1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37 case BTRFS_COMPRESS_ZLIB:
38 case BTRFS_COMPRESS_LZO:
39 case BTRFS_COMPRESS_ZSTD:
40 case BTRFS_COMPRESS_NONE:
41 return btrfs_compress_types[type];
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 size_t comp_len = strlen(btrfs_compress_types[i]);
59 if (!strncmp(btrfs_compress_types[i], str, comp_len))
65 static int compression_compress_pages(int type, struct list_head *ws,
66 struct address_space *mapping, u64 start, struct page **pages,
67 unsigned long *out_pages, unsigned long *total_in,
68 unsigned long *total_out)
71 case BTRFS_COMPRESS_ZLIB:
72 return zlib_compress_pages(ws, mapping, start, pages,
73 out_pages, total_in, total_out);
74 case BTRFS_COMPRESS_LZO:
75 return lzo_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_ZSTD:
78 return zstd_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_NONE:
83 * This can't happen, the type is validated several times
84 * before we get here. As a sane fallback, return what the
85 * callers will understand as 'no compression happened'.
91 static int compression_decompress_bio(int type, struct list_head *ws,
92 struct compressed_bio *cb)
95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 case BTRFS_COMPRESS_NONE:
101 * This can't happen, the type is validated several times
102 * before we get here.
108 static int compression_decompress(int type, struct list_head *ws,
109 unsigned char *data_in, struct page *dest_page,
110 unsigned long start_byte, size_t srclen, size_t destlen)
113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 start_byte, srclen, destlen);
115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
116 start_byte, srclen, destlen);
117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 start_byte, srclen, destlen);
119 case BTRFS_COMPRESS_NONE:
122 * This can't happen, the type is validated several times
123 * before we get here.
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 unsigned long disk_size)
134 return sizeof(struct compressed_bio) +
135 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
141 struct btrfs_fs_info *fs_info = inode->root->fs_info;
142 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143 const u32 csum_size = fs_info->csum_size;
144 const u32 sectorsize = fs_info->sectorsize;
148 u8 csum[BTRFS_CSUM_SIZE];
149 struct compressed_bio *cb = bio->bi_private;
150 u8 *cb_sum = cb->sums;
152 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
155 shash->tfm = fs_info->csum_shash;
157 for (i = 0; i < cb->nr_pages; i++) {
159 u32 bytes_left = PAGE_SIZE;
160 page = cb->compressed_pages[i];
162 /* Determine the remaining bytes inside the page first */
163 if (i == cb->nr_pages - 1)
164 bytes_left = cb->compressed_len - i * PAGE_SIZE;
166 /* Hash through the page sector by sector */
167 for (pg_offset = 0; pg_offset < bytes_left;
168 pg_offset += sectorsize) {
169 kaddr = kmap_atomic(page);
170 crypto_shash_digest(shash, kaddr + pg_offset,
172 kunmap_atomic(kaddr);
174 if (memcmp(&csum, cb_sum, csum_size) != 0) {
175 btrfs_print_data_csum_error(inode, disk_start,
176 csum, cb_sum, cb->mirror_num);
177 if (btrfs_io_bio(bio)->device)
178 btrfs_dev_stat_inc_and_print(
179 btrfs_io_bio(bio)->device,
180 BTRFS_DEV_STAT_CORRUPTION_ERRS);
184 disk_start += sectorsize;
190 /* when we finish reading compressed pages from the disk, we
191 * decompress them and then run the bio end_io routines on the
192 * decompressed pages (in the inode address space).
194 * This allows the checksumming and other IO error handling routines
197 * The compressed pages are freed here, and it must be run
200 static void end_compressed_bio_read(struct bio *bio)
202 struct compressed_bio *cb = bio->bi_private;
206 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
212 /* if there are more bios still pending for this compressed
215 if (!refcount_dec_and_test(&cb->pending_bios))
219 * Record the correct mirror_num in cb->orig_bio so that
220 * read-repair can work properly.
222 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
223 cb->mirror_num = mirror;
226 * Some IO in this cb have failed, just skip checksum as there
227 * is no way it could be correct.
