1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version[] =
38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock);
51 unsigned long qhandle;
58 struct list_head jobs;
65 struct list_head list;
69 struct spu_queue *queue;
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78 if (q->q_type == HV_NCS_QTYPE_MAU) {
79 off += MAU_ENTRY_SIZE;
80 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 off += CWQ_ENTRY_SIZE;
84 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
90 struct n2_request_common {
91 struct list_head entry;
94 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
96 /* An async job request records the final tail value it used in
97 * n2_request_common->offset, test to see if that offset is in
98 * the range old_head, new_head, inclusive.
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 unsigned long old_head, unsigned long new_head)
103 if (old_head <= new_head) {
104 if (offset > old_head && offset <= new_head)
107 if (offset > old_head || offset <= new_head)
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114 * a virtual device INO interrupt. We should process the
115 * completed CWQ entries and adjust the HEAD marker to clear
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
120 unsigned long off, new_head, hv_ret;
121 struct spu_queue *q = dev_id;
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q->qhandle);
128 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head, hv_ret);
133 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
137 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 if (hv_ret == HV_EOK)
141 spin_unlock(&q->lock);
146 static irqreturn_t mau_intr(int irq, void *dev_id)
148 struct spu_queue *q = dev_id;
149 unsigned long head, hv_ret;
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q->qhandle);
156 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head, hv_ret);
161 sun4v_ncs_sethead_marker(q->qhandle, head);
163 spin_unlock(&q->lock);
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
170 return q->q + spu_next_offset(q, cur - q->q);
173 static int spu_queue_num_free(struct spu_queue *q)
175 unsigned long head = q->head;
176 unsigned long tail = q->tail;
177 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
183 diff = (end - tail) + head;
185 return (diff / CWQ_ENTRY_SIZE) - 1;
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190 int avail = spu_queue_num_free(q);
192 if (avail >= num_entries)
193 return q->q + q->tail;
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200 unsigned long hv_ret, new_tail;
202 new_tail = spu_next_offset(q, last - q->q);
204 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 if (hv_ret == HV_EOK)
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 int enc_type, int auth_type,
212 unsigned int hash_len,
213 bool sfas, bool sob, bool eob, bool encrypt,
216 u64 word = (len - 1) & CONTROL_LEN;
218 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222 word |= CONTROL_STORE_FINAL_AUTH_STATE;
224 word |= CONTROL_START_OF_BLOCK;
226 word |= CONTROL_END_OF_BLOCK;
228 word |= CONTROL_ENCRYPT;
230 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240 if (this_len >= 64 ||
241 qp->head != qp->tail)
247 struct n2_ahash_alg {
248 struct list_head entry;
250 const u32 *hash_init;
255 struct ahash_alg alg;
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260 struct crypto_alg *alg = tfm->__crt_alg;
261 struct ahash_alg *ahash_alg;
263 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265 return container_of(ahash_alg, struct n2_ahash_alg, alg);
269 const char *child_alg;
270 struct n2_ahash_alg derived;
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275 struct crypto_alg *alg = tfm->__crt_alg;
276 struct ahash_alg *ahash_alg;
278 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
284 struct crypto_ahash *fallback_tfm;
287 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290 struct n2_hash_ctx base;
292 struct crypto_shash *child_shash;
295 unsigned char hash_key[N2_HASH_KEY_MAX];
298 struct n2_hash_req_ctx {
300 struct md5_state md5;
301 struct sha1_state sha1;
302 struct sha256_state sha256;
305 struct ahash_request fallback_req;
308 static int n2_hash_async_init(struct ahash_request *req)
310 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317 return crypto_ahash_init(&rctx->fallback_req);
320 static int n2_hash_async_update(struct ahash_request *req)
322 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 rctx->fallback_req.nbytes = req->nbytes;
329 rctx->fallback_req.src = req->src;
331 return crypto_ahash_update(&rctx->fallback_req);
334 static int n2_hash_async_final(struct ahash_request *req)
336 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 rctx->fallback_req.result = req->result;
344 return crypto_ahash_final(&rctx->fallback_req);
347 static int n2_hash_async_finup(struct ahash_request *req)
349 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 rctx->fallback_req.nbytes = req->nbytes;
356 rctx->fallback_req.src = req->src;
357 rctx->fallback_req.result = req->result;
359 return crypto_ahash_finup(&rctx->fallback_req);
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
374 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 struct crypto_ahash *fallback_tfm;
380 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 CRYPTO_ALG_NEED_FALLBACK);
382 if (IS_ERR(fallback_tfm)) {
383 pr_warning("Fallback driver '%s' could not be loaded!\n",
384 fallback_driver_name);
385 err = PTR_ERR(fallback_tfm);
389 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 crypto_ahash_reqsize(fallback_tfm)));
392 ctx->fallback_tfm = fallback_tfm;
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404 crypto_free_ahash(ctx->fallback_tfm);
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 struct crypto_ahash *fallback_tfm;
414 struct crypto_shash *child_shash;
