2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_XRGB8888, \
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
72 static const uint32_t intel_cursor_formats[] = {
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
79 static void intel_increase_pllclock(struct drm_device *dev,
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107 if (!connector->mst_port)
108 return connector->encoder;
110 return &connector->mst_port->mst_encoders[pipe]->base;
119 int p2_slow, p2_fast;
122 typedef struct intel_limit intel_limit_t;
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
129 intel_pch_rawclk(struct drm_device *dev)
131 struct drm_i915_private *dev_priv = dev->dev_private;
133 WARN_ON(!HAS_PCH_SPLIT(dev));
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
298 /* Ironlake / Sandybridge
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
369 static const intel_limit_t intel_limits_vlv = {
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 static const intel_limit_t intel_limits_chv = {
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 static void vlv_clock(int refclk, intel_clock_t *clock)
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
412 * Returns whether any output on the specified pipe is of the specified type
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
429 struct drm_device *dev = crtc->dev;
430 const intel_limit_t *limit;
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433 if (intel_is_dual_link_lvds(dev)) {
434 if (refclk == 100000)
435 limit = &intel_limits_ironlake_dual_lvds_100m;
437 limit = &intel_limits_ironlake_dual_lvds;
439 if (refclk == 100000)
440 limit = &intel_limits_ironlake_single_lvds_100m;
442 limit = &intel_limits_ironlake_single_lvds;
445 limit = &intel_limits_ironlake_dac;
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
452 struct drm_device *dev = crtc->dev;
453 const intel_limit_t *limit;
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456 if (intel_is_dual_link_lvds(dev))
457 limit = &intel_limits_g4x_dual_channel_lvds;
459 limit = &intel_limits_g4x_single_channel_lvds;
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462 limit = &intel_limits_g4x_hdmi;
463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464 limit = &intel_limits_g4x_sdvo;
465 } else /* The option is for other outputs */
466 limit = &intel_limits_i9xx_sdvo;
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
476 if (HAS_PCH_SPLIT(dev))
477 limit = intel_ironlake_limit(crtc, refclk);
478 else if (IS_G4X(dev)) {
479 limit = intel_g4x_limit(crtc);
480 } else if (IS_PINEVIEW(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_pineview_lvds;
484 limit = &intel_limits_pineview_sdvo;
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
487 } else if (IS_VALLEYVIEW(dev)) {
488 limit = &intel_limits_vlv;
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
493 limit = &intel_limits_i9xx_sdvo;
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496 limit = &intel_limits_i8xx_lvds;
497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498 limit = &intel_limits_i8xx_dvo;
500 limit = &intel_limits_i8xx_dac;
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
523 clock->m = i9xx_dpll_compute_m(clock);
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531 static void chv_clock(int refclk, intel_clock_t *clock)
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
542 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
555 INTELPllInvalid("p1 out of range\n");
556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
557 INTELPllInvalid("m2 out of range\n");
558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
559 INTELPllInvalid("m1 out of range\n");
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573 INTELPllInvalid("vco out of range\n");
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578 INTELPllInvalid("dot out of range\n");
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
588 struct drm_device *dev = crtc->dev;
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
598 if (intel_is_dual_link_lvds(dev))
599 clock.p2 = limit->p2.p2_fast;
601 clock.p2 = limit->p2.p2_slow;
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
606 clock.p2 = limit->p2.p2_fast;
609 memset(best_clock, 0, sizeof(*best_clock));
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
615 if (clock.m2 >= clock.m1)
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
628 clock.p != match_clock->p)
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
641 return (err != target);
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
649 struct drm_device *dev = crtc->dev;
653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
659 if (intel_is_dual_link_lvds(dev))
660 clock.p2 = limit->p2.p2_fast;
662 clock.p2 = limit->p2.p2_slow;
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
667 clock.p2 = limit->p2.p2_fast;
670 memset(best_clock, 0, sizeof(*best_clock));
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
682 pineview_clock(refclk, &clock);
683 if (!intel_PLL_is_valid(dev, limit,
687 clock.p != match_clock->p)
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
700 return (err != target);
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
708 struct drm_device *dev = crtc->dev;
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
720 clock.p2 = limit->p2.p2_slow;
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
725 clock.p2 = limit->p2.p2_fast;
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
730 /* based on hardware requirement, prefer smaller n to precision */
731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732 /* based on hardware requirement, prefere larger m1,m2 */
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
741 i9xx_clock(refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
746 this_err = abs(clock.dot - target);
747 if (this_err < err_most) {
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
765 struct drm_device *dev = crtc->dev;
767 unsigned int bestppm = 1000000;
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
772 target *= 5; /* fast clock */
774 memset(best_clock, 0, sizeof(*best_clock));
776 /* based on hardware requirement, prefer smaller n to precision */
777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781 clock.p = clock.p1 * clock.p2;
782 /* based on hardware requirement, prefer bigger m1,m2 values */
783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784 unsigned int ppm, diff;
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
789 vlv_clock(refclk, &clock);
791 if (!intel_PLL_is_valid(dev, limit,
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
798 if (ppm < 100 && clock.p > best_clock->p) {
804 if (bestppm >= 10 && ppm < bestppm - 10) {
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
822 struct drm_device *dev = crtc->dev;
827 memset(best_clock, 0, sizeof(*best_clock));
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
842 clock.p = clock.p1 * clock.p2;
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
847 if (m2 > INT_MAX/clock.m1)
852 chv_clock(refclk, &clock);
854 if (!intel_PLL_is_valid(dev, limit, &clock))
857 /* based on hardware requirement, prefer bigger p
859 if (clock.p > best_clock->p) {
869 bool intel_crtc_active(struct drm_crtc *crtc)
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
876 * We can ditch the adjusted_mode.crtc_clock check as soon
877 * as Haswell has gained clock readout/fastboot support.
879 * We can ditch the crtc->primary->fb check as soon as we can
880 * properly reconstruct framebuffers.
882 return intel_crtc->active && crtc->primary->fb &&
883 intel_crtc->config.adjusted_mode.crtc_clock;
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
892 return intel_crtc->config.cpu_transcoder;
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
900 frame = I915_READ(frame_reg);
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903 WARN(1, "vblank wait on pipe %c timed out\n",
908 * intel_wait_for_vblank - wait for vblank on a given pipe
910 * @pipe: pipe to wait for
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
915 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
917 struct drm_i915_private *dev_priv = dev->dev_private;
918 int pipestat_reg = PIPESTAT(pipe);
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
941 /* Wait for vblank interrupt bit to set */
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
949 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
957 line_mask = DSL_LINEMASK_GEN2;
959 line_mask = DSL_LINEMASK_GEN3;
961 line1 = I915_READ(reg) & line_mask;
963 line2 = I915_READ(reg) & line_mask;
965 return line1 == line2;
969 * intel_wait_for_pipe_off - wait for pipe to turn off
970 * @crtc: crtc whose pipe to wait for
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
977 * wait for the pipe register state bit to turn off
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
984 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
986 struct drm_device *dev = crtc->base.dev;
987 struct drm_i915_private *dev_priv = dev->dev_private;
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
991 if (INTEL_INFO(dev)->gen >= 4) {
992 int reg = PIPECONF(cpu_transcoder);
994 /* Wait for the Pipe State to go off */
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
997 WARN(1, "pipe_off wait timed out\n");
999 /* Wait for the display line to settle */
1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1001 WARN(1, "pipe_off wait timed out\n");
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1010 * Returns true if @port is connected, false otherwise.
1012 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1017 if (HAS_PCH_IBX(dev_priv->dev)) {
1018 switch (port->port) {
1020 bit = SDE_PORTB_HOTPLUG;
1023 bit = SDE_PORTC_HOTPLUG;
1026 bit = SDE_PORTD_HOTPLUG;
1032 switch (port->port) {
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1047 return I915_READ(SDEISR) & bit;
1050 static const char *state_string(bool enabled)
1052 return enabled ? "on" : "off";
1055 /* Only for pre-ILK configs */
1056 void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1071 /* XXX: the dsi pll is shared between MIPI DSI ports */
1072 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1086 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1089 struct intel_shared_dpll *
1090 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1094 if (crtc->config.shared_dpll < 0)
1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1101 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1106 struct intel_dpll_hw_state hw_state;
1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1113 WARN(cur_state != state,
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1158 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1167 /* ILK FDI PLL is always enabled */
1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1172 if (HAS_DDI(dev_priv->dev))
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1180 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
1195 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1198 struct drm_device *dev = dev_priv->dev;
1201 enum pipe panel_pipe = PIPE_A;
1204 if (WARN_ON(HAS_DDI(dev)))
1207 if (HAS_PCH_SPLIT(dev)) {
1210 pp_reg = PCH_PP_CONTROL;
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1222 pp_reg = PP_CONTROL;
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
1237 static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1240 struct drm_device *dev = dev_priv->dev;
1243 if (IS_845G(dev) || IS_I865G(dev))
1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1252 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1255 void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1269 if (!intel_display_power_enabled(dev_priv,
1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
1280 pipe_name(pipe), state_string(state), state_string(cur_state));
1283 static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
1298 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1301 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1304 struct drm_device *dev = dev_priv->dev;
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
1313 WARN(val & DISPLAY_PLANE_ENABLE,
1314 "plane %c assertion failure, should be disabled but not\n",
1319 /* Need to check both planes against the pipe */
1320 for_each_pipe(dev_priv, i) {
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
1331 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1334 struct drm_device *dev = dev_priv->dev;
1338 if (IS_VALLEYVIEW(dev)) {
1339 for_each_sprite(pipe, sprite) {
1340 reg = SPCNTR(pipe, sprite);
1341 val = I915_READ(reg);
1342 WARN(val & SP_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 sprite_name(pipe, sprite), pipe_name(pipe));
1346 } else if (INTEL_INFO(dev)->gen >= 7) {
1348 val = I915_READ(reg);
1349 WARN(val & SPRITE_ENABLE,
1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351 plane_name(pipe), pipe_name(pipe));
1352 } else if (INTEL_INFO(dev)->gen >= 5) {
1353 reg = DVSCNTR(pipe);
1354 val = I915_READ(reg);
1355 WARN(val & DVS_ENABLE,
1356 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1357 plane_name(pipe), pipe_name(pipe));
1361 static void assert_vblank_disabled(struct drm_crtc *crtc)
1363 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364 drm_crtc_vblank_put(crtc);
1367 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1372 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1374 val = I915_READ(PCH_DREF_CONTROL);
1375 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376 DREF_SUPERSPREAD_SOURCE_MASK));
1377 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1380 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1387 reg = PCH_TRANSCONF(pipe);
1388 val = I915_READ(reg);
1389 enabled = !!(val & TRANS_ENABLE);
1391 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1395 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe, u32 port_sel, u32 val)
1398 if ((val & DP_PORT_EN) == 0)
1401 if (HAS_PCH_CPT(dev_priv->dev)) {
1402 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1406 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1410 if ((val & DP_PIPE_MASK) != (pipe << 30))
1416 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, u32 val)
1419 if ((val & SDVO_ENABLE) == 0)
1422 if (HAS_PCH_CPT(dev_priv->dev)) {
1423 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1425 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1429 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1435 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436 enum pipe pipe, u32 val)
1438 if ((val & LVDS_PORT_EN) == 0)
1441 if (HAS_PCH_CPT(dev_priv->dev)) {
1442 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1445 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1451 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1454 if ((val & ADPA_DAC_ENABLE) == 0)
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1460 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1466 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, int reg, u32 port_sel)
1469 u32 val = I915_READ(reg);
1470 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1471 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1472 reg, pipe_name(pipe));
1474 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475 && (val & DP_PIPEB_SELECT),
1476 "IBX PCH dp port still using transcoder B\n");
1479 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, int reg)
1482 u32 val = I915_READ(reg);
1483 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1484 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1485 reg, pipe_name(pipe));
1487 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1488 && (val & SDVO_PIPE_B_SELECT),
1489 "IBX PCH hdmi port still using transcoder B\n");
1492 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1498 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1503 val = I915_READ(reg);
1504 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1505 "PCH VGA enabled on transcoder %c, should be disabled\n",
1509 val = I915_READ(reg);
1510 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1511 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1514 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1519 static void intel_init_dpio(struct drm_device *dev)
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1523 if (!IS_VALLEYVIEW(dev))
1527 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528 * CHV x1 PHY (DP/HDMI D)
1529 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1531 if (IS_CHERRYVIEW(dev)) {
1532 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1535 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1539 static void vlv_enable_pll(struct intel_crtc *crtc)
1541 struct drm_device *dev = crtc->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 int reg = DPLL(crtc->pipe);
1544 u32 dpll = crtc->config.dpll_hw_state.dpll;
1546 assert_pipe_disabled(dev_priv, crtc->pipe);
1548 /* No really, not for ILK+ */
1549 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1551 /* PLL is protected by panel, make sure we can write it */
1552 if (IS_MOBILE(dev_priv->dev))
1553 assert_panel_unlocked(dev_priv, crtc->pipe);
1555 I915_WRITE(reg, dpll);
1559 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1562 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563 POSTING_READ(DPLL_MD(crtc->pipe));
1565 /* We do this three times for luck */
1566 I915_WRITE(reg, dpll);
1568 udelay(150); /* wait for warmup */
1569 I915_WRITE(reg, dpll);
1571 udelay(150); /* wait for warmup */
1572 I915_WRITE(reg, dpll);
1574 udelay(150); /* wait for warmup */
1577 static void chv_enable_pll(struct intel_crtc *crtc)
1579 struct drm_device *dev = crtc->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int pipe = crtc->pipe;
1582 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1585 assert_pipe_disabled(dev_priv, crtc->pipe);
1587 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1589 mutex_lock(&dev_priv->dpio_lock);
1591 /* Enable back the 10bit clock to display controller */
1592 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593 tmp |= DPIO_DCLKP_EN;
1594 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1602 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1604 /* Check PLL is locked */
1605 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1606 DRM_ERROR("PLL %d failed to lock\n", pipe);
1608 /* not sure when this should be written */
1609 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610 POSTING_READ(DPLL_MD(pipe));
1612 mutex_unlock(&dev_priv->dpio_lock);
1615 static void i9xx_enable_pll(struct intel_crtc *crtc)
1617 struct drm_device *dev = crtc->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 int reg = DPLL(crtc->pipe);
1620 u32 dpll = crtc->config.dpll_hw_state.dpll;
1622 assert_pipe_disabled(dev_priv, crtc->pipe);
1624 /* No really, not for ILK+ */
1625 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1627 /* PLL is protected by panel, make sure we can write it */
1628 if (IS_MOBILE(dev) && !IS_I830(dev))
1629 assert_panel_unlocked(dev_priv, crtc->pipe);
1631 I915_WRITE(reg, dpll);
1633 /* Wait for the clocks to stabilize. */
1637 if (INTEL_INFO(dev)->gen >= 4) {
1638 I915_WRITE(DPLL_MD(crtc->pipe),
1639 crtc->config.dpll_hw_state.dpll_md);
1641 /* The pixel multiplier can only be updated once the
1642 * DPLL is enabled and the clocks are stable.
1644 * So write it again.
1646 I915_WRITE(reg, dpll);
1649 /* We do this three times for luck */
1650 I915_WRITE(reg, dpll);
1652 udelay(150); /* wait for warmup */
1653 I915_WRITE(reg, dpll);
1655 udelay(150); /* wait for warmup */
1656 I915_WRITE(reg, dpll);
1658 udelay(150); /* wait for warmup */
1662 * i9xx_disable_pll - disable a PLL
1663 * @dev_priv: i915 private structure
1664 * @pipe: pipe PLL to disable
1666 * Disable the PLL for @pipe, making sure the pipe is off first.
1668 * Note! This is for pre-ILK only.
1670 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1672 /* Don't disable pipe or pipe PLLs if needed */
1673 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1674 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1677 /* Make sure the pipe isn't still relying on us */
1678 assert_pipe_disabled(dev_priv, pipe);
1680 I915_WRITE(DPLL(pipe), 0);
1681 POSTING_READ(DPLL(pipe));
1684 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1688 /* Make sure the pipe isn't still relying on us */
1689 assert_pipe_disabled(dev_priv, pipe);
1692 * Leave integrated clock source and reference clock enabled for pipe B.
1693 * The latter is needed for VGA hotplug / manual detection.
1696 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1697 I915_WRITE(DPLL(pipe), val);
1698 POSTING_READ(DPLL(pipe));
1702 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1707 /* Make sure the pipe isn't still relying on us */
1708 assert_pipe_disabled(dev_priv, pipe);
1710 /* Set PLL en = 0 */
1711 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1713 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1714 I915_WRITE(DPLL(pipe), val);
1715 POSTING_READ(DPLL(pipe));
1717 mutex_lock(&dev_priv->dpio_lock);
1719 /* Disable 10bit clock to display controller */
1720 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1721 val &= ~DPIO_DCLKP_EN;
1722 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724 /* disable left/right clock distribution */
1725 if (pipe != PIPE_B) {
1726 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1727 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1728 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1731 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1732 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1735 mutex_unlock(&dev_priv->dpio_lock);
1738 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1739 struct intel_digital_port *dport)
1744 switch (dport->port) {
1746 port_mask = DPLL_PORTB_READY_MASK;
1750 port_mask = DPLL_PORTC_READY_MASK;
1754 port_mask = DPLL_PORTD_READY_MASK;
1755 dpll_reg = DPIO_PHY_STATUS;
1761 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1762 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1763 port_name(dport->port), I915_READ(dpll_reg));
1766 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768 struct drm_device *dev = crtc->base.dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772 if (WARN_ON(pll == NULL))
1775 WARN_ON(!pll->refcount);
1776 if (pll->active == 0) {
1777 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 assert_shared_dpll_disabled(dev_priv, pll);
1781 pll->mode_set(dev_priv, pll);
1786 * intel_enable_shared_dpll - enable PCH PLL
1787 * @dev_priv: i915 private structure
1788 * @pipe: pipe PLL to enable
1790 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1791 * drives the transcoder clock.
