLASS_RXRPC_SOCKET;
1454                 case PF_ISDN:
1455                         return SECCLASS_ISDN_SOCKET;
1456                 case PF_PHONET:
1457                         return SECCLASS_PHONET_SOCKET;
1458                 case PF_IEEE802154:
1459                         return SECCLASS_IEEE802154_SOCKET;
1460                 case PF_CAIF:
1461                         return SECCLASS_CAIF_SOCKET;
1462                 case PF_ALG:
1463                         return SECCLASS_ALG_SOCKET;
1464                 case PF_NFC:
1465                         return SECCLASS_NFC_SOCKET;
1466                 case PF_VSOCK:
1467                         return SECCLASS_VSOCK_SOCKET;
1468                 case PF_KCM:
1469                         return SECCLASS_KCM_SOCKET;
1470                 case PF_QIPCRTR:
1471                         return SECCLASS_QIPCRTR_SOCKET;
1472                 case PF_SMC:
1473                         return SECCLASS_SMC_SOCKET;
1474 #if PF_MAX > 44
1475 #error New address family defined, please update this function.
1476 #endif
1477                 }
1478         }
1479
1480         return SECCLASS_SOCKET;
1481 }
1482
1483 static int selinux_genfs_get_sid(struct dentry *dentry,
1484                                  u16 tclass,
1485                                  u16 flags,
1486                                  u32 *sid)
1487 {
1488         int rc;
1489         struct super_block *sb = dentry->d_sb;
1490         char *buffer, *path;
1491
1492         buffer = (char *)__get_free_page(GFP_KERNEL);
1493         if (!buffer)
1494                 return -ENOMEM;
1495
1496         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497         if (IS_ERR(path))
1498                 rc = PTR_ERR(path);
1499         else {
1500                 if (flags & SE_SBPROC) {
1501                         /* each process gets a /proc/PID/ entry. Strip off the
1502                          * PID part to get a valid selinux labeling.
1503                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504                         while (path[1] >= '0' && path[1] <= '9') {
1505                                 path[1] = '/';
1506                                 path++;
1507                         }
1508                 }
1509                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510                                         path, tclass, sid);
1511         }
1512         free_page((unsigned long)buffer);
1513         return rc;
1514 }
1515
1516 /* The inode's security attributes must be initialized before first use. */
1517 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518 {
1519         struct superblock_security_struct *sbsec = NULL;
1520         struct inode_security_struct *isec = inode->i_security;
1521         u32 task_sid, sid = 0;
1522         u16 sclass;
1523         struct dentry *dentry;
1524 #define INITCONTEXTLEN 255
1525         char *context = NULL;
1526         unsigned len = 0;
1527         int rc = 0;
1528
1529         if (isec->initialized == LABEL_INITIALIZED)
1530                 return 0;
1531
1532         spin_lock(&isec->lock);
1533         if (isec->initialized == LABEL_INITIALIZED)
1534                 goto out_unlock;
1535
1536         if (isec->sclass == SECCLASS_FILE)
1537                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539         sbsec = inode->i_sb->s_security;
1540         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541                 /* Defer initialization until selinux_complete_init,
1542                    after the initial policy is loaded and the security
1543                    server is ready to handle calls. */
1544                 spin_lock(&sbsec->isec_lock);
1545                 if (list_empty(&isec->list))
1546                         list_add(&isec->list, &sbsec->isec_head);
1547                 spin_unlock(&sbsec->isec_lock);
1548                 goto out_unlock;
1549         }
1550
1551         sclass = isec->sclass;
1552         task_sid = isec->task_sid;
1553         sid = isec->sid;
1554         isec->initialized = LABEL_PENDING;
1555         spin_unlock(&isec->lock);
1556
1557         switch (sbsec->behavior) {
1558         case SECURITY_FS_USE_NATIVE:
1559                 break;
1560         case SECURITY_FS_USE_XATTR:
1561                 if (!(inode->i_opflags & IOP_XATTR)) {
1562                         sid = sbsec->def_sid;
1563                         break;
1564                 }
1565                 /* Need a dentry, since the xattr API requires one.
1566                    Life would be simpler if we could just pass the inode. */
1567                 if (opt_dentry) {
1568                         /* Called from d_instantiate or d_splice_alias. */
1569                         dentry = dget(opt_dentry);
1570                 } else {
1571                         /* Called from selinux_complete_init, try to find a dentry. */
1572                         dentry = d_find_alias(inode);
1573                 }
1574                 if (!dentry) {
1575                         /*
1576                          * this is can be hit on boot when a file is accessed
1577                          * before the policy is loaded.  When we load policy we
1578                          * may find inodes that have no dentry on the
1579                          * sbsec->isec_head list.  No reason to complain as these
1580                          * will get fixed up the next time we go through
1581                          * inode_doinit with a dentry, before these inodes could
1582                          * be used again by userspace.
1583                          */
1584                         goto out;
1585                 }
1586
1587                 len = INITCONTEXTLEN;
1588                 context = kmalloc(len+1, GFP_NOFS);
1589                 if (!context) {
1590                         rc = -ENOMEM;
1591                         dput(dentry);
1592                         goto out;
1593                 }
1594                 context[len] = '\0';
1595                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1596                 if (rc == -ERANGE) {
1597                         kfree(context);
1598
1599                         /* Need a larger buffer.  Query for the right size. */
1600                         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1601                         if (rc < 0) {
1602                                 dput(dentry);
1603                                 goto out;
1604                         }
1605                         len = rc;
1606                         context = kmalloc(len+1, GFP_NOFS);
1607                         if (!context) {
1608                                 rc = -ENOMEM;
1609                                 dput(dentry);
1610                                 goto out;
1611                         }
1612                         context[len] = '\0';
1613                         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1614                 }
1615                 dput(dentry);
1616                 if (rc < 0) {
1617                         if (rc != -ENODATA) {
1618                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1619                                        "%d for dev=%s ino=%ld\n", __func__,
1620                                        -rc, inode->i_sb->s_id, inode->i_ino);
1621                                 kfree(context);
1622                                 goto out;
1623                         }
1624                         /* Map ENODATA to the default file SID */
1625                         sid = sbsec->def_sid;
1626                         rc = 0;
1627                 } else {
1628                         rc = security_context_to_sid_default(&selinux_state,
1629                                                              context, rc, &sid,
1630                                                              sbsec->def_sid,
1631                                                              GFP_NOFS);
1632                         if (rc) {
1633                                 char *dev = inode->i_sb->s_id;
1634                                 unsigned long ino = inode->i_ino;
1635
1636                                 if (rc == -EINVAL) {
1637                                         if (printk_ratelimit())
1638                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1639                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1640                                                         "filesystem in question.\n", ino, dev, context);
1641                                 } else {
1642                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1643                                                "returned %d for dev=%s ino=%ld\n",
1644                                                __func__, context, -rc, dev, ino);
1645                                 }
1646                                 kfree(context);
1647                                 /* Leave with the unlabeled SID */
1648                                 rc = 0;
1649                                 break;
1650                         }
1651                 }
1652                 kfree(context);
1653                 break;
1654         case SECURITY_FS_USE_TASK:
1655                 sid = task_sid;
1656                 break;
1657         case SECURITY_FS_USE_TRANS:
1658                 /* Default to the fs SID. */
1659                 sid = sbsec->sid;
1660
1661                 /* Try to obtain a transition SID. */
1662                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1663                                              sclass, NULL, &sid);
1664                 if (rc)
1665                         goto out;
1666                 break;
1667         case SECURITY_FS_USE_MNTPOINT:
1668                 sid = sbsec->mntpoint_sid;
1669                 break;
1670         default:
1671                 /* Default to the fs superblock SID. */
1672                 sid = sbsec->sid;
1673
1674                 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1675                         /* We must have a dentry to determine the label on
1676                          * procfs inodes */
1677                         if (opt_dentry)
1678                                 /* Called from d_instantiate or
1679                                  * d_splice_alias. */
1680                                 dentry = dget(opt_dentry);
1681                         else
1682                                 /* Called from selinux_complete_init, try to
1683                                  * find a dentry. */
1684                                 dentry = d_find_alias(inode);
1685                         /*
1686                          * This can be hit on boot when a file is accessed
1687                          * before the policy is loaded.  When we load policy we
1688                          * may find inodes that have no dentry on the
1689                          * sbsec->isec_head list.  No reason to complain as
1690                          * these will get fixed up the next time we go through
1691                          * inode_doinit() with a dentry, before these inodes
1692                          * could be used again by userspace.
1693                          */
1694                         if (!dentry)
1695                                 goto out;
1696                         rc = selinux_genfs_get_sid(dentry, sclass,
1697                                                    sbsec->flags, &sid);
1698                         dput(dentry);
1699                         if (rc)
1700                                 goto out;
1701                 }
1702                 break;
1703         }
1704
1705 out:
1706         spin_lock(&isec->lock);
1707         if (isec->initialized == LABEL_PENDING) {
1708                 if (!sid || rc) {
1709                         isec->initialized = LABEL_INVALID;
1710                         goto out_unlock;
1711                 }
1712
1713                 isec->initialized = LABEL_INITIALIZED;
1714                 isec->sid = sid;
1715         }
1716
1717 out_unlock:
1718         spin_unlock(&isec->lock);
1719         return rc;
1720 }
1721
1722 /* Convert a Linux signal to an access vector. */
1723 static inline u32 signal_to_av(int sig)
1724 {
1725         u32 perm = 0;
1726
1727         switch (sig) {
1728         case SIGCHLD:
1729                 /* Commonly granted from child to parent. */
1730                 perm = PROCESS__SIGCHLD;
1731                 break;
1732         case SIGKILL:
1733                 /* Cannot be caught or ignored */
1734                 perm = PROCESS__SIGKILL;
1735                 break;
1736         case SIGSTOP:
1737                 /* Cannot be caught or ignored */
1738                 perm = PROCESS__SIGSTOP;
1739                 break;
1740         default:
1741                 /* All other signals. */
1742                 perm = PROCESS__SIGNAL;
1743                 break;
1744         }
1745
1746         return perm;
1747 }
1748
1749 #if CAP_LAST_CAP > 63
1750 #error Fix SELinux to handle capabilities > 63.
1751 #endif
1752
1753 /* Check whether a task is allowed to use a capability. */
1754 static int cred_has_capability(const struct cred *cred,
1755                                int cap, int audit, bool initns)
1756 {
1757         struct common_audit_data ad;
1758         struct av_decision avd;
1759         u16 sclass;
1760         u32 sid = cred_sid(cred);
1761         u32 av = CAP_TO_MASK(cap);
1762         int rc;
1763
1764         ad.type = LSM_AUDIT_DATA_CAP;
1765         ad.u.cap = cap;
1766
1767         switch (CAP_TO_INDEX(cap)) {
1768         case 0:
1769                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1770                 break;
1771         case 1:
1772                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1773                 break;
1774         default:
1775                 printk(KERN_ERR
1776                        "SELinux:  out of range capability %d\n", cap);
1777                 BUG();
1778                 return -EINVAL;
1779         }
1780
1781         rc = avc_has_perm_noaudit(&selinux_state,
1782                                   sid, sid, sclass, av, 0, &avd);
1783         if (audit == SECURITY_CAP_AUDIT) {
1784                 int rc2 = avc_audit(&selinux_state,
1785                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1786                 if (rc2)
1787                         return rc2;
1788         }
1789         return rc;
1790 }
1791
1792 /* Check whether a task has a particular permission to an inode.
1793    The 'adp' parameter is optional and allows other audit
1794    data to be passed (e.g. the dentry). */
1795 static int inode_has_perm(const struct cred *cred,
1796                           struct inode *inode,
1797                           u32 perms,
1798                           struct common_audit_data *adp)
1799 {
1800         struct inode_security_struct *isec;
1801         u32 sid;
1802
1803         validate_creds(cred);
1804
1805         if (unlikely(IS_PRIVATE(inode)))
1806                 return 0;
1807
1808         sid = cred_sid(cred);
1809         isec = inode->i_security;
1810
1811         return avc_has_perm(&selinux_state,
1812                             sid, isec->sid, isec->sclass, perms, adp);
1813 }
1814
1815 /* Same as inode_has_perm, but pass explicit audit data containing
1816    the dentry to help the auditing code to more easily generate the
1817    pathname if needed. */
1818 static inline int dentry_has_perm(const struct cred *cred,
1819                                   struct dentry *dentry,
1820                                   u32 av)
1821 {
1822         struct inode *inode = d_backing_inode(dentry);
1823         struct common_audit_data ad;
1824
1825         ad.type = LSM_AUDIT_DATA_DENTRY;
1826         ad.u.dentry = dentry;
1827         __inode_security_revalidate(inode, dentry, true);
1828         return inode_has_perm(cred, inode, av, &ad);
1829 }
1830
1831 /* Same as inode_has_perm, but pass explicit audit data containing
1832    the path to help the auditing code to more easily generate the
1833    pathname if needed. */
1834 static inline int path_has_perm(const struct cred *cred,
1835                                 const struct path *path,
1836                                 u32 av)
1837 {
1838         struct inode *inode = d_backing_inode(path->dentry);
1839         struct common_audit_data ad;
1840
1841         ad.type = LSM_AUDIT_DATA_PATH;
1842         ad.u.path = *path;
1843         __inode_security_revalidate(inode, path->dentry, true);
1844         return inode_has_perm(cred, inode, av, &ad);
1845 }
1846
1847 /* Same as path_has_perm, but uses the inode from the file struct. */
1848 static inline int file_path_has_perm(const struct cred *cred,
1849                                      struct file *file,
1850                                      u32 av)
1851 {
1852         struct common_audit_data ad;
1853
1854         ad.type = LSM_AUDIT_DATA_FILE;
1855         ad.u.file = file;
1856         return inode_has_perm(cred, file_inode(file), av, &ad);
1857 }
1858
1859 #ifdef CONFIG_BPF_SYSCALL
1860 static int bpf_fd_pass(struct file *file, u32 sid);
1861 #endif
1862
1863 /* Check whether a task can use an open file descriptor to
1864    access an inode in a given way.  Check access to the
1865    descriptor itself, and then use dentry_has_perm to
1866    check a particular permission to the file.
1867    Access to the descriptor is implicitly granted if it
1868    has the same SID as the process.  If av is zero, then
1869    access to the file is not checked, e.g. for cases
1870    where only the descriptor is affected like seek. */
1871 static int file_has_perm(const struct cred *cred,
1872                          struct file *file,
1873                          u32 av)
1874 {
1875         struct file_security_struct *fsec = file->f_security;
1876         struct inode *inode = file_inode(file);
1877         struct common_audit_data ad;
1878         u32 sid = cred_sid(cred);
1879         int rc;
1880
1881         ad.type = LSM_AUDIT_DATA_FILE;
1882         ad.u.file = file;
1883
1884         if (sid != fsec->sid) {
1885                 rc = avc_has_perm(&selinux_state,
1886                                   sid, fsec->sid,
1887                                   SECCLASS_FD,
1888                                   FD__USE,
1889                                   &ad);
1890                 if (rc)
1891                         goto out;
1892         }
1893
1894 #ifdef CONFIG_BPF_SYSCALL
1895         rc = bpf_fd_pass(file, cred_sid(cred));
1896         if (rc)
1897                 return rc;
1898 #endif
1899
1900         /* av is zero if only checking access to the descriptor. */
1901         rc = 0;
1902         if (av)
1903                 rc = inode_has_perm(cred, inode, av, &ad);
1904
1905 out:
1906         return rc;
1907 }
1908
1909 /*
1910  * Determine the label for an inode that might be unioned.
1911  */
1912 static int
1913 selinux_determine_inode_label(const struct task_security_struct *tsec,
1914                                  struct inode *dir,
1915                                  const struct qstr *name, u16 tclass,
1916                                  u32 *_new_isid)
1917 {
1918         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1919
1920         if ((sbsec->flags & SE_SBINITIALIZED) &&
1921             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1922                 *_new_isid = sbsec->mntpoint_sid;
1923         } else if ((sbsec->flags & SBLABEL_MNT) &&
1924                    tsec->create_sid) {
1925                 *_new_isid = tsec->create_sid;
1926         } else {
1927                 const struct inode_security_struct *dsec = inode_security(dir);
1928                 return security_transition_sid(&selinux_state, tsec->sid,
1929                                                dsec->sid, tclass,
1930                                                name, _new_isid);
1931         }
1932
1933         return 0;
1934 }
1935
1936 /* Check whether a task can create a file. */
1937 static int may_create(struct inode *dir,
1938                       struct dentry *dentry,
1939                       u16 tclass)
1940 {
1941         const struct task_security_struct *tsec = current_security();
1942         struct inode_security_struct *dsec;
1943         struct superblock_security_struct *sbsec;
1944         u32 sid, newsid;
1945         struct common_audit_data ad;
1946         int rc;
1947
1948         dsec = inode_security(dir);
1949         sbsec = dir->i_sb->s_security;
1950
1951         sid = tsec->sid;
1952
1953         ad.type = LSM_AUDIT_DATA_DENTRY;
1954         ad.u.dentry = dentry;
1955
1956         rc = avc_has_perm(&selinux_state,
1957                           sid, dsec->sid, SECCLASS_DIR,
1958                           DIR__ADD_NAME | DIR__SEARCH,
1959                           &ad);
1960         if (rc)
1961                 return rc;
1962
1963         rc = selinux_determine_inode_label(current_security(), dir,
1964                                            &dentry->d_name, tclass, &newsid);
1965         if (rc)
1966                 return rc;
1967
1968         rc = avc_has_perm(&selinux_state,
1969                           sid, newsid, tclass, FILE__CREATE, &ad);
1970         if (rc)
1971                 return rc;
1972
1973         return avc_has_perm(&selinux_state,
1974                             newsid, sbsec->sid,
1975                             SECCLASS_FILESYSTEM,
1976                             FILESYSTEM__ASSOCIATE, &ad);
1977 }
1978
1979 #define MAY_LINK        0
1980 #define MAY_UNLINK      1
1981 #define MAY_RMDIR       2
1982
1983 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1984 static int may_link(struct inode *dir,
1985                     struct dentry *dentry,
1986                     int kind)
1987
1988 {
1989         struct inode_security_struct *dsec, *isec;
1990         struct common_audit_data ad;
1991         u32 sid = current_sid();
1992         u32 av;
1993         int rc;
1994
1995         dsec = inode_security(dir);
1996         isec = backing_inode_security(dentry);
1997
1998         ad.type = LSM_AUDIT_DATA_DENTRY;
1999         ad.u.dentry = dentry;
2000
2001         av = DIR__SEARCH;
2002         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2003         rc = avc_has_perm(&selinux_state,
2004                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
2005         if (rc)
2006                 return rc;
2007
2008         switch (kind) {
2009         case MAY_LINK:
2010                 av = FILE__LINK;
2011                 break;
2012         case MAY_UNLINK:
2013                 av = FILE__UNLINK;
2014                 break;
2015         case MAY_RMDIR:
2016                 av = DIR__RMDIR;
2017                 break;
2018         default:
2019                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2020                         __func__, kind);
2021                 return 0;
2022         }
2023
2024         rc = avc_has_perm(&selinux_state,
2025                           sid, isec->sid, isec->sclass, av, &ad);
2026         return rc;
2027 }
2028
2029 static inline int may_rename(struct inode *old_dir,
2030                              struct dentry *old_dentry,
2031                              struct inode *new_dir,
2032                              struct dentry *new_dentry)
2033 {
2034         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2035         struct common_audit_data ad;
2036         u32 sid = current_sid();
2037         u32 av;
2038         int old_is_dir, new_is_dir;
2039         int rc;
2040
2041         old_dsec = inode_security(old_dir);
2042         old_isec = backing_inode_security(old_dentry);
2043         old_is_dir = d_is_dir(old_dentry);
2044         new_dsec = inode_security(new_dir);
2045
2046         ad.type = LSM_AUDIT_DATA_DENTRY;
2047
2048         ad.u.dentry = old_dentry;
2049         rc = avc_has_perm(&selinux_state,
2050                           sid, old_dsec->sid, SECCLASS_DIR,
2051                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2052         if (rc)
2053                 return rc;
2054         rc = avc_has_perm(&selinux_state,
2055                           sid, old_isec->sid,
2056                           old_isec->sclass, FILE__RENAME, &ad);
2057         if (rc)
2058                 return rc;
2059         if (old_is_dir && new_dir != old_dir) {
2060                 rc = avc_has_perm(&selinux_state,
2061                                   sid, old_isec->sid,
2062                                   old_isec->sclass, DIR__REPARENT, &ad);
2063                 if (rc)
2064                         return rc;
2065         }
2066
2067         ad.u.dentry = new_dentry;
2068         av = DIR__ADD_NAME | DIR__SEARCH;
2069         if (d_is_positive(new_dentry))
2070                 av |= DIR__REMOVE_NAME;
2071         rc = avc_has_perm(&selinux_state,
2072                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2073         if (rc)
2074                 return rc;
2075         if (d_is_positive(new_dentry)) {
2076                 new_isec = backing_inode_security(new_dentry);
2077                 new_is_dir = d_is_dir(new_dentry);
2078                 rc = avc_has_perm(&selinux_state,
2079                                   sid, new_isec->sid,
2080                                   new_isec->sclass,
2081                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2082                 if (rc)
2083                         return rc;
2084         }
2085
2086         return 0;
2087 }
2088
2089 /* Check whether a task can perform a filesystem operation. */
2090 static int superblock_has_perm(const struct cred *cred,
2091                                struct super_block *sb,
2092                                u32 perms,
2093                                struct common_audit_data *ad)
2094 {
2095         struct superblock_security_struct *sbsec;
2096         u32 sid = cred_sid(cred);
2097
2098         sbsec = sb->s_security;
2099         return avc_has_perm(&selinux_state,
2100                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2101 }
2102
2103 /* Convert a Linux mode and permission mask to an access vector. */
2104 static inline u32 file_mask_to_av(int mode, int mask)
2105 {
2106         u32 av = 0;
2107
2108         if (!S_ISDIR(mode)) {
2109                 if (mask & MAY_EXEC)
2110                         av |= FILE__EXECUTE;
2111                 if (mask & MAY_READ)
2112                         av |= FILE__READ;
2113
2114                 if (mask & MAY_APPEND)
2115                         av |= FILE__APPEND;
2116                 else if (mask & MAY_WRITE)
2117                         av |= FILE__WRITE;
2118
2119         } else {
2120                 if (mask & MAY_EXEC)
2121                         av |= DIR__SEARCH;
2122                 if (mask & MAY_WRITE)
2123                         av |= DIR__WRITE;
2124                 if (mask & MAY_READ)
2125                         av |= DIR__READ;
2126         }
2127
2128         return av;
2129 }
2130
2131 /* Convert a Linux file to an access vector. */
2132 static inline u32 file_to_av(struct file *file)
2133 {
2134         u32 av = 0;
2135
2136         if (file->f_mode & FMODE_READ)
2137                 av |= FILE__READ;
2138         if (file->f_mode & FMODE_WRITE) {
2139                 if (file->f_flags & O_APPEND)
2140                         av |= FILE__APPEND;
2141                 else
2142                         av |= FILE__WRITE;
2143         }
2144         if (!av) {
2145                 /*
2146                  * Special file opened with flags 3 for ioctl-only use.