417 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 CRYPTO_ALG_NEED_FALLBACK);
419 if (IS_ERR(fallback_tfm)) {
420 pr_warning("Fallback driver '%s' could not be loaded!\n",
421 fallback_driver_name);
422 err = PTR_ERR(fallback_tfm);
426 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 if (IS_ERR(child_shash)) {
428 pr_warning("Child shash '%s' could not be loaded!\n",
430 err = PTR_ERR(child_shash);
431 goto out_free_fallback;
434 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 crypto_ahash_reqsize(fallback_tfm)));
437 ctx->child_shash = child_shash;
438 ctx->base.fallback_tfm = fallback_tfm;
442 crypto_free_ahash(fallback_tfm);
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453 crypto_free_ahash(ctx->base.fallback_tfm);
454 crypto_free_shash(ctx->child_shash);
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 struct crypto_shash *child_shash = ctx->child_shash;
462 struct crypto_ahash *fallback_tfm;
463 SHASH_DESC_ON_STACK(shash, child_shash);
466 fallback_tfm = ctx->base.fallback_tfm;
467 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471 shash->tfm = child_shash;
472 shash->flags = crypto_ahash_get_flags(tfm) &
473 CRYPTO_TFM_REQ_MAY_SLEEP;
475 bs = crypto_shash_blocksize(child_shash);
476 ds = crypto_shash_digestsize(child_shash);
477 BUG_ON(ds > N2_HASH_KEY_MAX);
479 err = crypto_shash_digest(shash, key, keylen,
484 } else if (keylen <= N2_HASH_KEY_MAX)
485 memcpy(ctx->hash_key, key, keylen);
487 ctx->hash_key_len = keylen;
492 static unsigned long wait_for_tail(struct spu_queue *qp)
494 unsigned long head, hv_ret;
497 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 if (hv_ret != HV_EOK) {
499 pr_err("Hypervisor error on gethead\n");
502 if (head == qp->tail) {
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 struct cwq_initial_entry *ent)
513 unsigned long hv_ret = spu_queue_submit(qp, ent);
515 if (hv_ret == HV_EOK)
516 hv_ret = wait_for_tail(qp);
521 static int n2_do_async_digest(struct ahash_request *req,
522 unsigned int auth_type, unsigned int digest_size,
523 unsigned int result_size, void *hash_loc,
524 unsigned long auth_key, unsigned int auth_key_len)
526 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 struct cwq_initial_entry *ent;
528 struct crypto_hash_walk walk;
529 struct spu_queue *qp;
534 /* The total effective length of the operation may not
537 if (unlikely(req->nbytes > (1 << 16))) {
538 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
541 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 rctx->fallback_req.base.flags =
543 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 rctx->fallback_req.nbytes = req->nbytes;
545 rctx->fallback_req.src = req->src;
546 rctx->fallback_req.result = req->result;
548 return crypto_ahash_digest(&rctx->fallback_req);
551 nbytes = crypto_hash_walk_first(req, &walk);
554 qp = cpu_to_cwq[cpu];
558 spin_lock_irqsave(&qp->lock, flags);
560 /* XXX can do better, improve this later by doing a by-hand scatterlist
563 ent = qp->q + qp->tail;
565 ent->control = control_word_base(nbytes, auth_key_len, 0,
566 auth_type, digest_size,
567 false, true, false, false,
570 ent->src_addr = __pa(walk.data);
571 ent->auth_key_addr = auth_key;
572 ent->auth_iv_addr = __pa(hash_loc);
573 ent->final_auth_state_addr = 0UL;
574 ent->enc_key_addr = 0UL;
575 ent->enc_iv_addr = 0UL;
576 ent->dest_addr = __pa(hash_loc);
578 nbytes = crypto_hash_walk_done(&walk, 0);
580 ent = spu_queue_next(qp, ent);
582 ent->control = (nbytes - 1);
583 ent->src_addr = __pa(walk.data);
584 ent->auth_key_addr = 0UL;
585 ent->auth_iv_addr = 0UL;
586 ent->final_auth_state_addr = 0UL;
587 ent->enc_key_addr = 0UL;
588 ent->enc_iv_addr = 0UL;
589 ent->dest_addr = 0UL;
591 nbytes = crypto_hash_walk_done(&walk, 0);
593 ent->control |= CONTROL_END_OF_BLOCK;
595 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
600 spin_unlock_irqrestore(&qp->lock, flags);
603 memcpy(req->result, hash_loc, result_size);
610 static int n2_hash_async_digest(struct ahash_request *req)
612 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
616 ds = n2alg->digest_size;
617 if (unlikely(req->nbytes == 0)) {
618 memcpy(req->result, n2alg->hash_zero, ds);
621 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
623 return n2_do_async_digest(req, n2alg->auth_type,
624 n2alg->hw_op_hashsz, ds,
628 static int n2_hmac_async_digest(struct ahash_request *req)
630 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
636 ds = n2alg->derived.digest_size;
637 if (unlikely(req->nbytes == 0) ||
638 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
642 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 rctx->fallback_req.base.flags =
644 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 rctx->fallback_req.nbytes = req->nbytes;
646 rctx->fallback_req.src = req->src;
647 rctx->fallback_req.result = req->result;
649 return crypto_ahash_digest(&rctx->fallback_req);
651 memcpy(&rctx->u, n2alg->derived.hash_init,
652 n2alg->derived.hw_op_hashsz);
654 return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 n2alg->derived.hw_op_hashsz, ds,
657 __pa(&ctx->hash_key),
661 struct n2_cipher_context {
665 u8 aes[AES_MAX_KEY_SIZE];
666 u8 des[DES_KEY_SIZE];
667 u8 des3[3 * DES_KEY_SIZE];
668 u8 arc4[258]; /* S-box, X, Y */
672 #define N2_CHUNK_ARR_LEN 16
674 struct n2_crypto_chunk {
675 struct list_head entry;
676 unsigned long iv_paddr : 44;
677 unsigned long arr_len : 20;
678 unsigned long dest_paddr;
679 unsigned long dest_final;
681 unsigned long src_paddr : 44;
682 unsigned long src_len : 20;
683 } arr[N2_CHUNK_ARR_LEN];
686 struct n2_request_context {
687 struct ablkcipher_walk walk;
688 struct list_head chunk_list;
689 struct n2_crypto_chunk chunk;
693 /* The SPU allows some level of flexibility for partial cipher blocks
694 * being specified in a descriptor.