1793 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1795 struct drm_device *dev = crtc->base.dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1799 if (WARN_ON(pll == NULL))
1802 if (WARN_ON(pll->refcount == 0))
1805 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1806 pll->name, pll->active, pll->on,
1807 crtc->base.base.id);
1809 if (pll->active++) {
1811 assert_shared_dpll_enabled(dev_priv, pll);
1816 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1818 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1819 pll->enable(dev_priv, pll);
1823 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1825 struct drm_device *dev = crtc->base.dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1829 /* PCH only available on ILK+ */
1830 BUG_ON(INTEL_INFO(dev)->gen < 5);
1831 if (WARN_ON(pll == NULL))
1834 if (WARN_ON(pll->refcount == 0))
1837 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1838 pll->name, pll->active, pll->on,
1839 crtc->base.base.id);
1841 if (WARN_ON(pll->active == 0)) {
1842 assert_shared_dpll_disabled(dev_priv, pll);
1846 assert_shared_dpll_enabled(dev_priv, pll);
1851 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1852 pll->disable(dev_priv, pll);
1855 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1858 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1861 struct drm_device *dev = dev_priv->dev;
1862 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1864 uint32_t reg, val, pipeconf_val;
1866 /* PCH only available on ILK+ */
1867 BUG_ON(!HAS_PCH_SPLIT(dev));
1869 /* Make sure PCH DPLL is enabled */
1870 assert_shared_dpll_enabled(dev_priv,
1871 intel_crtc_to_shared_dpll(intel_crtc));
1873 /* FDI must be feeding us bits for PCH ports */
1874 assert_fdi_tx_enabled(dev_priv, pipe);
1875 assert_fdi_rx_enabled(dev_priv, pipe);
1877 if (HAS_PCH_CPT(dev)) {
1878 /* Workaround: Set the timing override bit before enabling the
1879 * pch transcoder. */
1880 reg = TRANS_CHICKEN2(pipe);
1881 val = I915_READ(reg);
1882 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1883 I915_WRITE(reg, val);
1886 reg = PCH_TRANSCONF(pipe);
1887 val = I915_READ(reg);
1888 pipeconf_val = I915_READ(PIPECONF(pipe));
1890 if (HAS_PCH_IBX(dev_priv->dev)) {
1892 * make the BPC in transcoder be consistent with
1893 * that in pipeconf reg.
1895 val &= ~PIPECONF_BPC_MASK;
1896 val |= pipeconf_val & PIPECONF_BPC_MASK;
1899 val &= ~TRANS_INTERLACE_MASK;
1900 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1901 if (HAS_PCH_IBX(dev_priv->dev) &&
1902 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1903 val |= TRANS_LEGACY_INTERLACED_ILK;
1905 val |= TRANS_INTERLACED;
1907 val |= TRANS_PROGRESSIVE;
1909 I915_WRITE(reg, val | TRANS_ENABLE);
1910 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1911 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1914 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1915 enum transcoder cpu_transcoder)
1917 u32 val, pipeconf_val;
1919 /* PCH only available on ILK+ */
1920 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1922 /* FDI must be feeding us bits for PCH ports */
1923 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1924 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1926 /* Workaround: set timing override bit. */
1927 val = I915_READ(_TRANSA_CHICKEN2);
1928 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1929 I915_WRITE(_TRANSA_CHICKEN2, val);
1932 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1934 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1935 PIPECONF_INTERLACED_ILK)
1936 val |= TRANS_INTERLACED;
1938 val |= TRANS_PROGRESSIVE;
1940 I915_WRITE(LPT_TRANSCONF, val);
1941 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1942 DRM_ERROR("Failed to enable PCH transcoder\n");
1945 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1948 struct drm_device *dev = dev_priv->dev;
1951 /* FDI relies on the transcoder */
1952 assert_fdi_tx_disabled(dev_priv, pipe);
1953 assert_fdi_rx_disabled(dev_priv, pipe);
1955 /* Ports must be off as well */
1956 assert_pch_ports_disabled(dev_priv, pipe);
1958 reg = PCH_TRANSCONF(pipe);
1959 val = I915_READ(reg);
1960 val &= ~TRANS_ENABLE;
1961 I915_WRITE(reg, val);
1962 /* wait for PCH transcoder off, transcoder state */
1963 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1964 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1966 if (!HAS_PCH_IBX(dev)) {
1967 /* Workaround: Clear the timing override chicken bit again. */
1968 reg = TRANS_CHICKEN2(pipe);
1969 val = I915_READ(reg);
1970 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1971 I915_WRITE(reg, val);
1975 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1979 val = I915_READ(LPT_TRANSCONF);
1980 val &= ~TRANS_ENABLE;
1981 I915_WRITE(LPT_TRANSCONF, val);
1982 /* wait for PCH transcoder off, transcoder state */
1983 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1984 DRM_ERROR("Failed to disable PCH transcoder\n");
1986 /* Workaround: clear timing override bit. */
1987 val = I915_READ(_TRANSA_CHICKEN2);
1988 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1989 I915_WRITE(_TRANSA_CHICKEN2, val);
1993 * intel_enable_pipe - enable a pipe, asserting requirements
1994 * @crtc: crtc responsible for the pipe
1996 * Enable @crtc's pipe, making sure that various hardware specific requirements
1997 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1999 static void intel_enable_pipe(struct intel_crtc *crtc)
2001 struct drm_device *dev = crtc->base.dev;
2002 struct drm_i915_private *dev_priv = dev->dev_private;
2003 enum pipe pipe = crtc->pipe;
2004 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2006 enum pipe pch_transcoder;
2010 assert_planes_disabled(dev_priv, pipe);
2011 assert_cursor_disabled(dev_priv, pipe);
2012 assert_sprites_disabled(dev_priv, pipe);
2014 if (HAS_PCH_LPT(dev_priv->dev))
2015 pch_transcoder = TRANSCODER_A;
2017 pch_transcoder = pipe;
2020 * A pipe without a PLL won't actually be able to drive bits from
2021 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2024 if (!HAS_PCH_SPLIT(dev_priv->dev))
2025 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2026 assert_dsi_pll_enabled(dev_priv);
2028 assert_pll_enabled(dev_priv, pipe);
2030 if (crtc->config.has_pch_encoder) {
2031 /* if driving the PCH, we need FDI enabled */
2032 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2033 assert_fdi_tx_pll_enabled(dev_priv,
2034 (enum pipe) cpu_transcoder);
2036 /* FIXME: assert CPU port conditions for SNB+ */
2039 reg = PIPECONF(cpu_transcoder);
2040 val = I915_READ(reg);
2041 if (val & PIPECONF_ENABLE) {
2042 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2043 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2047 I915_WRITE(reg, val | PIPECONF_ENABLE);
2052 * intel_disable_pipe - disable a pipe, asserting requirements
2053 * @crtc: crtc whose pipes is to be disabled
2055 * Disable the pipe of @crtc, making sure that various hardware
2056 * specific requirements are met, if applicable, e.g. plane
2057 * disabled, panel fitter off, etc.
2059 * Will wait until the pipe has shut down before returning.
2061 static void intel_disable_pipe(struct intel_crtc *crtc)
2063 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2064 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2065 enum pipe pipe = crtc->pipe;
2070 * Make sure planes won't keep trying to pump pixels to us,
2071 * or we might hang the display.
2073 assert_planes_disabled(dev_priv, pipe);
2074 assert_cursor_disabled(dev_priv, pipe);
2075 assert_sprites_disabled(dev_priv, pipe);
2077 reg = PIPECONF(cpu_transcoder);
2078 val = I915_READ(reg);
2079 if ((val & PIPECONF_ENABLE) == 0)
2083 * Double wide has implications for planes
2084 * so best keep it disabled when not needed.
2086 if (crtc->config.double_wide)
2087 val &= ~PIPECONF_DOUBLE_WIDE;
2089 /* Don't disable pipe or pipe PLLs if needed */
2090 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2091 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2092 val &= ~PIPECONF_ENABLE;
2094 I915_WRITE(reg, val);
2095 if ((val & PIPECONF_ENABLE) == 0)
2096 intel_wait_for_pipe_off(crtc);
2100 * Plane regs are double buffered, going from enabled->disabled needs a
2101 * trigger in order to latch. The display address reg provides this.
2103 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2106 struct drm_device *dev = dev_priv->dev;
2107 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2109 I915_WRITE(reg, I915_READ(reg));
2114 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2115 * @plane: plane to be enabled
2116 * @crtc: crtc for the plane
2118 * Enable @plane on @crtc, making sure that the pipe is running first.
2120 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2121 struct drm_crtc *crtc)
2123 struct drm_device *dev = plane->dev;
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2130 if (intel_crtc->primary_enabled)
2133 intel_crtc->primary_enabled = true;
2135 dev_priv->display.update_primary_plane(crtc, plane->fb,
2139 * BDW signals flip done immediately if the plane
2140 * is disabled, even if the plane enable is already
2141 * armed to occur at the next vblank :(
2143 if (IS_BROADWELL(dev))
2144 intel_wait_for_vblank(dev, intel_crtc->pipe);
2148 * intel_disable_primary_hw_plane - disable the primary hardware plane
2149 * @plane: plane to be disabled
2150 * @crtc: crtc for the plane
2152 * Disable @plane on @crtc, making sure that the pipe is running first.
2154 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2155 struct drm_crtc *crtc)
2157 struct drm_device *dev = plane->dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2161 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2163 if (!intel_crtc->primary_enabled)
2166 intel_crtc->primary_enabled = false;
2168 dev_priv->display.update_primary_plane(crtc, plane->fb,
2172 static bool need_vtd_wa(struct drm_device *dev)
2174 #ifdef CONFIG_INTEL_IOMMU
2175 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2181 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2185 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2186 return ALIGN(height, tile_height);
2190 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2191 struct drm_i915_gem_object *obj,
2192 struct intel_engine_cs *pipelined)
2194 struct drm_i915_private *dev_priv = dev->dev_private;
2198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2200 switch (obj->tiling_mode) {
2201 case I915_TILING_NONE:
2202 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2203 alignment = 128 * 1024;
2204 else if (INTEL_INFO(dev)->gen >= 4)
2205 alignment = 4 * 1024;
2207 alignment = 64 * 1024;
2210 /* pin() will align the object as required by fence */
2214 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2220 /* Note that the w/a also requires 64 PTE of padding following the
2221 * bo. We currently fill all unused PTE with the shadow page and so
2222 * we should always have valid PTE following the scanout preventing
2225 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2226 alignment = 256 * 1024;
2229 * Global gtt pte registers are special registers which actually forward
2230 * writes to a chunk of system memory. Which means that there is no risk
2231 * that the register values disappear as soon as we call
2232 * intel_runtime_pm_put(), so it is correct to wrap only the
2233 * pin/unpin/fence and not more.
2235 intel_runtime_pm_get(dev_priv);
2237 dev_priv->mm.interruptible = false;
2238 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2240 goto err_interruptible;
2242 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2243 * fence, whereas 965+ only requires a fence if using
2244 * framebuffer compression. For simplicity, we always install
2245 * a fence as the cost is not that onerous.
2247 ret = i915_gem_object_get_fence(obj);
2251 i915_gem_object_pin_fence(obj);
2253 dev_priv->mm.interruptible = true;
2254 intel_runtime_pm_put(dev_priv);
2258 i915_gem_object_unpin_from_display_plane(obj);
2260 dev_priv->mm.interruptible = true;
2261 intel_runtime_pm_put(dev_priv);
2265 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2267 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2269 i915_gem_object_unpin_fence(obj);
2270 i915_gem_object_unpin_from_display_plane(obj);
2273 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2274 * is assumed to be a power-of-two. */
2275 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2276 unsigned int tiling_mode,
2280 if (tiling_mode != I915_TILING_NONE) {
2281 unsigned int tile_rows, tiles;
2286 tiles = *x / (512/cpp);
2289 return tile_rows * pitch * 8 + tiles * 4096;
2291 unsigned int offset;
2293 offset = *y * pitch + *x * cpp;
2295 *x = (offset & 4095) / cpp;
2296 return offset & -4096;
2300 int intel_format_to_fourcc(int format)
2303 case DISPPLANE_8BPP:
2304 return DRM_FORMAT_C8;
2305 case DISPPLANE_BGRX555:
2306 return DRM_FORMAT_XRGB1555;
2307 case DISPPLANE_BGRX565:
2308 return DRM_FORMAT_RGB565;
2310 case DISPPLANE_BGRX888:
2311 return DRM_FORMAT_XRGB8888;
2312 case DISPPLANE_RGBX888:
2313 return DRM_FORMAT_XBGR8888;
2314 case DISPPLANE_BGRX101010:
2315 return DRM_FORMAT_XRGB2101010;
2316 case DISPPLANE_RGBX101010:
2317 return DRM_FORMAT_XBGR2101010;
2321 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2322 struct intel_plane_config *plane_config)
2324 struct drm_device *dev = crtc->base.dev;
2325 struct drm_i915_gem_object *obj = NULL;
2326 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 u32 base = plane_config->base;
2329 if (plane_config->size == 0)
2332 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2333 plane_config->size);
2337 if (plane_config->tiled) {
2338 obj->tiling_mode = I915_TILING_X;
2339 obj->stride = crtc->base.primary->fb->pitches[0];
2342 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2343 mode_cmd.width = crtc->base.primary->fb->width;
2344 mode_cmd.height = crtc->base.primary->fb->height;
2345 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2347 mutex_lock(&dev->struct_mutex);
2349 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2351 DRM_DEBUG_KMS("intel fb init failed\n");
2355 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2356 mutex_unlock(&dev->struct_mutex);
2358 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2362 drm_gem_object_unreference(&obj->base);
2363 mutex_unlock(&dev->struct_mutex);
2367 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2368 struct intel_plane_config *plane_config)
2370 struct drm_device *dev = intel_crtc->base.dev;
2372 struct intel_crtc *i;
2373 struct drm_i915_gem_object *obj;
2375 if (!intel_crtc->base.primary->fb)
2378 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2381 kfree(intel_crtc->base.primary->fb);
2382 intel_crtc->base.primary->fb = NULL;
2385 * Failed to alloc the obj, check to see if we should share
2386 * an fb with another CRTC instead
2388 for_each_crtc(dev, c) {
2389 i = to_intel_crtc(c);
2391 if (c == &intel_crtc->base)
2397 obj = intel_fb_obj(c->primary->fb);
2401 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2402 drm_framebuffer_reference(c->primary->fb);
2403 intel_crtc->base.primary->fb = c->primary->fb;
2404 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2410 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2411 struct drm_framebuffer *fb,
2414 struct drm_device *dev = crtc->dev;
2415 struct drm_i915_private *dev_priv = dev->dev_private;
2416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2417 struct drm_i915_gem_object *obj;
2418 int plane = intel_crtc->plane;
2419 unsigned long linear_offset;
2421 u32 reg = DSPCNTR(plane);
2424 if (!intel_crtc->primary_enabled) {
2426 if (INTEL_INFO(dev)->gen >= 4)
2427 I915_WRITE(DSPSURF(plane), 0);
2429 I915_WRITE(DSPADDR(plane), 0);
2434 obj = intel_fb_obj(fb);
2435 if (WARN_ON(obj == NULL))
2438 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2440 dspcntr = DISPPLANE_GAMMA_ENABLE;
2442 dspcntr |= DISPLAY_PLANE_ENABLE;
2444 if (INTEL_INFO(dev)->gen < 4) {
2445 if (intel_crtc->pipe == PIPE_B)
2446 dspcntr |= DISPPLANE_SEL_PIPE_B;
2448 /* pipesrc and dspsize control the size that is scaled from,
2449 * which should always be the user's requested size.