2147                  */
2148                 av = FILE__IOCTL;
2149         }
2150
2151         return av;
2152 }
2153
2154 /*
2155  * Convert a file to an access vector and include the correct open
2156  * open permission.
2157  */
2158 static inline u32 open_file_to_av(struct file *file)
2159 {
2160         u32 av = file_to_av(file);
2161         struct inode *inode = file_inode(file);
2162
2163         if (selinux_policycap_openperm() &&
2164             inode->i_sb->s_magic != SOCKFS_MAGIC)
2165                 av |= FILE__OPEN;
2166
2167         return av;
2168 }
2169
2170 /* Hook functions begin here. */
2171
2172 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2173 {
2174         u32 mysid = current_sid();
2175         u32 mgrsid = task_sid(mgr);
2176
2177         return avc_has_perm(&selinux_state,
2178                             mysid, mgrsid, SECCLASS_BINDER,
2179                             BINDER__SET_CONTEXT_MGR, NULL);
2180 }
2181
2182 static int selinux_binder_transaction(struct task_struct *from,
2183                                       struct task_struct *to)
2184 {
2185         u32 mysid = current_sid();
2186         u32 fromsid = task_sid(from);
2187         u32 tosid = task_sid(to);
2188         int rc;
2189
2190         if (mysid != fromsid) {
2191                 rc = avc_has_perm(&selinux_state,
2192                                   mysid, fromsid, SECCLASS_BINDER,
2193                                   BINDER__IMPERSONATE, NULL);
2194                 if (rc)
2195                         return rc;
2196         }
2197
2198         return avc_has_perm(&selinux_state,
2199                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2200                             NULL);
2201 }
2202
2203 static int selinux_binder_transfer_binder(struct task_struct *from,
2204                                           struct task_struct *to)
2205 {
2206         u32 fromsid = task_sid(from);
2207         u32 tosid = task_sid(to);
2208
2209         return avc_has_perm(&selinux_state,
2210                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2211                             NULL);
2212 }
2213
2214 static int selinux_binder_transfer_file(struct task_struct *from,
2215                                         struct task_struct *to,
2216                                         struct file *file)
2217 {
2218         u32 sid = task_sid(to);
2219         struct file_security_struct *fsec = file->f_security;
2220         struct dentry *dentry = file->f_path.dentry;
2221         struct inode_security_struct *isec;
2222         struct common_audit_data ad;
2223         int rc;
2224
2225         ad.type = LSM_AUDIT_DATA_PATH;
2226         ad.u.path = file->f_path;
2227
2228         if (sid != fsec->sid) {
2229                 rc = avc_has_perm(&selinux_state,
2230                                   sid, fsec->sid,
2231                                   SECCLASS_FD,
2232                                   FD__USE,
2233                                   &ad);
2234                 if (rc)
2235                         return rc;
2236         }
2237
2238 #ifdef CONFIG_BPF_SYSCALL
2239         rc = bpf_fd_pass(file, sid);
2240         if (rc)
2241                 return rc;
2242 #endif
2243
2244         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2245                 return 0;
2246
2247         isec = backing_inode_security(dentry);
2248         return avc_has_perm(&selinux_state,
2249                             sid, isec->sid, isec->sclass, file_to_av(file),
2250                             &ad);
2251 }
2252
2253 static int selinux_ptrace_access_check(struct task_struct *child,
2254                                      unsigned int mode)
2255 {
2256         u32 sid = current_sid();
2257         u32 csid = task_sid(child);
2258
2259         if (mode & PTRACE_MODE_READ)
2260                 return avc_has_perm(&selinux_state,
2261                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2262
2263         return avc_has_perm(&selinux_state,
2264                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2265 }
2266
2267 static int selinux_ptrace_traceme(struct task_struct *parent)
2268 {
2269         return avc_has_perm(&selinux_state,
2270                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2271                             PROCESS__PTRACE, NULL);
2272 }
2273
2274 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2275                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2276 {
2277         return avc_has_perm(&selinux_state,
2278                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2279                             PROCESS__GETCAP, NULL);
2280 }
2281
2282 static int selinux_capset(struct cred *new, const struct cred *old,
2283                           const kernel_cap_t *effective,
2284                           const kernel_cap_t *inheritable,
2285                           const kernel_cap_t *permitted)
2286 {
2287         return avc_has_perm(&selinux_state,
2288                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2289                             PROCESS__SETCAP, NULL);
2290 }
2291
2292 /*
2293  * (This comment used to live with the selinux_task_setuid hook,
2294  * which was removed).
2295  *
2296  * Since setuid only affects the current process, and since the SELinux
2297  * controls are not based on the Linux identity attributes, SELinux does not
2298  * need to control this operation.  However, SELinux does control the use of
2299  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2300  */
2301
2302 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2303                            int cap, int audit)
2304 {
2305         return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2306 }
2307
2308 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2309 {
2310         const struct cred *cred = current_cred();
2311         int rc = 0;
2312
2313         if (!sb)
2314                 return 0;
2315
2316         switch (cmds) {
2317         case Q_SYNC:
2318         case Q_QUOTAON:
2319         case Q_QUOTAOFF:
2320         case Q_SETINFO:
2321         case Q_SETQUOTA:
2322                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2323                 break;
2324         case Q_GETFMT:
2325         case Q_GETINFO:
2326         case Q_GETQUOTA:
2327                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2328                 break;
2329         default:
2330                 rc = 0;  /* let the kernel handle invalid cmds */
2331                 break;
2332         }
2333         return rc;
2334 }
2335
2336 static int selinux_quota_on(struct dentry *dentry)
2337 {
2338         const struct cred *cred = current_cred();
2339
2340         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2341 }
2342
2343 static int selinux_syslog(int type)
2344 {
2345         switch (type) {
2346         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2347         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2348                 return avc_has_perm(&selinux_state,
2349                                     current_sid(), SECINITSID_KERNEL,
2350                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2351         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2352         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2353         /* Set level of messages printed to console */
2354         case SYSLOG_ACTION_CONSOLE_LEVEL:
2355                 return avc_has_perm(&selinux_state,
2356                                     current_sid(), SECINITSID_KERNEL,
2357                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2358                                     NULL);
2359         }
2360         /* All other syslog types */
2361         return avc_has_perm(&selinux_state,
2362                             current_sid(), SECINITSID_KERNEL,
2363                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2364 }
2365
2366 /*
2367  * Check that a process has enough memory to allocate a new virtual
2368  * mapping. 0 means there is enough memory for the allocation to
2369  * succeed and -ENOMEM implies there is not.
2370  *
2371  * Do not audit the selinux permission check, as this is applied to all
2372  * processes that allocate mappings.
2373  */
2374 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2375 {
2376         int rc, cap_sys_admin = 0;
2377
2378         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2379                                  SECURITY_CAP_NOAUDIT, true);
2380         if (rc == 0)
2381                 cap_sys_admin = 1;
2382
2383         return cap_sys_admin;
2384 }
2385
2386 /* binprm security operations */
2387
2388 static u32 ptrace_parent_sid(void)
2389 {
2390         u32 sid = 0;
2391         struct task_struct *tracer;
2392
2393         rcu_read_lock();
2394         tracer = ptrace_parent(current);
2395         if (tracer)
2396                 sid = task_sid(tracer);
2397         rcu_read_unlock();
2398
2399         return sid;
2400 }
2401
2402 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2403                             const struct task_security_struct *old_tsec,
2404                             const struct task_security_struct *new_tsec)
2405 {
2406         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2407         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2408         int rc;
2409         u32 av;
2410
2411         if (!nnp && !nosuid)
2412                 return 0; /* neither NNP nor nosuid */
2413
2414         if (new_tsec->sid == old_tsec->sid)
2415                 return 0; /* No change in credentials */
2416
2417         /*
2418          * If the policy enables the nnp_nosuid_transition policy capability,
2419          * then we permit transitions under NNP or nosuid if the
2420          * policy allows the corresponding permission between
2421          * the old and new contexts.
2422          */
2423         if (selinux_policycap_nnp_nosuid_transition()) {
2424                 av = 0;
2425                 if (nnp)
2426                         av |= PROCESS2__NNP_TRANSITION;
2427                 if (nosuid)
2428                         av |= PROCESS2__NOSUID_TRANSITION;
2429                 rc = avc_has_perm(&selinux_state,
2430                                   old_tsec->sid, new_tsec->sid,
2431                                   SECCLASS_PROCESS2, av, NULL);
2432                 if (!rc)
2433                         return 0;
2434         }
2435
2436         /*
2437          * We also permit NNP or nosuid transitions to bounded SIDs,
2438          * i.e. SIDs that are guaranteed to only be allowed a subset
2439          * of the permissions of the current SID.
2440          */
2441         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2442                                          new_tsec->sid);
2443         if (!rc)
2444                 return 0;
2445
2446         /*
2447          * On failure, preserve the errno values for NNP vs nosuid.
2448          * NNP:  Operation not permitted for caller.
2449          * nosuid:  Permission denied to file.
2450          */
2451         if (nnp)
2452                 return -EPERM;
2453         return -EACCES;
2454 }
2455
2456 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2457 {
2458         const struct task_security_struct *old_tsec;
2459         struct task_security_struct *new_tsec;
2460         struct inode_security_struct *isec;
2461         struct common_audit_data ad;
2462         struct inode *inode = file_inode(bprm->file);
2463         int rc;
2464
2465         /* SELinux context only depends on initial program or script and not
2466          * the script interpreter */
2467         if (bprm->called_set_creds)
2468                 return 0;
2469
2470         old_tsec = current_security();
2471         new_tsec = bprm->cred->security;
2472         isec = inode_security(inode);
2473
2474         /* Default to the current task SID. */
2475         new_tsec->sid = old_tsec->sid;
2476         new_tsec->osid = old_tsec->sid;
2477
2478         /* Reset fs, key, and sock SIDs on execve. */
2479         new_tsec->create_sid = 0;
2480         new_tsec->keycreate_sid = 0;
2481         new_tsec->sockcreate_sid = 0;
2482
2483         if (old_tsec->exec_sid) {
2484                 new_tsec->sid = old_tsec->exec_sid;
2485                 /* Reset exec SID on execve. */
2486                 new_tsec->exec_sid = 0;
2487
2488                 /* Fail on NNP or nosuid if not an allowed transition. */
2489                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2490                 if (rc)
2491                         return rc;
2492         } else {
2493                 /* Check for a default transition on this program. */
2494                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2495                                              isec->sid, SECCLASS_PROCESS, NULL,
2496                                              &new_tsec->sid);
2497                 if (rc)
2498                         return rc;
2499
2500                 /*
2501                  * Fallback to old SID on NNP or nosuid if not an allowed
2502                  * transition.
2503                  */
2504                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2505                 if (rc)
2506                         new_tsec->sid = old_tsec->sid;
2507         }
2508
2509         ad.type = LSM_AUDIT_DATA_FILE;
2510         ad.u.file = bprm->file;
2511
2512         if (new_tsec->sid == old_tsec->sid) {
2513                 rc = avc_has_perm(&selinux_state,
2514                                   old_tsec->sid, isec->sid,
2515                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2516                 if (rc)
2517                         return rc;
2518         } else {
2519                 /* Check permissions for the transition. */
2520                 rc = avc_has_perm(&selinux_state,
2521                                   old_tsec->sid, new_tsec->sid,
2522                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2523                 if (rc)
2524                         return rc;
2525
2526                 rc = avc_has_perm(&selinux_state,
2527                                   new_tsec->sid, isec->sid,
2528                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2529                 if (rc)
2530                         return rc;
2531
2532                 /* Check for shared state */
2533                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2534                         rc = avc_has_perm(&selinux_state,
2535                                           old_tsec->sid, new_tsec->sid,
2536                                           SECCLASS_PROCESS, PROCESS__SHARE,
2537                                           NULL);
2538                         if (rc)
2539                                 return -EPERM;
2540                 }
2541
2542                 /* Make sure that anyone attempting to ptrace over a task that
2543                  * changes its SID has the appropriate permit */
2544                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2545                         u32 ptsid = ptrace_parent_sid();
2546                         if (ptsid != 0) {
2547                                 rc = avc_has_perm(&selinux_state,
2548                                                   ptsid, new_tsec->sid,
2549                                                   SECCLASS_PROCESS,
2550                                                   PROCESS__PTRACE, NULL);
2551                                 if (rc)
2552                                         return -EPERM;
2553                         }
2554                 }
2555
2556                 /* Clear any possibly unsafe personality bits on exec: */
2557                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2558
2559                 /* Enable secure mode for SIDs transitions unless
2560                    the noatsecure permission is granted between
2561                    the two SIDs, i.e. ahp returns 0. */
2562                 rc = avc_has_perm(&selinux_state,
2563                                   old_tsec->sid, new_tsec->sid,
2564                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2565                                   NULL);
2566                 bprm->secureexec |= !!rc;
2567         }
2568
2569         return 0;
2570 }
2571
2572 static int match_file(const void *p, struct file *file, unsigned fd)
2573 {
2574         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2575 }
2576
2577 /* Derived from fs/exec.c:flush_old_files. */
2578 static inline void flush_unauthorized_files(const struct cred *cred,
2579                                             struct files_struct *files)
2580 {
2581         struct file *file, *devnull = NULL;
2582         struct tty_struct *tty;
2583         int drop_tty = 0;
2584         unsigned n;
2585
2586         tty = get_current_tty();
2587         if (tty) {
2588                 spin_lock(&tty->files_lock);
2589                 if (!list_empty(&tty->tty_files)) {
2590                         struct tty_file_private *file_priv;
2591
2592                         /* Revalidate access to controlling tty.
2593                            Use file_path_has_perm on the tty path directly
2594                            rather than using file_has_perm, as this particular
2595                            open file may belong to another process and we are
2596                            only interested in the inode-based check here. */
2597                         file_priv = list_first_entry(&tty->tty_files,
2598                                                 struct tty_file_private, list);
2599                         file = file_priv->file;
2600                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2601                                 drop_tty = 1;
2602                 }
2603                 spin_unlock(&tty->files_lock);
2604                 tty_kref_put(tty);
2605         }
2606         /* Reset controlling tty. */
2607         if (drop_tty)
2608                 no_tty();
2609
2610         /* Revalidate access to inherited open files. */
2611         n = iterate_fd(files, 0, match_file, cred);
2612         if (!n) /* none found? */
2613                 return;
2614
2615         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2616         if (IS_ERR(devnull))
2617                 devnull = NULL;
2618         /* replace all the matching ones with this */
2619         do {
2620                 replace_fd(n - 1, devnull, 0);
2621         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2622         if (devnull)
2623                 fput(devnull);
2624 }
2625
2626 /*
2627  * Prepare a process for imminent new credential changes due to exec
2628  */
2629 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2630 {
2631         struct task_security_struct *new_tsec;
2632         struct rlimit *rlim, *initrlim;
2633         int rc, i;
2634
2635         new_tsec = bprm->cred->security;
2636         if (new_tsec->sid == new_tsec->osid)
2637                 return;
2638
2639         /* Close files for which the new task SID is not authorized. */
2640         flush_unauthorized_files(bprm->cred, current->files);
2641
2642         /* Always clear parent death signal on SID transitions. */
2643         current->pdeath_signal = 0;
2644
2645         /* Check whether the new SID can inherit resource limits from the old
2646          * SID.  If not, reset all soft limits to the lower of the current
2647          * task's hard limit and the init task's soft limit.
2648          *
2649          * Note that the setting of hard limits (even to lower them) can be
2650          * controlled by the setrlimit check.  The inclusion of the init task's
2651          * soft limit into the computation is to avoid resetting soft limits
2652          * higher than the default soft limit for cases where the default is
2653          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2654          */
2655         rc = avc_has_perm(&selinux_state,
2656                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2657                           PROCESS__RLIMITINH, NULL);
2658         if (rc) {
2659                 /* protect against do_prlimit() */
2660                 task_lock(current);
2661                 for (i = 0; i < RLIM_NLIMITS; i++) {
2662                         rlim = current->signal->rlim + i;
2663                         initrlim = init_task.signal->rlim + i;
2664                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2665                 }
2666                 task_unlock(current);
2667                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2668                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2669         }
2670 }
2671
2672 /*
2673  * Clean up the process immediately after the installation of new credentials
2674  * due to exec
2675  */
2676 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2677 {
2678         const struct task_security_struct *tsec = current_security();
2679         struct itimerval itimer;
2680         u32 osid, sid;
2681         int rc, i;
2682
2683         osid = tsec->osid;
2684         sid = tsec->sid;
2685
2686         if (sid == osid)
2687                 return;
2688
2689         /* Check whether the new SID can inherit signal state from the old SID.
2690          * If not, clear itimers to avoid subsequent signal generation and
2691          * flush and unblock signals.
2692          *
2693          * This must occur _after_ the task SID has been updated so that any
2694          * kill done after the flush will be checked against the new SID.