696 * It merely requires that every descriptor's length field is at least
697 * as large as the cipher block size. This means that a cipher block
698 * can span at most 2 descriptors. However, this does not allow a
699 * partial block to span into the final descriptor as that would
700 * violate the rule (since every descriptor's length must be at lest
701 * the block size). So, for example, assuming an 8 byte block size:
703 * 0xe --> 0xa --> 0x8
705 * is a valid length sequence, whereas:
707 * 0xe --> 0xb --> 0x7
709 * is not a valid sequence.
712 struct n2_cipher_alg {
713 struct list_head entry;
715 struct crypto_alg alg;
718 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
720 struct crypto_alg *alg = tfm->__crt_alg;
722 return container_of(alg, struct n2_cipher_alg, alg);
725 struct n2_cipher_request_context {
726 struct ablkcipher_walk walk;
729 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
732 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
736 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
739 case AES_KEYSIZE_128:
740 ctx->enc_type |= ENC_TYPE_ALG_AES128;
742 case AES_KEYSIZE_192:
743 ctx->enc_type |= ENC_TYPE_ALG_AES192;
745 case AES_KEYSIZE_256:
746 ctx->enc_type |= ENC_TYPE_ALG_AES256;
749 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
753 ctx->key_len = keylen;
754 memcpy(ctx->key.aes, key, keylen);
758 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
761 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764 u32 tmp[DES_EXPKEY_WORDS];
767 ctx->enc_type = n2alg->enc_type;
769 if (keylen != DES_KEY_SIZE) {
770 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
774 err = des_ekey(tmp, key);
775 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
776 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
780 ctx->key_len = keylen;
781 memcpy(ctx->key.des, key, keylen);
785 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
788 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
792 ctx->enc_type = n2alg->enc_type;
794 if (keylen != (3 * DES_KEY_SIZE)) {
795 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
798 ctx->key_len = keylen;
799 memcpy(ctx->key.des3, key, keylen);
803 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
806 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
807 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
808 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
809 u8 *s = ctx->key.arc4;
814 ctx->enc_type = n2alg->enc_type;
819 for (i = 0; i < 256; i++)
821 for (i = 0; i < 256; i++) {
823 j = (j + key[k] + a) & 0xff;
833 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
835 int this_len = nbytes;
837 this_len -= (nbytes & (block_size - 1));
838 return this_len > (1 << 16) ? (1 << 16) : this_len;
841 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
842 struct spu_queue *qp, bool encrypt)
844 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
845 struct cwq_initial_entry *ent;
849 ent = spu_queue_alloc(qp, cp->arr_len);
851 pr_info("queue_alloc() of %d fails\n",
856 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
858 ent->control = control_word_base(cp->arr[0].src_len,
859 0, ctx->enc_type, 0, 0,
860 false, true, false, encrypt,
862 (in_place ? OPCODE_INPLACE_BIT : 0));
863 ent->src_addr = cp->arr[0].src_paddr;
864 ent->auth_key_addr = 0UL;
865 ent->auth_iv_addr = 0UL;
866 ent->final_auth_state_addr = 0UL;
867 ent->enc_key_addr = __pa(&ctx->key);
868 ent->enc_iv_addr = cp->iv_paddr;
869 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
871 for (i = 1; i < cp->arr_len; i++) {
872 ent = spu_queue_next(qp, ent);
874 ent->control = cp->arr[i].src_len - 1;
875 ent->src_addr = cp->arr[i].src_paddr;
876 ent->auth_key_addr = 0UL;
877 ent->auth_iv_addr = 0UL;
878 ent->final_auth_state_addr = 0UL;
879 ent->enc_key_addr = 0UL;
880 ent->enc_iv_addr = 0UL;
881 ent->dest_addr = 0UL;
883 ent->control |= CONTROL_END_OF_BLOCK;
885 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
888 static int n2_compute_chunks(struct ablkcipher_request *req)
890 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
891 struct ablkcipher_walk *walk = &rctx->walk;
892 struct n2_crypto_chunk *chunk;
893 unsigned long dest_prev;
894 unsigned int tot_len;
898 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
899 err = ablkcipher_walk_phys(req, walk);
903 INIT_LIST_HEAD(&rctx->chunk_list);
905 chunk = &rctx->chunk;
906 INIT_LIST_HEAD(&chunk->entry);
908 chunk->iv_paddr = 0UL;
910 chunk->dest_paddr = 0UL;
912 prev_in_place = false;
916 while ((nbytes = walk->nbytes) != 0) {
917 unsigned long dest_paddr, src_paddr;
921 src_paddr = (page_to_phys(walk->src.page) +
923 dest_paddr = (page_to_phys(walk->dst.page) +
925 in_place = (src_paddr == dest_paddr);
926 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
928 if (chunk->arr_len != 0) {
929 if (in_place != prev_in_place ||