2451 I915_WRITE(DSPSIZE(plane),
2452 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2453 (intel_crtc->config.pipe_src_w - 1));
2454 I915_WRITE(DSPPOS(plane), 0);
2457 switch (fb->pixel_format) {
2459 dspcntr |= DISPPLANE_8BPP;
2461 case DRM_FORMAT_XRGB1555:
2462 case DRM_FORMAT_ARGB1555:
2463 dspcntr |= DISPPLANE_BGRX555;
2465 case DRM_FORMAT_RGB565:
2466 dspcntr |= DISPPLANE_BGRX565;
2468 case DRM_FORMAT_XRGB8888:
2469 case DRM_FORMAT_ARGB8888:
2470 dspcntr |= DISPPLANE_BGRX888;
2472 case DRM_FORMAT_XBGR8888:
2473 case DRM_FORMAT_ABGR8888:
2474 dspcntr |= DISPPLANE_RGBX888;
2476 case DRM_FORMAT_XRGB2101010:
2477 case DRM_FORMAT_ARGB2101010:
2478 dspcntr |= DISPPLANE_BGRX101010;
2480 case DRM_FORMAT_XBGR2101010:
2481 case DRM_FORMAT_ABGR2101010:
2482 dspcntr |= DISPPLANE_RGBX101010;
2488 if (INTEL_INFO(dev)->gen >= 4 &&
2489 obj->tiling_mode != I915_TILING_NONE)
2490 dspcntr |= DISPPLANE_TILED;
2493 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2495 linear_offset = y * fb->pitches[0] + x * pixel_size;
2497 if (INTEL_INFO(dev)->gen >= 4) {
2498 intel_crtc->dspaddr_offset =
2499 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2502 linear_offset -= intel_crtc->dspaddr_offset;
2504 intel_crtc->dspaddr_offset = linear_offset;
2507 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2508 dspcntr |= DISPPLANE_ROTATE_180;
2510 x += (intel_crtc->config.pipe_src_w - 1);
2511 y += (intel_crtc->config.pipe_src_h - 1);
2513 /* Finding the last pixel of the last line of the display
2514 data and adding to linear_offset*/
2516 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2517 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2520 I915_WRITE(reg, dspcntr);
2522 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2523 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2525 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2526 if (INTEL_INFO(dev)->gen >= 4) {
2527 I915_WRITE(DSPSURF(plane),
2528 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2529 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2530 I915_WRITE(DSPLINOFF(plane), linear_offset);
2532 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2536 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2537 struct drm_framebuffer *fb,
2540 struct drm_device *dev = crtc->dev;
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2543 struct drm_i915_gem_object *obj;
2544 int plane = intel_crtc->plane;
2545 unsigned long linear_offset;
2547 u32 reg = DSPCNTR(plane);
2550 if (!intel_crtc->primary_enabled) {
2552 I915_WRITE(DSPSURF(plane), 0);
2557 obj = intel_fb_obj(fb);
2558 if (WARN_ON(obj == NULL))
2561 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2563 dspcntr = DISPPLANE_GAMMA_ENABLE;
2565 dspcntr |= DISPLAY_PLANE_ENABLE;
2567 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2568 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2570 switch (fb->pixel_format) {
2572 dspcntr |= DISPPLANE_8BPP;
2574 case DRM_FORMAT_RGB565:
2575 dspcntr |= DISPPLANE_BGRX565;
2577 case DRM_FORMAT_XRGB8888:
2578 case DRM_FORMAT_ARGB8888:
2579 dspcntr |= DISPPLANE_BGRX888;
2581 case DRM_FORMAT_XBGR8888:
2582 case DRM_FORMAT_ABGR8888:
2583 dspcntr |= DISPPLANE_RGBX888;
2585 case DRM_FORMAT_XRGB2101010:
2586 case DRM_FORMAT_ARGB2101010:
2587 dspcntr |= DISPPLANE_BGRX101010;
2589 case DRM_FORMAT_XBGR2101010:
2590 case DRM_FORMAT_ABGR2101010:
2591 dspcntr |= DISPPLANE_RGBX101010;
2597 if (obj->tiling_mode != I915_TILING_NONE)
2598 dspcntr |= DISPPLANE_TILED;
2600 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2601 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2603 linear_offset = y * fb->pitches[0] + x * pixel_size;
2604 intel_crtc->dspaddr_offset =
2605 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2608 linear_offset -= intel_crtc->dspaddr_offset;
2609 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2610 dspcntr |= DISPPLANE_ROTATE_180;
2612 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2613 x += (intel_crtc->config.pipe_src_w - 1);
2614 y += (intel_crtc->config.pipe_src_h - 1);
2616 /* Finding the last pixel of the last line of the display
2617 data and adding to linear_offset*/
2619 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2620 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2624 I915_WRITE(reg, dspcntr);
2626 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2627 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2629 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2630 I915_WRITE(DSPSURF(plane),
2631 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2632 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2633 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2635 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2636 I915_WRITE(DSPLINOFF(plane), linear_offset);
2641 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2643 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2644 int x, int y, enum mode_set_atomic state)
2646 struct drm_device *dev = crtc->dev;
2647 struct drm_i915_private *dev_priv = dev->dev_private;
2649 if (dev_priv->display.disable_fbc)
2650 dev_priv->display.disable_fbc(dev);
2651 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2653 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2658 void intel_display_handle_reset(struct drm_device *dev)
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 struct drm_crtc *crtc;
2664 * Flips in the rings have been nuked by the reset,
2665 * so complete all pending flips so that user space
2666 * will get its events and not get stuck.
2668 * Also update the base address of all primary
2669 * planes to the the last fb to make sure we're
2670 * showing the correct fb after a reset.
2672 * Need to make two loops over the crtcs so that we
2673 * don't try to grab a crtc mutex before the
2674 * pending_flip_queue really got woken up.
2677 for_each_crtc(dev, crtc) {
2678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2679 enum plane plane = intel_crtc->plane;
2681 intel_prepare_page_flip(dev, plane);
2682 intel_finish_page_flip_plane(dev, plane);
2685 for_each_crtc(dev, crtc) {
2686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2688 drm_modeset_lock(&crtc->mutex, NULL);
2690 * FIXME: Once we have proper support for primary planes (and
2691 * disabling them without disabling the entire crtc) allow again
2692 * a NULL crtc->primary->fb.
2694 if (intel_crtc->active && crtc->primary->fb)
2695 dev_priv->display.update_primary_plane(crtc,
2699 drm_modeset_unlock(&crtc->mutex);
2704 intel_finish_fb(struct drm_framebuffer *old_fb)
2706 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2707 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2708 bool was_interruptible = dev_priv->mm.interruptible;
2711 /* Big Hammer, we also need to ensure that any pending
2712 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2713 * current scanout is retired before unpinning the old
2716 * This should only fail upon a hung GPU, in which case we
2717 * can safely continue.
2719 dev_priv->mm.interruptible = false;
2720 ret = i915_gem_object_finish_gpu(obj);
2721 dev_priv->mm.interruptible = was_interruptible;
2726 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2728 struct drm_device *dev = crtc->dev;
2729 struct drm_i915_private *dev_priv = dev->dev_private;
2730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731 unsigned long flags;
2734 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2735 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2738 spin_lock_irqsave(&dev->event_lock, flags);
2739 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2740 spin_unlock_irqrestore(&dev->event_lock, flags);
2746 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2747 struct drm_framebuffer *fb)
2749 struct drm_device *dev = crtc->dev;
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2752 enum pipe pipe = intel_crtc->pipe;
2753 struct drm_framebuffer *old_fb = crtc->primary->fb;
2754 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2755 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2758 if (intel_crtc_has_pending_flip(crtc)) {
2759 DRM_ERROR("pipe is still busy with an old pageflip\n");
2765 DRM_ERROR("No FB bound\n");
2769 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2770 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2771 plane_name(intel_crtc->plane),
2772 INTEL_INFO(dev)->num_pipes);
2776 mutex_lock(&dev->struct_mutex);
2777 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2779 i915_gem_track_fb(old_obj, obj,
2780 INTEL_FRONTBUFFER_PRIMARY(pipe));
2781 mutex_unlock(&dev->struct_mutex);
2783 DRM_ERROR("pin & fence failed\n");
2788 * Update pipe size and adjust fitter if needed: the reason for this is
2789 * that in compute_mode_changes we check the native mode (not the pfit
2790 * mode) to see if we can flip rather than do a full mode set. In the
2791 * fastboot case, we'll flip, but if we don't update the pipesrc and
2792 * pfit state, we'll end up with a big fb scanned out into the wrong
2795 * To fix this properly, we need to hoist the checks up into
2796 * compute_mode_changes (or above), check the actual pfit state and
2797 * whether the platform allows pfit disable with pipe active, and only
2798 * then update the pipesrc and pfit state, even on the flip path.
2800 if (i915.fastboot) {
2801 const struct drm_display_mode *adjusted_mode =
2802 &intel_crtc->config.adjusted_mode;
2804 I915_WRITE(PIPESRC(intel_crtc->pipe),
2805 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2806 (adjusted_mode->crtc_vdisplay - 1));
2807 if (!intel_crtc->config.pch_pfit.enabled &&
2808 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2809 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2810 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2811 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2812 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2814 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2815 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2818 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2820 if (intel_crtc->active)
2821 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2823 crtc->primary->fb = fb;
2828 if (intel_crtc->active && old_fb != fb)
2829 intel_wait_for_vblank(dev, intel_crtc->pipe);
2830 mutex_lock(&dev->struct_mutex);
2831 intel_unpin_fb_obj(old_obj);
2832 mutex_unlock(&dev->struct_mutex);
2835 mutex_lock(&dev->struct_mutex);
2836 intel_update_fbc(dev);
2837 mutex_unlock(&dev->struct_mutex);
2842 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2844 struct drm_device *dev = crtc->dev;
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2847 int pipe = intel_crtc->pipe;
2850 /* enable normal train */
2851 reg = FDI_TX_CTL(pipe);
2852 temp = I915_READ(reg);
2853 if (IS_IVYBRIDGE(dev)) {
2854 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2855 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2857 temp &= ~FDI_LINK_TRAIN_NONE;
2858 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2860 I915_WRITE(reg, temp);
2862 reg = FDI_RX_CTL(pipe);
2863 temp = I915_READ(reg);
2864 if (HAS_PCH_CPT(dev)) {
2865 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2866 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2868 temp &= ~FDI_LINK_TRAIN_NONE;
2869 temp |= FDI_LINK_TRAIN_NONE;
2871 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2873 /* wait one idle pattern time */
2877 /* IVB wants error correction enabled */
2878 if (IS_IVYBRIDGE(dev))
2879 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2880 FDI_FE_ERRC_ENABLE);
2883 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2885 return crtc->base.enabled && crtc->active &&
2886 crtc->config.has_pch_encoder;
2889 static void ivb_modeset_global_resources(struct drm_device *dev)
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892 struct intel_crtc *pipe_B_crtc =
2893 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2894 struct intel_crtc *pipe_C_crtc =
2895 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2899 * When everything is off disable fdi C so that we could enable fdi B
2900 * with all lanes. Note that we don't care about enabled pipes without
2901 * an enabled pch encoder.
2903 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2904 !pipe_has_enabled_pch(pipe_C_crtc)) {
2905 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2906 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2908 temp = I915_READ(SOUTH_CHICKEN1);
2909 temp &= ~FDI_BC_BIFURCATION_SELECT;
2910 DRM_DEBUG_KMS("disabling fdi C rx\n");
2911 I915_WRITE(SOUTH_CHICKEN1, temp);
2915 /* The FDI link training functions for ILK/Ibexpeak. */
2916 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2918 struct drm_device *dev = crtc->dev;
2919 struct drm_i915_private *dev_priv = dev->dev_private;
2920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2921 int pipe = intel_crtc->pipe;
2922 u32 reg, temp, tries;
2924 /* FDI needs bits from pipe first */
2925 assert_pipe_enabled(dev_priv, pipe);
2927 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2929 reg = FDI_RX_IMR(pipe);
2930 temp = I915_READ(reg);
2931 temp &= ~FDI_RX_SYMBOL_LOCK;
2932 temp &= ~FDI_RX_BIT_LOCK;
2933 I915_WRITE(reg, temp);
2937 /* enable CPU FDI TX and PCH FDI RX */
2938 reg = FDI_TX_CTL(pipe);
2939 temp = I915_READ(reg);
2940 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2941 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2942 temp &= ~FDI_LINK_TRAIN_NONE;
2943 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2946 reg = FDI_RX_CTL(pipe);
2947 temp = I915_READ(reg);
2948 temp &= ~FDI_LINK_TRAIN_NONE;
2949 temp |= FDI_LINK_TRAIN_PATTERN_1;
2950 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2955 /* Ironlake workaround, enable clock pointer after FDI enable*/
2956 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2957 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2958 FDI_RX_PHASE_SYNC_POINTER_EN);
2960 reg = FDI_RX_IIR(pipe);
2961 for (tries = 0; tries < 5; tries++) {
2962 temp = I915_READ(reg);
2963 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2965 if ((temp & FDI_RX_BIT_LOCK)) {
2966 DRM_DEBUG_KMS("FDI train 1 done.\n");
2967 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2972 DRM_ERROR("FDI train 1 fail!\n");
2975 reg = FDI_TX_CTL(pipe);
2976 temp = I915_READ(reg);
2977 temp &= ~FDI_LINK_TRAIN_NONE;
2978 temp |= FDI_LINK_TRAIN_PATTERN_2;
2979 I915_WRITE(reg, temp);
2981 reg = FDI_RX_CTL(pipe);
2982 temp = I915_READ(reg);
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_2;
2985 I915_WRITE(reg, temp);
2990 reg = FDI_RX_IIR(pipe);
2991 for (tries = 0; tries < 5; tries++) {
2992 temp = I915_READ(reg);
2993 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2995 if (temp & FDI_RX_SYMBOL_LOCK) {
2996 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2997 DRM_DEBUG_KMS("FDI train 2 done.\n");
3002 DRM_ERROR("FDI train 2 fail!\n");
3004 DRM_DEBUG_KMS("FDI train done\n");
3008 static const int snb_b_fdi_train_param[] = {
3009 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3010 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3011 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3012 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3015 /* The FDI link training functions for SNB/Cougarpoint. */
3016 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3018 struct drm_device *dev = crtc->dev;
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3021 int pipe = intel_crtc->pipe;
3022 u32 reg, temp, i, retry;
3024 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3026 reg = FDI_RX_IMR(pipe);
3027 temp = I915_READ(reg);
3028 temp &= ~FDI_RX_SYMBOL_LOCK;
3029 temp &= ~FDI_RX_BIT_LOCK;
3030 I915_WRITE(reg, temp);
3035 /* enable CPU FDI TX and PCH FDI RX */
3036 reg = FDI_TX_CTL(pipe);
3037 temp = I915_READ(reg);
3038 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3039 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3040 temp &= ~FDI_LINK_TRAIN_NONE;
3041 temp |= FDI_LINK_TRAIN_PATTERN_1;
3042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3044 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3045 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3047 I915_WRITE(FDI_RX_MISC(pipe),
3048 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3050 reg = FDI_RX_CTL(pipe);
3051 temp = I915_READ(reg);
3052 if (HAS_PCH_CPT(dev)) {
3053 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3054 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3056 temp &= ~FDI_LINK_TRAIN_NONE;
3057 temp |= FDI_LINK_TRAIN_PATTERN_1;
3059 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3064 for (i = 0; i < 4; i++) {
3065 reg = FDI_TX_CTL(pipe);
3066 temp = I915_READ(reg);
3067 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3068 temp |= snb_b_fdi_train_param[i];
3069 I915_WRITE(reg, temp);
3074 for (retry = 0; retry < 5; retry++) {
3075 reg = FDI_RX_IIR(pipe);
3076 temp = I915_READ(reg);
3077 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3078 if (temp & FDI_RX_BIT_LOCK) {
3079 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3080 DRM_DEBUG_KMS("FDI train 1 done.\n");
3089 DRM_ERROR("FDI train 1 fail!\n");
3092 reg = FDI_TX_CTL(pipe);
3093 temp = I915_READ(reg);
3094 temp &= ~FDI_LINK_TRAIN_NONE;
3095 temp |= FDI_LINK_TRAIN_PATTERN_2;
3097 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3099 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3101 I915_WRITE(reg, temp);
3103 reg = FDI_RX_CTL(pipe);
3104 temp = I915_READ(reg);
3105 if (HAS_PCH_CPT(dev)) {
3106 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3107 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3109 temp &= ~FDI_LINK_TRAIN_NONE;
3110 temp |= FDI_LINK_TRAIN_PATTERN_2;
3112 I915_WRITE(reg, temp);
3117 for (i = 0; i < 4; i++) {
3118 reg = FDI_TX_CTL(pipe);
3119 temp = I915_READ(reg);
3120 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3121 temp |= snb_b_fdi_train_param[i];
3122 I915_WRITE(reg, temp);
3127 for (retry = 0; retry < 5; retry++) {
3128 reg = FDI_RX_IIR(pipe);
3129 temp = I915_READ(reg);
3130 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3131 if (temp & FDI_RX_SYMBOL_LOCK) {
3132 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3133 DRM_DEBUG_KMS("FDI train 2 done.\n");
3142 DRM_ERROR("FDI train 2 fail!\n");
3144 DRM_DEBUG_KMS("FDI train done.\n");
3147 /* Manual link training for Ivy Bridge A0 parts */
3148 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3150 struct drm_device *dev = crtc->dev;
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3153 int pipe = intel_crtc->pipe;
3154 u32 reg, temp, i, j;
3156 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3158 reg = FDI_RX_IMR(pipe);
3159 temp = I915_READ(reg);
3160 temp &= ~FDI_RX_SYMBOL_LOCK;
3161 temp &= ~FDI_RX_BIT_LOCK;
3162 I915_WRITE(reg, temp);
3167 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3168 I915_READ(FDI_RX_IIR(pipe)));
3170 /* Try each vswing and preemphasis setting twice before moving on */
3171 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3172 /* disable first in case we need to retry */
3173 reg = FDI_TX_CTL(pipe);
3174 temp = I915_READ(reg);
3175 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3176 temp &= ~FDI_TX_ENABLE;
3177 I915_WRITE(reg, temp);
3179 reg = FDI_RX_CTL(pipe);
3180 temp = I915_READ(reg);
3181 temp &= ~FDI_LINK_TRAIN_AUTO;
3182 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3183 temp &= ~FDI_RX_ENABLE;
3184 I915_WRITE(reg, temp);
3186 /* enable CPU FDI TX and PCH FDI RX */
3187 reg = FDI_TX_CTL(pipe);
3188 temp = I915_READ(reg);
3189 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3190 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3191 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3192 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3193 temp |= snb_b_fdi_train_param[j/2];
3194 temp |= FDI_COMPOSITE_SYNC;
3195 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3197 I915_WRITE(FDI_RX_MISC(pipe),
3198 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3200 reg = FDI_RX_CTL(pipe);
3201 temp = I915_READ(reg);
3202 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3203 temp |= FDI_COMPOSITE_SYNC;
3204 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3207 udelay(1); /* should be 0.5us */
3209 for (i = 0; i < 4; i++) {
3210 reg = FDI_RX_IIR(pipe);
3211 temp = I915_READ(reg);
3212 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3214 if (temp & FDI_RX_BIT_LOCK ||
3215 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3216 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3217 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3221 udelay(1); /* should be 0.5us */
3224 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3229 reg = FDI_TX_CTL(pipe);
3230 temp = I915_READ(reg);
3231 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3232 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3233 I915_WRITE(reg, temp);
3235 reg = FDI_RX_CTL(pipe);
3236 temp = I915_READ(reg);
3237 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3238 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3239 I915_WRITE(reg, temp);
3242 udelay(2); /* should be 1.5us */
3244 for (i = 0; i < 4; i++) {
3245 reg = FDI_RX_IIR(pipe);
3246 temp = I915_READ(reg);
3247 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3249 if (temp & FDI_RX_SYMBOL_LOCK ||
3250 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3251 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3252 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3256 udelay(2); /* should be 1.5us */
3259 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3263 DRM_DEBUG_KMS("FDI train done.\n");
3266 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3268 struct drm_device *dev = intel_crtc->base.dev;
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270 int pipe = intel_crtc->pipe;
3274 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3275 reg = FDI_RX_CTL(pipe);
3276 temp = I915_READ(reg);
3277 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3278 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3279 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3280 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3285 /* Switch from Rawclk to PCDclk */
3286 temp = I915_READ(reg);
3287 I915_WRITE(reg, temp | FDI_PCDCLK);
3292 /* Enable CPU FDI TX PLL, always on for Ironlake */
3293 reg = FDI_TX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3296 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3303 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3305 struct drm_device *dev = intel_crtc->base.dev;
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307 int pipe = intel_crtc->pipe;
3310 /* Switch from PCDclk to Rawclk */
3311 reg = FDI_RX_CTL(pipe);
3312 temp = I915_READ(reg);
3313 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3315 /* Disable CPU FDI TX PLL */
3316 reg = FDI_TX_CTL(pipe);
3317 temp = I915_READ(reg);
3318 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3323 reg = FDI_RX_CTL(pipe);
3324 temp = I915_READ(reg);
3325 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3327 /* Wait for the clocks to turn off. */
3332 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3334 struct drm_device *dev = crtc->dev;
3335 struct drm_i915_private *dev_priv = dev->dev_private;
3336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337 int pipe = intel_crtc->pipe;
3340 /* disable CPU FDI tx and PCH FDI rx */
3341 reg = FDI_TX_CTL(pipe);
3342 temp = I915_READ(reg);
3343 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3346 reg = FDI_RX_CTL(pipe);
3347 temp = I915_READ(reg);
3348 temp &= ~(0x7 << 16);
3349 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3350 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3355 /* Ironlake workaround, disable clock pointer after downing FDI */
3356 if (HAS_PCH_IBX(dev))
3357 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3359 /* still set train pattern 1 */
3360 reg = FDI_TX_CTL(pipe);
3361 temp = I915_READ(reg);
3362 temp &= ~FDI_LINK_TRAIN_NONE;
3363 temp |= FDI_LINK_TRAIN_PATTERN_1;
3364 I915_WRITE(reg, temp);
3366 reg = FDI_RX_CTL(pipe);
3367 temp = I915_READ(reg);
3368 if (HAS_PCH_CPT(dev)) {
3369 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3370 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3372 temp &= ~FDI_LINK_TRAIN_NONE;
3373 temp |= FDI_LINK_TRAIN_PATTERN_1;
3375 /* BPC in FDI rx is consistent with that in PIPECONF */
3376 temp &= ~(0x07 << 16);
3377 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3378 I915_WRITE(reg, temp);
3384 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3386 struct intel_crtc *crtc;
3388 /* Note that we don't need to be called with mode_config.lock here
3389 * as our list of CRTC objects is static for the lifetime of the
3390 * device and so cannot disappear as we iterate. Similarly, we can
3391 * happily treat the predicates as racy, atomic checks as userspace
3392 * cannot claim and pin a new fb without at least acquring the
3393 * struct_mutex and so serialising with us.
