1 // SPDX-License-Identifier: GPL-2.0
4 * Written by Mark Hemment, 1996/97.
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
40 * empty slabs with no allocated objects
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
69 * Further notes from the original documentation:
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
77 * At present, each engine can be growing a cache. This should be blocked.
79 * 15 March 2005. NUMA slab allocator.
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
143 #ifdef CONFIG_DEBUG_SLAB
146 #define FORCED_DEBUG 1
150 #define FORCED_DEBUG 0
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
167 typedef unsigned short freelist_idx_t;
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
180 * The limit is stored in the per-cpu structure to reduce the data cache
187 unsigned int batchcount;
188 unsigned int touched;
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
198 struct array_cache ac;
202 * Need this for bootstrapping a per node allocator.
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
222 static int slab_early_init = 1;
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259 #define BATCHREFILL_LIMIT 16
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
315 * memory layout of objects:
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
327 static int obj_offset(struct kmem_cache *cachep)
329 return cachep->obj_offset;
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
369 return atomic_read(&cachep->store_user_clean) == 1;
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
374 atomic_set(&cachep->store_user_clean, 1);
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
406 return page->s_mem + cache->size * idx;
409 #define BOOT_CPUCACHE_ENTRIES 1
410 /* internal cache of cache description objs */
411 static struct kmem_cache kmem_cache_boot = {
413 .limit = BOOT_CPUCACHE_ENTRIES,
415 .size = sizeof(struct kmem_cache),
416 .name = "kmem_cache",
419 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
421 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
423 return this_cpu_ptr(cachep->cpu_cache);
427 * Calculate the number of objects and left-over bytes for a given buffer size.
429 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 slab_flags_t flags, size_t *left_over)
433 size_t slab_size = PAGE_SIZE << gfporder;
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
440 * - @buffer_size bytes for each object
441 * - One freelist_idx_t for each object
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 num = slab_size / buffer_size;
454 *left_over = slab_size % buffer_size;
456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
465 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
467 static void __slab_error(const char *function, struct kmem_cache *cachep,
470 pr_err("slab error in %s(): cache `%s': %s\n",
471 function, cachep->name, msg);
473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
485 static int use_alien_caches __read_mostly = 1;
486 static int __init noaliencache_setup(char *s)
488 use_alien_caches = 0;
491 __setup("noaliencache", noaliencache_setup);
493 static int __init slab_max_order_setup(char *str)
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
502 __setup("slab_max_order=", slab_max_order_setup);
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
511 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
513 static void init_reap_node(int cpu)
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
519 static void next_reap_node(void)
521 int node = __this_cpu_read(slab_reap_node);
523 node = next_node_in(node, node_online_map);
524 __this_cpu_write(slab_reap_node, node);
528 #define init_reap_node(cpu) do { } while (0)
529 #define next_reap_node(void) do { } while (0)
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
539 static void start_cpu_timer(int cpu)
541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
543 if (reap_work->work.func == NULL) {
545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
551 static void init_arraycache(struct array_cache *ac, int limit, int batch)
554 * The array_cache structures contain pointers to free object.
555 * However, when such objects are allocated or transferred to another
556 * cache the pointers are not cleared and they could be counted as
557 * valid references during a kmemleak scan. Therefore, kmemleak must
558 * not scan such objects.
560 kmemleak_no_scan(ac);
564 ac->batchcount = batch;
569 static struct array_cache *alloc_arraycache(int node, int entries,
570 int batchcount, gfp_t gfp)
572 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
573 struct array_cache *ac = NULL;
575 ac = kmalloc_node(memsize, gfp, node);
576 init_arraycache(ac, entries, batchcount);
580 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
583 struct kmem_cache_node *n;
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
594 slabs_destroy(cachep, &list);
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
601 * Return the number of entries transferred.
603 static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
606 /* Figure out how many entries to transfer */
607 int nr = min3(from->avail, max, to->limit - to->avail);
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
622 #define drain_alien_cache(cachep, alien) do { } while (0)
623 #define reap_alien(cachep, n) do { } while (0)
625 static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
631 static inline void free_alien_cache(struct alien_cache **ac_ptr)
635 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
640 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
646 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 gfp_t flags, int nodeid)
652 static inline gfp_t gfp_exact_node(gfp_t flags)
654 return flags & ~__GFP_NOFAIL;
657 #else /* CONFIG_NUMA */
659 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
662 static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 struct alien_cache *alc = NULL;
668 alc = kmalloc_node(memsize, gfp, node);
670 init_arraycache(&alc->ac, entries, batch);
671 spin_lock_init(&alc->lock);
676 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
678 struct alien_cache **alc_ptr;
679 size_t memsize = sizeof(void *) * nr_node_ids;
684 alc_ptr = kzalloc_node(memsize, gfp, node);
689 if (i == node || !node_online(i))
691 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
693 for (i--; i >= 0; i--)
702 static void free_alien_cache(struct alien_cache **alc_ptr)
713 static void __drain_alien_cache(struct kmem_cache *cachep,
714 struct array_cache *ac, int node,
715 struct list_head *list)
717 struct kmem_cache_node *n = get_node(cachep, node);
720 spin_lock(&n->list_lock);
722 * Stuff objects into the remote nodes shared array first.
723 * That way we could avoid the overhead of putting the objects
724 * into the free lists and getting them back later.
727 transfer_objects(n->shared, ac, ac->limit);
729 free_block(cachep, ac->entry, ac->avail, node, list);
731 spin_unlock(&n->list_lock);
736 * Called from cache_reap() to regularly drain alien caches round robin.
738 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
740 int node = __this_cpu_read(slab_reap_node);
743 struct alien_cache *alc = n->alien[node];
744 struct array_cache *ac;
748 if (ac->avail && spin_trylock_irq(&alc->lock)) {
751 __drain_alien_cache(cachep, ac, node, &list);
752 spin_unlock_irq(&alc->lock);
753 slabs_destroy(cachep, &list);
759 static void drain_alien_cache(struct kmem_cache *cachep,
760 struct alien_cache **alien)
763 struct alien_cache *alc;
764 struct array_cache *ac;
767 for_each_online_node(i) {
773 spin_lock_irqsave(&alc->lock, flags);
774 __drain_alien_cache(cachep, ac, i, &list);
775 spin_unlock_irqrestore(&alc->lock, flags);
776 slabs_destroy(cachep, &list);
781 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
782 int node, int page_node)
784 struct kmem_cache_node *n;
785 struct alien_cache *alien = NULL;
786 struct array_cache *ac;
789 n = get_node(cachep, node);
790 STATS_INC_NODEFREES(cachep);
791 if (n->alien && n->alien[page_node]) {
792 alien = n->alien[page_node];
794 spin_lock(&alien->lock);
795 if (unlikely(ac->avail == ac->limit)) {
796 STATS_INC_ACOVERFLOW(cachep);
797 __drain_alien_cache(cachep, ac, page_node, &list);
799 ac->entry[ac->avail++] = objp;
800 spin_unlock(&alien->lock);
801 slabs_destroy(cachep, &list);
803 n = get_node(cachep, page_node);
804 spin_lock(&n->list_lock);
805 free_block(cachep, &objp, 1, page_node, &list);
806 spin_unlock(&n->list_lock);
807 slabs_destroy(cachep, &list);
812 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
814 int page_node = page_to_nid(virt_to_page(objp));
815 int node = numa_mem_id();
817 * Make sure we are not freeing a object from another node to the array
820 if (likely(node == page_node))
823 return __cache_free_alien(cachep, objp, node, page_node);
827 * Construct gfp mask to allocate from a specific node but do not reclaim or
828 * warn about failures.
830 static inline gfp_t gfp_exact_node(gfp_t flags)
832 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
836 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
838 struct kmem_cache_node *n;
841 * Set up the kmem_cache_node for cpu before we can
842 * begin anything. Make sure some other cpu on this
843 * node has not already allocated this
845 n = get_node(cachep, node);
847 spin_lock_irq(&n->list_lock);
848 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
850 spin_unlock_irq(&n->list_lock);
855 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
859 kmem_cache_node_init(n);
860 n->next_reap = jiffies + REAPTIMEOUT_NODE +
861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
864 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
867 * The kmem_cache_nodes don't come and go as CPUs
868 * come and go. slab_mutex is sufficient
871 cachep->node[node] = n;
876 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
878 * Allocates and initializes node for a node on each slab cache, used for
879 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
880 * will be allocated off-node since memory is not yet online for the new node.
881 * When hotplugging memory or a cpu, existing node are not replaced if
884 * Must hold slab_mutex.
886 static int init_cache_node_node(int node)
889 struct kmem_cache *cachep;
891 list_for_each_entry(cachep, &slab_caches, list) {
892 ret = init_cache_node(cachep, node, GFP_KERNEL);
901 static int setup_kmem_cache_node(struct kmem_cache *cachep,
902 int node, gfp_t gfp, bool force_change)
905 struct kmem_cache_node *n;
906 struct array_cache *old_shared = NULL;
907 struct array_cache *new_shared = NULL;
908 struct alien_cache **new_alien = NULL;
911 if (use_alien_caches) {
912 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
917 if (cachep->shared) {
918 new_shared = alloc_arraycache(node,
919 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
924 ret = init_cache_node(cachep, node, gfp);
928 n = get_node(cachep, node);
929 spin_lock_irq(&n->list_lock);
930 if (n->shared && force_change) {
931 free_block(cachep, n->shared->entry,
932 n->shared->avail, node, &list);
933 n->shared->avail = 0;
936 if (!n->shared || force_change) {
937 old_shared = n->shared;
938 n->shared = new_shared;
943 n->alien = new_alien;
947 spin_unlock_irq(&n->list_lock);
948 slabs_destroy(cachep, &list);
951 * To protect lockless access to n->shared during irq disabled context.
952 * If n->shared isn't NULL in irq disabled context, accessing to it is
953 * guaranteed to be valid until irq is re-enabled, because it will be
954 * freed after synchronize_rcu().