233 ret = check_compressed_csum(BTRFS_I(inode), bio,
234 bio->bi_iter.bi_sector << 9);
238 /* ok, we're the last bio for this extent, lets start
241 ret = btrfs_decompress_bio(cb);
247 /* release the compressed pages */
249 for (index = 0; index < cb->nr_pages; index++) {
250 page = cb->compressed_pages[index];
251 page->mapping = NULL;
255 /* do io completion on the original bio */
257 bio_io_error(cb->orig_bio);
259 struct bio_vec *bvec;
260 struct bvec_iter_all iter_all;
263 * we have verified the checksum already, set page
264 * checked so the end_io handlers know about it
266 ASSERT(!bio_flagged(bio, BIO_CLONED));
267 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
268 SetPageChecked(bvec->bv_page);
270 bio_endio(cb->orig_bio);
273 /* finally free the cb struct */
274 kfree(cb->compressed_pages);
281 * Clear the writeback bits on all of the file
282 * pages for a compressed write
284 static noinline void end_compressed_writeback(struct inode *inode,
285 const struct compressed_bio *cb)
287 unsigned long index = cb->start >> PAGE_SHIFT;
288 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
289 struct page *pages[16];
290 unsigned long nr_pages = end_index - index + 1;
295 mapping_set_error(inode->i_mapping, -EIO);
297 while (nr_pages > 0) {
298 ret = find_get_pages_contig(inode->i_mapping, index,
300 nr_pages, ARRAY_SIZE(pages)), pages);
306 for (i = 0; i < ret; i++) {
308 SetPageError(pages[i]);
309 end_page_writeback(pages[i]);
315 /* the inode may be gone now */
319 * do the cleanup once all the compressed pages hit the disk.
320 * This will clear writeback on the file pages and free the compressed
323 * This also calls the writeback end hooks for the file pages so that
324 * metadata and checksums can be updated in the file.
326 static void end_compressed_bio_write(struct bio *bio)
328 struct compressed_bio *cb = bio->bi_private;
336 /* if there are more bios still pending for this compressed
339 if (!refcount_dec_and_test(&cb->pending_bios))
342 /* ok, we're the last bio for this extent, step one is to
343 * call back into the FS and do all the end_io operations
346 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
347 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
348 cb->start, cb->start + cb->len - 1,
349 bio->bi_status == BLK_STS_OK);
350 cb->compressed_pages[0]->mapping = NULL;
352 end_compressed_writeback(inode, cb);
353 /* note, our inode could be gone now */
356 * release the compressed pages, these came from alloc_page and
357 * are not attached to the inode at all
360 for (index = 0; index < cb->nr_pages; index++) {
361 page = cb->compressed_pages[index];
362 page->mapping = NULL;
366 /* finally free the cb struct */
367 kfree(cb->compressed_pages);
374 * worker function to build and submit bios for previously compressed pages.
375 * The corresponding pages in the inode should be marked for writeback
376 * and the compressed pages should have a reference on them for dropping
377 * when the IO is complete.
379 * This also checksums the file bytes and gets things ready for
382 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
383 unsigned long len, u64 disk_start,
384 unsigned long compressed_len,
385 struct page **compressed_pages,
386 unsigned long nr_pages,
387 unsigned int write_flags,
388 struct cgroup_subsys_state *blkcg_css)
390 struct btrfs_fs_info *fs_info = inode->root->fs_info;
391 struct bio *bio = NULL;
392 struct compressed_bio *cb;
393 unsigned long bytes_left;
396 u64 first_byte = disk_start;
398 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
400 WARN_ON(!PAGE_ALIGNED(start));
401 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
403 return BLK_STS_RESOURCE;
404 refcount_set(&cb->pending_bios, 0);
406 cb->inode = &inode->vfs_inode;
410 cb->compressed_pages = compressed_pages;
411 cb->compressed_len = compressed_len;
413 cb->nr_pages = nr_pages;
415 bio = btrfs_bio_alloc(first_byte);
416 bio->bi_opf = REQ_OP_WRITE | write_flags;
417 bio->bi_private = cb;
418 bio->bi_end_io = end_compressed_bio_write;
421 bio->bi_opf |= REQ_CGROUP_PUNT;
422 kthread_associate_blkcg(blkcg_css);
424 refcount_set(&cb->pending_bios, 1);
426 /* create and submit bios for the compressed pages */
427 bytes_left = compressed_len;
428 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
431 page = compressed_pages[pg_index];
432 page->mapping = inode->vfs_inode.i_mapping;
433 if (bio->bi_iter.bi_size)
434 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
437 page->mapping = NULL;
438 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
441 * inc the count before we submit the bio so
442 * we know the end IO handler won't happen before
443 * we inc the count. Otherwise, the cb might get
444 * freed before we're done setting it up
446 refcount_inc(&cb->pending_bios);
447 ret = btrfs_bio_wq_end_io(fs_info, bio,
448 BTRFS_WQ_ENDIO_DATA);
449 BUG_ON(ret); /* -ENOMEM */
452 ret = btrfs_csum_one_bio(inode, bio, start, 1);
453 BUG_ON(ret); /* -ENOMEM */
456 ret = btrfs_map_bio(fs_info, bio, 0);
458 bio->bi_status = ret;
462 bio = btrfs_bio_alloc(first_byte);
463 bio->bi_opf = REQ_OP_WRITE | write_flags;
464 bio->bi_private = cb;