931 dest_paddr != dest_prev) ||
932 chunk->arr_len == N2_CHUNK_ARR_LEN ||
933 tot_len + this_len > (1 << 16)) {
934 chunk->dest_final = dest_prev;
935 list_add_tail(&chunk->entry,
937 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
942 INIT_LIST_HEAD(&chunk->entry);
945 if (chunk->arr_len == 0) {
946 chunk->dest_paddr = dest_paddr;
949 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
950 chunk->arr[chunk->arr_len].src_len = this_len;
953 dest_prev = dest_paddr + this_len;
954 prev_in_place = in_place;
957 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
961 if (!err && chunk->arr_len != 0) {
962 chunk->dest_final = dest_prev;
963 list_add_tail(&chunk->entry, &rctx->chunk_list);
969 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
971 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
972 struct n2_crypto_chunk *c, *tmp;
975 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
977 ablkcipher_walk_complete(&rctx->walk);
978 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
980 if (unlikely(c != &rctx->chunk))
986 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
988 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
989 struct crypto_tfm *tfm = req->base.tfm;
990 int err = n2_compute_chunks(req);
991 struct n2_crypto_chunk *c, *tmp;
992 unsigned long flags, hv_ret;
993 struct spu_queue *qp;
998 qp = cpu_to_cwq[get_cpu()];
1003 spin_lock_irqsave(&qp->lock, flags);
1005 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1006 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1009 list_del(&c->entry);
1010 if (unlikely(c != &rctx->chunk))
1014 hv_ret = wait_for_tail(qp);
1015 if (hv_ret != HV_EOK)
1019 spin_unlock_irqrestore(&qp->lock, flags);
1024 n2_chunk_complete(req, NULL);
1028 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1030 return n2_do_ecb(req, true);
1033 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1035 return n2_do_ecb(req, false);
1038 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1040 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1041 struct crypto_tfm *tfm = req->base.tfm;
1042 unsigned long flags, hv_ret, iv_paddr;
1043 int err = n2_compute_chunks(req);
1044 struct n2_crypto_chunk *c, *tmp;
1045 struct spu_queue *qp;
1046 void *final_iv_addr;
1048 final_iv_addr = NULL;
1053 qp = cpu_to_cwq[get_cpu()];
1058 spin_lock_irqsave(&qp->lock, flags);
1061 iv_paddr = __pa(rctx->walk.iv);
1062 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1064 c->iv_paddr = iv_paddr;
1065 err = __n2_crypt_chunk(tfm, c, qp, true);
1068 iv_paddr = c->dest_final - rctx->walk.blocksize;
1069 list_del(&c->entry);
1070 if (unlikely(c != &rctx->chunk))
1073 final_iv_addr = __va(iv_paddr);
1075 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1077 if (c == &rctx->chunk) {
1078 iv_paddr = __pa(rctx->walk.iv);
1080 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1081 tmp->arr[tmp->arr_len-1].src_len -
1082 rctx->walk.blocksize);
1084 if (!final_iv_addr) {
1087 pa = (c->arr[c->arr_len-1].src_paddr +
1088 c->arr[c->arr_len-1].src_len -
1089 rctx->walk.blocksize);
1090 final_iv_addr = rctx->temp_iv;
1091 memcpy(rctx->temp_iv, __va(pa),
1092 rctx->walk.blocksize);
1094 c->iv_paddr = iv_paddr;
1095 err = __n2_crypt_chunk(tfm, c, qp, false);
1098 list_del(&c->entry);
1099 if (unlikely(c != &rctx->chunk))
1104 hv_ret = wait_for_tail(qp);
1105 if (hv_ret != HV_EOK)
1109 spin_unlock_irqrestore(&qp->lock, flags);
1114 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1118 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1120 return n2_do_chaining(req, true);
1123 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1125 return n2_do_chaining(req, false);
1128 struct n2_cipher_tmpl {
1130 const char *drv_name;
1133 struct ablkcipher_alg ablkcipher;
1136 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1137 /* ARC4: only ECB is supported (chaining bits ignored) */
1138 { .name = "ecb(arc4)",
1139 .drv_name = "ecb-arc4",
1141 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1142 ENC_TYPE_CHAINING_ECB),
1146 .setkey = n2_arc4_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1152 /* DES: ECB CBC and CFB are supported */
1153 { .name = "ecb(des)",
1154 .drv_name = "ecb-des",
1155 .block_size = DES_BLOCK_SIZE,
1156 .enc_type = (ENC_TYPE_ALG_DES |
1157 ENC_TYPE_CHAINING_ECB),
1159 .min_keysize = DES_KEY_SIZE,
1160 .max_keysize = DES_KEY_SIZE,
1161 .setkey = n2_des_setkey,
1162 .encrypt = n2_encrypt_ecb,
1163 .decrypt = n2_decrypt_ecb,
1166 { .name = "cbc(des)",
1167 .drv_name = "cbc-des",
1168 .block_size = DES_BLOCK_SIZE,
1169 .enc_type = (ENC_TYPE_ALG_DES |
1170 ENC_TYPE_CHAINING_CBC),
1172 .ivsize = DES_BLOCK_SIZE,
1173 .min_keysize = DES_KEY_SIZE,
1174 .max_keysize = DES_KEY_SIZE,
1175 .setkey = n2_des_setkey,
1176 .encrypt = n2_encrypt_chaining,
1177 .decrypt = n2_decrypt_chaining,