956 if (old_shared && force_change)
962 free_alien_cache(new_alien);
969 static void cpuup_canceled(long cpu)
971 struct kmem_cache *cachep;
972 struct kmem_cache_node *n = NULL;
973 int node = cpu_to_mem(cpu);
974 const struct cpumask *mask = cpumask_of_node(node);
976 list_for_each_entry(cachep, &slab_caches, list) {
977 struct array_cache *nc;
978 struct array_cache *shared;
979 struct alien_cache **alien;
982 n = get_node(cachep, node);
986 spin_lock_irq(&n->list_lock);
988 /* Free limit for this kmem_cache_node */
989 n->free_limit -= cachep->batchcount;
991 /* cpu is dead; no one can alloc from it. */
992 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
994 free_block(cachep, nc->entry, nc->avail, node, &list);
998 if (!cpumask_empty(mask)) {
999 spin_unlock_irq(&n->list_lock);
1005 free_block(cachep, shared->entry,
1006 shared->avail, node, &list);
1013 spin_unlock_irq(&n->list_lock);
1017 drain_alien_cache(cachep, alien);
1018 free_alien_cache(alien);
1022 slabs_destroy(cachep, &list);
1025 * In the previous loop, all the objects were freed to
1026 * the respective cache's slabs, now we can go ahead and
1027 * shrink each nodelist to its limit.
1029 list_for_each_entry(cachep, &slab_caches, list) {
1030 n = get_node(cachep, node);
1033 drain_freelist(cachep, n, INT_MAX);
1037 static int cpuup_prepare(long cpu)
1039 struct kmem_cache *cachep;
1040 int node = cpu_to_mem(cpu);
1044 * We need to do this right in the beginning since
1045 * alloc_arraycache's are going to use this list.
1046 * kmalloc_node allows us to add the slab to the right
1047 * kmem_cache_node and not this cpu's kmem_cache_node
1049 err = init_cache_node_node(node);
1054 * Now we can go ahead with allocating the shared arrays and
1057 list_for_each_entry(cachep, &slab_caches, list) {
1058 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1065 cpuup_canceled(cpu);
1069 int slab_prepare_cpu(unsigned int cpu)
1073 mutex_lock(&slab_mutex);
1074 err = cpuup_prepare(cpu);
1075 mutex_unlock(&slab_mutex);
1080 * This is called for a failed online attempt and for a successful
1083 * Even if all the cpus of a node are down, we don't free the
1084 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1085 * a kmalloc allocation from another cpu for memory from the node of
1086 * the cpu going down. The list3 structure is usually allocated from
1087 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1089 int slab_dead_cpu(unsigned int cpu)
1091 mutex_lock(&slab_mutex);
1092 cpuup_canceled(cpu);
1093 mutex_unlock(&slab_mutex);
1098 static int slab_online_cpu(unsigned int cpu)
1100 start_cpu_timer(cpu);
1104 static int slab_offline_cpu(unsigned int cpu)
1107 * Shutdown cache reaper. Note that the slab_mutex is held so
1108 * that if cache_reap() is invoked it cannot do anything
1109 * expensive but will only modify reap_work and reschedule the
1112 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1113 /* Now the cache_reaper is guaranteed to be not running. */
1114 per_cpu(slab_reap_work, cpu).work.func = NULL;
1118 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1120 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1121 * Returns -EBUSY if all objects cannot be drained so that the node is not
1124 * Must hold slab_mutex.
1126 static int __meminit drain_cache_node_node(int node)
1128 struct kmem_cache *cachep;
1131 list_for_each_entry(cachep, &slab_caches, list) {
1132 struct kmem_cache_node *n;
1134 n = get_node(cachep, node);
1138 drain_freelist(cachep, n, INT_MAX);
1140 if (!list_empty(&n->slabs_full) ||
1141 !list_empty(&n->slabs_partial)) {
1149 static int __meminit slab_memory_callback(struct notifier_block *self,
1150 unsigned long action, void *arg)
1152 struct memory_notify *mnb = arg;
1156 nid = mnb->status_change_nid;
1161 case MEM_GOING_ONLINE:
1162 mutex_lock(&slab_mutex);
1163 ret = init_cache_node_node(nid);
1164 mutex_unlock(&slab_mutex);
1166 case MEM_GOING_OFFLINE:
1167 mutex_lock(&slab_mutex);
1168 ret = drain_cache_node_node(nid);
1169 mutex_unlock(&slab_mutex);
1173 case MEM_CANCEL_ONLINE:
1174 case MEM_CANCEL_OFFLINE:
1178 return notifier_from_errno(ret);
1180 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1183 * swap the static kmem_cache_node with kmalloced memory
1185 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1188 struct kmem_cache_node *ptr;
1190 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1193 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1195 * Do not assume that spinlocks can be initialized via memcpy:
1197 spin_lock_init(&ptr->list_lock);
1199 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1200 cachep->node[nodeid] = ptr;
1204 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1205 * size of kmem_cache_node.
1207 static void __init set_up_node(struct kmem_cache *cachep, int index)
1211 for_each_online_node(node) {
1212 cachep->node[node] = &init_kmem_cache_node[index + node];
1213 cachep->node[node]->next_reap = jiffies +
1215 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1220 * Initialisation. Called after the page allocator have been initialised and
1221 * before smp_init().
1223 void __init kmem_cache_init(void)
1227 kmem_cache = &kmem_cache_boot;
1229 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1230 use_alien_caches = 0;
1232 for (i = 0; i < NUM_INIT_LISTS; i++)
1233 kmem_cache_node_init(&init_kmem_cache_node[i]);
1236 * Fragmentation resistance on low memory - only use bigger
1237 * page orders on machines with more than 32MB of memory if
1238 * not overridden on the command line.
1240 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1241 slab_max_order = SLAB_MAX_ORDER_HI;
1243 /* Bootstrap is tricky, because several objects are allocated
1244 * from caches that do not exist yet:
1245 * 1) initialize the kmem_cache cache: it contains the struct
1246 * kmem_cache structures of all caches, except kmem_cache itself:
1247 * kmem_cache is statically allocated.
1248 * Initially an __init data area is used for the head array and the
1249 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1250 * array at the end of the bootstrap.
1251 * 2) Create the first kmalloc cache.
1252 * The struct kmem_cache for the new cache is allocated normally.
1253 * An __init data area is used for the head array.
1254 * 3) Create the remaining kmalloc caches, with minimally sized
1256 * 4) Replace the __init data head arrays for kmem_cache and the first
1257 * kmalloc cache with kmalloc allocated arrays.
1258 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1259 * the other cache's with kmalloc allocated memory.
1260 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1263 /* 1) create the kmem_cache */
1266 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1268 create_boot_cache(kmem_cache, "kmem_cache",
1269 offsetof(struct kmem_cache, node) +
1270 nr_node_ids * sizeof(struct kmem_cache_node *),
1271 SLAB_HWCACHE_ALIGN, 0, 0);
1272 list_add(&kmem_cache->list, &slab_caches);
1273 memcg_link_cache(kmem_cache);
1274 slab_state = PARTIAL;
1277 * Initialize the caches that provide memory for the kmem_cache_node
1278 * structures first. Without this, further allocations will bug.
1280 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1281 kmalloc_info[INDEX_NODE].name,
1282 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1283 0, kmalloc_size(INDEX_NODE));
1284 slab_state = PARTIAL_NODE;
1285 setup_kmalloc_cache_index_table();
1287 slab_early_init = 0;
1289 /* 5) Replace the bootstrap kmem_cache_node */
1293 for_each_online_node(nid) {
1294 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1296 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1297 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1301 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1304 void __init kmem_cache_init_late(void)
1306 struct kmem_cache *cachep;
1308 /* 6) resize the head arrays to their final sizes */
1309 mutex_lock(&slab_mutex);
1310 list_for_each_entry(cachep, &slab_caches, list)
1311 if (enable_cpucache(cachep, GFP_NOWAIT))
1313 mutex_unlock(&slab_mutex);
1320 * Register a memory hotplug callback that initializes and frees
1323 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1327 * The reap timers are started later, with a module init call: That part
1328 * of the kernel is not yet operational.
1332 static int __init cpucache_init(void)
1337 * Register the timers that return unneeded pages to the page allocator
1339 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1340 slab_online_cpu, slab_offline_cpu);
1345 __initcall(cpucache_init);
1347 static noinline void
1348 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1351 struct kmem_cache_node *n;
1352 unsigned long flags;
1354 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1355 DEFAULT_RATELIMIT_BURST);
1357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1360 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1361 nodeid, gfpflags, &gfpflags);
1362 pr_warn(" cache: %s, object size: %d, order: %d\n",
1363 cachep->name, cachep->size, cachep->gfporder);
1365 for_each_kmem_cache_node(cachep, node, n) {
1366 unsigned long total_slabs, free_slabs, free_objs;
1368 spin_lock_irqsave(&n->list_lock, flags);
1369 total_slabs = n->total_slabs;
1370 free_slabs = n->free_slabs;
1371 free_objs = n->free_objects;
1372 spin_unlock_irqrestore(&n->list_lock, flags);
1374 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1375 node, total_slabs - free_slabs, total_slabs,
1376 (total_slabs * cachep->num) - free_objs,
1377 total_slabs * cachep->num);
1383 * Interface to system's page allocator. No need to hold the
1384 * kmem_cache_node ->list_lock.
1386 * If we requested dmaable memory, we will get it. Even if we
1387 * did not request dmaable memory, we might get it, but that
1388 * would be relatively rare and ignorable.
1390 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1396 flags |= cachep->allocflags;
1398 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1400 slab_out_of_memory(cachep, flags, nodeid);
1404 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1405 __free_pages(page, cachep->gfporder);
1409 nr_pages = (1 << cachep->gfporder);
1410 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1413 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1415 __SetPageSlab(page);
1416 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1417 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1418 SetPageSlabPfmemalloc(page);
1424 * Interface to system's page release.