465 bio->bi_end_io = end_compressed_bio_write;
467 bio->bi_opf |= REQ_CGROUP_PUNT;
468 bio_add_page(bio, page, PAGE_SIZE, 0);
470 if (bytes_left < PAGE_SIZE) {
472 "bytes left %lu compress len %lu nr %lu",
473 bytes_left, cb->compressed_len, cb->nr_pages);
475 bytes_left -= PAGE_SIZE;
476 first_byte += PAGE_SIZE;
480 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
481 BUG_ON(ret); /* -ENOMEM */
484 ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 BUG_ON(ret); /* -ENOMEM */
488 ret = btrfs_map_bio(fs_info, bio, 0);
490 bio->bi_status = ret;
495 kthread_associate_blkcg(NULL);
500 static u64 bio_end_offset(struct bio *bio)
502 struct bio_vec *last = bio_last_bvec_all(bio);
504 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
507 static noinline int add_ra_bio_pages(struct inode *inode,
509 struct compressed_bio *cb)
511 unsigned long end_index;
512 unsigned long pg_index;
514 u64 isize = i_size_read(inode);
517 unsigned long nr_pages = 0;
518 struct extent_map *em;
519 struct address_space *mapping = inode->i_mapping;
520 struct extent_map_tree *em_tree;
521 struct extent_io_tree *tree;
525 last_offset = bio_end_offset(cb->orig_bio);
526 em_tree = &BTRFS_I(inode)->extent_tree;
527 tree = &BTRFS_I(inode)->io_tree;
532 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
534 while (last_offset < compressed_end) {
535 pg_index = last_offset >> PAGE_SHIFT;
537 if (pg_index > end_index)
540 page = xa_load(&mapping->i_pages, pg_index);
541 if (page && !xa_is_value(page)) {
548 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
553 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
559 * at this point, we have a locked page in the page cache
560 * for these bytes in the file. But, we have to make
561 * sure they map to this compressed extent on disk.
563 ret = set_page_extent_mapped(page);
570 end = last_offset + PAGE_SIZE - 1;
571 lock_extent(tree, last_offset, end);
572 read_lock(&em_tree->lock);
573 em = lookup_extent_mapping(em_tree, last_offset,
575 read_unlock(&em_tree->lock);
577 if (!em || last_offset < em->start ||
578 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
579 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
581 unlock_extent(tree, last_offset, end);
588 if (page->index == end_index) {
590 size_t zero_offset = offset_in_page(isize);
594 zeros = PAGE_SIZE - zero_offset;
595 userpage = kmap_atomic(page);
596 memset(userpage + zero_offset, 0, zeros);
597 flush_dcache_page(page);
598 kunmap_atomic(userpage);
602 ret = bio_add_page(cb->orig_bio, page,
605 if (ret == PAGE_SIZE) {
609 unlock_extent(tree, last_offset, end);
615 last_offset += PAGE_SIZE;
621 * for a compressed read, the bio we get passed has all the inode pages
622 * in it. We don't actually do IO on those pages but allocate new ones
623 * to hold the compressed pages on disk.
625 * bio->bi_iter.bi_sector points to the compressed extent on disk
626 * bio->bi_io_vec points to all of the inode pages
628 * After the compressed pages are read, we copy the bytes into the
629 * bio we were passed and then call the bio end_io calls
631 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
632 int mirror_num, unsigned long bio_flags)
634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
635 struct extent_map_tree *em_tree;
636 struct compressed_bio *cb;
637 unsigned long compressed_len;
638 unsigned long nr_pages;
639 unsigned long pg_index;
641 struct bio *comp_bio;
642 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
645 struct extent_map *em;
646 blk_status_t ret = BLK_STS_RESOURCE;
650 em_tree = &BTRFS_I(inode)->extent_tree;
652 /* we need the actual starting offset of this extent in the file */
653 read_lock(&em_tree->lock);
654 em = lookup_extent_mapping(em_tree,
655 page_offset(bio_first_page_all(bio)),
656 fs_info->sectorsize);
657 read_unlock(&em_tree->lock);
659 return BLK_STS_IOERR;
661 compressed_len = em->block_len;
662 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
666 refcount_set(&cb->pending_bios, 0);
669 cb->mirror_num = mirror_num;
672 cb->start = em->orig_start;
674 em_start = em->start;
679 cb->len = bio->bi_iter.bi_size;
680 cb->compressed_len = compressed_len;
681 cb->compress_type = extent_compress_type(bio_flags);
684 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
685 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
687 if (!cb->compressed_pages)
690 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
691 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
693 if (!cb->compressed_pages[pg_index]) {
694 faili = pg_index - 1;
695 ret = BLK_STS_RESOURCE;
699 faili = nr_pages - 1;
700 cb->nr_pages = nr_pages;
702 add_ra_bio_pages(inode, em_start + em_len, cb);
704 /* include any pages we added in add_ra-bio_pages */
705 cb->len = bio->bi_iter.bi_size;
707 comp_bio = btrfs_bio_alloc(cur_disk_byte);
708 comp_bio->bi_opf = REQ_OP_READ;
709 comp_bio->bi_private = cb;
710 comp_bio->bi_end_io = end_compressed_bio_read;
711 refcount_set(&cb->pending_bios, 1);
713 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
714 u32 pg_len = PAGE_SIZE;
718 * To handle subpage case, we need to make sure the bio only
719 * covers the range we need.