1180 { .name = "cfb(des)",
1181 .drv_name = "cfb-des",
1182 .block_size = DES_BLOCK_SIZE,
1183 .enc_type = (ENC_TYPE_ALG_DES |
1184 ENC_TYPE_CHAINING_CFB),
1186 .min_keysize = DES_KEY_SIZE,
1187 .max_keysize = DES_KEY_SIZE,
1188 .setkey = n2_des_setkey,
1189 .encrypt = n2_encrypt_chaining,
1190 .decrypt = n2_decrypt_chaining,
1194 /* 3DES: ECB CBC and CFB are supported */
1195 { .name = "ecb(des3_ede)",
1196 .drv_name = "ecb-3des",
1197 .block_size = DES_BLOCK_SIZE,
1198 .enc_type = (ENC_TYPE_ALG_3DES |
1199 ENC_TYPE_CHAINING_ECB),
1201 .min_keysize = 3 * DES_KEY_SIZE,
1202 .max_keysize = 3 * DES_KEY_SIZE,
1203 .setkey = n2_3des_setkey,
1204 .encrypt = n2_encrypt_ecb,
1205 .decrypt = n2_decrypt_ecb,
1208 { .name = "cbc(des3_ede)",
1209 .drv_name = "cbc-3des",
1210 .block_size = DES_BLOCK_SIZE,
1211 .enc_type = (ENC_TYPE_ALG_3DES |
1212 ENC_TYPE_CHAINING_CBC),
1214 .ivsize = DES_BLOCK_SIZE,
1215 .min_keysize = 3 * DES_KEY_SIZE,
1216 .max_keysize = 3 * DES_KEY_SIZE,
1217 .setkey = n2_3des_setkey,
1218 .encrypt = n2_encrypt_chaining,
1219 .decrypt = n2_decrypt_chaining,
1222 { .name = "cfb(des3_ede)",
1223 .drv_name = "cfb-3des",
1224 .block_size = DES_BLOCK_SIZE,
1225 .enc_type = (ENC_TYPE_ALG_3DES |
1226 ENC_TYPE_CHAINING_CFB),
1228 .min_keysize = 3 * DES_KEY_SIZE,
1229 .max_keysize = 3 * DES_KEY_SIZE,
1230 .setkey = n2_3des_setkey,
1231 .encrypt = n2_encrypt_chaining,
1232 .decrypt = n2_decrypt_chaining,
1235 /* AES: ECB CBC and CTR are supported */
1236 { .name = "ecb(aes)",
1237 .drv_name = "ecb-aes",
1238 .block_size = AES_BLOCK_SIZE,
1239 .enc_type = (ENC_TYPE_ALG_AES128 |
1240 ENC_TYPE_CHAINING_ECB),
1242 .min_keysize = AES_MIN_KEY_SIZE,
1243 .max_keysize = AES_MAX_KEY_SIZE,
1244 .setkey = n2_aes_setkey,
1245 .encrypt = n2_encrypt_ecb,
1246 .decrypt = n2_decrypt_ecb,
1249 { .name = "cbc(aes)",
1250 .drv_name = "cbc-aes",
1251 .block_size = AES_BLOCK_SIZE,
1252 .enc_type = (ENC_TYPE_ALG_AES128 |
1253 ENC_TYPE_CHAINING_CBC),
1255 .ivsize = AES_BLOCK_SIZE,
1256 .min_keysize = AES_MIN_KEY_SIZE,
1257 .max_keysize = AES_MAX_KEY_SIZE,
1258 .setkey = n2_aes_setkey,
1259 .encrypt = n2_encrypt_chaining,
1260 .decrypt = n2_decrypt_chaining,
1263 { .name = "ctr(aes)",
1264 .drv_name = "ctr-aes",
1265 .block_size = AES_BLOCK_SIZE,
1266 .enc_type = (ENC_TYPE_ALG_AES128 |
1267 ENC_TYPE_CHAINING_COUNTER),
1269 .ivsize = AES_BLOCK_SIZE,
1270 .min_keysize = AES_MIN_KEY_SIZE,
1271 .max_keysize = AES_MAX_KEY_SIZE,
1272 .setkey = n2_aes_setkey,
1273 .encrypt = n2_encrypt_chaining,
1274 .decrypt = n2_encrypt_chaining,
1279 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1281 static LIST_HEAD(cipher_algs);
1283 struct n2_hash_tmpl {
1285 const u8 *hash_zero;
1286 const u32 *hash_init;
1294 static const u32 md5_init[MD5_HASH_WORDS] = {
1295 cpu_to_le32(MD5_H0),
1296 cpu_to_le32(MD5_H1),
1297 cpu_to_le32(MD5_H2),
1298 cpu_to_le32(MD5_H3),
1300 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1301 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1303 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1304 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1305 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1307 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1308 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1309 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1312 static const struct n2_hash_tmpl hash_tmpls[] = {
1314 .hash_zero = md5_zero_message_hash,
1315 .hash_init = md5_init,
1316 .auth_type = AUTH_TYPE_MD5,
1317 .hmac_type = AUTH_TYPE_HMAC_MD5,
1318 .hw_op_hashsz = MD5_DIGEST_SIZE,
1319 .digest_size = MD5_DIGEST_SIZE,
1320 .block_size = MD5_HMAC_BLOCK_SIZE },
1322 .hash_zero = sha1_zero_message_hash,
1323 .hash_init = sha1_init,
1324 .auth_type = AUTH_TYPE_SHA1,
1325 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1326 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1327 .digest_size = SHA1_DIGEST_SIZE,
1328 .block_size = SHA1_BLOCK_SIZE },
1330 .hash_zero = sha256_zero_message_hash,
1331 .hash_init = sha256_init,
1332 .auth_type = AUTH_TYPE_SHA256,
1333 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1334 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1335 .digest_size = SHA256_DIGEST_SIZE,
1336 .block_size = SHA256_BLOCK_SIZE },
1338 .hash_zero = sha224_zero_message_hash,
1339 .hash_init = sha224_init,
1340 .auth_type = AUTH_TYPE_SHA256,
1341 .hmac_type = AUTH_TYPE_RESERVED,
1342 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1343 .digest_size = SHA224_DIGEST_SIZE,
1344 .block_size = SHA224_BLOCK_SIZE },
1346 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1348 static LIST_HEAD(ahash_algs);
1349 static LIST_HEAD(hmac_algs);
1351 static int algs_registered;
1353 static void __n2_unregister_algs(void)
1355 struct n2_cipher_alg *cipher, *cipher_tmp;
1356 struct n2_ahash_alg *alg, *alg_tmp;
1357 struct n2_hmac_alg *hmac, *hmac_tmp;