3395 for_each_intel_crtc(dev, crtc) {
3396 if (atomic_read(&crtc->unpin_work_count) == 0)
3399 if (crtc->unpin_work)
3400 intel_wait_for_vblank(dev, crtc->pipe);
3408 static void page_flip_completed(struct intel_crtc *intel_crtc)
3410 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3411 struct intel_unpin_work *work = intel_crtc->unpin_work;
3413 /* ensure that the unpin work is consistent wrt ->pending. */
3415 intel_crtc->unpin_work = NULL;
3418 drm_send_vblank_event(intel_crtc->base.dev,
3422 drm_crtc_vblank_put(&intel_crtc->base);
3424 wake_up_all(&dev_priv->pending_flip_queue);
3425 queue_work(dev_priv->wq, &work->work);
3427 trace_i915_flip_complete(intel_crtc->plane,
3428 work->pending_flip_obj);
3431 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3433 struct drm_device *dev = crtc->dev;
3434 struct drm_i915_private *dev_priv = dev->dev_private;
3436 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3437 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3438 !intel_crtc_has_pending_flip(crtc),
3440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3441 unsigned long flags;
3443 spin_lock_irqsave(&dev->event_lock, flags);
3444 if (intel_crtc->unpin_work) {
3445 WARN_ONCE(1, "Removing stuck page flip\n");
3446 page_flip_completed(intel_crtc);
3448 spin_unlock_irqrestore(&dev->event_lock, flags);
3451 if (crtc->primary->fb) {
3452 mutex_lock(&dev->struct_mutex);
3453 intel_finish_fb(crtc->primary->fb);
3454 mutex_unlock(&dev->struct_mutex);
3458 /* Program iCLKIP clock to the desired frequency */
3459 static void lpt_program_iclkip(struct drm_crtc *crtc)
3461 struct drm_device *dev = crtc->dev;
3462 struct drm_i915_private *dev_priv = dev->dev_private;
3463 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3464 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3467 mutex_lock(&dev_priv->dpio_lock);
3469 /* It is necessary to ungate the pixclk gate prior to programming
3470 * the divisors, and gate it back when it is done.
3472 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3474 /* Disable SSCCTL */
3475 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3476 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3480 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3481 if (clock == 20000) {
3486 /* The iCLK virtual clock root frequency is in MHz,
3487 * but the adjusted_mode->crtc_clock in in KHz. To get the
3488 * divisors, it is necessary to divide one by another, so we
3489 * convert the virtual clock precision to KHz here for higher
3492 u32 iclk_virtual_root_freq = 172800 * 1000;
3493 u32 iclk_pi_range = 64;
3494 u32 desired_divisor, msb_divisor_value, pi_value;
3496 desired_divisor = (iclk_virtual_root_freq / clock);
3497 msb_divisor_value = desired_divisor / iclk_pi_range;
3498 pi_value = desired_divisor % iclk_pi_range;
3501 divsel = msb_divisor_value - 2;
3502 phaseinc = pi_value;
3505 /* This should not happen with any sane values */
3506 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3507 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3508 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3509 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3511 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3518 /* Program SSCDIVINTPHASE6 */
3519 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3520 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3521 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3522 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3523 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3524 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3525 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3526 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3528 /* Program SSCAUXDIV */
3529 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3530 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3531 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3532 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3534 /* Enable modulator and associated divider */
3535 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3536 temp &= ~SBI_SSCCTL_DISABLE;
3537 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3539 /* Wait for initialization time */
3542 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3544 mutex_unlock(&dev_priv->dpio_lock);
3547 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3548 enum pipe pch_transcoder)
3550 struct drm_device *dev = crtc->base.dev;
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3554 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3555 I915_READ(HTOTAL(cpu_transcoder)));
3556 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3557 I915_READ(HBLANK(cpu_transcoder)));
3558 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3559 I915_READ(HSYNC(cpu_transcoder)));
3561 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3562 I915_READ(VTOTAL(cpu_transcoder)));
3563 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3564 I915_READ(VBLANK(cpu_transcoder)));
3565 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3566 I915_READ(VSYNC(cpu_transcoder)));
3567 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3568 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3571 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3573 struct drm_i915_private *dev_priv = dev->dev_private;
3576 temp = I915_READ(SOUTH_CHICKEN1);
3577 if (temp & FDI_BC_BIFURCATION_SELECT)
3580 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3581 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3583 temp |= FDI_BC_BIFURCATION_SELECT;
3584 DRM_DEBUG_KMS("enabling fdi C rx\n");
3585 I915_WRITE(SOUTH_CHICKEN1, temp);
3586 POSTING_READ(SOUTH_CHICKEN1);
3589 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3591 struct drm_device *dev = intel_crtc->base.dev;
3592 struct drm_i915_private *dev_priv = dev->dev_private;
3594 switch (intel_crtc->pipe) {
3598 if (intel_crtc->config.fdi_lanes > 2)
3599 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3601 cpt_enable_fdi_bc_bifurcation(dev);
3605 cpt_enable_fdi_bc_bifurcation(dev);
3614 * Enable PCH resources required for PCH ports:
3616 * - FDI training & RX/TX
3617 * - update transcoder timings
3618 * - DP transcoding bits
3621 static void ironlake_pch_enable(struct drm_crtc *crtc)
3623 struct drm_device *dev = crtc->dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626 int pipe = intel_crtc->pipe;
3629 assert_pch_transcoder_disabled(dev_priv, pipe);
3631 if (IS_IVYBRIDGE(dev))
3632 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3634 /* Write the TU size bits before fdi link training, so that error
3635 * detection works. */
3636 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3637 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3639 /* For PCH output, training FDI link */
3640 dev_priv->display.fdi_link_train(crtc);
3642 /* We need to program the right clock selection before writing the pixel
3643 * mutliplier into the DPLL. */
3644 if (HAS_PCH_CPT(dev)) {
3647 temp = I915_READ(PCH_DPLL_SEL);
3648 temp |= TRANS_DPLL_ENABLE(pipe);
3649 sel = TRANS_DPLLB_SEL(pipe);
3650 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3654 I915_WRITE(PCH_DPLL_SEL, temp);
3657 /* XXX: pch pll's can be enabled any time before we enable the PCH
3658 * transcoder, and we actually should do this to not upset any PCH
3659 * transcoder that already use the clock when we share it.
3661 * Note that enable_shared_dpll tries to do the right thing, but
3662 * get_shared_dpll unconditionally resets the pll - we need that to have
3663 * the right LVDS enable sequence. */
3664 intel_enable_shared_dpll(intel_crtc);
3666 /* set transcoder timing, panel must allow it */
3667 assert_panel_unlocked(dev_priv, pipe);
3668 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3670 intel_fdi_normal_train(crtc);
3672 /* For PCH DP, enable TRANS_DP_CTL */
3673 if (HAS_PCH_CPT(dev) &&
3674 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3675 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3676 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3677 reg = TRANS_DP_CTL(pipe);
3678 temp = I915_READ(reg);
3679 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3680 TRANS_DP_SYNC_MASK |
3682 temp |= (TRANS_DP_OUTPUT_ENABLE |
3683 TRANS_DP_ENH_FRAMING);
3684 temp |= bpc << 9; /* same format but at 11:9 */
3686 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3687 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3688 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3689 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3691 switch (intel_trans_dp_port_sel(crtc)) {
3693 temp |= TRANS_DP_PORT_SEL_B;
3696 temp |= TRANS_DP_PORT_SEL_C;
3699 temp |= TRANS_DP_PORT_SEL_D;
3705 I915_WRITE(reg, temp);
3708 ironlake_enable_pch_transcoder(dev_priv, pipe);
3711 static void lpt_pch_enable(struct drm_crtc *crtc)
3713 struct drm_device *dev = crtc->dev;
3714 struct drm_i915_private *dev_priv = dev->dev_private;
3715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3718 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3720 lpt_program_iclkip(crtc);
3722 /* Set transcoder timing. */
3723 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3725 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3728 void intel_put_shared_dpll(struct intel_crtc *crtc)
3730 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3735 if (pll->refcount == 0) {
3736 WARN(1, "bad %s refcount\n", pll->name);
3740 if (--pll->refcount == 0) {
3742 WARN_ON(pll->active);
3745 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3748 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3750 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3751 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3752 enum intel_dpll_id i;
3755 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3756 crtc->base.base.id, pll->name);
3757 intel_put_shared_dpll(crtc);
3760 if (HAS_PCH_IBX(dev_priv->dev)) {
3761 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3762 i = (enum intel_dpll_id) crtc->pipe;
3763 pll = &dev_priv->shared_dplls[i];
3765 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3766 crtc->base.base.id, pll->name);
3768 WARN_ON(pll->refcount);
3773 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3774 pll = &dev_priv->shared_dplls[i];
3776 /* Only want to check enabled timings first */
3777 if (pll->refcount == 0)
3780 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3781 sizeof(pll->hw_state)) == 0) {
3782 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3784 pll->name, pll->refcount, pll->active);
3790 /* Ok no matching timings, maybe there's a free one? */
3791 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3792 pll = &dev_priv->shared_dplls[i];
3793 if (pll->refcount == 0) {
3794 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3795 crtc->base.base.id, pll->name);
3803 if (pll->refcount == 0)
3804 pll->hw_state = crtc->config.dpll_hw_state;
3806 crtc->config.shared_dpll = i;
3807 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3808 pipe_name(crtc->pipe));
3815 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3817 struct drm_i915_private *dev_priv = dev->dev_private;
3818 int dslreg = PIPEDSL(pipe);
3821 temp = I915_READ(dslreg);
3823 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3824 if (wait_for(I915_READ(dslreg) != temp, 5))
3825 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3829 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3831 struct drm_device *dev = crtc->base.dev;
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 int pipe = crtc->pipe;
3835 if (crtc->config.pch_pfit.enabled) {
3836 /* Force use of hard-coded filter coefficients
3837 * as some pre-programmed values are broken,
3840 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3841 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3842 PF_PIPE_SEL_IVB(pipe));
3844 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3845 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3846 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3850 static void intel_enable_planes(struct drm_crtc *crtc)
3852 struct drm_device *dev = crtc->dev;
3853 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3854 struct drm_plane *plane;
3855 struct intel_plane *intel_plane;
3857 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3858 intel_plane = to_intel_plane(plane);
3859 if (intel_plane->pipe == pipe)
3860 intel_plane_restore(&intel_plane->base);
3864 static void intel_disable_planes(struct drm_crtc *crtc)
3866 struct drm_device *dev = crtc->dev;
3867 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3868 struct drm_plane *plane;
3869 struct intel_plane *intel_plane;
3871 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3872 intel_plane = to_intel_plane(plane);
3873 if (intel_plane->pipe == pipe)
3874 intel_plane_disable(&intel_plane->base);
3878 void hsw_enable_ips(struct intel_crtc *crtc)
3880 struct drm_device *dev = crtc->base.dev;
3881 struct drm_i915_private *dev_priv = dev->dev_private;
3883 if (!crtc->config.ips_enabled)
3886 /* We can only enable IPS after we enable a plane and wait for a vblank */
3887 intel_wait_for_vblank(dev, crtc->pipe);
3889 assert_plane_enabled(dev_priv, crtc->plane);
3890 if (IS_BROADWELL(dev)) {
3891 mutex_lock(&dev_priv->rps.hw_lock);
3892 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3893 mutex_unlock(&dev_priv->rps.hw_lock);
3894 /* Quoting Art Runyan: "its not safe to expect any particular
3895 * value in IPS_CTL bit 31 after enabling IPS through the
3896 * mailbox." Moreover, the mailbox may return a bogus state,
3897 * so we need to just enable it and continue on.
3900 I915_WRITE(IPS_CTL, IPS_ENABLE);
3901 /* The bit only becomes 1 in the next vblank, so this wait here
3902 * is essentially intel_wait_for_vblank. If we don't have this
3903 * and don't wait for vblanks until the end of crtc_enable, then
3904 * the HW state readout code will complain that the expected
3905 * IPS_CTL value is not the one we read. */
3906 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3907 DRM_ERROR("Timed out waiting for IPS enable\n");
3911 void hsw_disable_ips(struct intel_crtc *crtc)
3913 struct drm_device *dev = crtc->base.dev;
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3916 if (!crtc->config.ips_enabled)
3919 assert_plane_enabled(dev_priv, crtc->plane);
3920 if (IS_BROADWELL(dev)) {
3921 mutex_lock(&dev_priv->rps.hw_lock);
3922 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3923 mutex_unlock(&dev_priv->rps.hw_lock);
3924 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3925 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3926 DRM_ERROR("Timed out waiting for IPS disable\n");
3928 I915_WRITE(IPS_CTL, 0);
3929 POSTING_READ(IPS_CTL);
3932 /* We need to wait for a vblank before we can disable the plane. */
3933 intel_wait_for_vblank(dev, crtc->pipe);
3936 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3937 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3939 struct drm_device *dev = crtc->dev;
3940 struct drm_i915_private *dev_priv = dev->dev_private;
3941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3942 enum pipe pipe = intel_crtc->pipe;
3943 int palreg = PALETTE(pipe);
3945 bool reenable_ips = false;
3947 /* The clocks have to be on to load the palette. */
3948 if (!crtc->enabled || !intel_crtc->active)
3951 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3952 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3953 assert_dsi_pll_enabled(dev_priv);
3955 assert_pll_enabled(dev_priv, pipe);
3958 /* use legacy palette for Ironlake */
3959 if (!HAS_GMCH_DISPLAY(dev))
3960 palreg = LGC_PALETTE(pipe);
3962 /* Workaround : Do not read or write the pipe palette/gamma data while
3963 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3965 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3966 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3967 GAMMA_MODE_MODE_SPLIT)) {
3968 hsw_disable_ips(intel_crtc);
3969 reenable_ips = true;
3972 for (i = 0; i < 256; i++) {
3973 I915_WRITE(palreg + 4 * i,
3974 (intel_crtc->lut_r[i] << 16) |
3975 (intel_crtc->lut_g[i] << 8) |
3976 intel_crtc->lut_b[i]);
3980 hsw_enable_ips(intel_crtc);
3983 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3985 if (!enable && intel_crtc->overlay) {
3986 struct drm_device *dev = intel_crtc->base.dev;
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3989 mutex_lock(&dev->struct_mutex);
3990 dev_priv->mm.interruptible = false;
3991 (void) intel_overlay_switch_off(intel_crtc->overlay);
3992 dev_priv->mm.interruptible = true;
3993 mutex_unlock(&dev->struct_mutex);
3996 /* Let userspace switch the overlay on again. In most cases userspace
3997 * has to recompute where to put it anyway.