1426 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1428 int order = cachep->gfporder;
1429 unsigned long nr_freed = (1 << order);
1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1436 BUG_ON(!PageSlab(page));
1437 __ClearPageSlabPfmemalloc(page);
1438 __ClearPageSlab(page);
1439 page_mapcount_reset(page);
1440 page->mapping = NULL;
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += nr_freed;
1444 memcg_uncharge_slab(page, order, cachep);
1445 __free_pages(page, order);
1448 static void kmem_rcu_free(struct rcu_head *head)
1450 struct kmem_cache *cachep;
1453 page = container_of(head, struct page, rcu_head);
1454 cachep = page->slab_cache;
1456 kmem_freepages(cachep, page);
1460 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1462 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1463 (cachep->size % PAGE_SIZE) == 0)
1469 #ifdef CONFIG_DEBUG_PAGEALLOC
1470 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1471 unsigned long caller)
1473 int size = cachep->object_size;
1475 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1477 if (size < 5 * sizeof(unsigned long))
1480 *addr++ = 0x12345678;
1482 *addr++ = smp_processor_id();
1483 size -= 3 * sizeof(unsigned long);
1485 unsigned long *sptr = &caller;
1486 unsigned long svalue;
1488 while (!kstack_end(sptr)) {
1490 if (kernel_text_address(svalue)) {
1492 size -= sizeof(unsigned long);
1493 if (size <= sizeof(unsigned long))
1499 *addr++ = 0x87654321;
1502 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1503 int map, unsigned long caller)
1505 if (!is_debug_pagealloc_cache(cachep))
1509 store_stackinfo(cachep, objp, caller);
1511 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1515 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 int map, unsigned long caller) {}
1520 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1522 int size = cachep->object_size;
1523 addr = &((char *)addr)[obj_offset(cachep)];
1525 memset(addr, val, size);
1526 *(unsigned char *)(addr + size - 1) = POISON_END;
1529 static void dump_line(char *data, int offset, int limit)
1532 unsigned char error = 0;
1535 pr_err("%03x: ", offset);
1536 for (i = 0; i < limit; i++) {
1537 if (data[offset + i] != POISON_FREE) {
1538 error = data[offset + i];
1542 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1543 &data[offset], limit, 1);
1545 if (bad_count == 1) {
1546 error ^= POISON_FREE;
1547 if (!(error & (error - 1))) {
1548 pr_err("Single bit error detected. Probably bad RAM.\n");
1550 pr_err("Run memtest86+ or a similar memory test tool.\n");
1552 pr_err("Run a memory test tool.\n");
1561 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1566 if (cachep->flags & SLAB_RED_ZONE) {
1567 pr_err("Redzone: 0x%llx/0x%llx\n",
1568 *dbg_redzone1(cachep, objp),
1569 *dbg_redzone2(cachep, objp));
1572 if (cachep->flags & SLAB_STORE_USER)
1573 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1574 realobj = (char *)objp + obj_offset(cachep);
1575 size = cachep->object_size;
1576 for (i = 0; i < size && lines; i += 16, lines--) {
1579 if (i + limit > size)
1581 dump_line(realobj, i, limit);
1585 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1591 if (is_debug_pagealloc_cache(cachep))
1594 realobj = (char *)objp + obj_offset(cachep);
1595 size = cachep->object_size;
1597 for (i = 0; i < size; i++) {
1598 char exp = POISON_FREE;
1601 if (realobj[i] != exp) {
1606 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1607 print_tainted(), cachep->name,
1609 print_objinfo(cachep, objp, 0);
1611 /* Hexdump the affected line */
1614 if (i + limit > size)
1616 dump_line(realobj, i, limit);
1619 /* Limit to 5 lines */
1625 /* Print some data about the neighboring objects, if they
1628 struct page *page = virt_to_head_page(objp);
1631 objnr = obj_to_index(cachep, page, objp);
1633 objp = index_to_obj(cachep, page, objnr - 1);
1634 realobj = (char *)objp + obj_offset(cachep);
1635 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1636 print_objinfo(cachep, objp, 2);
1638 if (objnr + 1 < cachep->num) {
1639 objp = index_to_obj(cachep, page, objnr + 1);
1640 realobj = (char *)objp + obj_offset(cachep);
1641 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1642 print_objinfo(cachep, objp, 2);
1649 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1654 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1655 poison_obj(cachep, page->freelist - obj_offset(cachep),
1659 for (i = 0; i < cachep->num; i++) {
1660 void *objp = index_to_obj(cachep, page, i);
1662 if (cachep->flags & SLAB_POISON) {
1663 check_poison_obj(cachep, objp);
1664 slab_kernel_map(cachep, objp, 1, 0);
1666 if (cachep->flags & SLAB_RED_ZONE) {
1667 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1668 slab_error(cachep, "start of a freed object was overwritten");
1669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1670 slab_error(cachep, "end of a freed object was overwritten");
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 * slab_destroy - destroy and release all objects in a slab
1683 * @cachep: cache pointer being destroyed
1684 * @page: page pointer being destroyed
1686 * Destroy all the objs in a slab page, and release the mem back to the system.
1687 * Before calling the slab page must have been unlinked from the cache. The
1688 * kmem_cache_node ->list_lock is not held/needed.
1690 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1694 freelist = page->freelist;
1695 slab_destroy_debugcheck(cachep, page);
1696 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1697 call_rcu(&page->rcu_head, kmem_rcu_free);
1699 kmem_freepages(cachep, page);
1702 * From now on, we don't use freelist
1703 * although actual page can be freed in rcu context
1705 if (OFF_SLAB(cachep))
1706 kmem_cache_free(cachep->freelist_cache, freelist);
1709 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1711 struct page *page, *n;
1713 list_for_each_entry_safe(page, n, list, lru) {
1714 list_del(&page->lru);
1715 slab_destroy(cachep, page);
1720 * calculate_slab_order - calculate size (page order) of slabs
1721 * @cachep: pointer to the cache that is being created
1722 * @size: size of objects to be created in this cache.
1723 * @flags: slab allocation flags
1725 * Also calculates the number of objects per slab.
1727 * This could be made much more intelligent. For now, try to avoid using
1728 * high order pages for slabs. When the gfp() functions are more friendly
1729 * towards high-order requests, this should be changed.
1731 static size_t calculate_slab_order(struct kmem_cache *cachep,
1732 size_t size, slab_flags_t flags)
1734 size_t left_over = 0;
1737 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1741 num = cache_estimate(gfporder, size, flags, &remainder);
1745 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1746 if (num > SLAB_OBJ_MAX_NUM)
1749 if (flags & CFLGS_OFF_SLAB) {
1750 struct kmem_cache *freelist_cache;
1751 size_t freelist_size;
1753 freelist_size = num * sizeof(freelist_idx_t);
1754 freelist_cache = kmalloc_slab(freelist_size, 0u);
1755 if (!freelist_cache)
1759 * Needed to avoid possible looping condition
1760 * in cache_grow_begin()
1762 if (OFF_SLAB(freelist_cache))
1765 /* check if off slab has enough benefit */
1766 if (freelist_cache->size > cachep->size / 2)
1770 /* Found something acceptable - save it away */
1772 cachep->gfporder = gfporder;
1773 left_over = remainder;
1776 * A VFS-reclaimable slab tends to have most allocations
1777 * as GFP_NOFS and we really don't want to have to be allocating
1778 * higher-order pages when we are unable to shrink dcache.
1780 if (flags & SLAB_RECLAIM_ACCOUNT)
1784 * Large number of objects is good, but very large slabs are
1785 * currently bad for the gfp()s.
1787 if (gfporder >= slab_max_order)
1791 * Acceptable internal fragmentation?
1793 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1799 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1800 struct kmem_cache *cachep, int entries, int batchcount)
1804 struct array_cache __percpu *cpu_cache;
1806 size = sizeof(void *) * entries + sizeof(struct array_cache);
1807 cpu_cache = __alloc_percpu(size, sizeof(void *));
1812 for_each_possible_cpu(cpu) {
1813 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1814 entries, batchcount);
1820 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1822 if (slab_state >= FULL)
1823 return enable_cpucache(cachep, gfp);
1825 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1826 if (!cachep->cpu_cache)
1829 if (slab_state == DOWN) {
1830 /* Creation of first cache (kmem_cache). */
1831 set_up_node(kmem_cache, CACHE_CACHE);
1832 } else if (slab_state == PARTIAL) {
1833 /* For kmem_cache_node */
1834 set_up_node(cachep, SIZE_NODE);
1838 for_each_online_node(node) {
1839 cachep->node[node] = kmalloc_node(
1840 sizeof(struct kmem_cache_node), gfp, node);
1841 BUG_ON(!cachep->node[node]);
1842 kmem_cache_node_init(cachep->node[node]);
1846 cachep->node[numa_mem_id()]->next_reap =
1847 jiffies + REAPTIMEOUT_NODE +
1848 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1850 cpu_cache_get(cachep)->avail = 0;
1851 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1852 cpu_cache_get(cachep)->batchcount = 1;
1853 cpu_cache_get(cachep)->touched = 0;
1854 cachep->batchcount = 1;
1855 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1859 slab_flags_t kmem_cache_flags(unsigned int object_size,
1860 slab_flags_t flags, const char *name,
1861 void (*ctor)(void *))
1867 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1868 slab_flags_t flags, void (*ctor)(void *))
1870 struct kmem_cache *cachep;
1872 cachep = find_mergeable(size, align, flags, name, ctor);
1877 * Adjust the object sizes so that we clear
1878 * the complete object on kzalloc.
1880 cachep->object_size = max_t(int, cachep->object_size, size);
1885 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1886 size_t size, slab_flags_t flags)
1892 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1895 left = calculate_slab_order(cachep, size,
1896 flags | CFLGS_OBJFREELIST_SLAB);
1900 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1903 cachep->colour = left / cachep->colour_off;
1908 static bool set_off_slab_cache(struct kmem_cache *cachep,
1909 size_t size, slab_flags_t flags)
1916 * Always use on-slab management when SLAB_NOLEAKTRACE
1917 * to avoid recursive calls into kmemleak.
1919 if (flags & SLAB_NOLEAKTRACE)
1923 * Size is large, assume best to place the slab management obj
1924 * off-slab (should allow better packing of objs).
1926 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1931 * If the slab has been placed off-slab, and we have enough space then
1932 * move it on-slab. This is at the expense of any extra colouring.
1934 if (left >= cachep->num * sizeof(freelist_idx_t))
1937 cachep->colour = left / cachep->colour_off;
1942 static bool set_on_slab_cache(struct kmem_cache *cachep,
1943 size_t size, slab_flags_t flags)
1949 left = calculate_slab_order(cachep, size, flags);
1953 cachep->colour = left / cachep->colour_off;
1959 * __kmem_cache_create - Create a cache.
1960 * @cachep: cache management descriptor
1961 * @flags: SLAB flags
1963 * Returns a ptr to the cache on success, NULL on failure.
1964 * Cannot be called within a int, but can be interrupted.
1965 * The @ctor is run when new pages are allocated by the cache.
1969 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1970 * to catch references to uninitialised memory.
1972 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1973 * for buffer overruns.
1975 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1976 * cacheline. This can be beneficial if you're counting cycles as closely
1979 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1981 size_t ralign = BYTES_PER_WORD;
1984 unsigned int size = cachep->size;
1989 * Enable redzoning and last user accounting, except for caches with
1990 * large objects, if the increased size would increase the object size
1991 * above the next power of two: caches with object sizes just above a
1992 * power of two have a significant amount of internal fragmentation.
1994 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1995 2 * sizeof(unsigned long long)))
1996 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1997 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1998 flags |= SLAB_POISON;
2003 * Check that size is in terms of words. This is needed to avoid
2004 * unaligned accesses for some archs when redzoning is used, and makes
2005 * sure any on-slab bufctl's are also correctly aligned.