2695          */
2696         rc = avc_has_perm(&selinux_state,
2697                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2698         if (rc) {
2699                 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2700                         memset(&itimer, 0, sizeof itimer);
2701                         for (i = 0; i < 3; i++)
2702                                 do_setitimer(i, &itimer, NULL);
2703                 }
2704                 spin_lock_irq(&current->sighand->siglock);
2705                 if (!fatal_signal_pending(current)) {
2706                         flush_sigqueue(&current->pending);
2707                         flush_sigqueue(&current->signal->shared_pending);
2708                         flush_signal_handlers(current, 1);
2709                         sigemptyset(&current->blocked);
2710                         recalc_sigpending();
2711                 }
2712                 spin_unlock_irq(&current->sighand->siglock);
2713         }
2714
2715         /* Wake up the parent if it is waiting so that it can recheck
2716          * wait permission to the new task SID. */
2717         read_lock(&tasklist_lock);
2718         __wake_up_parent(current, current->real_parent);
2719         read_unlock(&tasklist_lock);
2720 }
2721
2722 /* superblock security operations */
2723
2724 static int selinux_sb_alloc_security(struct super_block *sb)
2725 {
2726         return superblock_alloc_security(sb);
2727 }
2728
2729 static void selinux_sb_free_security(struct super_block *sb)
2730 {
2731         superblock_free_security(sb);
2732 }
2733
2734 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2735 {
2736         if (plen > olen)
2737                 return 0;
2738
2739         return !memcmp(prefix, option, plen);
2740 }
2741
2742 static inline int selinux_option(char *option, int len)
2743 {
2744         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2745                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2746                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2747                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2748                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2749 }
2750
2751 static inline void take_option(char **to, char *from, int *first, int len)
2752 {
2753         if (!*first) {
2754                 **to = ',';
2755                 *to += 1;
2756         } else
2757                 *first = 0;
2758         memcpy(*to, from, len);
2759         *to += len;
2760 }
2761
2762 static inline void take_selinux_option(char **to, char *from, int *first,
2763                                        int len)
2764 {
2765         int current_size = 0;
2766
2767         if (!*first) {
2768                 **to = '|';
2769                 *to += 1;
2770         } else
2771                 *first = 0;
2772
2773         while (current_size < len) {
2774                 if (*from != '"') {
2775                         **to = *from;
2776                         *to += 1;
2777                 }
2778                 from += 1;
2779                 current_size += 1;
2780         }
2781 }
2782
2783 static int selinux_sb_copy_data(char *orig, char *copy)
2784 {
2785         int fnosec, fsec, rc = 0;
2786         char *in_save, *in_curr, *in_end;
2787         char *sec_curr, *nosec_save, *nosec;
2788         int open_quote = 0;
2789
2790         in_curr = orig;
2791         sec_curr = copy;
2792
2793         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2794         if (!nosec) {
2795                 rc = -ENOMEM;
2796                 goto out;
2797         }
2798
2799         nosec_save = nosec;
2800         fnosec = fsec = 1;
2801         in_save = in_end = orig;
2802
2803         do {
2804                 if (*in_end == '"')
2805                         open_quote = !open_quote;
2806                 if ((*in_end == ',' && open_quote == 0) ||
2807                                 *in_end == '\0') {
2808                         int len = in_end - in_curr;
2809
2810                         if (selinux_option(in_curr, len))
2811                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2812                         else
2813                                 take_option(&nosec, in_curr, &fnosec, len);
2814
2815                         in_curr = in_end + 1;
2816                 }
2817         } while (*in_end++);
2818
2819         strcpy(in_save, nosec_save);
2820         free_page((unsigned long)nosec_save);
2821 out:
2822         return rc;
2823 }
2824
2825 static int selinux_sb_remount(struct super_block *sb, void *data)
2826 {
2827         int rc, i, *flags;
2828         struct security_mnt_opts opts;
2829         char *secdata, **mount_options;
2830         struct superblock_security_struct *sbsec = sb->s_security;
2831
2832         if (!(sbsec->flags & SE_SBINITIALIZED))
2833                 return 0;
2834
2835         if (!data)
2836                 return 0;
2837
2838         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2839                 return 0;
2840
2841         security_init_mnt_opts(&opts);
2842         secdata = alloc_secdata();
2843         if (!secdata)
2844                 return -ENOMEM;
2845         rc = selinux_sb_copy_data(data, secdata);
2846         if (rc)
2847                 goto out_free_secdata;
2848
2849         rc = selinux_parse_opts_str(secdata, &opts);
2850         if (rc)
2851                 goto out_free_secdata;
2852
2853         mount_options = opts.mnt_opts;
2854         flags = opts.mnt_opts_flags;
2855
2856         for (i = 0; i < opts.num_mnt_opts; i++) {
2857                 u32 sid;
2858
2859                 if (flags[i] == SBLABEL_MNT)
2860                         continue;
2861                 rc = security_context_str_to_sid(&selinux_state,
2862                                                  mount_options[i], &sid,
2863                                                  GFP_KERNEL);
2864                 if (rc) {
2865                         printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2866                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2867                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2868                         goto out_free_opts;
2869                 }
2870                 rc = -EINVAL;
2871                 switch (flags[i]) {
2872                 case FSCONTEXT_MNT:
2873                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2874                                 goto out_bad_option;
2875                         break;
2876                 case CONTEXT_MNT:
2877                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2878                                 goto out_bad_option;
2879                         break;
2880                 case ROOTCONTEXT_MNT: {
2881                         struct inode_security_struct *root_isec;
2882                         root_isec = backing_inode_security(sb->s_root);
2883
2884                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2885                                 goto out_bad_option;
2886                         break;
2887                 }
2888                 case DEFCONTEXT_MNT:
2889                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2890                                 goto out_bad_option;
2891                         break;
2892                 default:
2893                         goto out_free_opts;
2894                 }
2895         }
2896
2897         rc = 0;
2898 out_free_opts:
2899         security_free_mnt_opts(&opts);
2900 out_free_secdata:
2901         free_secdata(secdata);
2902         return rc;
2903 out_bad_option:
2904         printk(KERN_WARNING "SELinux: unable to change security options "
2905                "during remount (dev %s, type=%s)\n", sb->s_id,
2906                sb->s_type->name);
2907         goto out_free_opts;
2908 }
2909
2910 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2911 {
2912         const struct cred *cred = current_cred();
2913         struct common_audit_data ad;
2914         int rc;
2915
2916         rc = superblock_doinit(sb, data);
2917         if (rc)
2918                 return rc;
2919
2920         /* Allow all mounts performed by the kernel */
2921         if (flags & MS_KERNMOUNT)
2922                 return 0;
2923
2924         ad.type = LSM_AUDIT_DATA_DENTRY;
2925         ad.u.dentry = sb->s_root;
2926         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2927 }
2928
2929 static int selinux_sb_statfs(struct dentry *dentry)
2930 {
2931         const struct cred *cred = current_cred();
2932         struct common_audit_data ad;
2933
2934         ad.type = LSM_AUDIT_DATA_DENTRY;
2935         ad.u.dentry = dentry->d_sb->s_root;
2936         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2937 }
2938
2939 static int selinux_mount(const char *dev_name,
2940                          const struct path *path,
2941                          const char *type,
2942                          unsigned long flags,
2943                          void *data)
2944 {
2945         const struct cred *cred = current_cred();
2946
2947         if (flags & MS_REMOUNT)
2948                 return superblock_has_perm(cred, path->dentry->d_sb,
2949                                            FILESYSTEM__REMOUNT, NULL);
2950         else
2951                 return path_has_perm(cred, path, FILE__MOUNTON);
2952 }
2953
2954 static int selinux_umount(struct vfsmount *mnt, int flags)
2955 {
2956         const struct cred *cred = current_cred();
2957
2958         return superblock_has_perm(cred, mnt->mnt_sb,
2959                                    FILESYSTEM__UNMOUNT, NULL);
2960 }
2961
2962 /* inode security operations */
2963
2964 static int selinux_inode_alloc_security(struct inode *inode)
2965 {
2966         return inode_alloc_security(inode);
2967 }
2968
2969 static void selinux_inode_free_security(struct inode *inode)
2970 {
2971         inode_free_security(inode);
2972 }
2973
2974 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2975                                         const struct qstr *name, void **ctx,
2976                                         u32 *ctxlen)
2977 {
2978         u32 newsid;
2979         int rc;
2980
2981         rc = selinux_determine_inode_label(current_security(),
2982                                            d_inode(dentry->d_parent), name,
2983                                            inode_mode_to_security_class(mode),
2984                                            &newsid);
2985         if (rc)
2986                 return rc;
2987
2988         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2989                                        ctxlen);
2990 }
2991
2992 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2993                                           struct qstr *name,
2994                                           const struct cred *old,
2995                                           struct cred *new)
2996 {
2997         u32 newsid;
2998         int rc;
2999         struct task_security_struct *tsec;
3000
3001         rc = selinux_determine_inode_label(old->security,
3002                                            d_inode(dentry->d_parent), name,
3003                                            inode_mode_to_security_class(mode),
3004                                            &newsid);
3005         if (rc)
3006                 return rc;
3007
3008         tsec = new->security;
3009         tsec->create_sid = newsid;
3010         return 0;
3011 }
3012
3013 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3014                                        const struct qstr *qstr,
3015                                        const char **name,
3016                                        void **value, size_t *len)
3017 {
3018         const struct task_security_struct *tsec = current_security();
3019         struct superblock_security_struct *sbsec;
3020         u32 newsid, clen;
3021         int rc;
3022         char *context;
3023
3024         sbsec = dir->i_sb->s_security;
3025
3026         newsid = tsec->create_sid;
3027
3028         rc = selinux_determine_inode_label(current_security(),
3029                 dir, qstr,
3030                 inode_mode_to_security_class(inode->i_mode),
3031                 &newsid);
3032         if (rc)
3033                 return rc;
3034
3035         /* Possibly defer initialization to selinux_complete_init. */
3036         if (sbsec->flags & SE_SBINITIALIZED) {
3037                 struct inode_security_struct *isec = inode->i_security;
3038                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3039                 isec->sid = newsid;
3040                 isec->initialized = LABEL_INITIALIZED;
3041         }
3042
3043         if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3044                 return -EOPNOTSUPP;
3045
3046         if (name)
3047                 *name = XATTR_SELINUX_SUFFIX;
3048
3049         if (value && len) {
3050                 rc = security_sid_to_context_force(&selinux_state, newsid,
3051                                                    &context, &clen);
3052                 if (rc)
3053                         return rc;
3054                 *value = context;
3055                 *len = clen;
3056         }
3057
3058         return 0;
3059 }
3060
3061 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3062 {
3063         return may_create(dir, dentry, SECCLASS_FILE);
3064 }
3065
3066 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3067 {
3068         return may_link(dir, old_dentry, MAY_LINK);
3069 }
3070
3071 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3072 {
3073         return may_link(dir, dentry, MAY_UNLINK);
3074 }
3075
3076 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3077 {
3078         return may_create(dir, dentry, SECCLASS_LNK_FILE);
3079 }
3080
3081 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3082 {
3083         return may_create(dir, dentry, SECCLASS_DIR);
3084 }
3085
3086 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3087 {
3088         return may_link(dir, dentry, MAY_RMDIR);
3089 }
3090
3091 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3092 {
3093         return may_create(dir, dentry, inode_mode_to_security_class(mode));
3094 }
3095
3096 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3097                                 struct inode *new_inode, struct dentry *new_dentry)
3098 {
3099         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3100 }
3101
3102 static int selinux_inode_readlink(struct dentry *dentry)
3103 {
3104         const struct cred *cred = current_cred();
3105
3106         return dentry_has_perm(cred, dentry, FILE__READ);
3107 }
3108
3109 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3110                                      bool rcu)
3111 {
3112         const struct cred *cred = current_cred();
3113         struct common_audit_data ad;
3114         struct inode_security_struct *isec;
3115         u32 sid;
3116
3117         validate_creds(cred);
3118
3119         ad.type = LSM_AUDIT_DATA_DENTRY;
3120         ad.u.dentry = dentry;
3121         sid = cred_sid(cred);
3122         isec = inode_security_rcu(inode, rcu);
3123         if (IS_ERR(isec))
3124                 return PTR_ERR(isec);
3125
3126         return avc_has_perm_flags(&selinux_state,
3127                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
3128                                   rcu ? MAY_NOT_BLOCK : 0);
3129 }
3130
3131 static noinline int audit_inode_permission(struct inode *inode,
3132                                            u32 perms, u32 audited, u32 denied,
3133                                            int result,
3134                                            unsigned flags)
3135 {
3136         struct common_audit_data ad;
3137         struct inode_security_struct *isec = inode->i_security;
3138         int rc;
3139
3140         ad.type = LSM_AUDIT_DATA_INODE;
3141         ad.u.inode = inode;
3142
3143         rc = slow_avc_audit(&selinux_state,
3144                             current_sid(), isec->sid, isec->sclass, perms,
3145                             audited, denied, result, &ad, flags);
3146         if (rc)
3147                 return rc;
3148         return 0;
3149 }
3150
3151 static int selinux_inode_permission(struct inode *inode, int mask)
3152 {
3153         const struct cred *cred = current_cred();
3154         u32 perms;
3155         bool from_access;
3156         unsigned flags = mask & MAY_NOT_BLOCK;
3157         struct inode_security_struct *isec;
3158         u32 sid;
3159         struct av_decision avd;
3160         int rc, rc2;
3161         u32 audited, denied;
3162
3163         from_access = mask & MAY_ACCESS;
3164         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3165
3166         /* No permission to check.  Existence test. */
3167         if (!mask)
3168                 return 0;
3169
3170         validate_creds(cred);
3171
3172         if (unlikely(IS_PRIVATE(inode)))
3173                 return 0;
3174
3175         perms = file_mask_to_av(inode->i_mode, mask);
3176
3177         sid = cred_sid(cred);
3178         isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3179         if (IS_ERR(isec))
3180                 return PTR_ERR(isec);
3181
3182         rc = avc_has_perm_noaudit(&selinux_state,
3183                                   sid, isec->sid, isec->sclass, perms, 0, &avd);
3184         audited = avc_audit_required(perms, &avd, rc,
3185                                      from_access ? FILE__AUDIT_ACCESS : 0,
3186                                      &denied);
3187         if (likely(!audited))
3188                 return rc;
3189
3190         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3191         if (rc2)
3192                 return rc2;
3193         return rc;
3194 }
3195
3196 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3197 {
3198         const struct cred *cred = current_cred();
3199         struct inode *inode = d_backing_inode(dentry);
3200         unsigned int ia_valid = iattr->ia_valid;
3201         __u32 av = FILE__WRITE;
3202
3203         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3204         if (ia_valid & ATTR_FORCE) {
3205                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3206                               ATTR_FORCE);
3207                 if (!ia_valid)
3208                         return 0;
3209         }
3210
3211         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3212                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3213                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3214
3215         if (selinux_policycap_openperm() &&
3216             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3217             (ia_valid & ATTR_SIZE) &&
3218             !(ia_valid & ATTR_FILE))
3219                 av |= FILE__OPEN;
3220
3221         return dentry_has_perm(cred, dentry, av);
3222 }
3223
3224 static int selinux_inode_getattr(const struct path *path)
3225 {
3226         return path_has_perm(current_cred(), path, FILE__GETATTR);
3227 }
3228
3229 static bool has_cap_mac_admin(bool audit)
3230 {
3231         const struct cred *cred = current_cred();
3232         int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3233
3234         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3235                 return false;
3236         if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3237                 return false;
3238         return true;
3239 }
3240
3241 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3242                                   const void *value, size_t size, int flags)
3243 {
3244         struct inode *inode = d_backing_inode(dentry);
3245         struct inode_security_struct *isec;
3246         struct superblock_security_struct *sbsec;
3247         struct common_audit_data ad;
3248         u32 newsid, sid = current_sid();
3249         int rc = 0;
3250
3251         if (strcmp(name, XATTR_NAME_SELINUX)) {
3252                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3253                 if (rc)
3254                         return rc;
3255
3256                 /* Not an attribute we recognize, so just check the
3257                    ordinary setattr permission. */
3258                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3259         }
3260
3261         sbsec = inode->i_sb->s_security;
3262         if (!(sbsec->flags & SBLABEL_MNT))
3263                 return -EOPNOTSUPP;
3264
3265         if (!inode_owner_or_capable(inode))
3266                 return -EPERM;
3267
3268         ad.type = LSM_AUDIT_DATA_DENTRY;
3269         ad.u.dentry = dentry;
3270
3271         isec = backing_inode_security(dentry);
3272         rc = avc_has_perm(&selinux_state,
3273                           sid, isec->sid, isec->sclass,
3274                           FILE__RELABELFROM, &ad);
3275         if (rc)
3276                 return rc;
3277
3278         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3279                                      GFP_KERNEL);
3280         if (rc == -EINVAL) {
3281                 if (!has_cap_mac_admin(true)) {
3282                         struct audit_buffer *ab;
3283                         size_t audit_size;
3284
3285                         /* We strip a nul only if it is at the end, otherwise the
3286                          * context contains a nul and we should audit that */
3287                         if (value) {
3288                                 const char *str = value;
3289
3290                                 if (str[size - 1] == '\0')
3291                                         audit_size = size - 1;
3292                                 else
3293                                         audit_size = size;
3294                         } else {
3295                                 audit_size = 0;
3296                         }
3297                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3298                         audit_log_format(ab, "op=setxattr invalid_context=");
3299                         audit_log_n_untrustedstring(ab, value, audit_size);
3300                         audit_log_end(ab);
3301
3302                         return rc;
3303                 }
3304                 rc = security_context_to_sid_force(&selinux_state, value,
3305                                                    size, &newsid);
3306         }
3307         if (rc)
3308                 return rc;
3309
3310         rc = avc_has_perm(&selinux_state,
3311                           sid, newsid, isec->sclass,
3312                           FILE__RELABELTO, &ad);
3313         if (rc)
3314                 return rc;
3315
3316         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3317                                           sid, isec->sclass);
3318         if (rc)
3319                 return rc;
3320
3321         return avc_has_perm(&selinux_state,
3322                             newsid,
3323                             sbsec->sid,
3324                             SECCLASS_FILESYSTEM,
3325                             FILESYSTEM__ASSOCIATE,
3326                             &ad);
3327 }
3328
3329 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3330                                         const void *value, size_t size,
3331                                         int flags)
3332 {
3333         struct inode *inode = d_backing_inode(dentry);
3334         struct inode_security_struct *isec;
3335         u32 newsid;
3336         int rc;
3337
3338         if (strcmp(name, XATTR_NAME_SELINUX)) {
3339                 /* Not an attribute we recognize, so nothing to do. */
3340                 return;
3341         }
3342
3343         rc = security_context_to_sid_force(&selinux_state, value, size,
3344                                            &newsid);
3345         if (rc) {
3346                 printk(KERN_ERR "SELinux:  unable to map context to SID"
3347                        "for (%s, %lu), rc=%d\n",
3348                        inode->i_sb->s_id, inode->i_ino, -rc);
3349                 return;
3350         }
3351
3352         isec = backing_inode_security(dentry);
3353         spin_lock(&isec->lock);
3354         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3355         isec->sid = newsid;
3356         isec->initialized = LABEL_INITIALIZED;
3357         spin_unlock(&isec->lock);
3358
3359         return;
3360 }
3361
3362 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3363 {
3364         const struct cred *cred = current_cred();
3365
3366         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3367 }
3368
3369 static int selinux_inode_listxattr(struct dentry *dentry)
3370 {
3371         const struct cred *cred = current_cred();
3372
3373         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3374 }
3375
3376 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3377 {
3378         if (strcmp(name, XATTR_NAME_SELINUX)) {
3379                 int rc = cap_inode_removexattr(dentry, name);
3380                 if (rc)
3381                         return rc;
3382
3383                 /* Not an attribute we recognize, so just check the
3384                    ordinary setattr permission. */
3385                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3386         }
3387
3388         /* No one is allowed to remove a SELinux security label.
3389            You can change the label, but all data must be labeled. */
3390         return -EACCES;
3391 }
3392
3393 /*
3394  * Copy the inode security context value to the user.
3395  *
3396  * Permission check is handled by selinux_inode_getxattr hook.
3397  */
3398 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3399 {
3400         u32 size;
3401         int error;
3402         char *context = NULL;
3403         struct inode_security_struct *isec;
3404
3405         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3406                 return -EOPNOTSUPP;
3407
3408         /*
3409          * If the caller has CAP_MAC_ADMIN, then get the raw context
3410          * value even if it is not defined by current policy; otherwise,
3411          * use the in-core value under current policy.
3412          * Use the non-auditing forms of the permission checks since
3413          * getxattr may be called by unprivileged processes commonly
3414          * and lack of permission just means that we fall back to the
3415          * in-core context value, not a denial.
3416          */
3417         isec = inode_security(inode);
3418         if (has_cap_mac_admin(false))
3419                 error = security_sid_to_context_force(&selinux_state,
3420                                                       isec->sid, &context,
3421                                                       &size);
3422         else
3423                 error = security_sid_to_context(&selinux_state, isec->sid,
3424                                                 &context, &size);
3425         if (error)
3426                 return error;
3427         error = size;
3428         if (alloc) {
3429                 *buffer = context;
3430                 goto out_nofree;
3431         }
3432         kfree(context);
3433 out_nofree:
3434         return error;
3435 }
3436
3437 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3438                                      const void *value, size_t size, int flags)
3439 {
3440         struct inode_security_struct *isec = inode_security_novalidate(inode);
3441         u32 newsid;
3442         int rc;
3443
3444         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3445                 return -EOPNOTSUPP;
3446
3447         if (!value || !size)
3448                 return -EACCES;
3449
3450         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451                                      GFP_KERNEL);
3452         if (rc)
3453                 return rc;
3454
3455         spin_lock(&isec->lock);
3456         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457         isec->sid = newsid;
3458         isec->initialized = LABEL_INITIALIZED;
3459         spin_unlock(&isec->lock);
3460         return 0;
3461 }
3462
3463 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464 {
3465         const int len = sizeof(XATTR_NAME_SELINUX);
3466         if (buffer && len <= buffer_size)
3467                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3468         return len;
3469 }
3470
3471 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3472 {
3473         struct inode_security_struct *isec = inode_security_novalidate(inode);
3474         *secid = isec->sid;
3475 }
3476
3477 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3478 {
3479         u32 sid;
3480         struct task_security_struct *tsec;
3481         struct cred *new_creds = *new;
3482
3483         if (new_creds == NULL) {
3484                 new_creds = prepare_creds();
3485                 if (!new_creds)
3486                         return -ENOMEM;
3487         }
3488
3489         tsec = new_creds->security;
3490         /* Get label from overlay inode and set it in create_sid */
3491         selinux_inode_getsecid(d_inode(src), &sid);
3492         tsec->create_sid = sid;
3493         *new = new_creds;
3494         return 0;
3495 }
3496
3497 static int selinux_inode_copy_up_xattr(const char *name)
3498 {
3499         /* The copy_up hook above sets the initial context on an inode, but we
3500          * don't then want to overwrite it by blindly copying all the lower
3501          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3502          */
3503         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3504                 return 1; /* Discard */
3505         /*
3506          * Any other attribute apart from SELINUX is not claimed, supported
3507          * by selinux.
3508          */
3509         return -EOPNOTSUPP;
3510 }
3511
3512 /* file security operations */
3513
3514 static int selinux_revalidate_file_permission(struct file *file, int mask)
3515 {
3516         const struct cred *cred = current_cred();
3517         struct inode *inode = file_inode(file);
3518
3519         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521                 mask |= MAY_APPEND;
3522
3523         return file_has_perm(cred, file,
3524                              file_mask_to_av(inode->i_mode, mask));
3525 }
3526
3527 static int selinux_file_permission(struct file *file, int mask)
3528 {
3529         struct inode *inode = file_inode(file);
3530         struct file_security_struct *fsec = file->f_security;
3531         struct inode_security_struct *isec;
3532         u32 sid = current_sid();
3533
3534         if (!mask)
3535                 /* No permission to check.  Existence test. */
3536                 return 0;
3537
3538         isec = inode_security(inode);
3539         if (sid == fsec->sid && fsec->isid == isec->sid &&
3540             fsec->pseqno == avc_policy_seqno(&selinux_state))
3541                 /* No change since file_open check. */
3542                 return 0;
3543
3544         return selinux_revalidate_file_permission(file, mask);
3545 }
3546
3547 static int selinux_file_alloc_security(struct file *file)
3548 {
3549         return file_alloc_security(file);
3550 }
3551
3552 static void selinux_file_free_security(struct file *file)
3553 {
3554         file_free_security(file);
3555 }
3556
3557 /*
3558  * Check whether a task has the ioctl permission and cmd
3559  * operation to an inode.