4001 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4003 struct drm_device *dev = crtc->dev;
4004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4005 int pipe = intel_crtc->pipe;
4007 assert_vblank_disabled(crtc);
4009 drm_vblank_on(dev, pipe);
4011 intel_enable_primary_hw_plane(crtc->primary, crtc);
4012 intel_enable_planes(crtc);
4013 intel_crtc_update_cursor(crtc, true);
4014 intel_crtc_dpms_overlay(intel_crtc, true);
4016 hsw_enable_ips(intel_crtc);
4018 mutex_lock(&dev->struct_mutex);
4019 intel_update_fbc(dev);
4020 mutex_unlock(&dev->struct_mutex);
4023 * FIXME: Once we grow proper nuclear flip support out of this we need
4024 * to compute the mask of flip planes precisely. For the time being
4025 * consider this a flip from a NULL plane.
4027 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4030 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4032 struct drm_device *dev = crtc->dev;
4033 struct drm_i915_private *dev_priv = dev->dev_private;
4034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4035 int pipe = intel_crtc->pipe;
4036 int plane = intel_crtc->plane;
4038 intel_crtc_wait_for_pending_flips(crtc);
4040 if (dev_priv->fbc.plane == plane)
4041 intel_disable_fbc(dev);
4043 hsw_disable_ips(intel_crtc);
4045 intel_crtc_dpms_overlay(intel_crtc, false);
4046 intel_crtc_update_cursor(crtc, false);
4047 intel_disable_planes(crtc);
4048 intel_disable_primary_hw_plane(crtc->primary, crtc);
4051 * FIXME: Once we grow proper nuclear flip support out of this we need
4052 * to compute the mask of flip planes precisely. For the time being
4053 * consider this a flip to a NULL plane.
4055 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4057 drm_vblank_off(dev, pipe);
4059 assert_vblank_disabled(crtc);
4062 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4064 struct drm_device *dev = crtc->dev;
4065 struct drm_i915_private *dev_priv = dev->dev_private;
4066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4067 struct intel_encoder *encoder;
4068 int pipe = intel_crtc->pipe;
4070 WARN_ON(!crtc->enabled);
4072 if (intel_crtc->active)
4075 if (intel_crtc->config.has_pch_encoder)
4076 intel_prepare_shared_dpll(intel_crtc);
4078 if (intel_crtc->config.has_dp_encoder)
4079 intel_dp_set_m_n(intel_crtc);
4081 intel_set_pipe_timings(intel_crtc);
4083 if (intel_crtc->config.has_pch_encoder) {
4084 intel_cpu_transcoder_set_m_n(intel_crtc,
4085 &intel_crtc->config.fdi_m_n, NULL);
4088 ironlake_set_pipeconf(crtc);
4090 intel_crtc->active = true;
4092 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4093 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4095 for_each_encoder_on_crtc(dev, crtc, encoder)
4096 if (encoder->pre_enable)
4097 encoder->pre_enable(encoder);
4099 if (intel_crtc->config.has_pch_encoder) {
4100 /* Note: FDI PLL enabling _must_ be done before we enable the
4101 * cpu pipes, hence this is separate from all the other fdi/pch
4103 ironlake_fdi_pll_enable(intel_crtc);
4105 assert_fdi_tx_disabled(dev_priv, pipe);
4106 assert_fdi_rx_disabled(dev_priv, pipe);
4109 ironlake_pfit_enable(intel_crtc);
4112 * On ILK+ LUT must be loaded before the pipe is running but with
4115 intel_crtc_load_lut(crtc);
4117 intel_update_watermarks(crtc);
4118 intel_enable_pipe(intel_crtc);
4120 if (intel_crtc->config.has_pch_encoder)
4121 ironlake_pch_enable(crtc);
4123 for_each_encoder_on_crtc(dev, crtc, encoder)
4124 encoder->enable(encoder);
4126 if (HAS_PCH_CPT(dev))
4127 cpt_verify_modeset(dev, intel_crtc->pipe);
4129 intel_crtc_enable_planes(crtc);
4132 /* IPS only exists on ULT machines and is tied to pipe A. */
4133 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4135 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4139 * This implements the workaround described in the "notes" section of the mode
4140 * set sequence documentation. When going from no pipes or single pipe to
4141 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4142 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4144 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4146 struct drm_device *dev = crtc->base.dev;
4147 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4149 /* We want to get the other_active_crtc only if there's only 1 other
4151 for_each_intel_crtc(dev, crtc_it) {
4152 if (!crtc_it->active || crtc_it == crtc)
4155 if (other_active_crtc)
4158 other_active_crtc = crtc_it;
4160 if (!other_active_crtc)
4163 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4164 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4167 static void haswell_crtc_enable(struct drm_crtc *crtc)
4169 struct drm_device *dev = crtc->dev;
4170 struct drm_i915_private *dev_priv = dev->dev_private;
4171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172 struct intel_encoder *encoder;
4173 int pipe = intel_crtc->pipe;
4175 WARN_ON(!crtc->enabled);
4177 if (intel_crtc->active)
4180 if (intel_crtc_to_shared_dpll(intel_crtc))
4181 intel_enable_shared_dpll(intel_crtc);
4183 if (intel_crtc->config.has_dp_encoder)
4184 intel_dp_set_m_n(intel_crtc);
4186 intel_set_pipe_timings(intel_crtc);
4188 if (intel_crtc->config.has_pch_encoder) {
4189 intel_cpu_transcoder_set_m_n(intel_crtc,
4190 &intel_crtc->config.fdi_m_n, NULL);
4193 haswell_set_pipeconf(crtc);
4195 intel_set_pipe_csc(crtc);
4197 intel_crtc->active = true;
4199 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4200 for_each_encoder_on_crtc(dev, crtc, encoder)
4201 if (encoder->pre_enable)
4202 encoder->pre_enable(encoder);
4204 if (intel_crtc->config.has_pch_encoder) {
4205 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4206 dev_priv->display.fdi_link_train(crtc);
4209 intel_ddi_enable_pipe_clock(intel_crtc);
4211 ironlake_pfit_enable(intel_crtc);
4214 * On ILK+ LUT must be loaded before the pipe is running but with
4217 intel_crtc_load_lut(crtc);
4219 intel_ddi_set_pipe_settings(crtc);
4220 intel_ddi_enable_transcoder_func(crtc);
4222 intel_update_watermarks(crtc);
4223 intel_enable_pipe(intel_crtc);
4225 if (intel_crtc->config.has_pch_encoder)
4226 lpt_pch_enable(crtc);
4228 if (intel_crtc->config.dp_encoder_is_mst)
4229 intel_ddi_set_vc_payload_alloc(crtc, true);
4231 for_each_encoder_on_crtc(dev, crtc, encoder) {
4232 encoder->enable(encoder);
4233 intel_opregion_notify_encoder(encoder, true);
4236 /* If we change the relative order between pipe/planes enabling, we need
4237 * to change the workaround. */
4238 haswell_mode_set_planes_workaround(intel_crtc);
4239 intel_crtc_enable_planes(crtc);
4242 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4244 struct drm_device *dev = crtc->base.dev;
4245 struct drm_i915_private *dev_priv = dev->dev_private;
4246 int pipe = crtc->pipe;
4248 /* To avoid upsetting the power well on haswell only disable the pfit if
4249 * it's in use. The hw state code will make sure we get this right. */
4250 if (crtc->config.pch_pfit.enabled) {
4251 I915_WRITE(PF_CTL(pipe), 0);
4252 I915_WRITE(PF_WIN_POS(pipe), 0);
4253 I915_WRITE(PF_WIN_SZ(pipe), 0);
4257 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4259 struct drm_device *dev = crtc->dev;
4260 struct drm_i915_private *dev_priv = dev->dev_private;
4261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4262 struct intel_encoder *encoder;
4263 int pipe = intel_crtc->pipe;
4266 if (!intel_crtc->active)
4269 intel_crtc_disable_planes(crtc);
4271 for_each_encoder_on_crtc(dev, crtc, encoder)
4272 encoder->disable(encoder);
4274 if (intel_crtc->config.has_pch_encoder)
4275 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4277 intel_disable_pipe(intel_crtc);
4279 ironlake_pfit_disable(intel_crtc);
4281 for_each_encoder_on_crtc(dev, crtc, encoder)
4282 if (encoder->post_disable)
4283 encoder->post_disable(encoder);
4285 if (intel_crtc->config.has_pch_encoder) {
4286 ironlake_fdi_disable(crtc);
4288 ironlake_disable_pch_transcoder(dev_priv, pipe);
4289 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4291 if (HAS_PCH_CPT(dev)) {
4292 /* disable TRANS_DP_CTL */
4293 reg = TRANS_DP_CTL(pipe);
4294 temp = I915_READ(reg);
4295 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4296 TRANS_DP_PORT_SEL_MASK);
4297 temp |= TRANS_DP_PORT_SEL_NONE;
4298 I915_WRITE(reg, temp);
4300 /* disable DPLL_SEL */
4301 temp = I915_READ(PCH_DPLL_SEL);
4302 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4303 I915_WRITE(PCH_DPLL_SEL, temp);
4306 /* disable PCH DPLL */
4307 intel_disable_shared_dpll(intel_crtc);
4309 ironlake_fdi_pll_disable(intel_crtc);
4312 intel_crtc->active = false;
4313 intel_update_watermarks(crtc);
4315 mutex_lock(&dev->struct_mutex);
4316 intel_update_fbc(dev);
4317 mutex_unlock(&dev->struct_mutex);
4320 static void haswell_crtc_disable(struct drm_crtc *crtc)
4322 struct drm_device *dev = crtc->dev;
4323 struct drm_i915_private *dev_priv = dev->dev_private;
4324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4325 struct intel_encoder *encoder;
4326 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4328 if (!intel_crtc->active)
4331 intel_crtc_disable_planes(crtc);
4333 for_each_encoder_on_crtc(dev, crtc, encoder) {
4334 intel_opregion_notify_encoder(encoder, false);
4335 encoder->disable(encoder);
4338 if (intel_crtc->config.has_pch_encoder)
4339 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4340 intel_disable_pipe(intel_crtc);
4342 if (intel_crtc->config.dp_encoder_is_mst)
4343 intel_ddi_set_vc_payload_alloc(crtc, false);
4345 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4347 ironlake_pfit_disable(intel_crtc);
4349 intel_ddi_disable_pipe_clock(intel_crtc);
4351 if (intel_crtc->config.has_pch_encoder) {
4352 lpt_disable_pch_transcoder(dev_priv);
4353 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4354 intel_ddi_fdi_disable(crtc);
4357 for_each_encoder_on_crtc(dev, crtc, encoder)
4358 if (encoder->post_disable)
4359 encoder->post_disable(encoder);
4361 intel_crtc->active = false;
4362 intel_update_watermarks(crtc);
4364 mutex_lock(&dev->struct_mutex);
4365 intel_update_fbc(dev);
4366 mutex_unlock(&dev->struct_mutex);
4368 if (intel_crtc_to_shared_dpll(intel_crtc))
4369 intel_disable_shared_dpll(intel_crtc);
4372 static void ironlake_crtc_off(struct drm_crtc *crtc)
4374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4375 intel_put_shared_dpll(intel_crtc);
4379 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4381 struct drm_device *dev = crtc->base.dev;
4382 struct drm_i915_private *dev_priv = dev->dev_private;
4383 struct intel_crtc_config *pipe_config = &crtc->config;
4385 if (!crtc->config.gmch_pfit.control)
4389 * The panel fitter should only be adjusted whilst the pipe is disabled,
4390 * according to register description and PRM.
4392 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4393 assert_pipe_disabled(dev_priv, crtc->pipe);
4395 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4396 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4398 /* Border color in case we don't scale up to the full screen. Black by
4399 * default, change to something else for debugging. */
4400 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4403 static enum intel_display_power_domain port_to_power_domain(enum port port)
4407 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4409 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4411 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4413 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4416 return POWER_DOMAIN_PORT_OTHER;
4420 #define for_each_power_domain(domain, mask) \
4421 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4422 if ((1 << (domain)) & (mask))
4424 enum intel_display_power_domain
4425 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4427 struct drm_device *dev = intel_encoder->base.dev;
4428 struct intel_digital_port *intel_dig_port;
4430 switch (intel_encoder->type) {
4431 case INTEL_OUTPUT_UNKNOWN:
4432 /* Only DDI platforms should ever use this output type */
4433 WARN_ON_ONCE(!HAS_DDI(dev));
4434 case INTEL_OUTPUT_DISPLAYPORT:
4435 case INTEL_OUTPUT_HDMI:
4436 case INTEL_OUTPUT_EDP:
4437 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4438 return port_to_power_domain(intel_dig_port->port);
4439 case INTEL_OUTPUT_DP_MST:
4440 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4441 return port_to_power_domain(intel_dig_port->port);
4442 case INTEL_OUTPUT_ANALOG:
4443 return POWER_DOMAIN_PORT_CRT;
4444 case INTEL_OUTPUT_DSI:
4445 return POWER_DOMAIN_PORT_DSI;
4447 return POWER_DOMAIN_PORT_OTHER;
4451 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4453 struct drm_device *dev = crtc->dev;
4454 struct intel_encoder *intel_encoder;
4455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4456 enum pipe pipe = intel_crtc->pipe;
4458 enum transcoder transcoder;
4460 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4462 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4463 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4464 if (intel_crtc->config.pch_pfit.enabled ||
4465 intel_crtc->config.pch_pfit.force_thru)
4466 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4468 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4469 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4474 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4477 if (dev_priv->power_domains.init_power_on == enable)
4481 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4483 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4485 dev_priv->power_domains.init_power_on = enable;
4488 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4490 struct drm_i915_private *dev_priv = dev->dev_private;
4491 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4492 struct intel_crtc *crtc;
4495 * First get all needed power domains, then put all unneeded, to avoid
4496 * any unnecessary toggling of the power wells.
4498 for_each_intel_crtc(dev, crtc) {
4499 enum intel_display_power_domain domain;
4501 if (!crtc->base.enabled)
4504 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4506 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4507 intel_display_power_get(dev_priv, domain);
4510 for_each_intel_crtc(dev, crtc) {
4511 enum intel_display_power_domain domain;
4513 for_each_power_domain(domain, crtc->enabled_power_domains)
4514 intel_display_power_put(dev_priv, domain);
4516 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4519 intel_display_set_init_power(dev_priv, false);
4522 /* returns HPLL frequency in kHz */
4523 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4525 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4527 /* Obtain SKU information */
4528 mutex_lock(&dev_priv->dpio_lock);
4529 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4530 CCK_FUSE_HPLL_FREQ_MASK;
4531 mutex_unlock(&dev_priv->dpio_lock);
4533 return vco_freq[hpll_freq] * 1000;
4536 static void vlv_update_cdclk(struct drm_device *dev)
4538 struct drm_i915_private *dev_priv = dev->dev_private;
4540 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4541 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4542 dev_priv->vlv_cdclk_freq);
4545 * Program the gmbus_freq based on the cdclk frequency.
4546 * BSpec erroneously claims we should aim for 4MHz, but
4547 * in fact 1MHz is the correct frequency.
4549 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4552 /* Adjust CDclk dividers to allow high res or save power if possible */
4553 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4555 struct drm_i915_private *dev_priv = dev->dev_private;
4558 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4560 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4562 else if (cdclk == 266667)
4567 mutex_lock(&dev_priv->rps.hw_lock);
4568 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4569 val &= ~DSPFREQGUAR_MASK;
4570 val |= (cmd << DSPFREQGUAR_SHIFT);
4571 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4572 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4573 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4575 DRM_ERROR("timed out waiting for CDclk change\n");
4577 mutex_unlock(&dev_priv->rps.hw_lock);
4579 if (cdclk == 400000) {
4582 vco = valleyview_get_vco(dev_priv);
4583 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4585 mutex_lock(&dev_priv->dpio_lock);
4586 /* adjust cdclk divider */
4587 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4588 val &= ~DISPLAY_FREQUENCY_VALUES;
4590 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4592 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4593 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4595 DRM_ERROR("timed out waiting for CDclk change\n");
4596 mutex_unlock(&dev_priv->dpio_lock);
4599 mutex_lock(&dev_priv->dpio_lock);
4600 /* adjust self-refresh exit latency value */
4601 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4605 * For high bandwidth configs, we set a higher latency in the bunit
4606 * so that the core display fetch happens in time to avoid underruns.