2007 size = ALIGN(size, BYTES_PER_WORD);
2009 if (flags & SLAB_RED_ZONE) {
2010 ralign = REDZONE_ALIGN;
2011 /* If redzoning, ensure that the second redzone is suitably
2012 * aligned, by adjusting the object size accordingly. */
2013 size = ALIGN(size, REDZONE_ALIGN);
2016 /* 3) caller mandated alignment */
2017 if (ralign < cachep->align) {
2018 ralign = cachep->align;
2020 /* disable debug if necessary */
2021 if (ralign > __alignof__(unsigned long long))
2022 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2026 cachep->align = ralign;
2027 cachep->colour_off = cache_line_size();
2028 /* Offset must be a multiple of the alignment. */
2029 if (cachep->colour_off < cachep->align)
2030 cachep->colour_off = cachep->align;
2032 if (slab_is_available())
2040 * Both debugging options require word-alignment which is calculated
2043 if (flags & SLAB_RED_ZONE) {
2044 /* add space for red zone words */
2045 cachep->obj_offset += sizeof(unsigned long long);
2046 size += 2 * sizeof(unsigned long long);
2048 if (flags & SLAB_STORE_USER) {
2049 /* user store requires one word storage behind the end of
2050 * the real object. But if the second red zone needs to be
2051 * aligned to 64 bits, we must allow that much space.
2053 if (flags & SLAB_RED_ZONE)
2054 size += REDZONE_ALIGN;
2056 size += BYTES_PER_WORD;
2060 kasan_cache_create(cachep, &size, &flags);
2062 size = ALIGN(size, cachep->align);
2064 * We should restrict the number of objects in a slab to implement
2065 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2067 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2068 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2072 * To activate debug pagealloc, off-slab management is necessary
2073 * requirement. In early phase of initialization, small sized slab
2074 * doesn't get initialized so it would not be possible. So, we need
2075 * to check size >= 256. It guarantees that all necessary small
2076 * sized slab is initialized in current slab initialization sequence.
2078 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2079 size >= 256 && cachep->object_size > cache_line_size()) {
2080 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2081 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2083 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2084 flags |= CFLGS_OFF_SLAB;
2085 cachep->obj_offset += tmp_size - size;
2093 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2094 flags |= CFLGS_OBJFREELIST_SLAB;
2098 if (set_off_slab_cache(cachep, size, flags)) {
2099 flags |= CFLGS_OFF_SLAB;
2103 if (set_on_slab_cache(cachep, size, flags))
2109 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2110 cachep->flags = flags;
2111 cachep->allocflags = __GFP_COMP;
2112 if (flags & SLAB_CACHE_DMA)
2113 cachep->allocflags |= GFP_DMA;
2114 if (flags & SLAB_RECLAIM_ACCOUNT)
2115 cachep->allocflags |= __GFP_RECLAIMABLE;
2116 cachep->size = size;
2117 cachep->reciprocal_buffer_size = reciprocal_value(size);
2121 * If we're going to use the generic kernel_map_pages()
2122 * poisoning, then it's going to smash the contents of
2123 * the redzone and userword anyhow, so switch them off.
2125 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2126 (cachep->flags & SLAB_POISON) &&
2127 is_debug_pagealloc_cache(cachep))
2128 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2131 if (OFF_SLAB(cachep)) {
2132 cachep->freelist_cache =
2133 kmalloc_slab(cachep->freelist_size, 0u);
2136 err = setup_cpu_cache(cachep, gfp);
2138 __kmem_cache_release(cachep);
2146 static void check_irq_off(void)
2148 BUG_ON(!irqs_disabled());
2151 static void check_irq_on(void)
2153 BUG_ON(irqs_disabled());
2156 static void check_mutex_acquired(void)
2158 BUG_ON(!mutex_is_locked(&slab_mutex));
2161 static void check_spinlock_acquired(struct kmem_cache *cachep)
2165 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2169 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2173 assert_spin_locked(&get_node(cachep, node)->list_lock);
2178 #define check_irq_off() do { } while(0)
2179 #define check_irq_on() do { } while(0)
2180 #define check_mutex_acquired() do { } while(0)
2181 #define check_spinlock_acquired(x) do { } while(0)
2182 #define check_spinlock_acquired_node(x, y) do { } while(0)
2185 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2186 int node, bool free_all, struct list_head *list)
2190 if (!ac || !ac->avail)
2193 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2194 if (tofree > ac->avail)
2195 tofree = (ac->avail + 1) / 2;
2197 free_block(cachep, ac->entry, tofree, node, list);
2198 ac->avail -= tofree;
2199 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2202 static void do_drain(void *arg)
2204 struct kmem_cache *cachep = arg;
2205 struct array_cache *ac;
2206 int node = numa_mem_id();
2207 struct kmem_cache_node *n;
2211 ac = cpu_cache_get(cachep);
2212 n = get_node(cachep, node);
2213 spin_lock(&n->list_lock);
2214 free_block(cachep, ac->entry, ac->avail, node, &list);
2215 spin_unlock(&n->list_lock);
2216 slabs_destroy(cachep, &list);
2220 static void drain_cpu_caches(struct kmem_cache *cachep)
2222 struct kmem_cache_node *n;
2226 on_each_cpu(do_drain, cachep, 1);
2228 for_each_kmem_cache_node(cachep, node, n)
2230 drain_alien_cache(cachep, n->alien);
2232 for_each_kmem_cache_node(cachep, node, n) {
2233 spin_lock_irq(&n->list_lock);
2234 drain_array_locked(cachep, n->shared, node, true, &list);
2235 spin_unlock_irq(&n->list_lock);
2237 slabs_destroy(cachep, &list);
2242 * Remove slabs from the list of free slabs.
2243 * Specify the number of slabs to drain in tofree.
2245 * Returns the actual number of slabs released.
2247 static int drain_freelist(struct kmem_cache *cache,
2248 struct kmem_cache_node *n, int tofree)
2250 struct list_head *p;
2255 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2257 spin_lock_irq(&n->list_lock);
2258 p = n->slabs_free.prev;
2259 if (p == &n->slabs_free) {
2260 spin_unlock_irq(&n->list_lock);
2264 page = list_entry(p, struct page, lru);
2265 list_del(&page->lru);
2269 * Safe to drop the lock. The slab is no longer linked
2272 n->free_objects -= cache->num;
2273 spin_unlock_irq(&n->list_lock);
2274 slab_destroy(cache, page);
2281 bool __kmem_cache_empty(struct kmem_cache *s)
2284 struct kmem_cache_node *n;
2286 for_each_kmem_cache_node(s, node, n)
2287 if (!list_empty(&n->slabs_full) ||
2288 !list_empty(&n->slabs_partial))
2293 int __kmem_cache_shrink(struct kmem_cache *cachep)
2297 struct kmem_cache_node *n;
2299 drain_cpu_caches(cachep);
2302 for_each_kmem_cache_node(cachep, node, n) {
2303 drain_freelist(cachep, n, INT_MAX);
2305 ret += !list_empty(&n->slabs_full) ||
2306 !list_empty(&n->slabs_partial);
2308 return (ret ? 1 : 0);
2312 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2314 __kmem_cache_shrink(cachep);
2318 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2320 return __kmem_cache_shrink(cachep);
2323 void __kmem_cache_release(struct kmem_cache *cachep)
2326 struct kmem_cache_node *n;
2328 cache_random_seq_destroy(cachep);
2330 free_percpu(cachep->cpu_cache);
2332 /* NUMA: free the node structures */
2333 for_each_kmem_cache_node(cachep, i, n) {
2335 free_alien_cache(n->alien);
2337 cachep->node[i] = NULL;
2342 * Get the memory for a slab management obj.
2344 * For a slab cache when the slab descriptor is off-slab, the
2345 * slab descriptor can't come from the same cache which is being created,
2346 * Because if it is the case, that means we defer the creation of
2347 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2348 * And we eventually call down to __kmem_cache_create(), which
2349 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2350 * This is a "chicken-and-egg" problem.
2352 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2353 * which are all initialized during kmem_cache_init().
2355 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2356 struct page *page, int colour_off,
2357 gfp_t local_flags, int nodeid)
2360 void *addr = page_address(page);
2362 page->s_mem = kasan_reset_tag(addr) + colour_off;
2365 if (OBJFREELIST_SLAB(cachep))
2367 else if (OFF_SLAB(cachep)) {
2368 /* Slab management obj is off-slab. */
2369 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2370 local_flags, nodeid);
2374 /* We will use last bytes at the slab for freelist */
2375 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2376 cachep->freelist_size;
2382 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2384 return ((freelist_idx_t *)page->freelist)[idx];
2387 static inline void set_free_obj(struct page *page,
2388 unsigned int idx, freelist_idx_t val)
2390 ((freelist_idx_t *)(page->freelist))[idx] = val;
2393 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2398 for (i = 0; i < cachep->num; i++) {
2399 void *objp = index_to_obj(cachep, page, i);
2401 if (cachep->flags & SLAB_STORE_USER)
2402 *dbg_userword(cachep, objp) = NULL;
2404 if (cachep->flags & SLAB_RED_ZONE) {
2405 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2406 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2409 * Constructors are not allowed to allocate memory from the same
2410 * cache which they are a constructor for. Otherwise, deadlock.
2411 * They must also be threaded.
2413 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2414 kasan_unpoison_object_data(cachep,
2415 objp + obj_offset(cachep));
2416 cachep->ctor(objp + obj_offset(cachep));
2417 kasan_poison_object_data(
2418 cachep, objp + obj_offset(cachep));
2421 if (cachep->flags & SLAB_RED_ZONE) {
2422 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2423 slab_error(cachep, "constructor overwrote the end of an object");
2424 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2425 slab_error(cachep, "constructor overwrote the start of an object");
2427 /* need to poison the objs? */
2428 if (cachep->flags & SLAB_POISON) {
2429 poison_obj(cachep, objp, POISON_FREE);
2430 slab_kernel_map(cachep, objp, 0, 0);
2436 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2437 /* Hold information during a freelist initialization */
2438 union freelist_init_state {
2444 struct rnd_state rnd_state;
2448 * Initialize the state based on the randomization methode available.
2449 * return true if the pre-computed list is available, false otherwize.