3560  */
3561 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3562                 u32 requested, u16 cmd)
3563 {
3564         struct common_audit_data ad;
3565         struct file_security_struct *fsec = file->f_security;
3566         struct inode *inode = file_inode(file);
3567         struct inode_security_struct *isec;
3568         struct lsm_ioctlop_audit ioctl;
3569         u32 ssid = cred_sid(cred);
3570         int rc;
3571         u8 driver = cmd >> 8;
3572         u8 xperm = cmd & 0xff;
3573
3574         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3575         ad.u.op = &ioctl;
3576         ad.u.op->cmd = cmd;
3577         ad.u.op->path = file->f_path;
3578
3579         if (ssid != fsec->sid) {
3580                 rc = avc_has_perm(&selinux_state,
3581                                   ssid, fsec->sid,
3582                                 SECCLASS_FD,
3583                                 FD__USE,
3584                                 &ad);
3585                 if (rc)
3586                         goto out;
3587         }
3588
3589         if (unlikely(IS_PRIVATE(inode)))
3590                 return 0;
3591
3592         isec = inode_security(inode);
3593         rc = avc_has_extended_perms(&selinux_state,
3594                                     ssid, isec->sid, isec->sclass,
3595                                     requested, driver, xperm, &ad);
3596 out:
3597         return rc;
3598 }
3599
3600 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3601                               unsigned long arg)
3602 {
3603         const struct cred *cred = current_cred();
3604         int error = 0;
3605
3606         switch (cmd) {
3607         case FIONREAD:
3608         /* fall through */
3609         case FIBMAP:
3610         /* fall through */
3611         case FIGETBSZ:
3612         /* fall through */
3613         case FS_IOC_GETFLAGS:
3614         /* fall through */
3615         case FS_IOC_GETVERSION:
3616                 error = file_has_perm(cred, file, FILE__GETATTR);
3617                 break;
3618
3619         case FS_IOC_SETFLAGS:
3620         /* fall through */
3621         case FS_IOC_SETVERSION:
3622                 error = file_has_perm(cred, file, FILE__SETATTR);
3623                 break;
3624
3625         /* sys_ioctl() checks */
3626         case FIONBIO:
3627         /* fall through */
3628         case FIOASYNC:
3629                 error = file_has_perm(cred, file, 0);
3630                 break;
3631
3632         case KDSKBENT:
3633         case KDSKBSENT:
3634                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3635                                             SECURITY_CAP_AUDIT, true);
3636                 break;
3637
3638         /* default case assumes that the command will go
3639          * to the file's ioctl() function.
3640          */
3641         default:
3642                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3643         }
3644         return error;
3645 }
3646
3647 static int default_noexec;
3648
3649 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3650 {
3651         const struct cred *cred = current_cred();
3652         u32 sid = cred_sid(cred);
3653         int rc = 0;
3654
3655         if (default_noexec &&
3656             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3657                                    (!shared && (prot & PROT_WRITE)))) {
3658                 /*
3659                  * We are making executable an anonymous mapping or a
3660                  * private file mapping that will also be writable.
3661                  * This has an additional check.
3662                  */
3663                 rc = avc_has_perm(&selinux_state,
3664                                   sid, sid, SECCLASS_PROCESS,
3665                                   PROCESS__EXECMEM, NULL);
3666                 if (rc)
3667                         goto error;
3668         }
3669
3670         if (file) {
3671                 /* read access is always possible with a mapping */
3672                 u32 av = FILE__READ;
3673
3674                 /* write access only matters if the mapping is shared */
3675                 if (shared && (prot & PROT_WRITE))
3676                         av |= FILE__WRITE;
3677
3678                 if (prot & PROT_EXEC)
3679                         av |= FILE__EXECUTE;
3680
3681                 return file_has_perm(cred, file, av);
3682         }
3683
3684 error:
3685         return rc;
3686 }
3687
3688 static int selinux_mmap_addr(unsigned long addr)
3689 {
3690         int rc = 0;
3691
3692         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3693                 u32 sid = current_sid();
3694                 rc = avc_has_perm(&selinux_state,
3695                                   sid, sid, SECCLASS_MEMPROTECT,
3696                                   MEMPROTECT__MMAP_ZERO, NULL);
3697         }
3698
3699         return rc;
3700 }
3701
3702 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3703                              unsigned long prot, unsigned long flags)
3704 {
3705         struct common_audit_data ad;
3706         int rc;
3707
3708         if (file) {
3709                 ad.type = LSM_AUDIT_DATA_FILE;
3710                 ad.u.file = file;
3711                 rc = inode_has_perm(current_cred(), file_inode(file),
3712                                     FILE__MAP, &ad);
3713                 if (rc)
3714                         return rc;
3715         }
3716
3717         if (selinux_state.checkreqprot)
3718                 prot = reqprot;
3719
3720         return file_map_prot_check(file, prot,
3721                                    (flags & MAP_TYPE) == MAP_SHARED);
3722 }
3723
3724 static int selinux_file_mprotect(struct vm_area_struct *vma,
3725                                  unsigned long reqprot,
3726                                  unsigned long prot)
3727 {
3728         const struct cred *cred = current_cred();
3729         u32 sid = cred_sid(cred);
3730
3731         if (selinux_state.checkreqprot)
3732                 prot = reqprot;
3733
3734         if (default_noexec &&
3735             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3736                 int rc = 0;
3737                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3738                     vma->vm_end <= vma->vm_mm->brk) {
3739                         rc = avc_has_perm(&selinux_state,
3740                                           sid, sid, SECCLASS_PROCESS,
3741                                           PROCESS__EXECHEAP, NULL);
3742                 } else if (!vma->vm_file &&
3743                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3744                              vma->vm_end >= vma->vm_mm->start_stack) ||
3745                             vma_is_stack_for_current(vma))) {
3746                         rc = avc_has_perm(&selinux_state,
3747                                           sid, sid, SECCLASS_PROCESS,
3748                                           PROCESS__EXECSTACK, NULL);
3749                 } else if (vma->vm_file && vma->anon_vma) {
3750                         /*
3751                          * We are making executable a file mapping that has
3752                          * had some COW done. Since pages might have been
3753                          * written, check ability to execute the possibly
3754                          * modified content.  This typically should only
3755                          * occur for text relocations.
3756                          */
3757                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3758                 }
3759                 if (rc)
3760                         return rc;
3761         }
3762
3763         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3764 }
3765
3766 static int selinux_file_lock(struct file *file, unsigned int cmd)
3767 {
3768         const struct cred *cred = current_cred();
3769
3770         return file_has_perm(cred, file, FILE__LOCK);
3771 }
3772
3773 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3774                               unsigned long arg)
3775 {
3776         const struct cred *cred = current_cred();
3777         int err = 0;
3778
3779         switch (cmd) {
3780         case F_SETFL:
3781                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3782                         err = file_has_perm(cred, file, FILE__WRITE);
3783                         break;
3784                 }
3785                 /* fall through */
3786         case F_SETOWN:
3787         case F_SETSIG:
3788         case F_GETFL:
3789         case F_GETOWN:
3790         case F_GETSIG:
3791         case F_GETOWNER_UIDS:
3792                 /* Just check FD__USE permission */
3793                 err = file_has_perm(cred, file, 0);
3794                 break;
3795         case F_GETLK:
3796         case F_SETLK:
3797         case F_SETLKW:
3798         case F_OFD_GETLK:
3799         case F_OFD_SETLK:
3800         case F_OFD_SETLKW:
3801 #if BITS_PER_LONG == 32
3802         case F_GETLK64:
3803         case F_SETLK64:
3804         case F_SETLKW64:
3805 #endif
3806                 err = file_has_perm(cred, file, FILE__LOCK);
3807                 break;
3808         }
3809
3810         return err;
3811 }
3812
3813 static void selinux_file_set_fowner(struct file *file)
3814 {
3815         struct file_security_struct *fsec;
3816
3817         fsec = file->f_security;
3818         fsec->fown_sid = current_sid();
3819 }
3820
3821 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3822                                        struct fown_struct *fown, int signum)
3823 {
3824         struct file *file;
3825         u32 sid = task_sid(tsk);
3826         u32 perm;
3827         struct file_security_struct *fsec;
3828
3829         /* struct fown_struct is never outside the context of a struct file */
3830         file = container_of(fown, struct file, f_owner);
3831
3832         fsec = file->f_security;
3833
3834         if (!signum)
3835                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3836         else
3837                 perm = signal_to_av(signum);
3838
3839         return avc_has_perm(&selinux_state,
3840                             fsec->fown_sid, sid,
3841                             SECCLASS_PROCESS, perm, NULL);
3842 }
3843
3844 static int selinux_file_receive(struct file *file)
3845 {
3846         const struct cred *cred = current_cred();
3847
3848         return file_has_perm(cred, file, file_to_av(file));
3849 }
3850
3851 static int selinux_file_open(struct file *file, const struct cred *cred)
3852 {
3853         struct file_security_struct *fsec;
3854         struct inode_security_struct *isec;
3855
3856         fsec = file->f_security;
3857         isec = inode_security(file_inode(file));
3858         /*
3859          * Save inode label and policy sequence number
3860          * at open-time so that selinux_file_permission
3861          * can determine whether revalidation is necessary.
3862          * Task label is already saved in the file security
3863          * struct as its SID.
3864          */
3865         fsec->isid = isec->sid;
3866         fsec->pseqno = avc_policy_seqno(&selinux_state);
3867         /*
3868          * Since the inode label or policy seqno may have changed
3869          * between the selinux_inode_permission check and the saving
3870          * of state above, recheck that access is still permitted.
3871          * Otherwise, access might never be revalidated against the
3872          * new inode label or new policy.
3873          * This check is not redundant - do not remove.
3874          */
3875         return file_path_has_perm(cred, file, open_file_to_av(file));
3876 }
3877
3878 /* task security operations */
3879
3880 static int selinux_task_alloc(struct task_struct *task,
3881                               unsigned long clone_flags)
3882 {
3883         u32 sid = current_sid();
3884
3885         return avc_has_perm(&selinux_state,
3886                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3887 }
3888
3889 /*
3890  * allocate the SELinux part of blank credentials
3891  */
3892 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3893 {
3894         struct task_security_struct *tsec;
3895
3896         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3897         if (!tsec)
3898                 return -ENOMEM;
3899
3900         cred->security = tsec;
3901         return 0;
3902 }
3903
3904 /*
3905  * detach and free the LSM part of a set of credentials
3906  */
3907 static void selinux_cred_free(struct cred *cred)
3908 {
3909         struct task_security_struct *tsec = cred->security;
3910
3911         /*
3912          * cred->security == NULL if security_cred_alloc_blank() or
3913          * security_prepare_creds() returned an error.
3914          */
3915         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3916         cred->security = (void *) 0x7UL;
3917         kfree(tsec);
3918 }
3919
3920 /*
3921  * prepare a new set of credentials for modification
3922  */
3923 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3924                                 gfp_t gfp)
3925 {
3926         const struct task_security_struct *old_tsec;
3927         struct task_security_struct *tsec;
3928
3929         old_tsec = old->security;
3930
3931         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3932         if (!tsec)
3933                 return -ENOMEM;
3934
3935         new->security = tsec;
3936         return 0;
3937 }
3938
3939 /*
3940  * transfer the SELinux data to a blank set of creds
3941  */
3942 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3943 {
3944         const struct task_security_struct *old_tsec = old->security;
3945         struct task_security_struct *tsec = new->security;
3946
3947         *tsec = *old_tsec;
3948 }
3949
3950 /*
3951  * set the security data for a kernel service
3952  * - all the creation contexts are set to unlabelled
3953  */
3954 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3955 {
3956         struct task_security_struct *tsec = new->security;
3957         u32 sid = current_sid();
3958         int ret;
3959
3960         ret = avc_has_perm(&selinux_state,
3961                            sid, secid,
3962                            SECCLASS_KERNEL_SERVICE,
3963                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3964                            NULL);
3965         if (ret == 0) {
3966                 tsec->sid = secid;
3967                 tsec->create_sid = 0;
3968                 tsec->keycreate_sid = 0;
3969                 tsec->sockcreate_sid = 0;
3970         }
3971         return ret;
3972 }
3973
3974 /*
3975  * set the file creation context in a security record to the same as the
3976  * objective context of the specified inode
3977  */
3978 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3979 {
3980         struct inode_security_struct *isec = inode_security(inode);
3981         struct task_security_struct *tsec = new->security;
3982         u32 sid = current_sid();
3983         int ret;
3984
3985         ret = avc_has_perm(&selinux_state,
3986                            sid, isec->sid,
3987                            SECCLASS_KERNEL_SERVICE,
3988                            KERNEL_SERVICE__CREATE_FILES_AS,
3989                            NULL);
3990
3991         if (ret == 0)
3992                 tsec->create_sid = isec->sid;
3993         return ret;
3994 }
3995
3996 static int selinux_kernel_module_request(char *kmod_name)
3997 {
3998         struct common_audit_data ad;
3999
4000         ad.type = LSM_AUDIT_DATA_KMOD;
4001         ad.u.kmod_name = kmod_name;
4002
4003         return avc_has_perm(&selinux_state,
4004                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4005                             SYSTEM__MODULE_REQUEST, &ad);
4006 }
4007
4008 static int selinux_kernel_module_from_file(struct file *file)
4009 {
4010         struct common_audit_data ad;
4011         struct inode_security_struct *isec;
4012         struct file_security_struct *fsec;
4013         u32 sid = current_sid();
4014         int rc;
4015
4016         /* init_module */
4017         if (file == NULL)
4018                 return avc_has_perm(&selinux_state,
4019                                     sid, sid, SECCLASS_SYSTEM,
4020                                         SYSTEM__MODULE_LOAD, NULL);
4021
4022         /* finit_module */
4023
4024         ad.type = LSM_AUDIT_DATA_FILE;
4025         ad.u.file = file;
4026
4027         fsec = file->f_security;
4028         if (sid != fsec->sid) {
4029                 rc = avc_has_perm(&selinux_state,
4030                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4031                 if (rc)
4032                         return rc;
4033         }
4034
4035         isec = inode_security(file_inode(file));
4036         return avc_has_perm(&selinux_state,
4037                             sid, isec->sid, SECCLASS_SYSTEM,
4038                                 SYSTEM__MODULE_LOAD, &ad);
4039 }
4040
4041 static int selinux_kernel_read_file(struct file *file,
4042                                     enum kernel_read_file_id id)
4043 {
4044         int rc = 0;
4045
4046         switch (id) {
4047         case READING_MODULE:
4048                 rc = selinux_kernel_module_from_file(file);
4049                 break;
4050         default:
4051                 break;
4052         }
4053
4054         return rc;
4055 }
4056
4057 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4058 {
4059         return avc_has_perm(&selinux_state,
4060                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4061                             PROCESS__SETPGID, NULL);
4062 }
4063
4064 static int selinux_task_getpgid(struct task_struct *p)
4065 {
4066         return avc_has_perm(&selinux_state,
4067                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4068                             PROCESS__GETPGID, NULL);
4069 }
4070
4071 static int selinux_task_getsid(struct task_struct *p)
4072 {
4073         return avc_has_perm(&selinux_state,
4074                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4075                             PROCESS__GETSESSION, NULL);
4076 }
4077
4078 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4079 {
4080         *secid = task_sid(p);
4081 }
4082
4083 static int selinux_task_setnice(struct task_struct *p, int nice)
4084 {
4085         return avc_has_perm(&selinux_state,
4086                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4087                             PROCESS__SETSCHED, NULL);
4088 }
4089
4090 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4091 {
4092         return avc_has_perm(&selinux_state,
4093                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4094                             PROCESS__SETSCHED, NULL);
4095 }
4096
4097 static int selinux_task_getioprio(struct task_struct *p)
4098 {
4099         return avc_has_perm(&selinux_state,
4100                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4101                             PROCESS__GETSCHED, NULL);
4102 }
4103
4104 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4105                                 unsigned int flags)
4106 {
4107         u32 av = 0;
4108
4109         if (!flags)
4110                 return 0;
4111         if (flags & LSM_PRLIMIT_WRITE)
4112                 av |= PROCESS__SETRLIMIT;
4113         if (flags & LSM_PRLIMIT_READ)
4114                 av |= PROCESS__GETRLIMIT;
4115         return avc_has_perm(&selinux_state,
4116                             cred_sid(cred), cred_sid(tcred),
4117                             SECCLASS_PROCESS, av, NULL);
4118 }
4119
4120 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4121                 struct rlimit *new_rlim)
4122 {
4123         struct rlimit *old_rlim = p->signal->rlim + resource;
4124
4125         /* Control the ability to change the hard limit (whether
4126            lowering or raising it), so that the hard limit can
4127            later be used as a safe reset point for the soft limit
4128            upon context transitions.  See selinux_bprm_committing_creds. */
4129         if (old_rlim->rlim_max != new_rlim->rlim_max)
4130                 return avc_has_perm(&selinux_state,
4131                                     current_sid(), task_sid(p),
4132                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4133
4134         return 0;
4135 }
4136
4137 static int selinux_task_setscheduler(struct task_struct *p)
4138 {
4139         return avc_has_perm(&selinux_state,
4140                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4141                             PROCESS__SETSCHED, NULL);
4142 }
4143
4144 static int selinux_task_getscheduler(struct task_struct *p)
4145 {
4146         return avc_has_perm(&selinux_state,
4147                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4148                             PROCESS__GETSCHED, NULL);
4149 }
4150
4151 static int selinux_task_movememory(struct task_struct *p)
4152 {
4153         return avc_has_perm(&selinux_state,
4154                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4155                             PROCESS__SETSCHED, NULL);
4156 }
4157
4158 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4159                                 int sig, u32 secid)
4160 {
4161         u32 perm;
4162
4163         if (!sig)
4164                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4165         else
4166                 perm = signal_to_av(sig);
4167         if (!secid)
4168                 secid = current_sid();
4169         return avc_has_perm(&selinux_state,
4170                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4171 }
4172
4173 static void selinux_task_to_inode(struct task_struct *p,
4174                                   struct inode *inode)
4175 {
4176         struct inode_security_struct *isec = inode->i_security;
4177         u32 sid = task_sid(p);
4178
4179         spin_lock(&isec->lock);
4180         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4181         isec->sid = sid;
4182         isec->initialized = LABEL_INITIALIZED;
4183         spin_unlock(&isec->lock);
4184 }
4185
4186 /* Returns error only if unable to parse addresses */
4187 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4188                         struct common_audit_data *ad, u8 *proto)
4189 {
4190         int offset, ihlen, ret = -EINVAL;
4191         struct iphdr _iph, *ih;
4192
4193         offset = skb_network_offset(skb);
4194         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4195         if (ih == NULL)
4196                 goto out;
4197
4198         ihlen = ih->ihl * 4;
4199         if (ihlen < sizeof(_iph))
4200                 goto out;
4201
4202         ad->u.net->v4info.saddr = ih->saddr;
4203         ad->u.net->v4info.daddr = ih->daddr;
4204         ret = 0;
4205
4206         if (proto)
4207                 *proto = ih->protocol;
4208
4209         switch (ih->protocol) {
4210         case IPPROTO_TCP: {
4211                 struct tcphdr _tcph, *th;
4212
4213                 if (ntohs(ih->frag_off) & IP_OFFSET)
4214                         break;
4215
4216                 offset += ihlen;
4217                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4218                 if (th == NULL)
4219                         break;
4220
4221                 ad->u.net->sport = th->source;
4222                 ad->u.net->dport = th->dest;
4223                 break;
4224         }
4225
4226         case IPPROTO_UDP: {
4227                 struct udphdr _udph, *uh;
4228
4229                 if (ntohs(ih->frag_off) & IP_OFFSET)
4230                         break;
4231
4232                 offset += ihlen;
4233                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4234                 if (uh == NULL)
4235                         break;
4236
4237                 ad->u.net->sport = uh->source;
4238                 ad->u.net->dport = uh->dest;
4239                 break;
4240         }
4241
4242         case IPPROTO_DCCP: {
4243                 struct dccp_hdr _dccph, *dh;
4244
4245                 if (ntohs(ih->frag_off) & IP_OFFSET)
4246                         break;
4247
4248                 offset += ihlen;
4249                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4250                 if (dh == NULL)
4251                         break;
4252
4253                 ad->u.net->sport = dh->dccph_sport;
4254                 ad->u.net->dport = dh->dccph_dport;
4255                 break;
4256         }
4257
4258 #if IS_ENABLED(CONFIG_IP_SCTP)
4259         case IPPROTO_SCTP: {
4260                 struct sctphdr _sctph, *sh;
4261
4262                 if (ntohs(ih->frag_off) & IP_OFFSET)
4263                         break;
4264
4265                 offset += ihlen;
4266                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4267                 if (sh == NULL)
4268                         break;
4269
4270                 ad->u.net->sport = sh->source;
4271                 ad->u.net->dport = sh->dest;
4272                 break;
4273         }
4274 #endif
4275         default:
4276                 break;
4277         }
4278 out:
4279         return ret;
4280 }
4281
4282 #if IS_ENABLED(CONFIG_IPV6)
4283
4284 /* Returns error only if unable to parse addresses */
4285 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4286                         struct common_audit_data *ad, u8 *proto)
4287 {
4288         u8 nexthdr;
4289         int ret = -EINVAL, offset;
4290         struct ipv6hdr _ipv6h, *ip6;
4291         __be16 frag_off;
4292
4293         offset = skb_network_offset(skb);
4294         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4295         if (ip6 == NULL)
4296                 goto out;
4297
4298         ad->u.net->v6info.saddr = ip6->saddr;
4299         ad->u.net->v6info.daddr = ip6->daddr;
4300         ret = 0;
4301
4302         nexthdr = ip6->nexthdr;
4303         offset += sizeof(_ipv6h);
4304         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4305         if (offset < 0)
4306                 goto out;
4307
4308         if (proto)
4309                 *proto = nexthdr;
4310
4311         switch (nexthdr) {
4312         case IPPROTO_TCP: {
4313                 struct tcphdr _tcph, *th;
4314
4315                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4316                 if (th == NULL)
4317                         break;
4318
4319                 ad->u.net->sport = th->source;
4320                 ad->u.net->dport = th->dest;
4321                 break;
4322         }
4323
4324         case IPPROTO_UDP: {
4325                 struct udphdr _udph, *uh;
4326
4327                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4328                 if (uh == NULL)
4329                         break;
4330
4331                 ad->u.net->sport = uh->source;
4332                 ad->u.net->dport = uh->dest;
4333                 break;
4334         }
4335
4336         case IPPROTO_DCCP: {
4337                 struct dccp_hdr _dccph, *dh;
4338
4339                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4340                 if (dh == NULL)
4341                         break;
4342
4343                 ad->u.net->sport = dh->dccph_sport;
4344                 ad->u.net->dport = dh->dccph_dport;
4345                 break;
4346         }
4347
4348 #if IS_ENABLED(CONFIG_IP_SCTP)
4349         case IPPROTO_SCTP: {
4350                 struct sctphdr _sctph, *sh;
4351
4352                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4353                 if (sh == NULL)
4354                         break;
4355
4356                 ad->u.net->sport = sh->source;
4357                 ad->u.net->dport = sh->dest;
4358                 break;
4359         }
4360 #endif
4361         /* includes fragments */
4362         default:
4363                 break;
4364         }
4365 out:
4366         return ret;
4367 }
4368
4369 #endif /* IPV6 */
4370
4371 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4372                              char **_addrp, int src, u8 *proto)
4373 {
4374         char *addrp;
4375         int ret;
4376
4377         switch (ad->u.net->family) {
4378         case PF_INET:
4379                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4380                 if (ret)
4381                         goto parse_error;
4382                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4383                                        &ad->u.net->v4info.daddr);
4384                 goto okay;
4385
4386 #if IS_ENABLED(CONFIG_IPV6)
4387         case PF_INET6:
4388                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4389                 if (ret)
4390                         goto parse_error;
4391                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4392                                        &ad->u.net->v6info.daddr);
4393                 goto okay;
4394 #endif  /* IPV6 */
4395         default:
4396                 addrp = NULL;
4397                 goto okay;
4398         }
4399
4400 parse_error:
4401         printk(KERN_WARNING
4402                "SELinux: failure in selinux_parse_skb(),"
4403                " unable to parse packet\n");
4404         return ret;
4405
4406 okay:
4407         if (_addrp)
4408                 *_addrp = addrp;
4409         return 0;
4410 }
4411
4412 /**
4413  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4414  * @skb: the packet
4415  * @family: protocol family
4416  * @sid: the packet's peer label SID
4417  *
4418  * Description:
4419  * Check the various different forms of network peer labeling and determine
4420  * the peer label/SID for the packet; most of the magic actually occurs in
4421  * the security server function security_net_peersid_cmp().  The function
4422  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4423  * or -EACCES if @sid is invalid due to inconsistencies with the different
4424  * peer labels.