1359 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1360 crypto_unregister_alg(&cipher->alg);
1361 list_del(&cipher->entry);
1364 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1365 crypto_unregister_ahash(&hmac->derived.alg);
1366 list_del(&hmac->derived.entry);
1369 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1370 crypto_unregister_ahash(&alg->alg);
1371 list_del(&alg->entry);
1376 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1378 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1382 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1384 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1385 struct crypto_alg *alg;
1393 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1394 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1395 alg->cra_priority = N2_CRA_PRIORITY;
1396 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1397 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1398 alg->cra_blocksize = tmpl->block_size;
1399 p->enc_type = tmpl->enc_type;
1400 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1401 alg->cra_type = &crypto_ablkcipher_type;
1402 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1403 alg->cra_init = n2_cipher_cra_init;
1404 alg->cra_module = THIS_MODULE;
1406 list_add(&p->entry, &cipher_algs);
1407 err = crypto_register_alg(alg);
1409 pr_err("%s alg registration failed\n", alg->cra_name);
1410 list_del(&p->entry);
1413 pr_info("%s alg registered\n", alg->cra_name);
1418 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1420 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1421 struct ahash_alg *ahash;
1422 struct crypto_alg *base;
1428 p->child_alg = n2ahash->alg.halg.base.cra_name;
1429 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1430 INIT_LIST_HEAD(&p->derived.entry);
1432 ahash = &p->derived.alg;
1433 ahash->digest = n2_hmac_async_digest;
1434 ahash->setkey = n2_hmac_async_setkey;
1436 base = &ahash->halg.base;
1437 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1438 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1440 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1441 base->cra_init = n2_hmac_cra_init;
1442 base->cra_exit = n2_hmac_cra_exit;
1444 list_add(&p->derived.entry, &hmac_algs);
1445 err = crypto_register_ahash(ahash);
1447 pr_err("%s alg registration failed\n", base->cra_name);
1448 list_del(&p->derived.entry);
1451 pr_info("%s alg registered\n", base->cra_name);
1456 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1458 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1459 struct hash_alg_common *halg;
1460 struct crypto_alg *base;
1461 struct ahash_alg *ahash;
1467 p->hash_zero = tmpl->hash_zero;
1468 p->hash_init = tmpl->hash_init;
1469 p->auth_type = tmpl->auth_type;
1470 p->hmac_type = tmpl->hmac_type;
1471 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1472 p->digest_size = tmpl->digest_size;
1475 ahash->init = n2_hash_async_init;
1476 ahash->update = n2_hash_async_update;
1477 ahash->final = n2_hash_async_final;
1478 ahash->finup = n2_hash_async_finup;
1479 ahash->digest = n2_hash_async_digest;
1480 ahash->export = n2_hash_async_noexport;
1481 ahash->import = n2_hash_async_noimport;
1483 halg = &ahash->halg;
1484 halg->digestsize = tmpl->digest_size;
1487 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1488 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1489 base->cra_priority = N2_CRA_PRIORITY;
1490 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1491 CRYPTO_ALG_NEED_FALLBACK;
1492 base->cra_blocksize = tmpl->block_size;
1493 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1494 base->cra_module = THIS_MODULE;
1495 base->cra_init = n2_hash_cra_init;
1496 base->cra_exit = n2_hash_cra_exit;
1498 list_add(&p->entry, &ahash_algs);
1499 err = crypto_register_ahash(ahash);
1501 pr_err("%s alg registration failed\n", base->cra_name);
1502 list_del(&p->entry);
1505 pr_info("%s alg registered\n", base->cra_name);
1507 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1508 err = __n2_register_one_hmac(p);
1512 static int n2_register_algs(void)
1516 mutex_lock(&spu_lock);
1517 if (algs_registered++)
1520 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1521 err = __n2_register_one_ahash(&hash_tmpls[i]);
1523 __n2_unregister_algs();
1527 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1528 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1530 __n2_unregister_algs();
1536 mutex_unlock(&spu_lock);
1540 static void n2_unregister_algs(void)
1542 mutex_lock(&spu_lock);
1543 if (!--algs_registered)
1544 __n2_unregister_algs();
1545 mutex_unlock(&spu_lock);
1548 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1549 * a devino. This isn't very useful to us because all of the
1550 * interrupts listed in the device_node have been translated to
1551 * Linux virtual IRQ cookie numbers.