2451 static bool freelist_state_initialize(union freelist_init_state *state,
2452 struct kmem_cache *cachep,
2458 /* Use best entropy available to define a random shift */
2459 rand = get_random_int();
2461 /* Use a random state if the pre-computed list is not available */
2462 if (!cachep->random_seq) {
2463 prandom_seed_state(&state->rnd_state, rand);
2466 state->list = cachep->random_seq;
2467 state->count = count;
2468 state->pos = rand % count;
2474 /* Get the next entry on the list and randomize it using a random shift */
2475 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2477 if (state->pos >= state->count)
2479 return state->list[state->pos++];
2482 /* Swap two freelist entries */
2483 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2485 swap(((freelist_idx_t *)page->freelist)[a],
2486 ((freelist_idx_t *)page->freelist)[b]);
2490 * Shuffle the freelist initialization state based on pre-computed lists.
2491 * return true if the list was successfully shuffled, false otherwise.
2493 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2495 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2496 union freelist_init_state state;
2502 precomputed = freelist_state_initialize(&state, cachep, count);
2504 /* Take a random entry as the objfreelist */
2505 if (OBJFREELIST_SLAB(cachep)) {
2507 objfreelist = count - 1;
2509 objfreelist = next_random_slot(&state);
2510 page->freelist = index_to_obj(cachep, page, objfreelist) +
2516 * On early boot, generate the list dynamically.
2517 * Later use a pre-computed list for speed.
2520 for (i = 0; i < count; i++)
2521 set_free_obj(page, i, i);
2523 /* Fisher-Yates shuffle */
2524 for (i = count - 1; i > 0; i--) {
2525 rand = prandom_u32_state(&state.rnd_state);
2527 swap_free_obj(page, i, rand);
2530 for (i = 0; i < count; i++)
2531 set_free_obj(page, i, next_random_slot(&state));
2534 if (OBJFREELIST_SLAB(cachep))
2535 set_free_obj(page, cachep->num - 1, objfreelist);
2540 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2545 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2547 static void cache_init_objs(struct kmem_cache *cachep,
2554 cache_init_objs_debug(cachep, page);
2556 /* Try to randomize the freelist if enabled */
2557 shuffled = shuffle_freelist(cachep, page);
2559 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2560 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2564 for (i = 0; i < cachep->num; i++) {
2565 objp = index_to_obj(cachep, page, i);
2566 objp = kasan_init_slab_obj(cachep, objp);
2568 /* constructor could break poison info */
2569 if (DEBUG == 0 && cachep->ctor) {
2570 kasan_unpoison_object_data(cachep, objp);
2572 kasan_poison_object_data(cachep, objp);
2576 set_free_obj(page, i, i);
2580 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2584 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2588 if (cachep->flags & SLAB_STORE_USER)
2589 set_store_user_dirty(cachep);
2595 static void slab_put_obj(struct kmem_cache *cachep,
2596 struct page *page, void *objp)
2598 unsigned int objnr = obj_to_index(cachep, page, objp);
2602 /* Verify double free bug */
2603 for (i = page->active; i < cachep->num; i++) {
2604 if (get_free_obj(page, i) == objnr) {
2605 pr_err("slab: double free detected in cache '%s', objp %px\n",
2606 cachep->name, objp);
2612 if (!page->freelist)
2613 page->freelist = objp + obj_offset(cachep);
2615 set_free_obj(page, page->active, objnr);
2619 * Map pages beginning at addr to the given cache and slab. This is required
2620 * for the slab allocator to be able to lookup the cache and slab of a
2621 * virtual address for kfree, ksize, and slab debugging.
2623 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2626 page->slab_cache = cache;
2627 page->freelist = freelist;
2631 * Grow (by 1) the number of slabs within a cache. This is called by
2632 * kmem_cache_alloc() when there are no active objs left in a cache.
2634 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2635 gfp_t flags, int nodeid)
2641 struct kmem_cache_node *n;
2645 * Be lazy and only check for valid flags here, keeping it out of the
2646 * critical path in kmem_cache_alloc().
2648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2650 flags &= ~GFP_SLAB_BUG_MASK;
2651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2652 invalid_mask, &invalid_mask, flags, &flags);
2655 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2656 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2659 if (gfpflags_allow_blocking(local_flags))
2663 * Get mem for the objs. Attempt to allocate a physical page from
2666 page = kmem_getpages(cachep, local_flags, nodeid);
2670 page_node = page_to_nid(page);
2671 n = get_node(cachep, page_node);
2673 /* Get colour for the slab, and cal the next value. */
2675 if (n->colour_next >= cachep->colour)
2678 offset = n->colour_next;
2679 if (offset >= cachep->colour)
2682 offset *= cachep->colour_off;
2684 /* Get slab management. */
2685 freelist = alloc_slabmgmt(cachep, page, offset,
2686 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2687 if (OFF_SLAB(cachep) && !freelist)
2690 slab_map_pages(cachep, page, freelist);
2692 kasan_poison_slab(page);
2693 cache_init_objs(cachep, page);
2695 if (gfpflags_allow_blocking(local_flags))
2696 local_irq_disable();
2701 kmem_freepages(cachep, page);
2703 if (gfpflags_allow_blocking(local_flags))
2704 local_irq_disable();
2708 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2710 struct kmem_cache_node *n;
2718 INIT_LIST_HEAD(&page->lru);
2719 n = get_node(cachep, page_to_nid(page));
2721 spin_lock(&n->list_lock);
2723 if (!page->active) {
2724 list_add_tail(&page->lru, &(n->slabs_free));
2727 fixup_slab_list(cachep, n, page, &list);
2729 STATS_INC_GROWN(cachep);
2730 n->free_objects += cachep->num - page->active;
2731 spin_unlock(&n->list_lock);
2733 fixup_objfreelist_debug(cachep, &list);
2739 * Perform extra freeing checks:
2740 * - detect bad pointers.
2741 * - POISON/RED_ZONE checking
2743 static void kfree_debugcheck(const void *objp)
2745 if (!virt_addr_valid(objp)) {
2746 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2747 (unsigned long)objp);
2752 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2754 unsigned long long redzone1, redzone2;
2756 redzone1 = *dbg_redzone1(cache, obj);
2757 redzone2 = *dbg_redzone2(cache, obj);
2762 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2765 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2766 slab_error(cache, "double free detected");
2768 slab_error(cache, "memory outside object was overwritten");
2770 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2771 obj, redzone1, redzone2);
2774 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2775 unsigned long caller)
2780 BUG_ON(virt_to_cache(objp) != cachep);
2782 objp -= obj_offset(cachep);
2783 kfree_debugcheck(objp);
2784 page = virt_to_head_page(objp);
2786 if (cachep->flags & SLAB_RED_ZONE) {
2787 verify_redzone_free(cachep, objp);
2788 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2789 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2791 if (cachep->flags & SLAB_STORE_USER) {
2792 set_store_user_dirty(cachep);
2793 *dbg_userword(cachep, objp) = (void *)caller;
2796 objnr = obj_to_index(cachep, page, objp);
2798 BUG_ON(objnr >= cachep->num);
2799 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2801 if (cachep->flags & SLAB_POISON) {
2802 poison_obj(cachep, objp, POISON_FREE);
2803 slab_kernel_map(cachep, objp, 0, caller);
2809 #define kfree_debugcheck(x) do { } while(0)
2810 #define cache_free_debugcheck(x,objp,z) (objp)
2813 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2821 objp = next - obj_offset(cachep);
2822 next = *(void **)next;
2823 poison_obj(cachep, objp, POISON_FREE);
2828 static inline void fixup_slab_list(struct kmem_cache *cachep,
2829 struct kmem_cache_node *n, struct page *page,
2832 /* move slabp to correct slabp list: */
2833 list_del(&page->lru);
2834 if (page->active == cachep->num) {
2835 list_add(&page->lru, &n->slabs_full);
2836 if (OBJFREELIST_SLAB(cachep)) {
2838 /* Poisoning will be done without holding the lock */
2839 if (cachep->flags & SLAB_POISON) {
2840 void **objp = page->freelist;
2846 page->freelist = NULL;
2849 list_add(&page->lru, &n->slabs_partial);
2852 /* Try to find non-pfmemalloc slab if needed */
2853 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2854 struct page *page, bool pfmemalloc)
2862 if (!PageSlabPfmemalloc(page))
2865 /* No need to keep pfmemalloc slab if we have enough free objects */
2866 if (n->free_objects > n->free_limit) {
2867 ClearPageSlabPfmemalloc(page);
2871 /* Move pfmemalloc slab to the end of list to speed up next search */
2872 list_del(&page->lru);
2873 if (!page->active) {
2874 list_add_tail(&page->lru, &n->slabs_free);
2877 list_add_tail(&page->lru, &n->slabs_partial);
2879 list_for_each_entry(page, &n->slabs_partial, lru) {
2880 if (!PageSlabPfmemalloc(page))
2884 n->free_touched = 1;
2885 list_for_each_entry(page, &n->slabs_free, lru) {
2886 if (!PageSlabPfmemalloc(page)) {
2895 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2899 assert_spin_locked(&n->list_lock);
2900 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2902 n->free_touched = 1;
2903 page = list_first_entry_or_null(&n->slabs_free, struct page,
2909 if (sk_memalloc_socks())
2910 page = get_valid_first_slab(n, page, pfmemalloc);
2915 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2916 struct kmem_cache_node *n, gfp_t flags)
2922 if (!gfp_pfmemalloc_allowed(flags))
2925 spin_lock(&n->list_lock);
2926 page = get_first_slab(n, true);
2928 spin_unlock(&n->list_lock);
2932 obj = slab_get_obj(cachep, page);
2935 fixup_slab_list(cachep, n, page, &list);
2937 spin_unlock(&n->list_lock);
2938 fixup_objfreelist_debug(cachep, &list);
2944 * Slab list should be fixed up by fixup_slab_list() for existing slab
2945 * or cache_grow_end() for new slab
2947 static __always_inline int alloc_block(struct kmem_cache *cachep,
2948 struct array_cache *ac, struct page *page, int batchcount)
2951 * There must be at least one object available for
2954 BUG_ON(page->active >= cachep->num);
2956 while (page->active < cachep->num && batchcount--) {
2957 STATS_INC_ALLOCED(cachep);
2958 STATS_INC_ACTIVE(cachep);
2959 STATS_SET_HIGH(cachep);
2961 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2967 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2970 struct kmem_cache_node *n;
2971 struct array_cache *ac, *shared;
2977 node = numa_mem_id();
2979 ac = cpu_cache_get(cachep);
2980 batchcount = ac->batchcount;
2981 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2983 * If there was little recent activity on this cache, then
2984 * perform only a partial refill. Otherwise we could generate
2987 batchcount = BATCHREFILL_LIMIT;
2989 n = get_node(cachep, node);
2991 BUG_ON(ac->avail > 0 || !n);
2992 shared = READ_ONCE(n->shared);
2993 if (!n->free_objects && (!shared || !shared->avail))
2996 spin_lock(&n->list_lock);
2997 shared = READ_ONCE(n->shared);
2999 /* See if we can refill from the shared array */
3000 if (shared && transfer_objects(ac, shared, batchcount)) {
3001 shared->touched = 1;
3005 while (batchcount > 0) {
3006 /* Get slab alloc is to come from. */
3007 page = get_first_slab(n, false);
3011 check_spinlock_acquired(cachep);
3013 batchcount = alloc_block(cachep, ac, page, batchcount);
3014 fixup_slab_list(cachep, n, page, &list);
3018 n->free_objects -= ac->avail;
3020 spin_unlock(&n->list_lock);
3021 fixup_objfreelist_debug(cachep, &list);
3024 if (unlikely(!ac->avail)) {
3025 /* Check if we can use obj in pfmemalloc slab */
3026 if (sk_memalloc_socks()) {
3027 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3033 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3036 * cache_grow_begin() can reenable interrupts,
3037 * then ac could change.