4425  *
4426  */
4427 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4428 {
4429         int err;
4430         u32 xfrm_sid;
4431         u32 nlbl_sid;
4432         u32 nlbl_type;
4433
4434         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4435         if (unlikely(err))
4436                 return -EACCES;
4437         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4438         if (unlikely(err))
4439                 return -EACCES;
4440
4441         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4442                                            nlbl_type, xfrm_sid, sid);
4443         if (unlikely(err)) {
4444                 printk(KERN_WARNING
4445                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4446                        " unable to determine packet's peer label\n");
4447                 return -EACCES;
4448         }
4449
4450         return 0;
4451 }
4452
4453 /**
4454  * selinux_conn_sid - Determine the child socket label for a connection
4455  * @sk_sid: the parent socket's SID
4456  * @skb_sid: the packet's SID
4457  * @conn_sid: the resulting connection SID
4458  *
4459  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4460  * combined with the MLS information from @skb_sid in order to create
4461  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4462  * of @sk_sid.  Returns zero on success, negative values on failure.
4463  *
4464  */
4465 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4466 {
4467         int err = 0;
4468
4469         if (skb_sid != SECSID_NULL)
4470                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4471                                             conn_sid);
4472         else
4473                 *conn_sid = sk_sid;
4474
4475         return err;
4476 }
4477
4478 /* socket security operations */
4479
4480 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4481                                  u16 secclass, u32 *socksid)
4482 {
4483         if (tsec->sockcreate_sid > SECSID_NULL) {
4484                 *socksid = tsec->sockcreate_sid;
4485                 return 0;
4486         }
4487
4488         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4489                                        secclass, NULL, socksid);
4490 }
4491
4492 static int sock_has_perm(struct sock *sk, u32 perms)
4493 {
4494         struct sk_security_struct *sksec = sk->sk_security;
4495         struct common_audit_data ad;
4496         struct lsm_network_audit net = {0,};
4497
4498         if (sksec->sid == SECINITSID_KERNEL)
4499                 return 0;
4500
4501         ad.type = LSM_AUDIT_DATA_NET;
4502         ad.u.net = &net;
4503         ad.u.net->sk = sk;
4504
4505         return avc_has_perm(&selinux_state,
4506                             current_sid(), sksec->sid, sksec->sclass, perms,
4507                             &ad);
4508 }
4509
4510 static int selinux_socket_create(int family, int type,
4511                                  int protocol, int kern)
4512 {
4513         const struct task_security_struct *tsec = current_security();
4514         u32 newsid;
4515         u16 secclass;
4516         int rc;
4517
4518         if (kern)
4519                 return 0;
4520
4521         secclass = socket_type_to_security_class(family, type, protocol);
4522         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4523         if (rc)
4524                 return rc;
4525
4526         return avc_has_perm(&selinux_state,
4527                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4528 }
4529
4530 static int selinux_socket_post_create(struct socket *sock, int family,
4531                                       int type, int protocol, int kern)
4532 {
4533         const struct task_security_struct *tsec = current_security();
4534         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4535         struct sk_security_struct *sksec;
4536         u16 sclass = socket_type_to_security_class(family, type, protocol);
4537         u32 sid = SECINITSID_KERNEL;
4538         int err = 0;
4539
4540         if (!kern) {
4541                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4542                 if (err)
4543                         return err;
4544         }
4545
4546         isec->sclass = sclass;
4547         isec->sid = sid;
4548         isec->initialized = LABEL_INITIALIZED;
4549
4550         if (sock->sk) {
4551                 sksec = sock->sk->sk_security;
4552                 sksec->sclass = sclass;
4553                 sksec->sid = sid;
4554                 /* Allows detection of the first association on this socket */
4555                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4556                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4557
4558                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4559         }
4560
4561         return err;
4562 }
4563
4564 /* Range of port numbers used to automatically bind.
4565    Need to determine whether we should perform a name_bind
4566    permission check between the socket and the port number. */
4567
4568 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4569 {
4570         struct sock *sk = sock->sk;
4571         struct sk_security_struct *sksec = sk->sk_security;
4572         u16 family;
4573         int err;
4574
4575         err = sock_has_perm(sk, SOCKET__BIND);
4576         if (err)
4577                 goto out;
4578
4579         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4580         family = sk->sk_family;
4581         if (family == PF_INET || family == PF_INET6) {
4582                 char *addrp;
4583                 struct common_audit_data ad;
4584                 struct lsm_network_audit net = {0,};
4585                 struct sockaddr_in *addr4 = NULL;
4586                 struct sockaddr_in6 *addr6 = NULL;
4587                 u16 family_sa = address->sa_family;
4588                 unsigned short snum;
4589                 u32 sid, node_perm;
4590
4591                 /*
4592                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4593                  * that validates multiple binding addresses. Because of this
4594                  * need to check address->sa_family as it is possible to have
4595                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4596                  */
4597                 switch (family_sa) {
4598                 case AF_UNSPEC:
4599                 case AF_INET:
4600                         if (addrlen < sizeof(struct sockaddr_in))
4601                                 return -EINVAL;
4602                         addr4 = (struct sockaddr_in *)address;
4603                         if (family_sa == AF_UNSPEC) {
4604                                 /* see __inet_bind(), we only want to allow
4605                                  * AF_UNSPEC if the address is INADDR_ANY
4606                                  */
4607                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4608                                         goto err_af;
4609                                 family_sa = AF_INET;
4610                         }
4611                         snum = ntohs(addr4->sin_port);
4612                         addrp = (char *)&addr4->sin_addr.s_addr;
4613                         break;
4614                 case AF_INET6:
4615                         if (addrlen < SIN6_LEN_RFC2133)
4616                                 return -EINVAL;
4617                         addr6 = (struct sockaddr_in6 *)address;
4618                         snum = ntohs(addr6->sin6_port);
4619                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4620                         break;
4621                 default:
4622                         goto err_af;
4623                 }
4624
4625                 ad.type = LSM_AUDIT_DATA_NET;
4626                 ad.u.net = &net;
4627                 ad.u.net->sport = htons(snum);
4628                 ad.u.net->family = family_sa;
4629
4630                 if (snum) {
4631                         int low, high;
4632
4633                         inet_get_local_port_range(sock_net(sk), &low, &high);
4634
4635                         if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4636                             snum > high) {
4637                                 err = sel_netport_sid(sk->sk_protocol,
4638                                                       snum, &sid);
4639                                 if (err)
4640                                         goto out;
4641                                 err = avc_has_perm(&selinux_state,
4642                                                    sksec->sid, sid,
4643                                                    sksec->sclass,
4644                                                    SOCKET__NAME_BIND, &ad);
4645                                 if (err)
4646                                         goto out;
4647                         }
4648                 }
4649
4650                 switch (sksec->sclass) {
4651                 case SECCLASS_TCP_SOCKET:
4652                         node_perm = TCP_SOCKET__NODE_BIND;
4653                         break;
4654
4655                 case SECCLASS_UDP_SOCKET:
4656                         node_perm = UDP_SOCKET__NODE_BIND;
4657                         break;
4658
4659                 case SECCLASS_DCCP_SOCKET:
4660                         node_perm = DCCP_SOCKET__NODE_BIND;
4661                         break;
4662
4663                 case SECCLASS_SCTP_SOCKET:
4664                         node_perm = SCTP_SOCKET__NODE_BIND;
4665                         break;
4666
4667                 default:
4668                         node_perm = RAWIP_SOCKET__NODE_BIND;
4669                         break;
4670                 }
4671
4672                 err = sel_netnode_sid(addrp, family_sa, &sid);
4673                 if (err)
4674                         goto out;
4675
4676                 if (family_sa == AF_INET)
4677                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4678                 else
4679                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4680
4681                 err = avc_has_perm(&selinux_state,
4682                                    sksec->sid, sid,
4683                                    sksec->sclass, node_perm, &ad);
4684                 if (err)
4685                         goto out;
4686         }
4687 out:
4688         return err;
4689 err_af:
4690         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4691         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4692                 return -EINVAL;
4693         return -EAFNOSUPPORT;
4694 }
4695
4696 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4697  * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4698  */
4699 static int selinux_socket_connect_helper(struct socket *sock,
4700                                          struct sockaddr *address, int addrlen)
4701 {
4702         struct sock *sk = sock->sk;
4703         struct sk_security_struct *sksec = sk->sk_security;
4704         int err;
4705
4706         err = sock_has_perm(sk, SOCKET__CONNECT);
4707         if (err)
4708                 return err;
4709
4710         /*
4711          * If a TCP, DCCP or SCTP socket, check name_connect permission
4712          * for the port.
4713          */
4714         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4715             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4716             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4717                 struct common_audit_data ad;
4718                 struct lsm_network_audit net = {0,};
4719                 struct sockaddr_in *addr4 = NULL;
4720                 struct sockaddr_in6 *addr6 = NULL;
4721                 unsigned short snum;
4722                 u32 sid, perm;
4723
4724                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4725                  * that validates multiple connect addresses. Because of this
4726                  * need to check address->sa_family as it is possible to have
4727                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4728                  */
4729                 switch (address->sa_family) {
4730                 case AF_INET:
4731                         addr4 = (struct sockaddr_in *)address;
4732                         if (addrlen < sizeof(struct sockaddr_in))
4733                                 return -EINVAL;
4734                         snum = ntohs(addr4->sin_port);
4735                         break;
4736                 case AF_INET6:
4737                         addr6 = (struct sockaddr_in6 *)address;
4738                         if (addrlen < SIN6_LEN_RFC2133)
4739                                 return -EINVAL;
4740                         snum = ntohs(addr6->sin6_port);
4741                         break;
4742                 default:
4743                         /* Note that SCTP services expect -EINVAL, whereas
4744                          * others expect -EAFNOSUPPORT.
4745                          */
4746                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4747                                 return -EINVAL;
4748                         else
4749                                 return -EAFNOSUPPORT;
4750                 }
4751
4752                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4753                 if (err)
4754                         return err;
4755
4756                 switch (sksec->sclass) {
4757                 case SECCLASS_TCP_SOCKET:
4758                         perm = TCP_SOCKET__NAME_CONNECT;
4759                         break;
4760                 case SECCLASS_DCCP_SOCKET:
4761                         perm = DCCP_SOCKET__NAME_CONNECT;
4762                         break;
4763                 case SECCLASS_SCTP_SOCKET:
4764                         perm = SCTP_SOCKET__NAME_CONNECT;
4765                         break;
4766                 }
4767
4768                 ad.type = LSM_AUDIT_DATA_NET;
4769                 ad.u.net = &net;
4770                 ad.u.net->dport = htons(snum);
4771                 ad.u.net->family = address->sa_family;
4772                 err = avc_has_perm(&selinux_state,
4773                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4774                 if (err)
4775                         return err;
4776         }
4777
4778         return 0;
4779 }
4780
4781 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4782 static int selinux_socket_connect(struct socket *sock,
4783                                   struct sockaddr *address, int addrlen)
4784 {
4785         int err;
4786         struct sock *sk = sock->sk;
4787
4788         err = selinux_socket_connect_helper(sock, address, addrlen);
4789         if (err)
4790                 return err;
4791
4792         return selinux_netlbl_socket_connect(sk, address);
4793 }
4794
4795 static int selinux_socket_listen(struct socket *sock, int backlog)
4796 {
4797         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4798 }
4799
4800 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4801 {
4802         int err;
4803         struct inode_security_struct *isec;
4804         struct inode_security_struct *newisec;
4805         u16 sclass;
4806         u32 sid;
4807
4808         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4809         if (err)
4810                 return err;
4811
4812         isec = inode_security_novalidate(SOCK_INODE(sock));
4813         spin_lock(&isec->lock);
4814         sclass = isec->sclass;
4815         sid = isec->sid;
4816         spin_unlock(&isec->lock);
4817
4818         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4819         newisec->sclass = sclass;
4820         newisec->sid = sid;
4821         newisec->initialized = LABEL_INITIALIZED;
4822
4823         return 0;
4824 }
4825
4826 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4827                                   int size)
4828 {
4829         return sock_has_perm(sock->sk, SOCKET__WRITE);
4830 }
4831
4832 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4833                                   int size, int flags)
4834 {
4835         return sock_has_perm(sock->sk, SOCKET__READ);
4836 }
4837
4838 static int selinux_socket_getsockname(struct socket *sock)
4839 {
4840         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4841 }
4842
4843 static int selinux_socket_getpeername(struct socket *sock)
4844 {
4845         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4846 }
4847
4848 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4849 {
4850         int err;
4851
4852         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4853         if (err)
4854                 return err;
4855
4856         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4857 }
4858
4859 static int selinux_socket_getsockopt(struct socket *sock, int level,
4860                                      int optname)
4861 {
4862         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4863 }
4864
4865 static int selinux_socket_shutdown(struct socket *sock, int how)
4866 {
4867         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4868 }
4869
4870 static int selinux_socket_unix_stream_connect(struct sock *sock,
4871                                               struct sock *other,
4872                                               struct sock *newsk)
4873 {
4874         struct sk_security_struct *sksec_sock = sock->sk_security;
4875         struct sk_security_struct *sksec_other = other->sk_security;
4876         struct sk_security_struct *sksec_new = newsk->sk_security;
4877         struct common_audit_data ad;
4878         struct lsm_network_audit net = {0,};
4879         int err;
4880
4881         ad.type = LSM_AUDIT_DATA_NET;
4882         ad.u.net = &net;
4883         ad.u.net->sk = other;
4884
4885         err = avc_has_perm(&selinux_state,
4886                            sksec_sock->sid, sksec_other->sid,
4887                            sksec_other->sclass,
4888                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4889         if (err)
4890                 return err;
4891
4892         /* server child socket */
4893         sksec_new->peer_sid = sksec_sock->sid;
4894         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4895                                     sksec_sock->sid, &sksec_new->sid);
4896         if (err)
4897                 return err;
4898
4899         /* connecting socket */
4900         sksec_sock->peer_sid = sksec_new->sid;
4901
4902         return 0;
4903 }
4904
4905 static int selinux_socket_unix_may_send(struct socket *sock,
4906                                         struct socket *other)
4907 {
4908         struct sk_security_struct *ssec = sock->sk->sk_security;
4909         struct sk_security_struct *osec = other->sk->sk_security;
4910         struct common_audit_data ad;
4911         struct lsm_network_audit net = {0,};
4912
4913         ad.type = LSM_AUDIT_DATA_NET;
4914         ad.u.net = &net;
4915         ad.u.net->sk = other->sk;
4916
4917         return avc_has_perm(&selinux_state,
4918                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4919                             &ad);
4920 }
4921
4922 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4923                                     char *addrp, u16 family, u32 peer_sid,
4924                                     struct common_audit_data *ad)
4925 {
4926         int err;
4927         u32 if_sid;
4928         u32 node_sid;
4929
4930         err = sel_netif_sid(ns, ifindex, &if_sid);
4931         if (err)
4932                 return err;
4933         err = avc_has_perm(&selinux_state,
4934                            peer_sid, if_sid,
4935                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4936         if (err)
4937                 return err;
4938
4939         err = sel_netnode_sid(addrp, family, &node_sid);
4940         if (err)
4941                 return err;
4942         return avc_has_perm(&selinux_state,
4943                             peer_sid, node_sid,
4944                             SECCLASS_NODE, NODE__RECVFROM, ad);
4945 }
4946
4947 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4948                                        u16 family)
4949 {
4950         int err = 0;
4951         struct sk_security_struct *sksec = sk->sk_security;
4952         u32 sk_sid = sksec->sid;
4953         struct common_audit_data ad;
4954         struct lsm_network_audit net = {0,};
4955         char *addrp;
4956
4957         ad.type = LSM_AUDIT_DATA_NET;
4958         ad.u.net = &net;
4959         ad.u.net->netif = skb->skb_iif;
4960         ad.u.net->family = family;
4961         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4962         if (err)
4963                 return err;
4964
4965         if (selinux_secmark_enabled()) {
4966                 err = avc_has_perm(&selinux_state,
4967                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4968                                    PACKET__RECV, &ad);
4969                 if (err)
4970                         return err;
4971         }
4972
4973         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4974         if (err)
4975                 return err;
4976         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4977
4978         return err;
4979 }
4980
4981 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4982 {
4983         int err;
4984         struct sk_security_struct *sksec = sk->sk_security;
4985         u16 family = sk->sk_family;
4986         u32 sk_sid = sksec->sid;
4987         struct common_audit_data ad;
4988         struct lsm_network_audit net = {0,};
4989         char *addrp;
4990         u8 secmark_active;
4991         u8 peerlbl_active;
4992
4993         if (family != PF_INET && family != PF_INET6)
4994                 return 0;
4995
4996         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4997         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4998                 family = PF_INET;
4999
5000         /* If any sort of compatibility mode is enabled then handoff processing
5001          * to the selinux_sock_rcv_skb_compat() function to deal with the
5002          * special handling.  We do this in an attempt to keep this function
5003          * as fast and as clean as possible. */
5004         if (!selinux_policycap_netpeer())
5005                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5006
5007         secmark_active = selinux_secmark_enabled();
5008         peerlbl_active = selinux_peerlbl_enabled();
5009         if (!secmark_active && !peerlbl_active)
5010                 return 0;
5011
5012         ad.type = LSM_AUDIT_DATA_NET;
5013         ad.u.net = &net;
5014         ad.u.net->netif = skb->skb_iif;
5015         ad.u.net->family = family;
5016         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5017         if (err)
5018                 return err;
5019
5020         if (peerlbl_active) {
5021                 u32 peer_sid;
5022
5023                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5024                 if (err)
5025                         return err;
5026                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5027                                                addrp, family, peer_sid, &ad);
5028                 if (err) {
5029                         selinux_netlbl_err(skb, family, err, 0);
5030                         return err;
5031                 }
5032                 err = avc_has_perm(&selinux_state,
5033                                    sk_sid, peer_sid, SECCLASS_PEER,
5034                                    PEER__RECV, &ad);
5035                 if (err) {
5036                         selinux_netlbl_err(skb, family, err, 0);
5037                         return err;
5038                 }
5039         }
5040
5041         if (secmark_active) {
5042                 err = avc_has_perm(&selinux_state,
5043                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5044                                    PACKET__RECV, &ad);
5045                 if (err)
5046                         return err;
5047         }
5048
5049         return err;
5050 }
5051
5052 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5053                                             int __user *optlen, unsigned len)
5054 {
5055         int err = 0;
5056         char *scontext;
5057         u32 scontext_len;
5058         struct sk_security_struct *sksec = sock->sk->sk_security;
5059         u32 peer_sid = SECSID_NULL;
5060
5061         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5062             sksec->sclass == SECCLASS_TCP_SOCKET ||
5063             sksec->sclass == SECCLASS_SCTP_SOCKET)
5064                 peer_sid = sksec->peer_sid;
5065         if (peer_sid == SECSID_NULL)
5066                 return -ENOPROTOOPT;
5067
5068         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5069                                       &scontext_len);
5070         if (err)
5071                 return err;
5072
5073         if (scontext_len > len) {
5074                 err = -ERANGE;
5075                 goto out_len;
5076         }
5077
5078         if (copy_to_user(optval, scontext, scontext_len))
5079                 err = -EFAULT;
5080
5081 out_len:
5082         if (put_user(scontext_len, optlen))
5083                 err = -EFAULT;
5084         kfree(scontext);
5085         return err;
5086 }
5087
5088 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5089 {
5090         u32 peer_secid = SECSID_NULL;
5091         u16 family;
5092         struct inode_security_struct *isec;
5093
5094         if (skb && skb->protocol == htons(ETH_P_IP))
5095                 family = PF_INET;
5096         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5097                 family = PF_INET6;
5098         else if (sock)
5099                 family = sock->sk->sk_family;
5100         else
5101                 goto out;
5102
5103         if (sock && family == PF_UNIX) {
5104                 isec = inode_security_novalidate(SOCK_INODE(sock));
5105                 peer_secid = isec->sid;
5106         } else if (skb)
5107                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5108
5109 out:
5110         *secid = peer_secid;
5111         if (peer_secid == SECSID_NULL)
5112                 return -EINVAL;
5113         return 0;
5114 }
5115
5116 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5117 {
5118         struct sk_security_struct *sksec;
5119
5120         sksec = kzalloc(sizeof(*sksec), priority);
5121         if (!sksec)
5122                 return -ENOMEM;
5123
5124         sksec->peer_sid = SECINITSID_UNLABELED;
5125         sksec->sid = SECINITSID_UNLABELED;
5126         sksec->sclass = SECCLASS_SOCKET;
5127         selinux_netlbl_sk_security_reset(sksec);
5128         sk->sk_security = sksec;
5129
5130         return 0;
5131 }
5132
5133 static void selinux_sk_free_security(struct sock *sk)
5134 {
5135         struct sk_security_struct *sksec = sk->sk_security;
5136
5137         sk->sk_security = NULL;
5138         selinux_netlbl_sk_security_free(sksec);
5139         kfree(sksec);
5140 }
5141
5142 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5143 {
5144         struct sk_security_struct *sksec = sk->sk_security;
5145         struct sk_security_struct *newsksec = newsk->sk_security;
5146
5147         newsksec->sid = sksec->sid;
5148         newsksec->peer_sid = sksec->peer_sid;
5149         newsksec->sclass = sksec->sclass;
5150
5151         selinux_netlbl_sk_security_reset(newsksec);
5152 }
5153
5154 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5155 {
5156         if (!sk)
5157                 *secid = SECINITSID_ANY_SOCKET;
5158         else {
5159                 struct sk_security_struct *sksec = sk->sk_security;
5160
5161                 *secid = sksec->sid;
5162         }
5163 }
5164
5165 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5166 {
5167         struct inode_security_struct *isec =
5168                 inode_security_novalidate(SOCK_INODE(parent));
5169         struct sk_security_struct *sksec = sk->sk_security;
5170
5171         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5172             sk->sk_family == PF_UNIX)
5173                 isec->sid = sksec->sid;
5174         sksec->sclass = isec->sclass;
5175 }
5176
5177 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5178  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5179  * already present).