721 * If we're at the last page, truncate the length to only cover
722 * the remaining part.
724 if (pg_index == nr_pages - 1)
725 pg_len = min_t(u32, PAGE_SIZE,
726 compressed_len - pg_index * PAGE_SIZE);
728 page = cb->compressed_pages[pg_index];
729 page->mapping = inode->i_mapping;
730 page->index = em_start >> PAGE_SHIFT;
732 if (comp_bio->bi_iter.bi_size)
733 submit = btrfs_bio_fits_in_stripe(page, pg_len,
736 page->mapping = NULL;
737 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
738 unsigned int nr_sectors;
740 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
741 BTRFS_WQ_ENDIO_DATA);
742 BUG_ON(ret); /* -ENOMEM */
745 * inc the count before we submit the bio so
746 * we know the end IO handler won't happen before
747 * we inc the count. Otherwise, the cb might get
748 * freed before we're done setting it up
750 refcount_inc(&cb->pending_bios);
752 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
753 BUG_ON(ret); /* -ENOMEM */
755 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
756 fs_info->sectorsize);
757 sums += fs_info->csum_size * nr_sectors;
759 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
761 comp_bio->bi_status = ret;
765 comp_bio = btrfs_bio_alloc(cur_disk_byte);
766 comp_bio->bi_opf = REQ_OP_READ;
767 comp_bio->bi_private = cb;
768 comp_bio->bi_end_io = end_compressed_bio_read;
770 bio_add_page(comp_bio, page, pg_len, 0);
772 cur_disk_byte += pg_len;
775 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
776 BUG_ON(ret); /* -ENOMEM */
778 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
779 BUG_ON(ret); /* -ENOMEM */
781 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
783 comp_bio->bi_status = ret;
791 __free_page(cb->compressed_pages[faili]);
795 kfree(cb->compressed_pages);
804 * Heuristic uses systematic sampling to collect data from the input data
805 * range, the logic can be tuned by the following constants:
807 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
808 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
810 #define SAMPLING_READ_SIZE (16)
811 #define SAMPLING_INTERVAL (256)
814 * For statistical analysis of the input data we consider bytes that form a
815 * Galois Field of 256 objects. Each object has an attribute count, ie. how
816 * many times the object appeared in the sample.
818 #define BUCKET_SIZE (256)
821 * The size of the sample is based on a statistical sampling rule of thumb.
822 * The common way is to perform sampling tests as long as the number of
823 * elements in each cell is at least 5.
825 * Instead of 5, we choose 32 to obtain more accurate results.
826 * If the data contain the maximum number of symbols, which is 256, we obtain a
827 * sample size bound by 8192.
829 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
830 * from up to 512 locations.
832 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
833 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
839 struct heuristic_ws {
840 /* Partial copy of input data */
843 /* Buckets store counters for each byte value */
844 struct bucket_item *bucket;
846 struct bucket_item *bucket_b;
847 struct list_head list;
850 static struct workspace_manager heuristic_wsm;
852 static void free_heuristic_ws(struct list_head *ws)
854 struct heuristic_ws *workspace;
856 workspace = list_entry(ws, struct heuristic_ws, list);
858 kvfree(workspace->sample);
859 kfree(workspace->bucket);
860 kfree(workspace->bucket_b);
864 static struct list_head *alloc_heuristic_ws(unsigned int level)
866 struct heuristic_ws *ws;
868 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
870 return ERR_PTR(-ENOMEM);
872 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
876 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
880 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
884 INIT_LIST_HEAD(&ws->list);
887 free_heuristic_ws(&ws->list);
888 return ERR_PTR(-ENOMEM);
891 const struct btrfs_compress_op btrfs_heuristic_compress = {
892 .workspace_manager = &heuristic_wsm,
895 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
896 /* The heuristic is represented as compression type 0 */
897 &btrfs_heuristic_compress,
898 &btrfs_zlib_compress,
900 &btrfs_zstd_compress,
903 static struct list_head *alloc_workspace(int type, unsigned int level)
906 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
907 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
908 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
909 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
912 * This can't happen, the type is validated several times
913 * before we get here.
919 static void free_workspace(int type, struct list_head *ws)
922 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
923 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
924 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
925 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
928 * This can't happen, the type is validated several times
929 * before we get here.