3039 ac = cpu_cache_get(cachep);
3040 if (!ac->avail && page)
3041 alloc_block(cachep, ac, page, batchcount);
3042 cache_grow_end(cachep, page);
3049 return ac->entry[--ac->avail];
3052 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3055 might_sleep_if(gfpflags_allow_blocking(flags));
3059 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3060 gfp_t flags, void *objp, unsigned long caller)
3062 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3065 if (cachep->flags & SLAB_POISON) {
3066 check_poison_obj(cachep, objp);
3067 slab_kernel_map(cachep, objp, 1, 0);
3068 poison_obj(cachep, objp, POISON_INUSE);
3070 if (cachep->flags & SLAB_STORE_USER)
3071 *dbg_userword(cachep, objp) = (void *)caller;
3073 if (cachep->flags & SLAB_RED_ZONE) {
3074 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3075 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3076 slab_error(cachep, "double free, or memory outside object was overwritten");
3077 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3085 objp += obj_offset(cachep);
3086 if (cachep->ctor && cachep->flags & SLAB_POISON)
3088 if (ARCH_SLAB_MINALIGN &&
3089 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3090 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3091 objp, (int)ARCH_SLAB_MINALIGN);
3096 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3099 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3102 struct array_cache *ac;
3106 ac = cpu_cache_get(cachep);
3107 if (likely(ac->avail)) {
3109 objp = ac->entry[--ac->avail];
3111 STATS_INC_ALLOCHIT(cachep);
3115 STATS_INC_ALLOCMISS(cachep);
3116 objp = cache_alloc_refill(cachep, flags);
3118 * the 'ac' may be updated by cache_alloc_refill(),
3119 * and kmemleak_erase() requires its correct value.
3121 ac = cpu_cache_get(cachep);
3125 * To avoid a false negative, if an object that is in one of the
3126 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3127 * treat the array pointers as a reference to the object.
3130 kmemleak_erase(&ac->entry[ac->avail]);
3136 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3138 * If we are in_interrupt, then process context, including cpusets and
3139 * mempolicy, may not apply and should not be used for allocation policy.
3141 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3143 int nid_alloc, nid_here;
3145 if (in_interrupt() || (flags & __GFP_THISNODE))
3147 nid_alloc = nid_here = numa_mem_id();
3148 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3149 nid_alloc = cpuset_slab_spread_node();
3150 else if (current->mempolicy)
3151 nid_alloc = mempolicy_slab_node();
3152 if (nid_alloc != nid_here)
3153 return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 * Fallback function if there was no memory available and no objects on a
3159 * certain node and fall back is permitted. First we scan all the
3160 * available node for available objects. If that fails then we
3161 * perform an allocation without specifying a node. This allows the page
3162 * allocator to do its reclaim / fallback magic. We then insert the
3163 * slab into the proper nodelist and then allocate from it.
3165 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3167 struct zonelist *zonelist;
3170 enum zone_type high_zoneidx = gfp_zone(flags);
3174 unsigned int cpuset_mems_cookie;
3176 if (flags & __GFP_THISNODE)
3180 cpuset_mems_cookie = read_mems_allowed_begin();
3181 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3185 * Look through allowed nodes for objects available
3186 * from existing per node queues.
3188 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3189 nid = zone_to_nid(zone);
3191 if (cpuset_zone_allowed(zone, flags) &&
3192 get_node(cache, nid) &&
3193 get_node(cache, nid)->free_objects) {
3194 obj = ____cache_alloc_node(cache,
3195 gfp_exact_node(flags), nid);
3203 * This allocation will be performed within the constraints
3204 * of the current cpuset / memory policy requirements.
3205 * We may trigger various forms of reclaim on the allowed
3206 * set and go into memory reserves if necessary.
3208 page = cache_grow_begin(cache, flags, numa_mem_id());
3209 cache_grow_end(cache, page);
3211 nid = page_to_nid(page);
3212 obj = ____cache_alloc_node(cache,
3213 gfp_exact_node(flags), nid);
3216 * Another processor may allocate the objects in
3217 * the slab since we are not holding any locks.
3224 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3230 * A interface to enable slab creation on nodeid
3232 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3236 struct kmem_cache_node *n;
3240 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3241 n = get_node(cachep, nodeid);
3245 spin_lock(&n->list_lock);
3246 page = get_first_slab(n, false);
3250 check_spinlock_acquired_node(cachep, nodeid);
3252 STATS_INC_NODEALLOCS(cachep);
3253 STATS_INC_ACTIVE(cachep);
3254 STATS_SET_HIGH(cachep);
3256 BUG_ON(page->active == cachep->num);
3258 obj = slab_get_obj(cachep, page);
3261 fixup_slab_list(cachep, n, page, &list);
3263 spin_unlock(&n->list_lock);
3264 fixup_objfreelist_debug(cachep, &list);
3268 spin_unlock(&n->list_lock);
3269 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3271 /* This slab isn't counted yet so don't update free_objects */
3272 obj = slab_get_obj(cachep, page);
3274 cache_grow_end(cachep, page);
3276 return obj ? obj : fallback_alloc(cachep, flags);
3279 static __always_inline void *
3280 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3281 unsigned long caller)
3283 unsigned long save_flags;
3285 int slab_node = numa_mem_id();
3287 flags &= gfp_allowed_mask;
3288 cachep = slab_pre_alloc_hook(cachep, flags);
3289 if (unlikely(!cachep))
3292 cache_alloc_debugcheck_before(cachep, flags);
3293 local_irq_save(save_flags);
3295 if (nodeid == NUMA_NO_NODE)
3298 if (unlikely(!get_node(cachep, nodeid))) {
3299 /* Node not bootstrapped yet */
3300 ptr = fallback_alloc(cachep, flags);
3304 if (nodeid == slab_node) {
3306 * Use the locally cached objects if possible.
3307 * However ____cache_alloc does not allow fallback
3308 * to other nodes. It may fail while we still have
3309 * objects on other nodes available.
3311 ptr = ____cache_alloc(cachep, flags);
3315 /* ___cache_alloc_node can fall back to other nodes */
3316 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3318 local_irq_restore(save_flags);
3319 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3321 if (unlikely(flags & __GFP_ZERO) && ptr)
3322 memset(ptr, 0, cachep->object_size);
3324 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3328 static __always_inline void *
3329 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3333 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3334 objp = alternate_node_alloc(cache, flags);
3338 objp = ____cache_alloc(cache, flags);
3341 * We may just have run out of memory on the local node.
3342 * ____cache_alloc_node() knows how to locate memory on other nodes
3345 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3352 static __always_inline void *
3353 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3355 return ____cache_alloc(cachep, flags);
3358 #endif /* CONFIG_NUMA */
3360 static __always_inline void *
3361 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3363 unsigned long save_flags;
3366 flags &= gfp_allowed_mask;
3367 cachep = slab_pre_alloc_hook(cachep, flags);
3368 if (unlikely(!cachep))
3371 cache_alloc_debugcheck_before(cachep, flags);
3372 local_irq_save(save_flags);
3373 objp = __do_cache_alloc(cachep, flags);
3374 local_irq_restore(save_flags);
3375 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3378 if (unlikely(flags & __GFP_ZERO) && objp)
3379 memset(objp, 0, cachep->object_size);
3381 slab_post_alloc_hook(cachep, flags, 1, &objp);
3386 * Caller needs to acquire correct kmem_cache_node's list_lock
3387 * @list: List of detached free slabs should be freed by caller
3389 static void free_block(struct kmem_cache *cachep, void **objpp,
3390 int nr_objects, int node, struct list_head *list)
3393 struct kmem_cache_node *n = get_node(cachep, node);
3396 n->free_objects += nr_objects;
3398 for (i = 0; i < nr_objects; i++) {
3404 page = virt_to_head_page(objp);
3405 list_del(&page->lru);
3406 check_spinlock_acquired_node(cachep, node);
3407 slab_put_obj(cachep, page, objp);
3408 STATS_DEC_ACTIVE(cachep);
3410 /* fixup slab chains */
3411 if (page->active == 0) {
3412 list_add(&page->lru, &n->slabs_free);
3415 /* Unconditionally move a slab to the end of the
3416 * partial list on free - maximum time for the
3417 * other objects to be freed, too.
3419 list_add_tail(&page->lru, &n->slabs_partial);
3423 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3424 n->free_objects -= cachep->num;
3426 page = list_last_entry(&n->slabs_free, struct page, lru);
3427 list_move(&page->lru, list);
3433 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3436 struct kmem_cache_node *n;
3437 int node = numa_mem_id();
3440 batchcount = ac->batchcount;
3443 n = get_node(cachep, node);
3444 spin_lock(&n->list_lock);
3446 struct array_cache *shared_array = n->shared;
3447 int max = shared_array->limit - shared_array->avail;
3449 if (batchcount > max)
3451 memcpy(&(shared_array->entry[shared_array->avail]),
3452 ac->entry, sizeof(void *) * batchcount);
3453 shared_array->avail += batchcount;
3458 free_block(cachep, ac->entry, batchcount, node, &list);
3465 list_for_each_entry(page, &n->slabs_free, lru) {
3466 BUG_ON(page->active);
3470 STATS_SET_FREEABLE(cachep, i);
3473 spin_unlock(&n->list_lock);
3474 slabs_destroy(cachep, &list);
3475 ac->avail -= batchcount;
3476 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3480 * Release an obj back to its cache. If the obj has a constructed state, it must
3481 * be in this state _before_ it is released. Called with disabled ints.