5180  */
5181 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5182                                       struct sk_buff *skb)
5183 {
5184         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5185         struct common_audit_data ad;
5186         struct lsm_network_audit net = {0,};
5187         u8 peerlbl_active;
5188         u32 peer_sid = SECINITSID_UNLABELED;
5189         u32 conn_sid;
5190         int err = 0;
5191
5192         if (!selinux_policycap_extsockclass())
5193                 return 0;
5194
5195         peerlbl_active = selinux_peerlbl_enabled();
5196
5197         if (peerlbl_active) {
5198                 /* This will return peer_sid = SECSID_NULL if there are
5199                  * no peer labels, see security_net_peersid_resolve().
5200                  */
5201                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5202                                               &peer_sid);
5203                 if (err)
5204                         return err;
5205
5206                 if (peer_sid == SECSID_NULL)
5207                         peer_sid = SECINITSID_UNLABELED;
5208         }
5209
5210         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5211                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5212
5213                 /* Here as first association on socket. As the peer SID
5214                  * was allowed by peer recv (and the netif/node checks),
5215                  * then it is approved by policy and used as the primary
5216                  * peer SID for getpeercon(3).
5217                  */
5218                 sksec->peer_sid = peer_sid;
5219         } else if  (sksec->peer_sid != peer_sid) {
5220                 /* Other association peer SIDs are checked to enforce
5221                  * consistency among the peer SIDs.
5222                  */
5223                 ad.type = LSM_AUDIT_DATA_NET;
5224                 ad.u.net = &net;
5225                 ad.u.net->sk = ep->base.sk;
5226                 err = avc_has_perm(&selinux_state,
5227                                    sksec->peer_sid, peer_sid, sksec->sclass,
5228                                    SCTP_SOCKET__ASSOCIATION, &ad);
5229                 if (err)
5230                         return err;
5231         }
5232
5233         /* Compute the MLS component for the connection and store
5234          * the information in ep. This will be used by SCTP TCP type
5235          * sockets and peeled off connections as they cause a new
5236          * socket to be generated. selinux_sctp_sk_clone() will then
5237          * plug this into the new socket.
5238          */
5239         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5240         if (err)
5241                 return err;
5242
5243         ep->secid = conn_sid;
5244         ep->peer_secid = peer_sid;
5245
5246         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5247         return selinux_netlbl_sctp_assoc_request(ep, skb);
5248 }
5249
5250 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5251  * based on their @optname.
5252  */
5253 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5254                                      struct sockaddr *address,
5255                                      int addrlen)
5256 {
5257         int len, err = 0, walk_size = 0;
5258         void *addr_buf;
5259         struct sockaddr *addr;
5260         struct socket *sock;
5261
5262         if (!selinux_policycap_extsockclass())
5263                 return 0;
5264
5265         /* Process one or more addresses that may be IPv4 or IPv6 */
5266         sock = sk->sk_socket;
5267         addr_buf = address;
5268
5269         while (walk_size < addrlen) {
5270                 addr = addr_buf;
5271                 switch (addr->sa_family) {
5272                 case AF_UNSPEC:
5273                 case AF_INET:
5274                         len = sizeof(struct sockaddr_in);
5275                         break;
5276                 case AF_INET6:
5277                         len = sizeof(struct sockaddr_in6);
5278                         break;
5279                 default:
5280                         return -EINVAL;
5281                 }
5282
5283                 err = -EINVAL;
5284                 switch (optname) {
5285                 /* Bind checks */
5286                 case SCTP_PRIMARY_ADDR:
5287                 case SCTP_SET_PEER_PRIMARY_ADDR:
5288                 case SCTP_SOCKOPT_BINDX_ADD:
5289                         err = selinux_socket_bind(sock, addr, len);
5290                         break;
5291                 /* Connect checks */
5292                 case SCTP_SOCKOPT_CONNECTX:
5293                 case SCTP_PARAM_SET_PRIMARY:
5294                 case SCTP_PARAM_ADD_IP:
5295                 case SCTP_SENDMSG_CONNECT:
5296                         err = selinux_socket_connect_helper(sock, addr, len);
5297                         if (err)
5298                                 return err;
5299
5300                         /* As selinux_sctp_bind_connect() is called by the
5301                          * SCTP protocol layer, the socket is already locked,
5302                          * therefore selinux_netlbl_socket_connect_locked() is
5303                          * is called here. The situations handled are:
5304                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5305                          * whenever a new IP address is added or when a new
5306                          * primary address is selected.
5307                          * Note that an SCTP connect(2) call happens before
5308                          * the SCTP protocol layer and is handled via
5309                          * selinux_socket_connect().
5310                          */
5311                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5312                         break;
5313                 }
5314
5315                 if (err)
5316                         return err;
5317
5318                 addr_buf += len;
5319                 walk_size += len;
5320         }
5321
5322         return 0;
5323 }
5324
5325 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5326 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5327                                   struct sock *newsk)
5328 {
5329         struct sk_security_struct *sksec = sk->sk_security;
5330         struct sk_security_struct *newsksec = newsk->sk_security;
5331
5332         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5333          * the non-sctp clone version.
5334          */
5335         if (!selinux_policycap_extsockclass())
5336                 return selinux_sk_clone_security(sk, newsk);
5337
5338         newsksec->sid = ep->secid;
5339         newsksec->peer_sid = ep->peer_secid;
5340         newsksec->sclass = sksec->sclass;
5341         selinux_netlbl_sctp_sk_clone(sk, newsk);
5342 }
5343
5344 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5345                                      struct request_sock *req)
5346 {
5347         struct sk_security_struct *sksec = sk->sk_security;
5348         int err;
5349         u16 family = req->rsk_ops->family;
5350         u32 connsid;
5351         u32 peersid;
5352
5353         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5354         if (err)
5355                 return err;
5356         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5357         if (err)
5358                 return err;
5359         req->secid = connsid;
5360         req->peer_secid = peersid;
5361
5362         return selinux_netlbl_inet_conn_request(req, family);
5363 }
5364
5365 static void selinux_inet_csk_clone(struct sock *newsk,
5366                                    const struct request_sock *req)
5367 {
5368         struct sk_security_struct *newsksec = newsk->sk_security;
5369
5370         newsksec->sid = req->secid;
5371         newsksec->peer_sid = req->peer_secid;
5372         /* NOTE: Ideally, we should also get the isec->sid for the
5373            new socket in sync, but we don't have the isec available yet.
5374            So we will wait until sock_graft to do it, by which
5375            time it will have been created and available. */
5376
5377         /* We don't need to take any sort of lock here as we are the only
5378          * thread with access to newsksec */
5379         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5380 }
5381
5382 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5383 {
5384         u16 family = sk->sk_family;
5385         struct sk_security_struct *sksec = sk->sk_security;
5386
5387         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5388         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5389                 family = PF_INET;
5390
5391         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5392 }
5393
5394 static int selinux_secmark_relabel_packet(u32 sid)
5395 {
5396         const struct task_security_struct *__tsec;
5397         u32 tsid;
5398
5399         __tsec = current_security();
5400         tsid = __tsec->sid;
5401
5402         return avc_has_perm(&selinux_state,
5403                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5404                             NULL);
5405 }
5406
5407 static void selinux_secmark_refcount_inc(void)
5408 {
5409         atomic_inc(&selinux_secmark_refcount);
5410 }
5411
5412 static void selinux_secmark_refcount_dec(void)
5413 {
5414         atomic_dec(&selinux_secmark_refcount);
5415 }
5416
5417 static void selinux_req_classify_flow(const struct request_sock *req,
5418                                       struct flowi *fl)
5419 {
5420         fl->flowi_secid = req->secid;
5421 }
5422
5423 static int selinux_tun_dev_alloc_security(void **security)
5424 {
5425         struct tun_security_struct *tunsec;
5426
5427         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5428         if (!tunsec)
5429                 return -ENOMEM;
5430         tunsec->sid = current_sid();
5431
5432         *security = tunsec;
5433         return 0;
5434 }
5435
5436 static void selinux_tun_dev_free_security(void *security)
5437 {
5438         kfree(security);
5439 }
5440
5441 static int selinux_tun_dev_create(void)
5442 {
5443         u32 sid = current_sid();
5444
5445         /* we aren't taking into account the "sockcreate" SID since the socket
5446          * that is being created here is not a socket in the traditional sense,
5447          * instead it is a private sock, accessible only to the kernel, and
5448          * representing a wide range of network traffic spanning multiple
5449          * connections unlike traditional sockets - check the TUN driver to
5450          * get a better understanding of why this socket is special */
5451
5452         return avc_has_perm(&selinux_state,
5453                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5454                             NULL);
5455 }
5456
5457 static int selinux_tun_dev_attach_queue(void *security)
5458 {
5459         struct tun_security_struct *tunsec = security;
5460
5461         return avc_has_perm(&selinux_state,
5462                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5463                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5464 }
5465
5466 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5467 {
5468         struct tun_security_struct *tunsec = security;
5469         struct sk_security_struct *sksec = sk->sk_security;
5470
5471         /* we don't currently perform any NetLabel based labeling here and it
5472          * isn't clear that we would want to do so anyway; while we could apply
5473          * labeling without the support of the TUN user the resulting labeled
5474          * traffic from the other end of the connection would almost certainly
5475          * cause confusion to the TUN user that had no idea network labeling
5476          * protocols were being used */
5477
5478         sksec->sid = tunsec->sid;
5479         sksec->sclass = SECCLASS_TUN_SOCKET;
5480
5481         return 0;
5482 }
5483
5484 static int selinux_tun_dev_open(void *security)
5485 {
5486         struct tun_security_struct *tunsec = security;
5487         u32 sid = current_sid();
5488         int err;
5489
5490         err = avc_has_perm(&selinux_state,
5491                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5492                            TUN_SOCKET__RELABELFROM, NULL);
5493         if (err)
5494                 return err;
5495         err = avc_has_perm(&selinux_state,
5496                            sid, sid, SECCLASS_TUN_SOCKET,
5497                            TUN_SOCKET__RELABELTO, NULL);
5498         if (err)
5499                 return err;
5500         tunsec->sid = sid;
5501
5502         return 0;
5503 }
5504
5505 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5506 {
5507         int err = 0;
5508         u32 perm;
5509         struct nlmsghdr *nlh;
5510         struct sk_security_struct *sksec = sk->sk_security;
5511
5512         if (skb->len < NLMSG_HDRLEN) {
5513                 err = -EINVAL;
5514                 goto out;
5515         }
5516         nlh = nlmsg_hdr(skb);
5517
5518         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5519         if (err) {
5520                 if (err == -EINVAL) {
5521                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5522                                " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5523                                " pig=%d comm=%s\n",
5524                                sk->sk_protocol, nlh->nlmsg_type,
5525                                secclass_map[sksec->sclass - 1].name,
5526                                task_pid_nr(current), current->comm);
5527                         if (!enforcing_enabled(&selinux_state) ||
5528                             security_get_allow_unknown(&selinux_state))
5529                                 err = 0;
5530                 }
5531
5532                 /* Ignore */
5533                 if (err == -ENOENT)
5534                         err = 0;
5535                 goto out;
5536         }
5537
5538         err = sock_has_perm(sk, perm);
5539 out:
5540         return err;
5541 }
5542
5543 #ifdef CONFIG_NETFILTER
5544
5545 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5546                                        const struct net_device *indev,
5547                                        u16 family)
5548 {
5549         int err;
5550         char *addrp;
5551         u32 peer_sid;
5552         struct common_audit_data ad;
5553         struct lsm_network_audit net = {0,};
5554         u8 secmark_active;
5555         u8 netlbl_active;
5556         u8 peerlbl_active;
5557
5558         if (!selinux_policycap_netpeer())
5559                 return NF_ACCEPT;
5560
5561         secmark_active = selinux_secmark_enabled();
5562         netlbl_active = netlbl_enabled();
5563         peerlbl_active = selinux_peerlbl_enabled();
5564         if (!secmark_active && !peerlbl_active)
5565                 return NF_ACCEPT;
5566
5567         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5568                 return NF_DROP;
5569
5570         ad.type = LSM_AUDIT_DATA_NET;
5571         ad.u.net = &net;
5572         ad.u.net->netif = indev->ifindex;
5573         ad.u.net->family = family;
5574         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5575                 return NF_DROP;
5576
5577         if (peerlbl_active) {
5578                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5579                                                addrp, family, peer_sid, &ad);
5580                 if (err) {
5581                         selinux_netlbl_err(skb, family, err, 1);
5582                         return NF_DROP;
5583                 }
5584         }
5585
5586         if (secmark_active)
5587                 if (avc_has_perm(&selinux_state,
5588                                  peer_sid, skb->secmark,
5589                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5590                         return NF_DROP;
5591
5592         if (netlbl_active)
5593                 /* we do this in the FORWARD path and not the POST_ROUTING
5594                  * path because we want to make sure we apply the necessary
5595                  * labeling before IPsec is applied so we can leverage AH
5596                  * protection */
5597                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5598                         return NF_DROP;
5599
5600         return NF_ACCEPT;
5601 }
5602
5603 static unsigned int selinux_ipv4_forward(void *priv,
5604                                          struct sk_buff *skb,
5605                                          const struct nf_hook_state *state)
5606 {
5607         return selinux_ip_forward(skb, state->in, PF_INET);
5608 }
5609
5610 #if IS_ENABLED(CONFIG_IPV6)
5611 static unsigned int selinux_ipv6_forward(void *priv,
5612                                          struct sk_buff *skb,
5613                                          const struct nf_hook_state *state)
5614 {
5615         return selinux_ip_forward(skb, state->in, PF_INET6);
5616 }
5617 #endif  /* IPV6 */
5618
5619 static unsigned int selinux_ip_output(struct sk_buff *skb,
5620                                       u16 family)
5621 {
5622         struct sock *sk;
5623         u32 sid;
5624
5625         if (!netlbl_enabled())
5626                 return NF_ACCEPT;
5627
5628         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5629          * because we want to make sure we apply the necessary labeling
5630          * before IPsec is applied so we can leverage AH protection */
5631         sk = skb->sk;
5632         if (sk) {
5633                 struct sk_security_struct *sksec;
5634
5635                 if (sk_listener(sk))
5636                         /* if the socket is the listening state then this
5637                          * packet is a SYN-ACK packet which means it needs to
5638                          * be labeled based on the connection/request_sock and
5639                          * not the parent socket.  unfortunately, we can't
5640                          * lookup the request_sock yet as it isn't queued on
5641                          * the parent socket until after the SYN-ACK is sent.
5642                          * the "solution" is to simply pass the packet as-is
5643                          * as any IP option based labeling should be copied
5644                          * from the initial connection request (in the IP
5645                          * layer).  it is far from ideal, but until we get a
5646                          * security label in the packet itself this is the
5647                          * best we can do. */
5648                         return NF_ACCEPT;
5649
5650                 /* standard practice, label using the parent socket */
5651                 sksec = sk->sk_security;
5652                 sid = sksec->sid;
5653         } else
5654                 sid = SECINITSID_KERNEL;
5655         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5656                 return NF_DROP;
5657
5658         return NF_ACCEPT;
5659 }
5660
5661 static unsigned int selinux_ipv4_output(void *priv,
5662                                         struct sk_buff *skb,
5663                                         const struct nf_hook_state *state)
5664 {
5665         return selinux_ip_output(skb, PF_INET);
5666 }
5667
5668 #if IS_ENABLED(CONFIG_IPV6)
5669 static unsigned int selinux_ipv6_output(void *priv,
5670                                         struct sk_buff *skb,
5671                                         const struct nf_hook_state *state)
5672 {
5673         return selinux_ip_output(skb, PF_INET6);
5674 }
5675 #endif  /* IPV6 */
5676
5677 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5678                                                 int ifindex,
5679                                                 u16 family)
5680 {
5681         struct sock *sk = skb_to_full_sk(skb);
5682         struct sk_security_struct *sksec;
5683         struct common_audit_data ad;
5684         struct lsm_network_audit net = {0,};
5685         char *addrp;
5686         u8 proto;
5687
5688         if (sk == NULL)
5689                 return NF_ACCEPT;
5690         sksec = sk->sk_security;
5691
5692         ad.type = LSM_AUDIT_DATA_NET;
5693         ad.u.net = &net;
5694         ad.u.net->netif = ifindex;
5695         ad.u.net->family = family;
5696         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5697                 return NF_DROP;
5698
5699         if (selinux_secmark_enabled())
5700                 if (avc_has_perm(&selinux_state,
5701                                  sksec->sid, skb->secmark,
5702                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5703                         return NF_DROP_ERR(-ECONNREFUSED);
5704
5705         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5706                 return NF_DROP_ERR(-ECONNREFUSED);
5707
5708         return NF_ACCEPT;
5709 }
5710
5711 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5712                                          const struct net_device *outdev,
5713                                          u16 family)
5714 {
5715         u32 secmark_perm;
5716         u32 peer_sid;
5717         int ifindex = outdev->ifindex;
5718         struct sock *sk;
5719         struct common_audit_data ad;
5720         struct lsm_network_audit net = {0,};
5721         char *addrp;
5722         u8 secmark_active;
5723         u8 peerlbl_active;
5724
5725         /* If any sort of compatibility mode is enabled then handoff processing
5726          * to the selinux_ip_postroute_compat() function to deal with the
5727          * special handling.  We do this in an attempt to keep this function
5728          * as fast and as clean as possible. */
5729         if (!selinux_policycap_netpeer())
5730                 return selinux_ip_postroute_compat(skb, ifindex, family);
5731
5732         secmark_active = selinux_secmark_enabled();
5733         peerlbl_active = selinux_peerlbl_enabled();
5734         if (!secmark_active && !peerlbl_active)
5735                 return NF_ACCEPT;
5736
5737         sk = skb_to_full_sk(skb);
5738
5739 #ifdef CONFIG_XFRM
5740         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5741          * packet transformation so allow the packet to pass without any checks
5742          * since we'll have another chance to perform access control checks
5743          * when the packet is on it's final way out.