4608 if (cdclk == 400000)
4609 val |= 4500 / 250; /* 4.5 usec */
4611 val |= 3000 / 250; /* 3.0 usec */
4612 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4613 mutex_unlock(&dev_priv->dpio_lock);
4615 vlv_update_cdclk(dev);
4618 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4623 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4644 mutex_lock(&dev_priv->rps.hw_lock);
4645 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4646 val &= ~DSPFREQGUAR_MASK_CHV;
4647 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4648 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4649 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4650 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4652 DRM_ERROR("timed out waiting for CDclk change\n");
4654 mutex_unlock(&dev_priv->rps.hw_lock);
4656 vlv_update_cdclk(dev);
4659 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4662 int vco = valleyview_get_vco(dev_priv);
4663 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4665 /* FIXME: Punit isn't quite ready yet */
4666 if (IS_CHERRYVIEW(dev_priv->dev))
4670 * Really only a few cases to deal with, as only 4 CDclks are supported:
4673 * 320/333MHz (depends on HPLL freq)
4675 * So we check to see whether we're above 90% of the lower bin and
4678 * We seem to get an unstable or solid color picture at 200MHz.
4679 * Not sure what's wrong. For now use 200MHz only when all pipes
4682 if (max_pixclk > freq_320*9/10)
4684 else if (max_pixclk > 266667*9/10)
4686 else if (max_pixclk > 0)
4692 /* compute the max pixel clock for new configuration */
4693 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4695 struct drm_device *dev = dev_priv->dev;
4696 struct intel_crtc *intel_crtc;
4699 for_each_intel_crtc(dev, intel_crtc) {
4700 if (intel_crtc->new_enabled)
4701 max_pixclk = max(max_pixclk,
4702 intel_crtc->new_config->adjusted_mode.crtc_clock);
4708 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4709 unsigned *prepare_pipes)
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712 struct intel_crtc *intel_crtc;
4713 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4715 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4716 dev_priv->vlv_cdclk_freq)
4719 /* disable/enable all currently active pipes while we change cdclk */
4720 for_each_intel_crtc(dev, intel_crtc)
4721 if (intel_crtc->base.enabled)
4722 *prepare_pipes |= (1 << intel_crtc->pipe);
4725 static void valleyview_modeset_global_resources(struct drm_device *dev)
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4729 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4731 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4732 if (IS_CHERRYVIEW(dev))
4733 cherryview_set_cdclk(dev, req_cdclk);
4735 valleyview_set_cdclk(dev, req_cdclk);
4738 modeset_update_crtc_power_domains(dev);
4741 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4743 struct drm_device *dev = crtc->dev;
4744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4745 struct intel_encoder *encoder;
4746 int pipe = intel_crtc->pipe;
4749 WARN_ON(!crtc->enabled);
4751 if (intel_crtc->active)
4754 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4757 if (IS_CHERRYVIEW(dev))
4758 chv_prepare_pll(intel_crtc);
4760 vlv_prepare_pll(intel_crtc);
4763 if (intel_crtc->config.has_dp_encoder)
4764 intel_dp_set_m_n(intel_crtc);
4766 intel_set_pipe_timings(intel_crtc);
4768 i9xx_set_pipeconf(intel_crtc);
4770 intel_crtc->active = true;
4772 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4774 for_each_encoder_on_crtc(dev, crtc, encoder)
4775 if (encoder->pre_pll_enable)
4776 encoder->pre_pll_enable(encoder);
4779 if (IS_CHERRYVIEW(dev))
4780 chv_enable_pll(intel_crtc);
4782 vlv_enable_pll(intel_crtc);
4785 for_each_encoder_on_crtc(dev, crtc, encoder)
4786 if (encoder->pre_enable)
4787 encoder->pre_enable(encoder);
4789 i9xx_pfit_enable(intel_crtc);
4791 intel_crtc_load_lut(crtc);
4793 intel_update_watermarks(crtc);
4794 intel_enable_pipe(intel_crtc);
4796 for_each_encoder_on_crtc(dev, crtc, encoder)
4797 encoder->enable(encoder);
4799 intel_crtc_enable_planes(crtc);
4801 /* Underruns don't raise interrupts, so check manually. */
4802 i9xx_check_fifo_underruns(dev);
4805 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4807 struct drm_device *dev = crtc->base.dev;
4808 struct drm_i915_private *dev_priv = dev->dev_private;
4810 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4811 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4814 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4816 struct drm_device *dev = crtc->dev;
4817 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4818 struct intel_encoder *encoder;
4819 int pipe = intel_crtc->pipe;
4821 WARN_ON(!crtc->enabled);
4823 if (intel_crtc->active)
4826 i9xx_set_pll_dividers(intel_crtc);
4828 if (intel_crtc->config.has_dp_encoder)
4829 intel_dp_set_m_n(intel_crtc);
4831 intel_set_pipe_timings(intel_crtc);
4833 i9xx_set_pipeconf(intel_crtc);
4835 intel_crtc->active = true;
4838 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4840 for_each_encoder_on_crtc(dev, crtc, encoder)
4841 if (encoder->pre_enable)
4842 encoder->pre_enable(encoder);
4844 i9xx_enable_pll(intel_crtc);
4846 i9xx_pfit_enable(intel_crtc);
4848 intel_crtc_load_lut(crtc);
4850 intel_update_watermarks(crtc);
4851 intel_enable_pipe(intel_crtc);
4853 for_each_encoder_on_crtc(dev, crtc, encoder)
4854 encoder->enable(encoder);
4856 intel_crtc_enable_planes(crtc);
4859 * Gen2 reports pipe underruns whenever all planes are disabled.
4860 * So don't enable underrun reporting before at least some planes
4862 * FIXME: Need to fix the logic to work when we turn off all planes
4863 * but leave the pipe running.
4866 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4868 /* Underruns don't raise interrupts, so check manually. */
4869 i9xx_check_fifo_underruns(dev);
4872 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4874 struct drm_device *dev = crtc->base.dev;
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4877 if (!crtc->config.gmch_pfit.control)
4880 assert_pipe_disabled(dev_priv, crtc->pipe);
4882 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4883 I915_READ(PFIT_CONTROL));
4884 I915_WRITE(PFIT_CONTROL, 0);
4887 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4889 struct drm_device *dev = crtc->dev;
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4892 struct intel_encoder *encoder;
4893 int pipe = intel_crtc->pipe;
4895 if (!intel_crtc->active)
4899 * Gen2 reports pipe underruns whenever all planes are disabled.
4900 * So diasble underrun reporting before all the planes get disabled.
4901 * FIXME: Need to fix the logic to work when we turn off all planes
4902 * but leave the pipe running.
4905 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4908 * Vblank time updates from the shadow to live plane control register
4909 * are blocked if the memory self-refresh mode is active at that
4910 * moment. So to make sure the plane gets truly disabled, disable
4911 * first the self-refresh mode. The self-refresh enable bit in turn
4912 * will be checked/applied by the HW only at the next frame start
4913 * event which is after the vblank start event, so we need to have a
4914 * wait-for-vblank between disabling the plane and the pipe.
4916 intel_set_memory_cxsr(dev_priv, false);
4917 intel_crtc_disable_planes(crtc);
4919 for_each_encoder_on_crtc(dev, crtc, encoder)
4920 encoder->disable(encoder);
4923 * On gen2 planes are double buffered but the pipe isn't, so we must
4924 * wait for planes to fully turn off before disabling the pipe.
4925 * We also need to wait on all gmch platforms because of the
4926 * self-refresh mode constraint explained above.
4928 intel_wait_for_vblank(dev, pipe);
4930 intel_disable_pipe(intel_crtc);
4932 i9xx_pfit_disable(intel_crtc);
4934 for_each_encoder_on_crtc(dev, crtc, encoder)
4935 if (encoder->post_disable)
4936 encoder->post_disable(encoder);
4938 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4939 if (IS_CHERRYVIEW(dev))
4940 chv_disable_pll(dev_priv, pipe);
4941 else if (IS_VALLEYVIEW(dev))
4942 vlv_disable_pll(dev_priv, pipe);
4944 i9xx_disable_pll(dev_priv, pipe);
4948 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4950 intel_crtc->active = false;
4951 intel_update_watermarks(crtc);
4953 mutex_lock(&dev->struct_mutex);
4954 intel_update_fbc(dev);
4955 mutex_unlock(&dev->struct_mutex);
4958 static void i9xx_crtc_off(struct drm_crtc *crtc)
4962 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4965 struct drm_device *dev = crtc->dev;
4966 struct drm_i915_master_private *master_priv;
4967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4968 int pipe = intel_crtc->pipe;
4970 if (!dev->primary->master)
4973 master_priv = dev->primary->master->driver_priv;
4974 if (!master_priv->sarea_priv)
4979 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4980 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4983 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4984 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4987 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4992 /* Master function to enable/disable CRTC and corresponding power wells */
4993 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4995 struct drm_device *dev = crtc->dev;
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4998 enum intel_display_power_domain domain;
4999 unsigned long domains;
5002 if (!intel_crtc->active) {
5003 domains = get_crtc_power_domains(crtc);
5004 for_each_power_domain(domain, domains)
5005 intel_display_power_get(dev_priv, domain);
5006 intel_crtc->enabled_power_domains = domains;
5008 dev_priv->display.crtc_enable(crtc);
5011 if (intel_crtc->active) {
5012 dev_priv->display.crtc_disable(crtc);
5014 domains = intel_crtc->enabled_power_domains;
5015 for_each_power_domain(domain, domains)
5016 intel_display_power_put(dev_priv, domain);
5017 intel_crtc->enabled_power_domains = 0;
5023 * Sets the power management mode of the pipe and plane.
5025 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5027 struct drm_device *dev = crtc->dev;
5028 struct intel_encoder *intel_encoder;
5029 bool enable = false;
5031 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5032 enable |= intel_encoder->connectors_active;
5034 intel_crtc_control(crtc, enable);
5036 intel_crtc_update_sarea(crtc, enable);
5039 static void intel_crtc_disable(struct drm_crtc *crtc)
5041 struct drm_device *dev = crtc->dev;
5042 struct drm_connector *connector;
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5045 enum pipe pipe = to_intel_crtc(crtc)->pipe;
5047 /* crtc should still be enabled when we disable it. */
5048 WARN_ON(!crtc->enabled);
5050 dev_priv->display.crtc_disable(crtc);
5051 intel_crtc_update_sarea(crtc, false);
5052 dev_priv->display.off(crtc);
5054 if (crtc->primary->fb) {
5055 mutex_lock(&dev->struct_mutex);
5056 intel_unpin_fb_obj(old_obj);
5057 i915_gem_track_fb(old_obj, NULL,
5058 INTEL_FRONTBUFFER_PRIMARY(pipe));
5059 mutex_unlock(&dev->struct_mutex);
5060 crtc->primary->fb = NULL;
5063 /* Update computed state. */
5064 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5065 if (!connector->encoder || !connector->encoder->crtc)
5068 if (connector->encoder->crtc != crtc)
5071 connector->dpms = DRM_MODE_DPMS_OFF;
5072 to_intel_encoder(connector->encoder)->connectors_active = false;
5076 void intel_encoder_destroy(struct drm_encoder *encoder)
5078 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5080 drm_encoder_cleanup(encoder);
5081 kfree(intel_encoder);
5084 /* Simple dpms helper for encoders with just one connector, no cloning and only
5085 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5086 * state of the entire output pipe. */
5087 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5089 if (mode == DRM_MODE_DPMS_ON) {
5090 encoder->connectors_active = true;
5092 intel_crtc_update_dpms(encoder->base.crtc);
5094 encoder->connectors_active = false;
5096 intel_crtc_update_dpms(encoder->base.crtc);
5100 /* Cross check the actual hw state with our own modeset state tracking (and it's
5101 * internal consistency). */
5102 static void intel_connector_check_state(struct intel_connector *connector)
5104 if (connector->get_hw_state(connector)) {
5105 struct intel_encoder *encoder = connector->encoder;
5106 struct drm_crtc *crtc;
5107 bool encoder_enabled;
5110 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5111 connector->base.base.id,
5112 connector->base.name);
5114 /* there is no real hw state for MST connectors */
5115 if (connector->mst_port)
5118 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5119 "wrong connector dpms state\n");
5120 WARN(connector->base.encoder != &encoder->base,
5121 "active connector not linked to encoder\n");
5124 WARN(!encoder->connectors_active,
5125 "encoder->connectors_active not set\n");
5127 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5128 WARN(!encoder_enabled, "encoder not enabled\n");
5129 if (WARN_ON(!encoder->base.crtc))
5132 crtc = encoder->base.crtc;
5134 WARN(!crtc->enabled, "crtc not enabled\n");
5135 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5136 WARN(pipe != to_intel_crtc(crtc)->pipe,
5137 "encoder active on the wrong pipe\n");
5142 /* Even simpler default implementation, if there's really no special case to
5144 void intel_connector_dpms(struct drm_connector *connector, int mode)
5146 /* All the simple cases only support two dpms states. */
5147 if (mode != DRM_MODE_DPMS_ON)
5148 mode = DRM_MODE_DPMS_OFF;
5150 if (mode == connector->dpms)
5153 connector->dpms = mode;
5155 /* Only need to change hw state when actually enabled */
5156 if (connector->encoder)
5157 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5159 intel_modeset_check_state(connector->dev);
5162 /* Simple connector->get_hw_state implementation for encoders that support only
5163 * one connector and no cloning and hence the encoder state determines the state
5164 * of the connector. */
5165 bool intel_connector_get_hw_state(struct intel_connector *connector)
5168 struct intel_encoder *encoder = connector->encoder;
5170 return encoder->get_hw_state(encoder, &pipe);
5173 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5174 struct intel_crtc_config *pipe_config)
5176 struct drm_i915_private *dev_priv = dev->dev_private;
5177 struct intel_crtc *pipe_B_crtc =
5178 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5180 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5181 pipe_name(pipe), pipe_config->fdi_lanes);
5182 if (pipe_config->fdi_lanes > 4) {
5183 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5184 pipe_name(pipe), pipe_config->fdi_lanes);
5188 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5189 if (pipe_config->fdi_lanes > 2) {
5190 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5191 pipe_config->fdi_lanes);
5198 if (INTEL_INFO(dev)->num_pipes == 2)
5201 /* Ivybridge 3 pipe is really complicated */
5206 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5207 pipe_config->fdi_lanes > 2) {
5208 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5209 pipe_name(pipe), pipe_config->fdi_lanes);
5214 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5215 pipe_B_crtc->config.fdi_lanes <= 2) {
5216 if (pipe_config->fdi_lanes > 2) {
5217 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5218 pipe_name(pipe), pipe_config->fdi_lanes);
5222 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5232 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5233 struct intel_crtc_config *pipe_config)
5235 struct drm_device *dev = intel_crtc->base.dev;
5236 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5237 int lane, link_bw, fdi_dotclock;
5238 bool setup_ok, needs_recompute = false;
5241 /* FDI is a binary signal running at ~2.7GHz, encoding
5242 * each output octet as 10 bits. The actual frequency
5243 * is stored as a divider into a 100MHz clock, and the
5244 * mode pixel clock is stored in units of 1KHz.
5245 * Hence the bw of each lane in terms of the mode signal
5248 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5250 fdi_dotclock = adjusted_mode->crtc_clock;
5252 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5253 pipe_config->pipe_bpp);
5255 pipe_config->fdi_lanes = lane;
5257 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5258 link_bw, &pipe_config->fdi_m_n);
5260 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5261 intel_crtc->pipe, pipe_config);
5262 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5263 pipe_config->pipe_bpp -= 2*3;
5264 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5265 pipe_config->pipe_bpp);
5266 needs_recompute = true;
5267 pipe_config->bw_constrained = true;
5272 if (needs_recompute)
5275 return setup_ok ? 0 : -EINVAL;
5278 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5279 struct intel_crtc_config *pipe_config)
5281 pipe_config->ips_enabled = i915.enable_ips &&
5282 hsw_crtc_supports_ips(crtc) &&
5283 pipe_config->pipe_bpp <= 24;
5286 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5287 struct intel_crtc_config *pipe_config)
5289 struct drm_device *dev = crtc->base.dev;
5290 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5292 /* FIXME should check pixel clock limits on all platforms */
5293 if (INTEL_INFO(dev)->gen < 4) {
5294 struct drm_i915_private *dev_priv = dev->dev_private;
5296 dev_priv->display.get_display_clock_speed(dev);
5299 * Enable pixel doubling when the dot clock
5300 * is > 90% of the (display) core speed.
5302 * GDG double wide on either pipe,
5303 * otherwise pipe A only.
5305 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5306 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5308 pipe_config->double_wide = true;
5311 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5316 * Pipe horizontal size must be even in:
5318 * - LVDS dual channel mode
5319 * - Double wide pipe
5321 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5322 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5323 pipe_config->pipe_src_w &= ~1;
5325 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5326 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5328 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5329 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5332 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5333 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5334 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5335 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5337 pipe_config->pipe_bpp = 8*3;
5341 hsw_compute_ips_config(crtc, pipe_config);
5344 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5345 * old clock survives for now.