3483 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3484 unsigned long caller)
3486 /* Put the object into the quarantine, don't touch it for now. */
3487 if (kasan_slab_free(cachep, objp, _RET_IP_))
3490 ___cache_free(cachep, objp, caller);
3493 void ___cache_free(struct kmem_cache *cachep, void *objp,
3494 unsigned long caller)
3496 struct array_cache *ac = cpu_cache_get(cachep);
3499 kmemleak_free_recursive(objp, cachep->flags);
3500 objp = cache_free_debugcheck(cachep, objp, caller);
3503 * Skip calling cache_free_alien() when the platform is not numa.
3504 * This will avoid cache misses that happen while accessing slabp (which
3505 * is per page memory reference) to get nodeid. Instead use a global
3506 * variable to skip the call, which is mostly likely to be present in
3509 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3512 if (ac->avail < ac->limit) {
3513 STATS_INC_FREEHIT(cachep);
3515 STATS_INC_FREEMISS(cachep);
3516 cache_flusharray(cachep, ac);
3519 if (sk_memalloc_socks()) {
3520 struct page *page = virt_to_head_page(objp);
3522 if (unlikely(PageSlabPfmemalloc(page))) {
3523 cache_free_pfmemalloc(cachep, page, objp);
3528 ac->entry[ac->avail++] = objp;
3532 * kmem_cache_alloc - Allocate an object
3533 * @cachep: The cache to allocate from.
3534 * @flags: See kmalloc().
3536 * Allocate an object from this cache. The flags are only relevant
3537 * if the cache has no available objects.
3539 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3541 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3543 ret = kasan_slab_alloc(cachep, ret, flags);
3544 trace_kmem_cache_alloc(_RET_IP_, ret,
3545 cachep->object_size, cachep->size, flags);
3549 EXPORT_SYMBOL(kmem_cache_alloc);
3551 static __always_inline void
3552 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3553 size_t size, void **p, unsigned long caller)
3557 for (i = 0; i < size; i++)
3558 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3561 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3566 s = slab_pre_alloc_hook(s, flags);
3570 cache_alloc_debugcheck_before(s, flags);
3572 local_irq_disable();
3573 for (i = 0; i < size; i++) {
3574 void *objp = __do_cache_alloc(s, flags);
3576 if (unlikely(!objp))
3582 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3584 /* Clear memory outside IRQ disabled section */
3585 if (unlikely(flags & __GFP_ZERO))
3586 for (i = 0; i < size; i++)
3587 memset(p[i], 0, s->object_size);
3589 slab_post_alloc_hook(s, flags, size, p);
3590 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3594 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3595 slab_post_alloc_hook(s, flags, i, p);
3596 __kmem_cache_free_bulk(s, i, p);
3599 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3601 #ifdef CONFIG_TRACING
3603 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3607 ret = slab_alloc(cachep, flags, _RET_IP_);
3609 ret = kasan_kmalloc(cachep, ret, size, flags);
3610 trace_kmalloc(_RET_IP_, ret,
3611 size, cachep->size, flags);
3614 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3619 * kmem_cache_alloc_node - Allocate an object on the specified node
3620 * @cachep: The cache to allocate from.
3621 * @flags: See kmalloc().
3622 * @nodeid: node number of the target node.
3624 * Identical to kmem_cache_alloc but it will allocate memory on the given
3625 * node, which can improve the performance for cpu bound structures.
3627 * Fallback to other node is possible if __GFP_THISNODE is not set.
3629 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3631 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3633 ret = kasan_slab_alloc(cachep, ret, flags);
3634 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3635 cachep->object_size, cachep->size,
3640 EXPORT_SYMBOL(kmem_cache_alloc_node);
3642 #ifdef CONFIG_TRACING
3643 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3650 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3652 ret = kasan_kmalloc(cachep, ret, size, flags);
3653 trace_kmalloc_node(_RET_IP_, ret,
3658 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3661 static __always_inline void *
3662 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3664 struct kmem_cache *cachep;
3667 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3669 cachep = kmalloc_slab(size, flags);
3670 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3672 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3673 ret = kasan_kmalloc(cachep, ret, size, flags);
3678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3680 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3682 EXPORT_SYMBOL(__kmalloc_node);
3684 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3685 int node, unsigned long caller)
3687 return __do_kmalloc_node(size, flags, node, caller);
3689 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3690 #endif /* CONFIG_NUMA */
3693 * __do_kmalloc - allocate memory
3694 * @size: how many bytes of memory are required.
3695 * @flags: the type of memory to allocate (see kmalloc).
3696 * @caller: function caller for debug tracking of the caller
3698 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3699 unsigned long caller)
3701 struct kmem_cache *cachep;
3704 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3706 cachep = kmalloc_slab(size, flags);
3707 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3709 ret = slab_alloc(cachep, flags, caller);
3711 ret = kasan_kmalloc(cachep, ret, size, flags);
3712 trace_kmalloc(caller, ret,
3713 size, cachep->size, flags);
3718 void *__kmalloc(size_t size, gfp_t flags)
3720 return __do_kmalloc(size, flags, _RET_IP_);
3722 EXPORT_SYMBOL(__kmalloc);
3724 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3726 return __do_kmalloc(size, flags, caller);
3728 EXPORT_SYMBOL(__kmalloc_track_caller);
3731 * kmem_cache_free - Deallocate an object
3732 * @cachep: The cache the allocation was from.
3733 * @objp: The previously allocated object.
3735 * Free an object which was previously allocated from this
3738 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3740 unsigned long flags;
3741 cachep = cache_from_obj(cachep, objp);
3745 local_irq_save(flags);
3746 debug_check_no_locks_freed(objp, cachep->object_size);
3747 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3748 debug_check_no_obj_freed(objp, cachep->object_size);
3749 __cache_free(cachep, objp, _RET_IP_);
3750 local_irq_restore(flags);
3752 trace_kmem_cache_free(_RET_IP_, objp);
3754 EXPORT_SYMBOL(kmem_cache_free);
3756 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3758 struct kmem_cache *s;
3761 local_irq_disable();
3762 for (i = 0; i < size; i++) {
3765 if (!orig_s) /* called via kfree_bulk */
3766 s = virt_to_cache(objp);
3768 s = cache_from_obj(orig_s, objp);
3770 debug_check_no_locks_freed(objp, s->object_size);
3771 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3772 debug_check_no_obj_freed(objp, s->object_size);
3774 __cache_free(s, objp, _RET_IP_);
3778 /* FIXME: add tracing */
3780 EXPORT_SYMBOL(kmem_cache_free_bulk);
3783 * kfree - free previously allocated memory
3784 * @objp: pointer returned by kmalloc.
3786 * If @objp is NULL, no operation is performed.
3788 * Don't free memory not originally allocated by kmalloc()
3789 * or you will run into trouble.
3791 void kfree(const void *objp)
3793 struct kmem_cache *c;
3794 unsigned long flags;
3796 trace_kfree(_RET_IP_, objp);
3798 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3800 local_irq_save(flags);
3801 kfree_debugcheck(objp);
3802 c = virt_to_cache(objp);
3803 debug_check_no_locks_freed(objp, c->object_size);
3805 debug_check_no_obj_freed(objp, c->object_size);
3806 __cache_free(c, (void *)objp, _RET_IP_);
3807 local_irq_restore(flags);
3809 EXPORT_SYMBOL(kfree);
3812 * This initializes kmem_cache_node or resizes various caches for all nodes.
3814 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3818 struct kmem_cache_node *n;
3820 for_each_online_node(node) {
3821 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3830 if (!cachep->list.next) {
3831 /* Cache is not active yet. Roll back what we did */
3834 n = get_node(cachep, node);
3837 free_alien_cache(n->alien);
3839 cachep->node[node] = NULL;
3847 /* Always called with the slab_mutex held */
3848 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3849 int batchcount, int shared, gfp_t gfp)
3851 struct array_cache __percpu *cpu_cache, *prev;
3854 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3858 prev = cachep->cpu_cache;
3859 cachep->cpu_cache = cpu_cache;
3861 * Without a previous cpu_cache there's no need to synchronize remote
3862 * cpus, so skip the IPIs.
3865 kick_all_cpus_sync();
3868 cachep->batchcount = batchcount;
3869 cachep->limit = limit;
3870 cachep->shared = shared;
3875 for_each_online_cpu(cpu) {
3878 struct kmem_cache_node *n;
3879 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3881 node = cpu_to_mem(cpu);
3882 n = get_node(cachep, node);
3883 spin_lock_irq(&n->list_lock);
3884 free_block(cachep, ac->entry, ac->avail, node, &list);
3885 spin_unlock_irq(&n->list_lock);
3886 slabs_destroy(cachep, &list);
3891 return setup_kmem_cache_nodes(cachep, gfp);
3894 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3895 int batchcount, int shared, gfp_t gfp)
3898 struct kmem_cache *c;
3900 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3902 if (slab_state < FULL)
3905 if ((ret < 0) || !is_root_cache(cachep))
3908 lockdep_assert_held(&slab_mutex);
3909 for_each_memcg_cache(c, cachep) {
3910 /* return value determined by the root cache only */
3911 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3917 /* Called with slab_mutex held always */
3918 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3925 err = cache_random_seq_create(cachep, cachep->num, gfp);
3929 if (!is_root_cache(cachep)) {
3930 struct kmem_cache *root = memcg_root_cache(cachep);
3931 limit = root->limit;
3932 shared = root->shared;
3933 batchcount = root->batchcount;
3936 if (limit && shared && batchcount)
3939 * The head array serves three purposes:
3940 * - create a LIFO ordering, i.e. return objects that are cache-warm
3941 * - reduce the number of spinlock operations.
3942 * - reduce the number of linked list operations on the slab and
3943 * bufctl chains: array operations are cheaper.
3944 * The numbers are guessed, we should auto-tune as described by
3947 if (cachep->size > 131072)
3949 else if (cachep->size > PAGE_SIZE)
3951 else if (cachep->size > 1024)
3953 else if (cachep->size > 256)
3959 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3960 * allocation behaviour: Most allocs on one cpu, most free operations
3961 * on another cpu. For these cases, an efficient object passing between
3962 * cpus is necessary. This is provided by a shared array. The array
3963 * replaces Bonwick's magazine layer.
3964 * On uniprocessor, it's functionally equivalent (but less efficient)
3965 * to a larger limit. Thus disabled by default.