935 static void btrfs_init_workspace_manager(int type)
937 struct workspace_manager *wsm;
938 struct list_head *workspace;
940 wsm = btrfs_compress_op[type]->workspace_manager;
941 INIT_LIST_HEAD(&wsm->idle_ws);
942 spin_lock_init(&wsm->ws_lock);
943 atomic_set(&wsm->total_ws, 0);
944 init_waitqueue_head(&wsm->ws_wait);
947 * Preallocate one workspace for each compression type so we can
948 * guarantee forward progress in the worst case
950 workspace = alloc_workspace(type, 0);
951 if (IS_ERR(workspace)) {
953 "BTRFS: cannot preallocate compression workspace, will try later\n");
955 atomic_set(&wsm->total_ws, 1);
957 list_add(workspace, &wsm->idle_ws);
961 static void btrfs_cleanup_workspace_manager(int type)
963 struct workspace_manager *wsman;
964 struct list_head *ws;
966 wsman = btrfs_compress_op[type]->workspace_manager;
967 while (!list_empty(&wsman->idle_ws)) {
968 ws = wsman->idle_ws.next;
970 free_workspace(type, ws);
971 atomic_dec(&wsman->total_ws);
976 * This finds an available workspace or allocates a new one.
977 * If it's not possible to allocate a new one, waits until there's one.
978 * Preallocation makes a forward progress guarantees and we do not return
981 struct list_head *btrfs_get_workspace(int type, unsigned int level)
983 struct workspace_manager *wsm;
984 struct list_head *workspace;
985 int cpus = num_online_cpus();
987 struct list_head *idle_ws;
990 wait_queue_head_t *ws_wait;
993 wsm = btrfs_compress_op[type]->workspace_manager;
994 idle_ws = &wsm->idle_ws;
995 ws_lock = &wsm->ws_lock;
996 total_ws = &wsm->total_ws;
997 ws_wait = &wsm->ws_wait;
998 free_ws = &wsm->free_ws;
1002 if (!list_empty(idle_ws)) {
1003 workspace = idle_ws->next;
1004 list_del(workspace);
1006 spin_unlock(ws_lock);
1010 if (atomic_read(total_ws) > cpus) {
1013 spin_unlock(ws_lock);
1014 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1015 if (atomic_read(total_ws) > cpus && !*free_ws)
1017 finish_wait(ws_wait, &wait);
1020 atomic_inc(total_ws);
1021 spin_unlock(ws_lock);
1024 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1025 * to turn it off here because we might get called from the restricted
1026 * context of btrfs_compress_bio/btrfs_compress_pages
1028 nofs_flag = memalloc_nofs_save();
1029 workspace = alloc_workspace(type, level);
1030 memalloc_nofs_restore(nofs_flag);
1032 if (IS_ERR(workspace)) {
1033 atomic_dec(total_ws);
1037 * Do not return the error but go back to waiting. There's a
1038 * workspace preallocated for each type and the compression
1039 * time is bounded so we get to a workspace eventually. This
1040 * makes our caller's life easier.
1042 * To prevent silent and low-probability deadlocks (when the
1043 * initial preallocation fails), check if there are any
1044 * workspaces at all.
1046 if (atomic_read(total_ws) == 0) {
1047 static DEFINE_RATELIMIT_STATE(_rs,
1048 /* once per minute */ 60 * HZ,
1051 if (__ratelimit(&_rs)) {
1052 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1060 static struct list_head *get_workspace(int type, int level)
1063 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1064 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1065 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1066 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1069 * This can't happen, the type is validated several times
1070 * before we get here.
1077 * put a workspace struct back on the list or free it if we have enough
1078 * idle ones sitting around
1080 void btrfs_put_workspace(int type, struct list_head *ws)
1082 struct workspace_manager *wsm;
1083 struct list_head *idle_ws;
1084 spinlock_t *ws_lock;
1086 wait_queue_head_t *ws_wait;
1089 wsm = btrfs_compress_op[type]->workspace_manager;
1090 idle_ws = &wsm->idle_ws;
1091 ws_lock = &wsm->ws_lock;
1092 total_ws = &wsm->total_ws;
1093 ws_wait = &wsm->ws_wait;
1094 free_ws = &wsm->free_ws;
1097 if (*free_ws <= num_online_cpus()) {
1098 list_add(ws, idle_ws);
1100 spin_unlock(ws_lock);
1103 spin_unlock(ws_lock);
1105 free_workspace(type, ws);
1106 atomic_dec(total_ws);
1108 cond_wake_up(ws_wait);
1111 static void put_workspace(int type, struct list_head *ws)
1114 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1115 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1116 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1117 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1120 * This can't happen, the type is validated several times
1121 * before we get here.