5744          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5745          *       is NULL, in this case go ahead and apply access control.
5746          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5747          *       TCP listening state we cannot wait until the XFRM processing
5748          *       is done as we will miss out on the SA label if we do;
5749          *       unfortunately, this means more work, but it is only once per
5750          *       connection. */
5751         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5752             !(sk && sk_listener(sk)))
5753                 return NF_ACCEPT;
5754 #endif
5755
5756         if (sk == NULL) {
5757                 /* Without an associated socket the packet is either coming
5758                  * from the kernel or it is being forwarded; check the packet
5759                  * to determine which and if the packet is being forwarded
5760                  * query the packet directly to determine the security label. */
5761                 if (skb->skb_iif) {
5762                         secmark_perm = PACKET__FORWARD_OUT;
5763                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5764                                 return NF_DROP;
5765                 } else {
5766                         secmark_perm = PACKET__SEND;
5767                         peer_sid = SECINITSID_KERNEL;
5768                 }
5769         } else if (sk_listener(sk)) {
5770                 /* Locally generated packet but the associated socket is in the
5771                  * listening state which means this is a SYN-ACK packet.  In
5772                  * this particular case the correct security label is assigned
5773                  * to the connection/request_sock but unfortunately we can't
5774                  * query the request_sock as it isn't queued on the parent
5775                  * socket until after the SYN-ACK packet is sent; the only
5776                  * viable choice is to regenerate the label like we do in
5777                  * selinux_inet_conn_request().  See also selinux_ip_output()
5778                  * for similar problems. */
5779                 u32 skb_sid;
5780                 struct sk_security_struct *sksec;
5781
5782                 sksec = sk->sk_security;
5783                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5784                         return NF_DROP;
5785                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5786                  * and the packet has been through at least one XFRM
5787                  * transformation then we must be dealing with the "final"
5788                  * form of labeled IPsec packet; since we've already applied
5789                  * all of our access controls on this packet we can safely
5790                  * pass the packet. */
5791                 if (skb_sid == SECSID_NULL) {
5792                         switch (family) {
5793                         case PF_INET:
5794                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5795                                         return NF_ACCEPT;
5796                                 break;
5797                         case PF_INET6:
5798                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5799                                         return NF_ACCEPT;
5800                                 break;
5801                         default:
5802                                 return NF_DROP_ERR(-ECONNREFUSED);
5803                         }
5804                 }
5805                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5806                         return NF_DROP;
5807                 secmark_perm = PACKET__SEND;
5808         } else {
5809                 /* Locally generated packet, fetch the security label from the
5810                  * associated socket. */
5811                 struct sk_security_struct *sksec = sk->sk_security;
5812                 peer_sid = sksec->sid;
5813                 secmark_perm = PACKET__SEND;
5814         }
5815
5816         ad.type = LSM_AUDIT_DATA_NET;
5817         ad.u.net = &net;
5818         ad.u.net->netif = ifindex;
5819         ad.u.net->family = family;
5820         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5821                 return NF_DROP;
5822
5823         if (secmark_active)
5824                 if (avc_has_perm(&selinux_state,
5825                                  peer_sid, skb->secmark,
5826                                  SECCLASS_PACKET, secmark_perm, &ad))
5827                         return NF_DROP_ERR(-ECONNREFUSED);
5828
5829         if (peerlbl_active) {
5830                 u32 if_sid;
5831                 u32 node_sid;
5832
5833                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5834                         return NF_DROP;
5835                 if (avc_has_perm(&selinux_state,
5836                                  peer_sid, if_sid,
5837                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5838                         return NF_DROP_ERR(-ECONNREFUSED);
5839
5840                 if (sel_netnode_sid(addrp, family, &node_sid))
5841                         return NF_DROP;
5842                 if (avc_has_perm(&selinux_state,
5843                                  peer_sid, node_sid,
5844                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5845                         return NF_DROP_ERR(-ECONNREFUSED);
5846         }
5847
5848         return NF_ACCEPT;
5849 }
5850
5851 static unsigned int selinux_ipv4_postroute(void *priv,
5852                                            struct sk_buff *skb,
5853                                            const struct nf_hook_state *state)
5854 {
5855         return selinux_ip_postroute(skb, state->out, PF_INET);
5856 }
5857
5858 #if IS_ENABLED(CONFIG_IPV6)
5859 static unsigned int selinux_ipv6_postroute(void *priv,
5860                                            struct sk_buff *skb,
5861                                            const struct nf_hook_state *state)
5862 {
5863         return selinux_ip_postroute(skb, state->out, PF_INET6);
5864 }
5865 #endif  /* IPV6 */
5866
5867 #endif  /* CONFIG_NETFILTER */
5868
5869 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5870 {
5871         return selinux_nlmsg_perm(sk, skb);
5872 }
5873
5874 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5875                               u16 sclass)
5876 {
5877         struct ipc_security_struct *isec;
5878
5879         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5880         if (!isec)
5881                 return -ENOMEM;
5882
5883         isec->sclass = sclass;
5884         isec->sid = current_sid();
5885         perm->security = isec;
5886
5887         return 0;
5888 }
5889
5890 static void ipc_free_security(struct kern_ipc_perm *perm)
5891 {
5892         struct ipc_security_struct *isec = perm->security;
5893         perm->security = NULL;
5894         kfree(isec);
5895 }
5896
5897 static int msg_msg_alloc_security(struct msg_msg *msg)
5898 {
5899         struct msg_security_struct *msec;
5900
5901         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5902         if (!msec)
5903                 return -ENOMEM;
5904
5905         msec->sid = SECINITSID_UNLABELED;
5906         msg->security = msec;
5907
5908         return 0;
5909 }
5910
5911 static void msg_msg_free_security(struct msg_msg *msg)
5912 {
5913         struct msg_security_struct *msec = msg->security;
5914
5915         msg->security = NULL;
5916         kfree(msec);
5917 }
5918
5919 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5920                         u32 perms)
5921 {
5922         struct ipc_security_struct *isec;
5923         struct common_audit_data ad;
5924         u32 sid = current_sid();
5925
5926         isec = ipc_perms->security;
5927
5928         ad.type = LSM_AUDIT_DATA_IPC;
5929         ad.u.ipc_id = ipc_perms->key;
5930
5931         return avc_has_perm(&selinux_state,
5932                             sid, isec->sid, isec->sclass, perms, &ad);
5933 }
5934
5935 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5936 {
5937         return msg_msg_alloc_security(msg);
5938 }
5939
5940 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5941 {
5942         msg_msg_free_security(msg);
5943 }
5944
5945 /* message queue security operations */
5946 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5947 {
5948         struct ipc_security_struct *isec;
5949         struct common_audit_data ad;
5950         u32 sid = current_sid();
5951         int rc;
5952
5953         rc = ipc_alloc_security(&msq->q_perm, SECCLASS_MSGQ);
5954         if (rc)
5955                 return rc;
5956
5957         isec = msq->q_perm.security;
5958
5959         ad.type = LSM_AUDIT_DATA_IPC;
5960         ad.u.ipc_id = msq->q_perm.key;
5961
5962         rc = avc_has_perm(&selinux_state,
5963                           sid, isec->sid, SECCLASS_MSGQ,
5964                           MSGQ__CREATE, &ad);
5965         if (rc) {
5966                 ipc_free_security(&msq->q_perm);
5967                 return rc;
5968         }
5969         return 0;
5970 }
5971
5972 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5973 {
5974         ipc_free_security(&msq->q_perm);
5975 }
5976
5977 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5978 {
5979         struct ipc_security_struct *isec;
5980         struct common_audit_data ad;
5981         u32 sid = current_sid();
5982
5983         isec = msq->q_perm.security;
5984
5985         ad.type = LSM_AUDIT_DATA_IPC;
5986         ad.u.ipc_id = msq->q_perm.key;
5987
5988         return avc_has_perm(&selinux_state,
5989                             sid, isec->sid, SECCLASS_MSGQ,
5990                             MSGQ__ASSOCIATE, &ad);
5991 }
5992
5993 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5994 {
5995         int err;
5996         int perms;
5997
5998         switch (cmd) {
5999         case IPC_INFO:
6000         case MSG_INFO:
6001                 /* No specific object, just general system-wide information. */
6002                 return avc_has_perm(&selinux_state,
6003                                     current_sid(), SECINITSID_KERNEL,
6004                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6005         case IPC_STAT:
6006         case MSG_STAT:
6007                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6008                 break;
6009         case IPC_SET:
6010                 perms = MSGQ__SETATTR;
6011                 break;
6012         case IPC_RMID:
6013                 perms = MSGQ__DESTROY;
6014                 break;
6015         default:
6016                 return 0;
6017         }
6018
6019         err = ipc_has_perm(&msq->q_perm, perms);
6020         return err;
6021 }
6022
6023 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
6024 {
6025         struct ipc_security_struct *isec;
6026         struct msg_security_struct *msec;
6027         struct common_audit_data ad;
6028         u32 sid = current_sid();
6029         int rc;
6030
6031         isec = msq->q_perm.security;
6032         msec = msg->security;
6033
6034         /*
6035          * First time through, need to assign label to the message
6036          */
6037         if (msec->sid == SECINITSID_UNLABELED) {
6038                 /*
6039                  * Compute new sid based on current process and
6040                  * message queue this message will be stored in
6041                  */
6042                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6043                                              SECCLASS_MSG, NULL, &msec->sid);
6044                 if (rc)
6045                         return rc;
6046         }
6047
6048         ad.type = LSM_AUDIT_DATA_IPC;
6049         ad.u.ipc_id = msq->q_perm.key;
6050
6051         /* Can this process write to the queue? */
6052         rc = avc_has_perm(&selinux_state,
6053                           sid, isec->sid, SECCLASS_MSGQ,
6054                           MSGQ__WRITE, &ad);
6055         if (!rc)
6056                 /* Can this process send the message */
6057                 rc = avc_has_perm(&selinux_state,
6058                                   sid, msec->sid, SECCLASS_MSG,
6059                                   MSG__SEND, &ad);
6060         if (!rc)
6061                 /* Can the message be put in the queue? */
6062                 rc = avc_has_perm(&selinux_state,
6063                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6064                                   MSGQ__ENQUEUE, &ad);
6065
6066         return rc;
6067 }
6068
6069 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
6070                                     struct task_struct *target,
6071                                     long type, int mode)
6072 {
6073         struct ipc_security_struct *isec;
6074         struct msg_security_struct *msec;
6075         struct common_audit_data ad;
6076         u32 sid = task_sid(target);
6077         int rc;
6078
6079         isec = msq->q_perm.security;
6080         msec = msg->security;
6081
6082         ad.type = LSM_AUDIT_DATA_IPC;
6083         ad.u.ipc_id = msq->q_perm.key;
6084
6085         rc = avc_has_perm(&selinux_state,
6086                           sid, isec->sid,
6087                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6088         if (!rc)
6089                 rc = avc_has_perm(&selinux_state,
6090                                   sid, msec->sid,
6091                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6092         return rc;
6093 }
6094
6095 /* Shared Memory security operations */
6096 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
6097 {
6098         struct ipc_security_struct *isec;
6099         struct common_audit_data ad;
6100         u32 sid = current_sid();
6101         int rc;
6102
6103         rc = ipc_alloc_security(&shp->shm_perm, SECCLASS_SHM);
6104         if (rc)
6105                 return rc;
6106
6107         isec = shp->shm_perm.security;
6108
6109         ad.type = LSM_AUDIT_DATA_IPC;
6110         ad.u.ipc_id = shp->shm_perm.key;
6111
6112         rc = avc_has_perm(&selinux_state,
6113                           sid, isec->sid, SECCLASS_SHM,
6114                           SHM__CREATE, &ad);
6115         if (rc) {
6116                 ipc_free_security(&shp->shm_perm);
6117                 return rc;
6118         }
6119         return 0;
6120 }
6121
6122 static void selinux_shm_free_security(struct shmid_kernel *shp)
6123 {
6124         ipc_free_security(&shp->shm_perm);
6125 }
6126
6127 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
6128 {
6129         struct ipc_security_struct *isec;
6130         struct common_audit_data ad;
6131         u32 sid = current_sid();
6132
6133         isec = shp->shm_perm.security;
6134
6135         ad.type = LSM_AUDIT_DATA_IPC;
6136         ad.u.ipc_id = shp->shm_perm.key;
6137
6138         return avc_has_perm(&selinux_state,
6139                             sid, isec->sid, SECCLASS_SHM,
6140                             SHM__ASSOCIATE, &ad);
6141 }
6142
6143 /* Note, at this point, shp is locked down */
6144 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
6145 {
6146         int perms;
6147         int err;
6148
6149         switch (cmd) {
6150         case IPC_INFO:
6151         case SHM_INFO:
6152                 /* No specific object, just general system-wide information. */
6153                 return avc_has_perm(&selinux_state,
6154                                     current_sid(), SECINITSID_KERNEL,
6155                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6156         case IPC_STAT:
6157         case SHM_STAT:
6158                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6159                 break;
6160         case IPC_SET:
6161                 perms = SHM__SETATTR;
6162                 break;
6163         case SHM_LOCK:
6164         case SHM_UNLOCK:
6165                 perms = SHM__LOCK;
6166                 break;
6167         case IPC_RMID:
6168                 perms = SHM__DESTROY;
6169                 break;
6170         default:
6171                 return 0;
6172         }
6173
6174         err = ipc_has_perm(&shp->shm_perm, perms);
6175         return err;
6176 }
6177
6178 static int selinux_shm_shmat(struct shmid_kernel *shp,
6179                              char __user *shmaddr, int shmflg)
6180 {
6181         u32 perms;
6182
6183         if (shmflg & SHM_RDONLY)
6184                 perms = SHM__READ;
6185         else
6186                 perms = SHM__READ | SHM__WRITE;
6187
6188         return ipc_has_perm(&shp->shm_perm, perms);
6189 }
6190
6191 /* Semaphore security operations */
6192 static int selinux_sem_alloc_security(struct sem_array *sma)
6193 {
6194         struct ipc_security_struct *isec;
6195         struct common_audit_data ad;
6196         u32 sid = current_sid();
6197         int rc;
6198
6199         rc = ipc_alloc_security(&sma->sem_perm, SECCLASS_SEM);
6200         if (rc)
6201                 return rc;
6202
6203         isec = sma->sem_perm.security;
6204
6205         ad.type = LSM_AUDIT_DATA_IPC;
6206         ad.u.ipc_id = sma->sem_perm.key;
6207
6208         rc = avc_has_perm(&selinux_state,
6209                           sid, isec->sid, SECCLASS_SEM,
6210                           SEM__CREATE, &ad);
6211         if (rc) {
6212                 ipc_free_security(&sma->sem_perm);
6213                 return rc;
6214         }
6215         return 0;
6216 }
6217
6218 static void selinux_sem_free_security(struct sem_array *sma)
6219 {
6220         ipc_free_security(&sma->sem_perm);
6221 }
6222
6223 static int selinux_sem_associate(struct sem_array *sma, int semflg)
6224 {
6225         struct ipc_security_struct *isec;
6226         struct common_audit_data ad;
6227         u32 sid = current_sid();
6228
6229         isec = sma->sem_perm.security;
6230
6231         ad.type = LSM_AUDIT_DATA_IPC;
6232         ad.u.ipc_id = sma->sem_perm.key;
6233
6234         return avc_has_perm(&selinux_state,
6235                             sid, isec->sid, SECCLASS_SEM,
6236                             SEM__ASSOCIATE, &ad);
6237 }
6238
6239 /* Note, at this point, sma is locked down */
6240 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
6241 {
6242         int err;
6243         u32 perms;
6244
6245         switch (cmd) {
6246         case IPC_INFO:
6247         case SEM_INFO:
6248                 /* No specific object, just general system-wide information. */
6249                 return avc_has_perm(&selinux_state,
6250                                     current_sid(), SECINITSID_KERNEL,
6251                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6252         case GETPID:
6253         case GETNCNT:
6254         case GETZCNT:
6255                 perms = SEM__GETATTR;
6256                 break;
6257         case GETVAL:
6258         case GETALL:
6259                 perms = SEM__READ;
6260                 break;
6261         case SETVAL:
6262         case SETALL:
6263                 perms = SEM__WRITE;
6264                 break;
6265         case IPC_RMID:
6266                 perms = SEM__DESTROY;
6267                 break;
6268         case IPC_SET:
6269                 perms = SEM__SETATTR;
6270                 break;
6271         case IPC_STAT:
6272         case SEM_STAT:
6273                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6274                 break;
6275         default:
6276                 return 0;
6277         }
6278
6279         err = ipc_has_perm(&sma->sem_perm, perms);
6280         return err;
6281 }
6282
6283 static int selinux_sem_semop(struct sem_array *sma,
6284                              struct sembuf *sops, unsigned nsops, int alter)
6285 {
6286         u32 perms;
6287
6288         if (alter)
6289                 perms = SEM__READ | SEM__WRITE;
6290         else
6291                 perms = SEM__READ;
6292
6293         return ipc_has_perm(&sma->sem_perm, perms);
6294 }
6295
6296 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6297 {
6298         u32 av = 0;
6299
6300         av = 0;
6301         if (flag & S_IRUGO)
6302                 av |= IPC__UNIX_READ;
6303         if (flag & S_IWUGO)
6304                 av |= IPC__UNIX_WRITE;
6305
6306         if (av == 0)
6307                 return 0;
6308
6309         return ipc_has_perm(ipcp, av);
6310 }
6311
6312 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6313 {
6314         struct ipc_security_struct *isec = ipcp->security;
6315         *secid = isec->sid;
6316 }
6317
6318 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6319 {
6320         if (inode)
6321                 inode_doinit_with_dentry(inode, dentry);
6322 }
6323
6324 static int selinux_getprocattr(struct task_struct *p,
6325                                char *name, char **value)
6326 {
6327         const struct task_security_struct *__tsec;
6328         u32 sid;
6329         int error;
6330         unsigned len;
6331
6332         rcu_read_lock();
6333         __tsec = __task_cred(p)->security;
6334
6335         if (current != p) {
6336                 error = avc_has_perm(&selinux_state,
6337                                      current_sid(), __tsec->sid,
6338                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6339                 if (error)
6340                         goto bad;
6341         }
6342
6343         if (!strcmp(name, "current"))
6344                 sid = __tsec->sid;
6345         else if (!strcmp(name, "prev"))
6346                 sid = __tsec->osid;
6347         else if (!strcmp(name, "exec"))
6348                 sid = __tsec->exec_sid;
6349         else if (!strcmp(name, "fscreate"))
6350                 sid = __tsec->create_sid;
6351         else if (!strcmp(name, "keycreate"))
6352                 sid = __tsec->keycreate_sid;
6353         else if (!strcmp(name, "sockcreate"))
6354                 sid = __tsec->sockcreate_sid;
6355         else {
6356                 error = -EINVAL;
6357                 goto bad;
6358         }
6359         rcu_read_unlock();
6360
6361         if (!sid)
6362                 return 0;
6363
6364         error = security_sid_to_context(&selinux_state, sid, value, &len);
6365         if (error)
6366                 return error;
6367         return len;
6368
6369 bad:
6370         rcu_read_unlock();
6371         return error;
6372 }
6373
6374 static int selinux_setprocattr(const char *name, void *value, size_t size)
6375 {
6376         struct task_security_struct *tsec;
6377         struct cred *new;
6378         u32 mysid = current_sid(), sid = 0, ptsid;
6379         int error;
6380         char *str = value;
6381
6382         /*
6383          * Basic control over ability to set these attributes at all.