3968 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3973 * With debugging enabled, large batchcount lead to excessively long
3974 * periods with disabled local interrupts. Limit the batchcount
3979 batchcount = (limit + 1) / 2;
3981 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3984 pr_err("enable_cpucache failed for %s, error %d\n",
3985 cachep->name, -err);
3990 * Drain an array if it contains any elements taking the node lock only if
3991 * necessary. Note that the node listlock also protects the array_cache
3992 * if drain_array() is used on the shared array.
3994 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3995 struct array_cache *ac, int node)
3999 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4000 check_mutex_acquired();
4002 if (!ac || !ac->avail)
4010 spin_lock_irq(&n->list_lock);
4011 drain_array_locked(cachep, ac, node, false, &list);
4012 spin_unlock_irq(&n->list_lock);
4014 slabs_destroy(cachep, &list);
4018 * cache_reap - Reclaim memory from caches.
4019 * @w: work descriptor
4021 * Called from workqueue/eventd every few seconds.
4023 * - clear the per-cpu caches for this CPU.
4024 * - return freeable pages to the main free memory pool.
4026 * If we cannot acquire the cache chain mutex then just give up - we'll try
4027 * again on the next iteration.
4029 static void cache_reap(struct work_struct *w)
4031 struct kmem_cache *searchp;
4032 struct kmem_cache_node *n;
4033 int node = numa_mem_id();
4034 struct delayed_work *work = to_delayed_work(w);
4036 if (!mutex_trylock(&slab_mutex))
4037 /* Give up. Setup the next iteration. */
4040 list_for_each_entry(searchp, &slab_caches, list) {
4044 * We only take the node lock if absolutely necessary and we
4045 * have established with reasonable certainty that
4046 * we can do some work if the lock was obtained.
4048 n = get_node(searchp, node);
4050 reap_alien(searchp, n);
4052 drain_array(searchp, n, cpu_cache_get(searchp), node);
4055 * These are racy checks but it does not matter
4056 * if we skip one check or scan twice.
4058 if (time_after(n->next_reap, jiffies))
4061 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4063 drain_array(searchp, n, n->shared, node);
4065 if (n->free_touched)
4066 n->free_touched = 0;
4070 freed = drain_freelist(searchp, n, (n->free_limit +
4071 5 * searchp->num - 1) / (5 * searchp->num));
4072 STATS_ADD_REAPED(searchp, freed);
4078 mutex_unlock(&slab_mutex);
4081 /* Set up the next iteration */
4082 schedule_delayed_work_on(smp_processor_id(), work,
4083 round_jiffies_relative(REAPTIMEOUT_AC));
4086 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4088 unsigned long active_objs, num_objs, active_slabs;
4089 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4090 unsigned long free_slabs = 0;
4092 struct kmem_cache_node *n;
4094 for_each_kmem_cache_node(cachep, node, n) {
4096 spin_lock_irq(&n->list_lock);
4098 total_slabs += n->total_slabs;
4099 free_slabs += n->free_slabs;
4100 free_objs += n->free_objects;
4103 shared_avail += n->shared->avail;
4105 spin_unlock_irq(&n->list_lock);
4107 num_objs = total_slabs * cachep->num;
4108 active_slabs = total_slabs - free_slabs;
4109 active_objs = num_objs - free_objs;
4111 sinfo->active_objs = active_objs;
4112 sinfo->num_objs = num_objs;
4113 sinfo->active_slabs = active_slabs;
4114 sinfo->num_slabs = total_slabs;
4115 sinfo->shared_avail = shared_avail;
4116 sinfo->limit = cachep->limit;
4117 sinfo->batchcount = cachep->batchcount;
4118 sinfo->shared = cachep->shared;
4119 sinfo->objects_per_slab = cachep->num;
4120 sinfo->cache_order = cachep->gfporder;
4123 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4127 unsigned long high = cachep->high_mark;
4128 unsigned long allocs = cachep->num_allocations;
4129 unsigned long grown = cachep->grown;
4130 unsigned long reaped = cachep->reaped;
4131 unsigned long errors = cachep->errors;
4132 unsigned long max_freeable = cachep->max_freeable;
4133 unsigned long node_allocs = cachep->node_allocs;
4134 unsigned long node_frees = cachep->node_frees;
4135 unsigned long overflows = cachep->node_overflow;
4137 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4138 allocs, high, grown,
4139 reaped, errors, max_freeable, node_allocs,
4140 node_frees, overflows);
4144 unsigned long allochit = atomic_read(&cachep->allochit);
4145 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4146 unsigned long freehit = atomic_read(&cachep->freehit);
4147 unsigned long freemiss = atomic_read(&cachep->freemiss);
4149 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4150 allochit, allocmiss, freehit, freemiss);
4155 #define MAX_SLABINFO_WRITE 128
4157 * slabinfo_write - Tuning for the slab allocator
4159 * @buffer: user buffer
4160 * @count: data length
4163 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4164 size_t count, loff_t *ppos)
4166 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4167 int limit, batchcount, shared, res;
4168 struct kmem_cache *cachep;
4170 if (count > MAX_SLABINFO_WRITE)
4172 if (copy_from_user(&kbuf, buffer, count))
4174 kbuf[MAX_SLABINFO_WRITE] = '\0';
4176 tmp = strchr(kbuf, ' ');
4181 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4184 /* Find the cache in the chain of caches. */
4185 mutex_lock(&slab_mutex);
4187 list_for_each_entry(cachep, &slab_caches, list) {
4188 if (!strcmp(cachep->name, kbuf)) {
4189 if (limit < 1 || batchcount < 1 ||
4190 batchcount > limit || shared < 0) {
4193 res = do_tune_cpucache(cachep, limit,
4200 mutex_unlock(&slab_mutex);
4206 #ifdef CONFIG_DEBUG_SLAB_LEAK
4208 static inline int add_caller(unsigned long *n, unsigned long v)
4218 unsigned long *q = p + 2 * i;
4232 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4238 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4250 for (j = page->active; j < c->num; j++) {
4251 if (get_free_obj(page, j) == i) {
4261 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4262 * mapping is established when actual object allocation and
4263 * we could mistakenly access the unmapped object in the cpu
4266 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4269 if (!add_caller(n, v))
4274 static void show_symbol(struct seq_file *m, unsigned long address)
4276 #ifdef CONFIG_KALLSYMS
4277 unsigned long offset, size;
4278 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4280 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4281 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4283 seq_printf(m, " [%s]", modname);
4287 seq_printf(m, "%px", (void *)address);
4290 static int leaks_show(struct seq_file *m, void *p)
4292 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4294 struct kmem_cache_node *n;
4296 unsigned long *x = m->private;
4300 if (!(cachep->flags & SLAB_STORE_USER))
4302 if (!(cachep->flags & SLAB_RED_ZONE))
4306 * Set store_user_clean and start to grab stored user information
4307 * for all objects on this cache. If some alloc/free requests comes
4308 * during the processing, information would be wrong so restart
4312 set_store_user_clean(cachep);
4313 drain_cpu_caches(cachep);
4317 for_each_kmem_cache_node(cachep, node, n) {
4320 spin_lock_irq(&n->list_lock);
4322 list_for_each_entry(page, &n->slabs_full, lru)
4323 handle_slab(x, cachep, page);
4324 list_for_each_entry(page, &n->slabs_partial, lru)
4325 handle_slab(x, cachep, page);
4326 spin_unlock_irq(&n->list_lock);
4328 } while (!is_store_user_clean(cachep));
4330 name = cachep->name;
4332 /* Increase the buffer size */
4333 mutex_unlock(&slab_mutex);
4334 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4337 /* Too bad, we are really out */
4339 mutex_lock(&slab_mutex);
4342 *(unsigned long *)m->private = x[0] * 2;
4344 mutex_lock(&slab_mutex);
4345 /* Now make sure this entry will be retried */
4349 for (i = 0; i < x[1]; i++) {
4350 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4351 show_symbol(m, x[2*i+2]);
4358 static const struct seq_operations slabstats_op = {
4359 .start = slab_start,
4365 static int slabstats_open(struct inode *inode, struct file *file)
4369 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4373 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4378 static const struct file_operations proc_slabstats_operations = {
4379 .open = slabstats_open,
4381 .llseek = seq_lseek,
4382 .release = seq_release_private,
4386 static int __init slab_proc_init(void)
4388 #ifdef CONFIG_DEBUG_SLAB_LEAK
4389 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4393 module_init(slab_proc_init);
4395 #ifdef CONFIG_HARDENED_USERCOPY
4397 * Rejects incorrectly sized objects and objects that are to be copied
4398 * to/from userspace but do not fall entirely within the containing slab
4399 * cache's usercopy region.
4401 * Returns NULL if check passes, otherwise const char * to name of cache
4402 * to indicate an error.
4404 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4407 struct kmem_cache *cachep;
4409 unsigned long offset;
4411 /* Find and validate object. */
4412 cachep = page->slab_cache;
4413 objnr = obj_to_index(cachep, page, (void *)ptr);
4414 BUG_ON(objnr >= cachep->num);
4416 /* Find offset within object. */
4417 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4419 /* Allow address range falling entirely within usercopy region. */
4420 if (offset >= cachep->useroffset &&
4421 offset - cachep->useroffset <= cachep->usersize &&
4422 n <= cachep->useroffset - offset + cachep->usersize)
4426 * If the copy is still within the allocated object, produce
4427 * a warning instead of rejecting the copy. This is intended
4428 * to be a temporary method to find any missing usercopy
4431 if (usercopy_fallback &&
4432 offset <= cachep->object_size &&
4433 n <= cachep->object_size - offset) {
4434 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4438 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4440 #endif /* CONFIG_HARDENED_USERCOPY */
4443 * ksize - get the actual amount of memory allocated for a given object
4444 * @objp: Pointer to the object
4446 * kmalloc may internally round up allocations and return more memory
4447 * than requested. ksize() can be used to determine the actual amount of
4448 * memory allocated. The caller may use this additional memory, even though
4449 * a smaller amount of memory was initially specified with the kmalloc call.
4450 * The caller must guarantee that objp points to a valid object previously
4451 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4452 * must not be freed during the duration of the call.
4454 size_t ksize(const void *objp)
4459 if (unlikely(objp == ZERO_SIZE_PTR))
4462 size = virt_to_cache(objp)->object_size;
4463 /* We assume that ksize callers could use the whole allocated area,
4464 * so we need to unpoison this area.
4466 kasan_unpoison_shadow(objp, size);
4470 EXPORT_SYMBOL(ksize);