1128 * Adjust @level according to the limits of the compression algorithm or
1129 * fallback to default
1131 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1133 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1136 level = ops->default_level;
1138 level = min(level, ops->max_level);
1144 * Given an address space and start and length, compress the bytes into @pages
1145 * that are allocated on demand.
1147 * @type_level is encoded algorithm and level, where level 0 means whatever
1148 * default the algorithm chooses and is opaque here;
1149 * - compression algo are 0-3
1150 * - the level are bits 4-7
1152 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1153 * and returns number of actually allocated pages
1155 * @total_in is used to return the number of bytes actually read. It
1156 * may be smaller than the input length if we had to exit early because we
1157 * ran out of room in the pages array or because we cross the
1158 * max_out threshold.
1160 * @total_out is an in/out parameter, must be set to the input length and will
1161 * be also used to return the total number of compressed bytes
1163 * @max_out tells us the max number of bytes that we're allowed to
1166 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1167 u64 start, struct page **pages,
1168 unsigned long *out_pages,
1169 unsigned long *total_in,
1170 unsigned long *total_out)
1172 int type = btrfs_compress_type(type_level);
1173 int level = btrfs_compress_level(type_level);
1174 struct list_head *workspace;
1177 level = btrfs_compress_set_level(type, level);
1178 workspace = get_workspace(type, level);
1179 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1180 out_pages, total_in, total_out);
1181 put_workspace(type, workspace);
1186 * pages_in is an array of pages with compressed data.
1188 * disk_start is the starting logical offset of this array in the file
1190 * orig_bio contains the pages from the file that we want to decompress into
1192 * srclen is the number of bytes in pages_in
1194 * The basic idea is that we have a bio that was created by readpages.
1195 * The pages in the bio are for the uncompressed data, and they may not
1196 * be contiguous. They all correspond to the range of bytes covered by
1197 * the compressed extent.
1199 static int btrfs_decompress_bio(struct compressed_bio *cb)
1201 struct list_head *workspace;
1203 int type = cb->compress_type;
1205 workspace = get_workspace(type, 0);
1206 ret = compression_decompress_bio(type, workspace, cb);
1207 put_workspace(type, workspace);
1213 * a less complex decompression routine. Our compressed data fits in a
1214 * single page, and we want to read a single page out of it.
1215 * start_byte tells us the offset into the compressed data we're interested in
1217 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1218 unsigned long start_byte, size_t srclen, size_t destlen)
1220 struct list_head *workspace;
1223 workspace = get_workspace(type, 0);
1224 ret = compression_decompress(type, workspace, data_in, dest_page,
1225 start_byte, srclen, destlen);
1226 put_workspace(type, workspace);
1231 void __init btrfs_init_compress(void)
1233 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1234 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1235 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1236 zstd_init_workspace_manager();
1239 void __cold btrfs_exit_compress(void)
1241 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1242 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1243 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1244 zstd_cleanup_workspace_manager();
1248 * Copy uncompressed data from working buffer to pages.
1250 * buf_start is the byte offset we're of the start of our workspace buffer.
1252 * total_out is the last byte of the buffer
1254 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1255 unsigned long total_out, u64 disk_start,
1258 unsigned long buf_offset;
1259 unsigned long current_buf_start;
1260 unsigned long start_byte;
1261 unsigned long prev_start_byte;
1262 unsigned long working_bytes = total_out - buf_start;
1263 unsigned long bytes;
1264 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1267 * start byte is the first byte of the page we're currently
1268 * copying into relative to the start of the compressed data.
1270 start_byte = page_offset(bvec.bv_page) - disk_start;
1272 /* we haven't yet hit data corresponding to this page */
1273 if (total_out <= start_byte)
1277 * the start of the data we care about is offset into
1278 * the middle of our working buffer
1280 if (total_out > start_byte && buf_start < start_byte) {
1281 buf_offset = start_byte - buf_start;
1282 working_bytes -= buf_offset;
1286 current_buf_start = buf_start;
1288 /* copy bytes from the working buffer into the pages */
1289 while (working_bytes > 0) {
1290 bytes = min_t(unsigned long, bvec.bv_len,
1291 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1292 bytes = min(bytes, working_bytes);
1294 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1296 flush_dcache_page(bvec.bv_page);
1298 buf_offset += bytes;
1299 working_bytes -= bytes;
1300 current_buf_start += bytes;
1302 /* check if we need to pick another page */
1303 bio_advance(bio, bytes);
1304 if (!bio->bi_iter.bi_size)
1306 bvec = bio_iter_iovec(bio, bio->bi_iter);
1307 prev_start_byte = start_byte;
1308 start_byte = page_offset(bvec.bv_page) - disk_start;
1311 * We need to make sure we're only adjusting
1312 * our offset into compression working buffer when
1313 * we're switching pages. Otherwise we can incorrectly
1314 * keep copying when we were actually done.