1553 * So we have to back-translate, going through the 'intr' and 'ino'
1554 * property tables of the n2cp MDESC node, matching it with the OF
1555 * 'interrupts' property entries, in order to to figure out which
1556 * devino goes to which already-translated IRQ.
1558 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1559 unsigned long dev_ino)
1561 const unsigned int *dev_intrs;
1565 for (i = 0; i < ip->num_intrs; i++) {
1566 if (ip->ino_table[i].ino == dev_ino)
1569 if (i == ip->num_intrs)
1572 intr = ip->ino_table[i].intr;
1574 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1578 for (i = 0; i < dev->archdata.num_irqs; i++) {
1579 if (dev_intrs[i] == intr)
1586 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1587 const char *irq_name, struct spu_queue *p,
1588 irq_handler_t handler)
1593 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1597 index = find_devino_index(dev, ip, p->devino);
1601 p->irq = dev->archdata.irqs[index];
1603 sprintf(p->irq_name, "%s-%d", irq_name, index);
1605 return request_irq(p->irq, handler, 0, p->irq_name, p);
1608 static struct kmem_cache *queue_cache[2];
1610 static void *new_queue(unsigned long q_type)
1612 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1615 static void free_queue(void *p, unsigned long q_type)
1617 kmem_cache_free(queue_cache[q_type - 1], p);
1620 static int queue_cache_init(void)
1622 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1623 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1624 kmem_cache_create("mau_queue",
1627 MAU_ENTRY_SIZE, 0, NULL);
1628 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1631 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1632 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1633 kmem_cache_create("cwq_queue",
1636 CWQ_ENTRY_SIZE, 0, NULL);
1637 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1638 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1639 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1645 static void queue_cache_destroy(void)
1647 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1648 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1649 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1650 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1653 static long spu_queue_register_workfn(void *arg)
1655 struct spu_qreg *qr = arg;
1656 struct spu_queue *p = qr->queue;
1657 unsigned long q_type = qr->type;
1658 unsigned long hv_ret;
1660 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1661 CWQ_NUM_ENTRIES, &p->qhandle);
1663 sun4v_ncs_sethead_marker(p->qhandle, 0);
1665 return hv_ret ? -EINVAL : 0;
1668 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1670 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1671 struct spu_qreg qr = { .queue = p, .type = q_type };
1673 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1676 static int spu_queue_setup(struct spu_queue *p)
1680 p->q = new_queue(p->q_type);
1684 err = spu_queue_register(p, p->q_type);
1686 free_queue(p->q, p->q_type);
1693 static void spu_queue_destroy(struct spu_queue *p)
1695 unsigned long hv_ret;
1700 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1703 free_queue(p->q, p->q_type);
1706 static void spu_list_destroy(struct list_head *list)
1708 struct spu_queue *p, *n;
1710 list_for_each_entry_safe(p, n, list, list) {
1713 for (i = 0; i < NR_CPUS; i++) {
1714 if (cpu_to_cwq[i] == p)
1715 cpu_to_cwq[i] = NULL;
1719 free_irq(p->irq, p);
1722 spu_queue_destroy(p);
1728 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1729 * gathering cpu membership information.
1731 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1732 struct platform_device *dev,
1733 u64 node, struct spu_queue *p,
1734 struct spu_queue **table)
1738 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1739 u64 tgt = mdesc_arc_target(mdesc, arc);
1740 const char *name = mdesc_node_name(mdesc, tgt);
1743 if (strcmp(name, "cpu"))
1745 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1746 if (table[*id] != NULL) {
1747 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1751 cpumask_set_cpu(*id, &p->sharing);
1757 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1758 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1759 struct platform_device *dev, struct mdesc_handle *mdesc,
1760 u64 node, const char *iname, unsigned long q_type,
1761 irq_handler_t handler, struct spu_queue **table)
1763 struct spu_queue *p;
1766 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1768 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1773 cpumask_clear(&p->sharing);
1774 spin_lock_init(&p->lock);
1776 INIT_LIST_HEAD(&p->jobs);
1777 list_add(&p->list, list);
1779 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1783 err = spu_queue_setup(p);
1787 return spu_map_ino(dev, ip, iname, p, handler);
1790 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1791 struct spu_mdesc_info *ip, struct list_head *list,
1792 const char *exec_name, unsigned long q_type,
1793 irq_handler_t handler, struct spu_queue **table)
1798 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1801 type = mdesc_get_property(mdesc, node, "type", NULL);
1802 if (!type || strcmp(type, exec_name))
1805 err = handle_exec_unit(ip, list, dev, mdesc, node,
1806 exec_name, q_type, handler, table);
1808 spu_list_destroy(list);
1816 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1817 struct spu_mdesc_info *ip)
1823 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1825 printk("NO 'ino'\n");
1829 ip->num_intrs = ino_len / sizeof(u64);
1830 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1836 for (i = 0; i < ip->num_intrs; i++) {
1837 struct ino_blob *b = &ip->ino_table[i];
1845 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1846 struct platform_device *dev,