5347 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5348 pipe_config->shared_dpll = crtc->config.shared_dpll;
5350 if (pipe_config->has_pch_encoder)
5351 return ironlake_fdi_compute_config(crtc, pipe_config);
5356 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5358 struct drm_i915_private *dev_priv = dev->dev_private;
5359 int vco = valleyview_get_vco(dev_priv);
5363 /* FIXME: Punit isn't quite ready yet */
5364 if (IS_CHERRYVIEW(dev))
5367 mutex_lock(&dev_priv->dpio_lock);
5368 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5369 mutex_unlock(&dev_priv->dpio_lock);
5371 divider = val & DISPLAY_FREQUENCY_VALUES;
5373 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5374 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5375 "cdclk change in progress\n");
5377 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5380 static int i945_get_display_clock_speed(struct drm_device *dev)
5385 static int i915_get_display_clock_speed(struct drm_device *dev)
5390 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5395 static int pnv_get_display_clock_speed(struct drm_device *dev)
5399 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5401 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5402 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5404 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5406 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5408 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5411 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5412 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5414 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5419 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5423 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5425 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5428 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5429 case GC_DISPLAY_CLOCK_333_MHZ:
5432 case GC_DISPLAY_CLOCK_190_200_MHZ:
5438 static int i865_get_display_clock_speed(struct drm_device *dev)
5443 static int i855_get_display_clock_speed(struct drm_device *dev)
5446 /* Assume that the hardware is in the high speed state. This
5447 * should be the default.
5449 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5450 case GC_CLOCK_133_200:
5451 case GC_CLOCK_100_200:
5453 case GC_CLOCK_166_250:
5455 case GC_CLOCK_100_133:
5459 /* Shouldn't happen */
5463 static int i830_get_display_clock_speed(struct drm_device *dev)
5469 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5471 while (*num > DATA_LINK_M_N_MASK ||
5472 *den > DATA_LINK_M_N_MASK) {
5478 static void compute_m_n(unsigned int m, unsigned int n,
5479 uint32_t *ret_m, uint32_t *ret_n)
5481 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5482 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5483 intel_reduce_m_n_ratio(ret_m, ret_n);
5487 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5488 int pixel_clock, int link_clock,
5489 struct intel_link_m_n *m_n)
5493 compute_m_n(bits_per_pixel * pixel_clock,
5494 link_clock * nlanes * 8,
5495 &m_n->gmch_m, &m_n->gmch_n);
5497 compute_m_n(pixel_clock, link_clock,
5498 &m_n->link_m, &m_n->link_n);
5501 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5503 if (i915.panel_use_ssc >= 0)
5504 return i915.panel_use_ssc != 0;
5505 return dev_priv->vbt.lvds_use_ssc
5506 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5509 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5511 struct drm_device *dev = crtc->dev;
5512 struct drm_i915_private *dev_priv = dev->dev_private;
5515 if (IS_VALLEYVIEW(dev)) {
5517 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5518 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5519 refclk = dev_priv->vbt.lvds_ssc_freq;
5520 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5521 } else if (!IS_GEN2(dev)) {
5530 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5532 return (1 << dpll->n) << 16 | dpll->m2;
5535 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5537 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5540 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5541 intel_clock_t *reduced_clock)
5543 struct drm_device *dev = crtc->base.dev;
5546 if (IS_PINEVIEW(dev)) {
5547 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5549 fp2 = pnv_dpll_compute_fp(reduced_clock);
5551 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5553 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5556 crtc->config.dpll_hw_state.fp0 = fp;
5558 crtc->lowfreq_avail = false;
5559 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5560 reduced_clock && i915.powersave) {
5561 crtc->config.dpll_hw_state.fp1 = fp2;
5562 crtc->lowfreq_avail = true;
5564 crtc->config.dpll_hw_state.fp1 = fp;
5568 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5574 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5575 * and set it to a reasonable value instead.
5577 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5578 reg_val &= 0xffffff00;
5579 reg_val |= 0x00000030;
5580 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5582 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5583 reg_val &= 0x8cffffff;
5584 reg_val = 0x8c000000;
5585 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5587 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5588 reg_val &= 0xffffff00;
5589 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5591 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5592 reg_val &= 0x00ffffff;
5593 reg_val |= 0xb0000000;
5594 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5597 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5598 struct intel_link_m_n *m_n)
5600 struct drm_device *dev = crtc->base.dev;
5601 struct drm_i915_private *dev_priv = dev->dev_private;
5602 int pipe = crtc->pipe;
5604 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5605 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5606 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5607 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5610 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5611 struct intel_link_m_n *m_n,
5612 struct intel_link_m_n *m2_n2)
5614 struct drm_device *dev = crtc->base.dev;
5615 struct drm_i915_private *dev_priv = dev->dev_private;
5616 int pipe = crtc->pipe;
5617 enum transcoder transcoder = crtc->config.cpu_transcoder;
5619 if (INTEL_INFO(dev)->gen >= 5) {
5620 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5621 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5622 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5623 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5624 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5625 * for gen < 8) and if DRRS is supported (to make sure the
5626 * registers are not unnecessarily accessed).
5628 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5629 crtc->config.has_drrs) {
5630 I915_WRITE(PIPE_DATA_M2(transcoder),
5631 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5632 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5633 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5634 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5637 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5638 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5639 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5640 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5644 void intel_dp_set_m_n(struct intel_crtc *crtc)
5646 if (crtc->config.has_pch_encoder)
5647 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5649 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5650 &crtc->config.dp_m2_n2);
5653 static void vlv_update_pll(struct intel_crtc *crtc)
5658 * Enable DPIO clock input. We should never disable the reference
5659 * clock for pipe B, since VGA hotplug / manual detection depends
5662 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5663 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5664 /* We should never disable this, set it here for state tracking */
5665 if (crtc->pipe == PIPE_B)
5666 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5667 dpll |= DPLL_VCO_ENABLE;
5668 crtc->config.dpll_hw_state.dpll = dpll;
5670 dpll_md = (crtc->config.pixel_multiplier - 1)
5671 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5672 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5675 static void vlv_prepare_pll(struct intel_crtc *crtc)
5677 struct drm_device *dev = crtc->base.dev;
5678 struct drm_i915_private *dev_priv = dev->dev_private;
5679 int pipe = crtc->pipe;
5681 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5682 u32 coreclk, reg_val;
5684 mutex_lock(&dev_priv->dpio_lock);
5686 bestn = crtc->config.dpll.n;
5687 bestm1 = crtc->config.dpll.m1;
5688 bestm2 = crtc->config.dpll.m2;
5689 bestp1 = crtc->config.dpll.p1;
5690 bestp2 = crtc->config.dpll.p2;
5692 /* See eDP HDMI DPIO driver vbios notes doc */
5694 /* PLL B needs special handling */
5696 vlv_pllb_recal_opamp(dev_priv, pipe);
5698 /* Set up Tx target for periodic Rcomp update */
5699 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5701 /* Disable target IRef on PLL */
5702 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5703 reg_val &= 0x00ffffff;
5704 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5706 /* Disable fast lock */
5707 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5709 /* Set idtafcrecal before PLL is enabled */
5710 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5711 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5712 mdiv |= ((bestn << DPIO_N_SHIFT));
5713 mdiv |= (1 << DPIO_K_SHIFT);
5716 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5717 * but we don't support that).
5718 * Note: don't use the DAC post divider as it seems unstable.
5720 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5721 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5723 mdiv |= DPIO_ENABLE_CALIBRATION;
5724 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5726 /* Set HBR and RBR LPF coefficients */
5727 if (crtc->config.port_clock == 162000 ||
5728 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5729 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5730 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5733 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5736 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5737 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5738 /* Use SSC source */
5740 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5743 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5745 } else { /* HDMI or VGA */
5746 /* Use bend source */
5748 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5751 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5755 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5756 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5757 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5758 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5759 coreclk |= 0x01000000;
5760 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5762 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5763 mutex_unlock(&dev_priv->dpio_lock);
5766 static void chv_update_pll(struct intel_crtc *crtc)
5768 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5769 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5771 if (crtc->pipe != PIPE_A)
5772 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5774 crtc->config.dpll_hw_state.dpll_md =
5775 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5778 static void chv_prepare_pll(struct intel_crtc *crtc)
5780 struct drm_device *dev = crtc->base.dev;
5781 struct drm_i915_private *dev_priv = dev->dev_private;
5782 int pipe = crtc->pipe;
5783 int dpll_reg = DPLL(crtc->pipe);
5784 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5785 u32 loopfilter, intcoeff;
5786 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5789 bestn = crtc->config.dpll.n;
5790 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5791 bestm1 = crtc->config.dpll.m1;
5792 bestm2 = crtc->config.dpll.m2 >> 22;
5793 bestp1 = crtc->config.dpll.p1;
5794 bestp2 = crtc->config.dpll.p2;
5797 * Enable Refclk and SSC
5799 I915_WRITE(dpll_reg,
5800 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5802 mutex_lock(&dev_priv->dpio_lock);
5804 /* p1 and p2 divider */
5805 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5806 5 << DPIO_CHV_S1_DIV_SHIFT |
5807 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5808 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5809 1 << DPIO_CHV_K_DIV_SHIFT);
5811 /* Feedback post-divider - m2 */
5812 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5814 /* Feedback refclk divider - n and m1 */
5815 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5816 DPIO_CHV_M1_DIV_BY_2 |
5817 1 << DPIO_CHV_N_DIV_SHIFT);
5819 /* M2 fraction division */
5820 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5822 /* M2 fraction division enable */
5823 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5824 DPIO_CHV_FRAC_DIV_EN |
5825 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5828 refclk = i9xx_get_refclk(&crtc->base, 0);
5829 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5830 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5831 if (refclk == 100000)
5833 else if (refclk == 38400)
5837 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5838 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5841 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5842 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5845 mutex_unlock(&dev_priv->dpio_lock);
5848 static void i9xx_update_pll(struct intel_crtc *crtc,
5849 intel_clock_t *reduced_clock,
5852 struct drm_device *dev = crtc->base.dev;
5853 struct drm_i915_private *dev_priv = dev->dev_private;
5856 struct dpll *clock = &crtc->config.dpll;
5858 i9xx_update_pll_dividers(crtc, reduced_clock);
5860 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5861 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5863 dpll = DPLL_VGA_MODE_DIS;
5865 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5866 dpll |= DPLLB_MODE_LVDS;
5868 dpll |= DPLLB_MODE_DAC_SERIAL;
5870 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5871 dpll |= (crtc->config.pixel_multiplier - 1)
5872 << SDVO_MULTIPLIER_SHIFT_HIRES;
5876 dpll |= DPLL_SDVO_HIGH_SPEED;
5878 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5879 dpll |= DPLL_SDVO_HIGH_SPEED;
5881 /* compute bitmask from p1 value */
5882 if (IS_PINEVIEW(dev))
5883 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5885 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5886 if (IS_G4X(dev) && reduced_clock)
5887 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5889 switch (clock->p2) {
5891 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5894 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5897 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5900 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5903 if (INTEL_INFO(dev)->gen >= 4)
5904 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5906 if (crtc->config.sdvo_tv_clock)
5907 dpll |= PLL_REF_INPUT_TVCLKINBC;
5908 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5909 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5910 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5912 dpll |= PLL_REF_INPUT_DREFCLK;
5914 dpll |= DPLL_VCO_ENABLE;
5915 crtc->config.dpll_hw_state.dpll = dpll;
5917 if (INTEL_INFO(dev)->gen >= 4) {
5918 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5919 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5920 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5924 static void i8xx_update_pll(struct intel_crtc *crtc,
5925 intel_clock_t *reduced_clock,
5928 struct drm_device *dev = crtc->base.dev;
5929 struct drm_i915_private *dev_priv = dev->dev_private;
5931 struct dpll *clock = &crtc->config.dpll;
5933 i9xx_update_pll_dividers(crtc, reduced_clock);
5935 dpll = DPLL_VGA_MODE_DIS;
5937 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5938 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5941 dpll |= PLL_P1_DIVIDE_BY_TWO;
5943 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5945 dpll |= PLL_P2_DIVIDE_BY_4;
5948 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5949 dpll |= DPLL_DVO_2X_MODE;
5951 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5952 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5953 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5955 dpll |= PLL_REF_INPUT_DREFCLK;
5957 dpll |= DPLL_VCO_ENABLE;
5958 crtc->config.dpll_hw_state.dpll = dpll;
5961 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5963 struct drm_device *dev = intel_crtc->base.dev;
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 enum pipe pipe = intel_crtc->pipe;
5966 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5967 struct drm_display_mode *adjusted_mode =
5968 &intel_crtc->config.adjusted_mode;
5969 uint32_t crtc_vtotal, crtc_vblank_end;
5972 /* We need to be careful not to changed the adjusted mode, for otherwise
5973 * the hw state checker will get angry at the mismatch. */
5974 crtc_vtotal = adjusted_mode->crtc_vtotal;
5975 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5977 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5978 /* the chip adds 2 halflines automatically */
5980 crtc_vblank_end -= 1;
5982 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5983 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5985 vsyncshift = adjusted_mode->crtc_hsync_start -
5986 adjusted_mode->crtc_htotal / 2;
5988 vsyncshift += adjusted_mode->crtc_htotal;
5991 if (INTEL_INFO(dev)->gen > 3)
5992 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5994 I915_WRITE(HTOTAL(cpu_transcoder),
5995 (adjusted_mode->crtc_hdisplay - 1) |
5996 ((adjusted_mode->crtc_htotal - 1) << 16));
5997 I915_WRITE(HBLANK(cpu_transcoder),
5998 (adjusted_mode->crtc_hblank_start - 1) |
5999 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6000 I915_WRITE(HSYNC(cpu_transcoder),
6001 (adjusted_mode->crtc_hsync_start - 1) |
6002 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6004 I915_WRITE(VTOTAL(cpu_transcoder),
6005 (adjusted_mode->crtc_vdisplay - 1) |
6006 ((crtc_vtotal - 1) << 16));
6007 I915_WRITE(VBLANK(cpu_transcoder),
6008 (adjusted_mode->crtc_vblank_start - 1) |
6009 ((crtc_vblank_end - 1) << 16));
6010 I915_WRITE(VSYNC(cpu_transcoder),
6011 (adjusted_mode->crtc_vsync_start - 1) |
6012 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6014 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6015 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6016 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6018 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6019 (pipe == PIPE_B || pipe == PIPE_C))
6020 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6022 /* pipesrc controls the size that is scaled from, which should
6023 * always be the user's requested size.
6025 I915_WRITE(PIPESRC(pipe),
6026 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6027 (intel_crtc->config.pipe_src_h - 1));
6030 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6031 struct intel_crtc_config *pipe_config)
6033 struct drm_device *dev = crtc->base.dev;
6034 struct drm_i915_private *dev_priv = dev->dev_private;
6035 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6038 tmp = I915_READ(HTOTAL(cpu_transcoder));
6039 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6040 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6041 tmp = I915_READ(HBLANK(cpu_transcoder));
6042 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6043 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6044 tmp = I915_READ(HSYNC(cpu_transcoder));
6045 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6046 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6048 tmp = I915_READ(VTOTAL(cpu_transcoder));
6049 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6050 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6051 tmp = I915_READ(VBLANK(cpu_transcoder));
6052 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6053 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6054 tmp = I915_READ(VSYNC(cpu_transcoder));
6055 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6056 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6058 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6059 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6060 pipe_config->adjusted_mode.crtc_vtotal += 1;
6061 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6064 tmp = I915_READ(PIPESRC(crtc->pipe));
6065 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6066 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6068 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6069 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6072 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6073 struct intel_crtc_config *pipe_config)
6075 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6076 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6077 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6078 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6080 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6081 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6082 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6083 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6085 mode->flags = pipe_config->adjusted_mode.flags;
6087 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6088 mode->flags |= pipe_config->adjusted_mode.flags;
6091 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6093 struct drm_device *dev = intel_crtc->base.dev;
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6099 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6100 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6101 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6103 if (intel_crtc->config.double_wide)
6104 pipeconf |= PIPECONF_DOUBLE_WIDE;
6106 /* only g4x and later have fancy bpc/dither controls */
6107 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6108 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6109 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6110 pipeconf |= PIPECONF_DITHER_EN |
6111 PIPECONF_DITHER_TYPE_SP;
6113 switch (intel_crtc->config.pipe_bpp) {
6115 pipeconf |= PIPECONF_6BPC;
6118 pipeconf |= PIPECONF_8BPC;
6121 pipeconf |= PIPECONF_10BPC;
6124 /* Case prevented by intel_choose_pipe_bpp_dither. */
6129 if (HAS_PIPE_CXSR(dev)) {
6130 if (intel_crtc->lowfreq_avail) {
6131 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6132 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6134 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6138 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6139 if (INTEL_INFO(dev)->gen < 4 ||
6140 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6141 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6143 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6145 pipeconf |= PIPECONF_PROGRESSIVE;
6147 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6148 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6150 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6151 POSTING_READ(PIPECONF(intel_crtc->pipe));
6154 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6156 struct drm_framebuffer *fb)
6158 struct drm_device *dev = crtc->dev;
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6161 int refclk, num_connectors = 0;
6162 intel_clock_t clock, reduced_clock;
6163 bool ok, has_reduced_clock = false;
6164 bool is_lvds = false, is_dsi = false;
6165 struct intel_encoder *encoder;
6166 const intel_limit_t *limit;
6168 for_each_encoder_on_crtc(dev, crtc, encoder) {
6169 switch (encoder->type) {
6170 case INTEL_OUTPUT_LVDS:
6173 case INTEL_OUTPUT_DSI:
6184 if (!intel_crtc->config.clock_set) {
6185 refclk = i9xx_get_refclk(crtc, num_connectors);
6188 * Returns a set of divisors for the desired target clock with
6189 * the given refclk, or FALSE. The returned values represent
6190 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6193 limit = intel_limit(crtc, refclk);
6194 ok = dev_priv->display.find_dpll(limit, crtc,
6195 intel_crtc->config.port_clock,
6196 refclk, NULL, &clock);
6198 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6202 if (is_lvds && dev_priv->lvds_downclock_avail) {
6204 * Ensure we match the reduced clock's P to the target
6205 * clock. If the clocks don't match, we can't switch
6206 * the display clock by using the FP0/FP1. In such case
6207 * we will disable the LVDS downclock feature.