1316 if (start_byte != prev_start_byte) {
1318 * make sure our new page is covered by this
1321 if (total_out <= start_byte)
1325 * the next page in the biovec might not be adjacent
1326 * to the last page, but it might still be found
1327 * inside this working buffer. bump our offset pointer
1329 if (total_out > start_byte &&
1330 current_buf_start < start_byte) {
1331 buf_offset = start_byte - buf_start;
1332 working_bytes = total_out - start_byte;
1333 current_buf_start = buf_start + buf_offset;
1342 * Shannon Entropy calculation
1344 * Pure byte distribution analysis fails to determine compressibility of data.
1345 * Try calculating entropy to estimate the average minimum number of bits
1346 * needed to encode the sampled data.
1348 * For convenience, return the percentage of needed bits, instead of amount of
1351 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1352 * and can be compressible with high probability
1354 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1356 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1358 #define ENTROPY_LVL_ACEPTABLE (65)
1359 #define ENTROPY_LVL_HIGH (80)
1362 * For increasead precision in shannon_entropy calculation,
1363 * let's do pow(n, M) to save more digits after comma:
1365 * - maximum int bit length is 64
1366 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1367 * - 13 * 4 = 52 < 64 -> M = 4
1371 static inline u32 ilog2_w(u64 n)
1373 return ilog2(n * n * n * n);
1376 static u32 shannon_entropy(struct heuristic_ws *ws)
1378 const u32 entropy_max = 8 * ilog2_w(2);
1379 u32 entropy_sum = 0;
1380 u32 p, p_base, sz_base;
1383 sz_base = ilog2_w(ws->sample_size);
1384 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1385 p = ws->bucket[i].count;
1386 p_base = ilog2_w(p);
1387 entropy_sum += p * (sz_base - p_base);
1390 entropy_sum /= ws->sample_size;
1391 return entropy_sum * 100 / entropy_max;
1394 #define RADIX_BASE 4U
1395 #define COUNTERS_SIZE (1U << RADIX_BASE)
1397 static u8 get4bits(u64 num, int shift) {
1402 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1407 * Use 4 bits as radix base
1408 * Use 16 u32 counters for calculating new position in buf array
1410 * @array - array that will be sorted
1411 * @array_buf - buffer array to store sorting results
1412 * must be equal in size to @array
1415 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1420 u32 counters[COUNTERS_SIZE];
1428 * Try avoid useless loop iterations for small numbers stored in big
1429 * counters. Example: 48 33 4 ... in 64bit array
1431 max_num = array[0].count;
1432 for (i = 1; i < num; i++) {
1433 buf_num = array[i].count;
1434 if (buf_num > max_num)
1438 buf_num = ilog2(max_num);
1439 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1442 while (shift < bitlen) {
1443 memset(counters, 0, sizeof(counters));
1445 for (i = 0; i < num; i++) {
1446 buf_num = array[i].count;
1447 addr = get4bits(buf_num, shift);
1451 for (i = 1; i < COUNTERS_SIZE; i++)
1452 counters[i] += counters[i - 1];
1454 for (i = num - 1; i >= 0; i--) {
1455 buf_num = array[i].count;
1456 addr = get4bits(buf_num, shift);
1458 new_addr = counters[addr];
1459 array_buf[new_addr] = array[i];
1462 shift += RADIX_BASE;
1465 * Normal radix expects to move data from a temporary array, to
1466 * the main one. But that requires some CPU time. Avoid that
1467 * by doing another sort iteration to original array instead of
1470 memset(counters, 0, sizeof(counters));
1472 for (i = 0; i < num; i ++) {
1473 buf_num = array_buf[i].count;
1474 addr = get4bits(buf_num, shift);
1478 for (i = 1; i < COUNTERS_SIZE; i++)
1479 counters[i] += counters[i - 1];
1481 for (i = num - 1; i >= 0; i--) {
1482 buf_num = array_buf[i].count;
1483 addr = get4bits(buf_num, shift);
1485 new_addr = counters[addr];
1486 array[new_addr] = array_buf[i];
1489 shift += RADIX_BASE;
1494 * Size of the core byte set - how many bytes cover 90% of the sample
1496 * There are several types of structured binary data that use nearly all byte
1497 * values. The distribution can be uniform and counts in all buckets will be
1498 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1500 * Other possibility is normal (Gaussian) distribution, where the data could
1501 * be potentially compressible, but we have to take a few more steps to decide
1504 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1505 * compression algo can easy fix that
1506 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1507 * probability is not compressible
1509 #define BYTE_CORE_SET_LOW (64)
1510 #define BYTE_CORE_SET_HIGH (200)
1512 static int byte_core_set_size(struct heuristic_ws *ws)
1515 u32 coreset_sum = 0;
1516 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1517 struct bucket_item *bucket = ws->bucket;
1519 /* Sort in reverse order */
1520 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1522 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1523 coreset_sum += bucket[i].count;
1525 if (coreset_sum > core_set_threshold)
1528 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1529 coreset_sum += bucket[i].count;
1530 if (coreset_sum > core_set_threshold)
1538 * Count byte values in buckets.