1847 struct spu_mdesc_info *ip,
1848 const char *node_name)
1850 const unsigned int *reg;
1853 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1857 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1861 name = mdesc_get_property(mdesc, node, "name", NULL);
1862 if (!name || strcmp(name, node_name))
1864 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1865 if (!chdl || (*chdl != *reg))
1867 ip->cfg_handle = *chdl;
1868 return get_irq_props(mdesc, node, ip);
1874 static unsigned long n2_spu_hvapi_major;
1875 static unsigned long n2_spu_hvapi_minor;
1877 static int n2_spu_hvapi_register(void)
1881 n2_spu_hvapi_major = 2;
1882 n2_spu_hvapi_minor = 0;
1884 err = sun4v_hvapi_register(HV_GRP_NCS,
1886 &n2_spu_hvapi_minor);
1889 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1891 n2_spu_hvapi_minor);
1896 static void n2_spu_hvapi_unregister(void)
1898 sun4v_hvapi_unregister(HV_GRP_NCS);
1901 static int global_ref;
1903 static int grab_global_resources(void)
1907 mutex_lock(&spu_lock);
1912 err = n2_spu_hvapi_register();
1916 err = queue_cache_init();
1918 goto out_hvapi_release;
1921 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1924 goto out_queue_cache_destroy;
1926 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1929 goto out_free_cwq_table;
1936 mutex_unlock(&spu_lock);
1943 out_queue_cache_destroy:
1944 queue_cache_destroy();
1947 n2_spu_hvapi_unregister();
1951 static void release_global_resources(void)
1953 mutex_lock(&spu_lock);
1954 if (!--global_ref) {
1961 queue_cache_destroy();
1962 n2_spu_hvapi_unregister();
1964 mutex_unlock(&spu_lock);
1967 static struct n2_crypto *alloc_n2cp(void)
1969 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1972 INIT_LIST_HEAD(&np->cwq_list);
1977 static void free_n2cp(struct n2_crypto *np)
1979 kfree(np->cwq_info.ino_table);
1980 np->cwq_info.ino_table = NULL;
1985 static void n2_spu_driver_version(void)
1987 static int n2_spu_version_printed;
1989 if (n2_spu_version_printed++ == 0)
1990 pr_info("%s", version);
1993 static int n2_crypto_probe(struct platform_device *dev)
1995 struct mdesc_handle *mdesc;
1996 struct n2_crypto *np;
1999 n2_spu_driver_version();
2001 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2005 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2010 err = grab_global_resources();
2012 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2017 mdesc = mdesc_grab();
2020 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2023 goto out_free_global;
2025 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2027 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2029 mdesc_release(mdesc);
2030 goto out_free_global;
2033 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2034 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2036 mdesc_release(mdesc);
2039 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2041 goto out_free_global;
2044 err = n2_register_algs();
2046 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2048 goto out_free_spu_list;
2051 dev_set_drvdata(&dev->dev, np);
2056 spu_list_destroy(&np->cwq_list);
2059 release_global_resources();
2067 static int n2_crypto_remove(struct platform_device *dev)
2069 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2071 n2_unregister_algs();
2073 spu_list_destroy(&np->cwq_list);
2075 release_global_resources();
2082 static struct n2_mau *alloc_ncp(void)
2084 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2087 INIT_LIST_HEAD(&mp->mau_list);
2092 static void free_ncp(struct n2_mau *mp)
2094 kfree(mp->mau_info.ino_table);
2095 mp->mau_info.ino_table = NULL;
2100 static int n2_mau_probe(struct platform_device *dev)
2102 struct mdesc_handle *mdesc;
2106 n2_spu_driver_version();
2108 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2112 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2117 err = grab_global_resources();
2119 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2124 mdesc = mdesc_grab();
2127 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2130 goto out_free_global;
2133 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2135 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2137 mdesc_release(mdesc);
2138 goto out_free_global;
2141 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2142 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2144 mdesc_release(mdesc);
2147 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2149 goto out_free_global;
2152 dev_set_drvdata(&dev->dev, mp);
2157 release_global_resources();
2165 static int n2_mau_remove(struct platform_device *dev)
2167 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2169 spu_list_destroy(&mp->mau_list);
2171 release_global_resources();
2178 static const struct of_device_id n2_crypto_match[] = {
2181 .compatible = "SUNW,n2-cwq",
2185 .compatible = "SUNW,vf-cwq",
2189 .compatible = "SUNW,kt-cwq",
2194 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2196 static struct platform_driver n2_crypto_driver = {
2199 .of_match_table = n2_crypto_match,
2201 .probe = n2_crypto_probe,
2202 .remove = n2_crypto_remove,
2205 static const struct of_device_id n2_mau_match[] = {
2208 .compatible = "SUNW,n2-mau",
2212 .compatible = "SUNW,vf-mau",
2216 .compatible = "SUNW,kt-mau",
2221 MODULE_DEVICE_TABLE(of, n2_mau_match);
2223 static struct platform_driver n2_mau_driver = {
2226 .of_match_table = n2_mau_match,
2228 .probe = n2_mau_probe,
2229 .remove = n2_mau_remove,
2232 static struct platform_driver * const drivers[] = {
2237 static int __init n2_init(void)
2239 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2242 static void __exit n2_exit(void)
2244 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2247 module_init(n2_init);
2248 module_exit(n2_exit);