6384          */
6385         if (!strcmp(name, "exec"))
6386                 error = avc_has_perm(&selinux_state,
6387                                      mysid, mysid, SECCLASS_PROCESS,
6388                                      PROCESS__SETEXEC, NULL);
6389         else if (!strcmp(name, "fscreate"))
6390                 error = avc_has_perm(&selinux_state,
6391                                      mysid, mysid, SECCLASS_PROCESS,
6392                                      PROCESS__SETFSCREATE, NULL);
6393         else if (!strcmp(name, "keycreate"))
6394                 error = avc_has_perm(&selinux_state,
6395                                      mysid, mysid, SECCLASS_PROCESS,
6396                                      PROCESS__SETKEYCREATE, NULL);
6397         else if (!strcmp(name, "sockcreate"))
6398                 error = avc_has_perm(&selinux_state,
6399                                      mysid, mysid, SECCLASS_PROCESS,
6400                                      PROCESS__SETSOCKCREATE, NULL);
6401         else if (!strcmp(name, "current"))
6402                 error = avc_has_perm(&selinux_state,
6403                                      mysid, mysid, SECCLASS_PROCESS,
6404                                      PROCESS__SETCURRENT, NULL);
6405         else
6406                 error = -EINVAL;
6407         if (error)
6408                 return error;
6409
6410         /* Obtain a SID for the context, if one was specified. */
6411         if (size && str[0] && str[0] != '\n') {
6412                 if (str[size-1] == '\n') {
6413                         str[size-1] = 0;
6414                         size--;
6415                 }
6416                 error = security_context_to_sid(&selinux_state, value, size,
6417                                                 &sid, GFP_KERNEL);
6418                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6419                         if (!has_cap_mac_admin(true)) {
6420                                 struct audit_buffer *ab;
6421                                 size_t audit_size;
6422
6423                                 /* We strip a nul only if it is at the end, otherwise the
6424                                  * context contains a nul and we should audit that */
6425                                 if (str[size - 1] == '\0')
6426                                         audit_size = size - 1;
6427                                 else
6428                                         audit_size = size;
6429                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6430                                 audit_log_format(ab, "op=fscreate invalid_context=");
6431                                 audit_log_n_untrustedstring(ab, value, audit_size);
6432                                 audit_log_end(ab);
6433
6434                                 return error;
6435                         }
6436                         error = security_context_to_sid_force(
6437                                                       &selinux_state,
6438                                                       value, size, &sid);
6439                 }
6440                 if (error)
6441                         return error;
6442         }
6443
6444         new = prepare_creds();
6445         if (!new)
6446                 return -ENOMEM;
6447
6448         /* Permission checking based on the specified context is
6449            performed during the actual operation (execve,
6450            open/mkdir/...), when we know the full context of the
6451            operation.  See selinux_bprm_set_creds for the execve
6452            checks and may_create for the file creation checks. The
6453            operation will then fail if the context is not permitted. */
6454         tsec = new->security;
6455         if (!strcmp(name, "exec")) {
6456                 tsec->exec_sid = sid;
6457         } else if (!strcmp(name, "fscreate")) {
6458                 tsec->create_sid = sid;
6459         } else if (!strcmp(name, "keycreate")) {
6460                 error = avc_has_perm(&selinux_state,
6461                                      mysid, sid, SECCLASS_KEY, KEY__CREATE,
6462                                      NULL);
6463                 if (error)
6464                         goto abort_change;
6465                 tsec->keycreate_sid = sid;
6466         } else if (!strcmp(name, "sockcreate")) {
6467                 tsec->sockcreate_sid = sid;
6468         } else if (!strcmp(name, "current")) {
6469                 error = -EINVAL;
6470                 if (sid == 0)
6471                         goto abort_change;
6472
6473                 /* Only allow single threaded processes to change context */
6474                 error = -EPERM;
6475                 if (!current_is_single_threaded()) {
6476                         error = security_bounded_transition(&selinux_state,
6477                                                             tsec->sid, sid);
6478                         if (error)
6479                                 goto abort_change;
6480                 }
6481
6482                 /* Check permissions for the transition. */
6483                 error = avc_has_perm(&selinux_state,
6484                                      tsec->sid, sid, SECCLASS_PROCESS,
6485                                      PROCESS__DYNTRANSITION, NULL);
6486                 if (error)
6487                         goto abort_change;
6488
6489                 /* Check for ptracing, and update the task SID if ok.
6490                    Otherwise, leave SID unchanged and fail. */
6491                 ptsid = ptrace_parent_sid();
6492                 if (ptsid != 0) {
6493                         error = avc_has_perm(&selinux_state,
6494                                              ptsid, sid, SECCLASS_PROCESS,
6495                                              PROCESS__PTRACE, NULL);
6496                         if (error)
6497                                 goto abort_change;
6498                 }
6499
6500                 tsec->sid = sid;
6501         } else {
6502                 error = -EINVAL;
6503                 goto abort_change;
6504         }
6505
6506         commit_creds(new);
6507         return size;
6508
6509 abort_change:
6510         abort_creds(new);
6511         return error;
6512 }
6513
6514 static int selinux_ismaclabel(const char *name)
6515 {
6516         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6517 }
6518
6519 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6520 {
6521         return security_sid_to_context(&selinux_state, secid,
6522                                        secdata, seclen);
6523 }
6524
6525 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6526 {
6527         return security_context_to_sid(&selinux_state, secdata, seclen,
6528                                        secid, GFP_KERNEL);
6529 }
6530
6531 static void selinux_release_secctx(char *secdata, u32 seclen)
6532 {
6533         kfree(secdata);
6534 }
6535
6536 static void selinux_inode_invalidate_secctx(struct inode *inode)
6537 {
6538         struct inode_security_struct *isec = inode->i_security;
6539
6540         spin_lock(&isec->lock);
6541         isec->initialized = LABEL_INVALID;
6542         spin_unlock(&isec->lock);
6543 }
6544
6545 /*
6546  *      called with inode->i_mutex locked
6547  */
6548 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6549 {
6550         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6551 }
6552
6553 /*
6554  *      called with inode->i_mutex locked
6555  */
6556 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6557 {
6558         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6559 }
6560
6561 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6562 {
6563         int len = 0;
6564         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6565                                                 ctx, true);
6566         if (len < 0)
6567                 return len;
6568         *ctxlen = len;
6569         return 0;
6570 }
6571 #ifdef CONFIG_KEYS
6572
6573 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6574                              unsigned long flags)
6575 {
6576         const struct task_security_struct *tsec;
6577         struct key_security_struct *ksec;
6578
6579         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6580         if (!ksec)
6581                 return -ENOMEM;
6582
6583         tsec = cred->security;
6584         if (tsec->keycreate_sid)
6585                 ksec->sid = tsec->keycreate_sid;
6586         else
6587                 ksec->sid = tsec->sid;
6588
6589         k->security = ksec;
6590         return 0;
6591 }
6592
6593 static void selinux_key_free(struct key *k)
6594 {
6595         struct key_security_struct *ksec = k->security;
6596
6597         k->security = NULL;
6598         kfree(ksec);
6599 }
6600
6601 static int selinux_key_permission(key_ref_t key_ref,
6602                                   const struct cred *cred,
6603                                   unsigned perm)
6604 {
6605         struct key *key;
6606         struct key_security_struct *ksec;
6607         u32 sid;
6608
6609         /* if no specific permissions are requested, we skip the
6610            permission check. No serious, additional covert channels
6611            appear to be created. */
6612         if (perm == 0)
6613                 return 0;
6614
6615         sid = cred_sid(cred);
6616
6617         key = key_ref_to_ptr(key_ref);
6618         ksec = key->security;
6619
6620         return avc_has_perm(&selinux_state,
6621                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6622 }
6623
6624 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6625 {
6626         struct key_security_struct *ksec = key->security;
6627         char *context = NULL;
6628         unsigned len;
6629         int rc;
6630
6631         rc = security_sid_to_context(&selinux_state, ksec->sid,
6632                                      &context, &len);
6633         if (!rc)
6634                 rc = len;
6635         *_buffer = context;
6636         return rc;
6637 }
6638 #endif
6639
6640 #ifdef CONFIG_SECURITY_INFINIBAND
6641 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6642 {
6643         struct common_audit_data ad;
6644         int err;
6645         u32 sid = 0;
6646         struct ib_security_struct *sec = ib_sec;
6647         struct lsm_ibpkey_audit ibpkey;
6648
6649         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6650         if (err)
6651                 return err;
6652
6653         ad.type = LSM_AUDIT_DATA_IBPKEY;
6654         ibpkey.subnet_prefix = subnet_prefix;
6655         ibpkey.pkey = pkey_val;
6656         ad.u.ibpkey = &ibpkey;
6657         return avc_has_perm(&selinux_state,
6658                             sec->sid, sid,
6659                             SECCLASS_INFINIBAND_PKEY,
6660                             INFINIBAND_PKEY__ACCESS, &ad);
6661 }
6662
6663 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6664                                             u8 port_num)
6665 {
6666         struct common_audit_data ad;
6667         int err;
6668         u32 sid = 0;
6669         struct ib_security_struct *sec = ib_sec;
6670         struct lsm_ibendport_audit ibendport;
6671
6672         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6673                                       &sid);
6674
6675         if (err)
6676                 return err;
6677
6678         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6679         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6680         ibendport.port = port_num;
6681         ad.u.ibendport = &ibendport;
6682         return avc_has_perm(&selinux_state,
6683                             sec->sid, sid,
6684                             SECCLASS_INFINIBAND_ENDPORT,
6685                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6686 }
6687
6688 static int selinux_ib_alloc_security(void **ib_sec)
6689 {
6690         struct ib_security_struct *sec;
6691
6692         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6693         if (!sec)
6694                 return -ENOMEM;
6695         sec->sid = current_sid();
6696
6697         *ib_sec = sec;
6698         return 0;
6699 }
6700
6701 static void selinux_ib_free_security(void *ib_sec)
6702 {
6703         kfree(ib_sec);
6704 }
6705 #endif
6706
6707 #ifdef CONFIG_BPF_SYSCALL
6708 static int selinux_bpf(int cmd, union bpf_attr *attr,
6709                                      unsigned int size)
6710 {
6711         u32 sid = current_sid();
6712         int ret;
6713
6714         switch (cmd) {
6715         case BPF_MAP_CREATE:
6716                 ret = avc_has_perm(&selinux_state,
6717                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6718                                    NULL);
6719                 break;
6720         case BPF_PROG_LOAD:
6721                 ret = avc_has_perm(&selinux_state,
6722                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6723                                    NULL);
6724                 break;
6725         default:
6726                 ret = 0;
6727                 break;
6728         }
6729
6730         return ret;
6731 }
6732
6733 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6734 {
6735         u32 av = 0;
6736
6737         if (fmode & FMODE_READ)
6738                 av |= BPF__MAP_READ;
6739         if (fmode & FMODE_WRITE)
6740                 av |= BPF__MAP_WRITE;
6741         return av;
6742 }
6743
6744 /* This function will check the file pass through unix socket or binder to see
6745  * if it is a bpf related object. And apply correspinding checks on the bpf
6746  * object based on the type. The bpf maps and programs, not like other files and
6747  * socket, are using a shared anonymous inode inside the kernel as their inode.
6748  * So checking that inode cannot identify if the process have privilege to
6749  * access the bpf object and that's why we have to add this additional check in
6750  * selinux_file_receive and selinux_binder_transfer_files.
6751  */
6752 static int bpf_fd_pass(struct file *file, u32 sid)
6753 {
6754         struct bpf_security_struct *bpfsec;
6755         struct bpf_prog *prog;
6756         struct bpf_map *map;
6757         int ret;
6758
6759         if (file->f_op == &bpf_map_fops) {
6760                 map = file->private_data;
6761                 bpfsec = map->security;
6762                 ret = avc_has_perm(&selinux_state,
6763                                    sid, bpfsec->sid, SECCLASS_BPF,
6764                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6765                 if (ret)
6766                         return ret;
6767         } else if (file->f_op == &bpf_prog_fops) {
6768                 prog = file->private_data;
6769                 bpfsec = prog->aux->security;
6770                 ret = avc_has_perm(&selinux_state,
6771                                    sid, bpfsec->sid, SECCLASS_BPF,
6772                                    BPF__PROG_RUN, NULL);
6773                 if (ret)
6774                         return ret;
6775         }
6776         return 0;
6777 }
6778
6779 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6780 {
6781         u32 sid = current_sid();
6782         struct bpf_security_struct *bpfsec;
6783
6784         bpfsec = map->security;
6785         return avc_has_perm(&selinux_state,
6786                             sid, bpfsec->sid, SECCLASS_BPF,
6787                             bpf_map_fmode_to_av(fmode), NULL);
6788 }
6789
6790 static int selinux_bpf_prog(struct bpf_prog *prog)
6791 {
6792         u32 sid = current_sid();
6793         struct bpf_security_struct *bpfsec;
6794
6795         bpfsec = prog->aux->security;
6796         return avc_has_perm(&selinux_state,
6797                             sid, bpfsec->sid, SECCLASS_BPF,
6798                             BPF__PROG_RUN, NULL);
6799 }
6800
6801 static int selinux_bpf_map_alloc(struct bpf_map *map)
6802 {
6803         struct bpf_security_struct *bpfsec;
6804
6805         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6806         if (!bpfsec)
6807                 return -ENOMEM;
6808
6809         bpfsec->sid = current_sid();
6810         map->security = bpfsec;
6811
6812         return 0;
6813 }
6814
6815 static void selinux_bpf_map_free(struct bpf_map *map)
6816 {
6817         struct bpf_security_struct *bpfsec = map->security;
6818
6819         map->security = NULL;
6820         kfree(bpfsec);
6821 }
6822
6823 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6824 {
6825         struct bpf_security_struct *bpfsec;
6826
6827         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6828         if (!bpfsec)
6829                 return -ENOMEM;
6830
6831         bpfsec->sid = current_sid();
6832         aux->security = bpfsec;
6833
6834         return 0;
6835 }
6836
6837 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6838 {
6839         struct bpf_security_struct *bpfsec = aux->security;
6840
6841         aux->security = NULL;
6842         kfree(bpfsec);
6843 }
6844 #endif
6845
6846 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6847         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6848         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6849         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6850         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6851
6852         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6853         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6854         LSM_HOOK_INIT(capget, selinux_capget),
6855         LSM_HOOK_INIT(capset, selinux_capset),
6856         LSM_HOOK_INIT(capable, selinux_capable),
6857         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6858         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6859         LSM_HOOK_INIT(syslog, selinux_syslog),
6860         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6861
6862         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6863
6864         LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6865         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6866         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6867
6868         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6869         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6870         LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6871         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6872         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6873         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6874         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6875         LSM_HOOK_INIT(sb_mount, selinux_mount),
6876         LSM_HOOK_INIT(sb_umount, selinux_umount),
6877         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6878         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6879         LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6880
6881         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6882         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6883
6884         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6885         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6886         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6887         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6888         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6889         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6890         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6891         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6892         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6893         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6894         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6895         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6896         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6897         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6898         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6899         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6900         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6901         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6902         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6903         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6904         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6905         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6906         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6907         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6908         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6909         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6910         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6911
6912         LSM_HOOK_INIT(file_permission, selinux_file_permission),
6913         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6914         LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6915         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6916         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6917         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6918         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6919         LSM_HOOK_INIT(file_lock, selinux_file_lock),
6920         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6921         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6922         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6923         LSM_HOOK_INIT(file_receive, selinux_file_receive),
6924
6925         LSM_HOOK_INIT(file_open, selinux_file_open),
6926
6927         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6928         LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6929         LSM_HOOK_INIT(cred_free, selinux_cred_free),
6930         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6931         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6932         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6933         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6934         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6935         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6936         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6937         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6938         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6939         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6940         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6941         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6942         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6943         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6944         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6945         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6946         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6947         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6948         LSM_HOOK_INIT(task_kill, selinux_task_kill),
6949         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6950
6951         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6952         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6953
6954         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6955         LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6956
6957         LSM_HOOK_INIT(msg_queue_alloc_security,
6958                         selinux_msg_queue_alloc_security),
6959         LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6960         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6961         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6962         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6963         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6964
6965         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6966         LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6967         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6968         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6969         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6970
6971         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6972         LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6973         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6974         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6975         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6976
6977         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6978
6979         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6980         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6981
6982         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6983         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6984         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6985         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6986         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6987         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6988         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6989         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6990
6991         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6992         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6993
6994         LSM_HOOK_INIT(socket_create, selinux_socket_create),
6995         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6996         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6997         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6998         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6999         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7000         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7001         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7002         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7003         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7004         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7005         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7006         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7007         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7008         LSM_HOOK_INIT(socket_getpeersec_stream,
7009                         selinux_socket_getpeersec_stream),
7010         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7011         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7012         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7013         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7014         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7015         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7016         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7017         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7018         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7019         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7020         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7021         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7022         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7023         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7024         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7025         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7026         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7027         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7028         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7029         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7030         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7031         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7032 #ifdef CONFIG_SECURITY_INFINIBAND
7033         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7034         LSM_HOOK_INIT(ib_endport_manage_subnet,
7035                       selinux_ib_endport_manage_subnet),
7036         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7037         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7038 #endif
7039 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7040         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7041         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7042         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7043         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7044         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7045         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7046                         selinux_xfrm_state_alloc_acquire),
7047         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7048         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7049         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7050         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7051                         selinux_xfrm_state_pol_flow_match),
7052         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7053 #endif
7054
7055 #ifdef CONFIG_KEYS
7056         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7057         LSM_HOOK_INIT(key_free, selinux_key_free),
7058         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7059         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7060 #endif
7061
7062 #ifdef CONFIG_AUDIT
7063         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7064         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7065         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7066         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7067 #endif
7068
7069 #ifdef CONFIG_BPF_SYSCALL
7070         LSM_HOOK_INIT(bpf, selinux_bpf),
7071         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7072         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7073         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7074         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7075         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7076         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7077 #endif
7078 };
7079
7080 static __init int selinux_init(void)
7081 {
7082         if (!security_module_enable("selinux")) {
7083                 selinux_enabled = 0;
7084                 return 0;
7085         }
7086
7087         if (!selinux_enabled) {
7088                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7089                 return 0;
7090         }
7091
7092         printk(KERN_INFO "SELinux:  Initializing.\n");
7093
7094         memset(&selinux_state, 0, sizeof(selinux_state));
7095         enforcing_set(&selinux_state, selinux_enforcing_boot);
7096         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7097         selinux_ss_init(&selinux_state.ss);
7098         selinux_avc_init(&selinux_state.avc);
7099
7100         /* Set the security state for the initial task. */
7101         cred_init_security();
7102
7103         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7104
7105         sel_inode_cache = kmem_cache_create("selinux_inode_security",
7106                                             sizeof(struct inode_security_struct),
7107                                             0, SLAB_PANIC, NULL);
7108         file_security_cache = kmem_cache_create("selinux_file_security",
7109                                             sizeof(struct file_security_struct),
7110                                             0, SLAB_PANIC, NULL);
7111         avc_init();
7112
7113         avtab_cache_init();
7114
7115         ebitmap_cache_init();
7116
7117         hashtab_cache_init();
7118
7119         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7120
7121         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7122                 panic("SELinux: Unable to register AVC netcache callback\n");
7123
7124         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7125                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7126
7127         if (selinux_enforcing_boot)
7128                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7129         else
7130                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7131
7132         return 0;
7133 }
7134
7135 static void delayed_superblock_init(struct super_block *sb, void *unused)
7136 {
7137         superblock_doinit(sb, NULL);
7138 }
7139
7140 void selinux_complete_init(void)
7141 {
7142         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7143
7144         /* Set up any superblocks initialized prior to the policy load. */
7145         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7146         iterate_supers(delayed_superblock_init, NULL);
7147 }
7148
7149 /* SELinux requires early initialization in order to label
7150    all processes and objects when they are created. */
7151 security_initcall(selinux_init);
7152
7153 #if defined(CONFIG_NETFILTER)
7154
7155 static const struct nf_hook_ops selinux_nf_ops[] = {
7156         {
7157                 .hook =         selinux_ipv4_postroute,
7158                 .pf =           NFPROTO_IPV4,
7159                 .hooknum =      NF_INET_POST_ROUTING,
7160                 .priority =     NF_IP_PRI_SELINUX_LAST,
7161         },
7162         {
7163                 .hook =         selinux_ipv4_forward,
7164                 .pf =           NFPROTO_IPV4,
7165                 .hooknum =      NF_INET_FORWARD,
7166                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7167         },
7168         {
7169                 .hook =         selinux_ipv4_output,
7170                 .pf =           NFPROTO_IPV4,
7171                 .hooknum =      NF_INET_LOCAL_OUT,
7172                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7173         },
7174 #if IS_ENABLED(CONFIG_IPV6)
7175         {
7176                 .hook =         selinux_ipv6_postroute,
7177                 .pf =           NFPROTO_IPV6,
7178                 .hooknum =      NF_INET_POST_ROUTING,
7179                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7180         },
7181         {
7182                 .hook =         selinux_ipv6_forward,
7183                 .pf =           NFPROTO_IPV6,
7184                 .hooknum =      NF_INET_FORWARD,
7185                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7186         },
7187         {
7188                 .hook =         selinux_ipv6_output,
7189                 .pf =           NFPROTO_IPV6,
7190                 .hooknum =      NF_INET_LOCAL_OUT,
7191                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7192         },
7193 #endif  /* IPV6 */
7194 };
7195
7196 static int __net_init selinux_nf_register(struct net *net)
7197 {
7198         return nf_register_net_hooks(net, selinux_nf_ops,
7199                                      ARRAY_SIZE(selinux_nf_ops));
7200 }
7201
7202 static void __net_exit selinux_nf_unregister(struct net *net)
7203 {
7204         nf_unregister_net_hooks(net, selinux_nf_ops,
7205                                 ARRAY_SIZE(selinux_nf_ops));
7206 }
7207
7208 static struct pernet_operations selinux_net_ops = {
7209         .init = selinux_nf_register,
7210         .exit = selinux_nf_unregister,
7211 };
7212
7213 static int __init selinux_nf_ip_init(void)
7214 {
7215         int err;
7216
7217         if (!selinux_enabled)
7218                 return 0;
7219
7220         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7221
7222         err = register_pernet_subsys(&selinux_net_ops);
7223         if (err)
7224                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7225
7226         return 0;
7227 }
7228 __initcall(selinux_nf_ip_init);
7229
7230 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7231 static void selinux_nf_ip_exit(void)
7232 {
7233         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7234
7235         unregister_pernet_subsys(&selinux_net_ops);
7236 }
7237 #endif
7238
7239 #else /* CONFIG_NETFILTER */
7240
7241 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7242 #define selinux_nf_ip_exit()
7243 #endif
7244
7245 #endif /* CONFIG_NETFILTER */
7246
7247 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7248 int selinux_disable(struct selinux_state *state)
7249 {
7250         if (state->initialized) {
7251                 /* Not permitted after initial policy load. */
7252                 return -EINVAL;
7253         }
7254
7255         if (state->disabled) {
7256                 /* Only do this once. */
7257                 return -EINVAL;
7258         }
7259
7260         state->disabled = 1;
7261
7262         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7263
7264         selinux_enabled = 0;
7265
7266         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7267
7268         /* Try to destroy the avc node cache */
7269         avc_disable();
7270
7271         /* Unregister netfilter hooks. */
7272         selinux_nf_ip_exit();
7273
7274         /* Unregister selinuxfs. */
7275         exit_sel_fs();
7276
7277         return 0;
7278 }
7279 #endif
This page took 0.455139 seconds and 4 git commands to generate.