1539 * This heuristic can detect textual data (configs, xml, json, html, etc).
1540 * Because in most text-like data byte set is restricted to limited number of
1541 * possible characters, and that restriction in most cases makes data easy to
1544 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1545 * less - compressible
1546 * more - need additional analysis
1548 #define BYTE_SET_THRESHOLD (64)
1550 static u32 byte_set_size(const struct heuristic_ws *ws)
1553 u32 byte_set_size = 0;
1555 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1556 if (ws->bucket[i].count > 0)
1561 * Continue collecting count of byte values in buckets. If the byte
1562 * set size is bigger then the threshold, it's pointless to continue,
1563 * the detection technique would fail for this type of data.
1565 for (; i < BUCKET_SIZE; i++) {
1566 if (ws->bucket[i].count > 0) {
1568 if (byte_set_size > BYTE_SET_THRESHOLD)
1569 return byte_set_size;
1573 return byte_set_size;
1576 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1578 const u32 half_of_sample = ws->sample_size / 2;
1579 const u8 *data = ws->sample;
1581 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1584 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1585 struct heuristic_ws *ws)
1588 u64 index, index_end;
1589 u32 i, curr_sample_pos;
1593 * Compression handles the input data by chunks of 128KiB
1594 * (defined by BTRFS_MAX_UNCOMPRESSED)
1596 * We do the same for the heuristic and loop over the whole range.
1598 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1599 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1601 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1602 end = start + BTRFS_MAX_UNCOMPRESSED;
1604 index = start >> PAGE_SHIFT;
1605 index_end = end >> PAGE_SHIFT;
1607 /* Don't miss unaligned end */
1608 if (!IS_ALIGNED(end, PAGE_SIZE))
1611 curr_sample_pos = 0;
1612 while (index < index_end) {
1613 page = find_get_page(inode->i_mapping, index);
1614 in_data = kmap(page);
1615 /* Handle case where the start is not aligned to PAGE_SIZE */
1616 i = start % PAGE_SIZE;
1617 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1618 /* Don't sample any garbage from the last page */
1619 if (start > end - SAMPLING_READ_SIZE)
1621 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1622 SAMPLING_READ_SIZE);
1623 i += SAMPLING_INTERVAL;
1624 start += SAMPLING_INTERVAL;
1625 curr_sample_pos += SAMPLING_READ_SIZE;
1633 ws->sample_size = curr_sample_pos;
1637 * Compression heuristic.
1639 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1640 * quickly (compared to direct compression) detect data characteristics
1641 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1644 * The following types of analysis can be performed:
1645 * - detect mostly zero data
1646 * - detect data with low "byte set" size (text, etc)
1647 * - detect data with low/high "core byte" set
1649 * Return non-zero if the compression should be done, 0 otherwise.
1651 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1653 struct list_head *ws_list = get_workspace(0, 0);
1654 struct heuristic_ws *ws;
1659 ws = list_entry(ws_list, struct heuristic_ws, list);
1661 heuristic_collect_sample(inode, start, end, ws);
1663 if (sample_repeated_patterns(ws)) {
1668 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1670 for (i = 0; i < ws->sample_size; i++) {
1671 byte = ws->sample[i];
1672 ws->bucket[byte].count++;
1675 i = byte_set_size(ws);
1676 if (i < BYTE_SET_THRESHOLD) {
1681 i = byte_core_set_size(ws);
1682 if (i <= BYTE_CORE_SET_LOW) {
1687 if (i >= BYTE_CORE_SET_HIGH) {
1692 i = shannon_entropy(ws);
1693 if (i <= ENTROPY_LVL_ACEPTABLE) {
1699 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1700 * needed to give green light to compression.
1702 * For now just assume that compression at that level is not worth the
1703 * resources because:
1705 * 1. it is possible to defrag the data later
1707 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1708 * values, every bucket has counter at level ~54. The heuristic would
1709 * be confused. This can happen when data have some internal repeated
1710 * patterns like "abbacbbc...". This can be detected by analyzing
1711 * pairs of bytes, which is too costly.
1713 if (i < ENTROPY_LVL_HIGH) {
1722 put_workspace(0, ws_list);
1727 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1728 * level, unrecognized string will set the default level
1730 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1732 unsigned int level = 0;
1738 if (str[0] == ':') {
1739 ret = kstrtouint(str + 1, 10, &level);
1744 level = btrfs_compress_set_level(type, level);