6210 dev_priv->display.find_dpll(limit, crtc,
6211 dev_priv->lvds_downclock,
6215 /* Compat-code for transition, will disappear. */
6216 intel_crtc->config.dpll.n = clock.n;
6217 intel_crtc->config.dpll.m1 = clock.m1;
6218 intel_crtc->config.dpll.m2 = clock.m2;
6219 intel_crtc->config.dpll.p1 = clock.p1;
6220 intel_crtc->config.dpll.p2 = clock.p2;
6224 i8xx_update_pll(intel_crtc,
6225 has_reduced_clock ? &reduced_clock : NULL,
6227 } else if (IS_CHERRYVIEW(dev)) {
6228 chv_update_pll(intel_crtc);
6229 } else if (IS_VALLEYVIEW(dev)) {
6230 vlv_update_pll(intel_crtc);
6232 i9xx_update_pll(intel_crtc,
6233 has_reduced_clock ? &reduced_clock : NULL,
6240 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6241 struct intel_crtc_config *pipe_config)
6243 struct drm_device *dev = crtc->base.dev;
6244 struct drm_i915_private *dev_priv = dev->dev_private;
6247 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6250 tmp = I915_READ(PFIT_CONTROL);
6251 if (!(tmp & PFIT_ENABLE))
6254 /* Check whether the pfit is attached to our pipe. */
6255 if (INTEL_INFO(dev)->gen < 4) {
6256 if (crtc->pipe != PIPE_B)
6259 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6263 pipe_config->gmch_pfit.control = tmp;
6264 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6265 if (INTEL_INFO(dev)->gen < 5)
6266 pipe_config->gmch_pfit.lvds_border_bits =
6267 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6270 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6271 struct intel_crtc_config *pipe_config)
6273 struct drm_device *dev = crtc->base.dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
6275 int pipe = pipe_config->cpu_transcoder;
6276 intel_clock_t clock;
6278 int refclk = 100000;
6280 /* In case of MIPI DPLL will not even be used */
6281 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6284 mutex_lock(&dev_priv->dpio_lock);
6285 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6286 mutex_unlock(&dev_priv->dpio_lock);
6288 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6289 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6290 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6291 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6292 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6294 vlv_clock(refclk, &clock);
6296 /* clock.dot is the fast clock */
6297 pipe_config->port_clock = clock.dot / 5;
6300 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6301 struct intel_plane_config *plane_config)
6303 struct drm_device *dev = crtc->base.dev;
6304 struct drm_i915_private *dev_priv = dev->dev_private;
6305 u32 val, base, offset;
6306 int pipe = crtc->pipe, plane = crtc->plane;
6307 int fourcc, pixel_format;
6310 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6311 if (!crtc->base.primary->fb) {
6312 DRM_DEBUG_KMS("failed to alloc fb\n");
6316 val = I915_READ(DSPCNTR(plane));
6318 if (INTEL_INFO(dev)->gen >= 4)
6319 if (val & DISPPLANE_TILED)
6320 plane_config->tiled = true;
6322 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6323 fourcc = intel_format_to_fourcc(pixel_format);
6324 crtc->base.primary->fb->pixel_format = fourcc;
6325 crtc->base.primary->fb->bits_per_pixel =
6326 drm_format_plane_cpp(fourcc, 0) * 8;
6328 if (INTEL_INFO(dev)->gen >= 4) {
6329 if (plane_config->tiled)
6330 offset = I915_READ(DSPTILEOFF(plane));
6332 offset = I915_READ(DSPLINOFF(plane));
6333 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6335 base = I915_READ(DSPADDR(plane));
6337 plane_config->base = base;
6339 val = I915_READ(PIPESRC(pipe));
6340 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6341 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6343 val = I915_READ(DSPSTRIDE(pipe));
6344 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6346 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6347 plane_config->tiled);
6349 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6352 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6353 pipe, plane, crtc->base.primary->fb->width,
6354 crtc->base.primary->fb->height,
6355 crtc->base.primary->fb->bits_per_pixel, base,
6356 crtc->base.primary->fb->pitches[0],
6357 plane_config->size);
6361 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6362 struct intel_crtc_config *pipe_config)
6364 struct drm_device *dev = crtc->base.dev;
6365 struct drm_i915_private *dev_priv = dev->dev_private;
6366 int pipe = pipe_config->cpu_transcoder;
6367 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6368 intel_clock_t clock;
6369 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6370 int refclk = 100000;
6372 mutex_lock(&dev_priv->dpio_lock);
6373 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6374 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6375 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6376 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6377 mutex_unlock(&dev_priv->dpio_lock);
6379 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6380 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6381 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6382 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6383 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6385 chv_clock(refclk, &clock);
6387 /* clock.dot is the fast clock */
6388 pipe_config->port_clock = clock.dot / 5;
6391 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6392 struct intel_crtc_config *pipe_config)
6394 struct drm_device *dev = crtc->base.dev;
6395 struct drm_i915_private *dev_priv = dev->dev_private;
6398 if (!intel_display_power_enabled(dev_priv,
6399 POWER_DOMAIN_PIPE(crtc->pipe)))
6402 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6403 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6405 tmp = I915_READ(PIPECONF(crtc->pipe));
6406 if (!(tmp & PIPECONF_ENABLE))
6409 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6410 switch (tmp & PIPECONF_BPC_MASK) {
6412 pipe_config->pipe_bpp = 18;
6415 pipe_config->pipe_bpp = 24;
6417 case PIPECONF_10BPC:
6418 pipe_config->pipe_bpp = 30;
6425 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6426 pipe_config->limited_color_range = true;
6428 if (INTEL_INFO(dev)->gen < 4)
6429 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6431 intel_get_pipe_timings(crtc, pipe_config);
6433 i9xx_get_pfit_config(crtc, pipe_config);
6435 if (INTEL_INFO(dev)->gen >= 4) {
6436 tmp = I915_READ(DPLL_MD(crtc->pipe));
6437 pipe_config->pixel_multiplier =
6438 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6439 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6440 pipe_config->dpll_hw_state.dpll_md = tmp;
6441 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6442 tmp = I915_READ(DPLL(crtc->pipe));
6443 pipe_config->pixel_multiplier =
6444 ((tmp & SDVO_MULTIPLIER_MASK)
6445 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6447 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6448 * port and will be fixed up in the encoder->get_config
6450 pipe_config->pixel_multiplier = 1;
6452 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6453 if (!IS_VALLEYVIEW(dev)) {
6454 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6455 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6457 /* Mask out read-only status bits. */
6458 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6459 DPLL_PORTC_READY_MASK |
6460 DPLL_PORTB_READY_MASK);
6463 if (IS_CHERRYVIEW(dev))
6464 chv_crtc_clock_get(crtc, pipe_config);
6465 else if (IS_VALLEYVIEW(dev))
6466 vlv_crtc_clock_get(crtc, pipe_config);
6468 i9xx_crtc_clock_get(crtc, pipe_config);
6473 static void ironlake_init_pch_refclk(struct drm_device *dev)
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 struct intel_encoder *encoder;
6478 bool has_lvds = false;
6479 bool has_cpu_edp = false;
6480 bool has_panel = false;
6481 bool has_ck505 = false;
6482 bool can_ssc = false;
6484 /* We need to take the global config into account */
6485 for_each_intel_encoder(dev, encoder) {
6486 switch (encoder->type) {
6487 case INTEL_OUTPUT_LVDS:
6491 case INTEL_OUTPUT_EDP:
6493 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6499 if (HAS_PCH_IBX(dev)) {
6500 has_ck505 = dev_priv->vbt.display_clock_mode;
6501 can_ssc = has_ck505;
6507 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6508 has_panel, has_lvds, has_ck505);
6510 /* Ironlake: try to setup display ref clock before DPLL
6511 * enabling. This is only under driver's control after
6512 * PCH B stepping, previous chipset stepping should be
6513 * ignoring this setting.
6515 val = I915_READ(PCH_DREF_CONTROL);
6517 /* As we must carefully and slowly disable/enable each source in turn,
6518 * compute the final state we want first and check if we need to
6519 * make any changes at all.
6522 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6524 final |= DREF_NONSPREAD_CK505_ENABLE;
6526 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6528 final &= ~DREF_SSC_SOURCE_MASK;
6529 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6530 final &= ~DREF_SSC1_ENABLE;
6533 final |= DREF_SSC_SOURCE_ENABLE;
6535 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6536 final |= DREF_SSC1_ENABLE;
6539 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6540 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6542 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6544 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6546 final |= DREF_SSC_SOURCE_DISABLE;
6547 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6553 /* Always enable nonspread source */
6554 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6557 val |= DREF_NONSPREAD_CK505_ENABLE;
6559 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6562 val &= ~DREF_SSC_SOURCE_MASK;
6563 val |= DREF_SSC_SOURCE_ENABLE;
6565 /* SSC must be turned on before enabling the CPU output */
6566 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6567 DRM_DEBUG_KMS("Using SSC on panel\n");
6568 val |= DREF_SSC1_ENABLE;
6570 val &= ~DREF_SSC1_ENABLE;
6572 /* Get SSC going before enabling the outputs */
6573 I915_WRITE(PCH_DREF_CONTROL, val);
6574 POSTING_READ(PCH_DREF_CONTROL);
6577 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6579 /* Enable CPU source on CPU attached eDP */
6581 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6582 DRM_DEBUG_KMS("Using SSC on eDP\n");
6583 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6585 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6587 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6589 I915_WRITE(PCH_DREF_CONTROL, val);
6590 POSTING_READ(PCH_DREF_CONTROL);
6593 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6595 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6597 /* Turn off CPU output */
6598 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6600 I915_WRITE(PCH_DREF_CONTROL, val);
6601 POSTING_READ(PCH_DREF_CONTROL);
6604 /* Turn off the SSC source */
6605 val &= ~DREF_SSC_SOURCE_MASK;
6606 val |= DREF_SSC_SOURCE_DISABLE;
6609 val &= ~DREF_SSC1_ENABLE;
6611 I915_WRITE(PCH_DREF_CONTROL, val);
6612 POSTING_READ(PCH_DREF_CONTROL);
6616 BUG_ON(val != final);
6619 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6623 tmp = I915_READ(SOUTH_CHICKEN2);
6624 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6625 I915_WRITE(SOUTH_CHICKEN2, tmp);
6627 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6628 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6629 DRM_ERROR("FDI mPHY reset assert timeout\n");
6631 tmp = I915_READ(SOUTH_CHICKEN2);
6632 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6633 I915_WRITE(SOUTH_CHICKEN2, tmp);
6635 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6636 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6637 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6640 /* WaMPhyProgramming:hsw */
6641 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6645 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6646 tmp &= ~(0xFF << 24);
6647 tmp |= (0x12 << 24);
6648 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6650 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6652 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6654 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6656 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6658 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6659 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6660 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6662 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6663 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6664 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6666 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6669 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6671 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6674 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6676 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6679 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6681 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6684 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6686 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6687 tmp &= ~(0xFF << 16);
6688 tmp |= (0x1C << 16);
6689 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6691 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6692 tmp &= ~(0xFF << 16);
6693 tmp |= (0x1C << 16);
6694 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6696 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6698 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6700 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6702 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6704 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6705 tmp &= ~(0xF << 28);
6707 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6709 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6710 tmp &= ~(0xF << 28);
6712 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6715 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6716 * Programming" based on the parameters passed:
6717 * - Sequence to enable CLKOUT_DP
6718 * - Sequence to enable CLKOUT_DP without spread
6719 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6721 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6724 struct drm_i915_private *dev_priv = dev->dev_private;
6727 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6729 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6730 with_fdi, "LP PCH doesn't have FDI\n"))
6733 mutex_lock(&dev_priv->dpio_lock);
6735 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6736 tmp &= ~SBI_SSCCTL_DISABLE;
6737 tmp |= SBI_SSCCTL_PATHALT;
6738 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6743 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6744 tmp &= ~SBI_SSCCTL_PATHALT;
6745 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6748 lpt_reset_fdi_mphy(dev_priv);
6749 lpt_program_fdi_mphy(dev_priv);
6753 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6754 SBI_GEN0 : SBI_DBUFF0;
6755 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6756 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6757 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6759 mutex_unlock(&dev_priv->dpio_lock);
6762 /* Sequence to disable CLKOUT_DP */
6763 static void lpt_disable_clkout_dp(struct drm_device *dev)
6765 struct drm_i915_private *dev_priv = dev->dev_private;
6768 mutex_lock(&dev_priv->dpio_lock);
6770 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6771 SBI_GEN0 : SBI_DBUFF0;
6772 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6773 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6774 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6776 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6777 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6778 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6779 tmp |= SBI_SSCCTL_PATHALT;
6780 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6783 tmp |= SBI_SSCCTL_DISABLE;
6784 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6787 mutex_unlock(&dev_priv->dpio_lock);
6790 static void lpt_init_pch_refclk(struct drm_device *dev)
6792 struct intel_encoder *encoder;
6793 bool has_vga = false;
6795 for_each_intel_encoder(dev, encoder) {
6796 switch (encoder->type) {
6797 case INTEL_OUTPUT_ANALOG:
6804 lpt_enable_clkout_dp(dev, true, true);
6806 lpt_disable_clkout_dp(dev);
6810 * Initialize reference clocks when the driver loads
6812 void intel_init_pch_refclk(struct drm_device *dev)
6814 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6815 ironlake_init_pch_refclk(dev);
6816 else if (HAS_PCH_LPT(dev))
6817 lpt_init_pch_refclk(dev);
6820 static int ironlake_get_refclk(struct drm_crtc *crtc)
6822 struct drm_device *dev = crtc->dev;
6823 struct drm_i915_private *dev_priv = dev->dev_private;
6824 struct intel_encoder *encoder;
6825 int num_connectors = 0;
6826 bool is_lvds = false;
6828 for_each_encoder_on_crtc(dev, crtc, encoder) {
6829 switch (encoder->type) {
6830 case INTEL_OUTPUT_LVDS:
6837 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6838 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6839 dev_priv->vbt.lvds_ssc_freq);
6840 return dev_priv->vbt.lvds_ssc_freq;
6846 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6848 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6850 int pipe = intel_crtc->pipe;
6855 switch (intel_crtc->config.pipe_bpp) {
6857 val |= PIPECONF_6BPC;
6860 val |= PIPECONF_8BPC;
6863 val |= PIPECONF_10BPC;
6866 val |= PIPECONF_12BPC;
6869 /* Case prevented by intel_choose_pipe_bpp_dither. */
6873 if (intel_crtc->config.dither)
6874 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6876 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6877 val |= PIPECONF_INTERLACED_ILK;
6879 val |= PIPECONF_PROGRESSIVE;
6881 if (intel_crtc->config.limited_color_range)
6882 val |= PIPECONF_COLOR_RANGE_SELECT;
6884 I915_WRITE(PIPECONF(pipe), val);
6885 POSTING_READ(PIPECONF(pipe));
6889 * Set up the pipe CSC unit.
6891 * Currently only full range RGB to limited range RGB conversion
6892 * is supported, but eventually this should handle various
6893 * RGB<->YCbCr scenarios as well.
6895 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6897 struct drm_device *dev = crtc->dev;
6898 struct drm_i915_private *dev_priv = dev->dev_private;
6899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6900 int pipe = intel_crtc->pipe;
6901 uint16_t coeff = 0x7800; /* 1.0 */
6904 * TODO: Check what kind of values actually come out of the pipe
6905 * with these coeff/postoff values and adjust to get the best
6906 * accuracy. Perhaps we even need to take the bpc value into
6910 if (intel_crtc->config.limited_color_range)
6911 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6914 * GY/GU and RY/RU should be the other way around according
6915 * to BSpec, but reality doesn't agree. Just set them up in
6916 * a way that results in the correct picture.
6918 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6919 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6921 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6922 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6924 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6925 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6927 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6928 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6929 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6931 if (INTEL_INFO(dev)->gen > 6) {
6932 uint16_t postoff = 0;
6934 if (intel_crtc->config.limited_color_range)
6935 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6937 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6938 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6939 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6941 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6943 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6945 if (intel_crtc->config.limited_color_range)
6946 mode |= CSC_BLACK_SCREEN_OFFSET;
6948 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6952 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6954 struct drm_device *dev = crtc->dev;
6955 struct drm_i915_private *dev_priv = dev->dev_private;
6956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6957 enum pipe pipe = intel_crtc->pipe;
6958 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6963 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6964 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6966 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6967 val |= PIPECONF_INTERLACED_ILK;
6969 val |= PIPECONF_PROGRESSIVE;
6971 I915_WRITE(PIPECONF(cpu_transcoder), val);
6972 POSTING_READ(PIPECONF(cpu_transcoder));
6974 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6975 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6977 if (IS_BROADWELL(dev)) {
6980 switch (intel_crtc->config.pipe_bpp) {
6982 val |= PIPEMISC_DITHER_6_BPC;
6985 val |= PIPEMISC_DITHER_8_BPC;
6988 val |= PIPEMISC_DITHER_10_BPC;
6991 val |= PIPEMISC_DITHER_12_BPC;
6994 /* Case prevented by pipe_config_set_bpp. */
6998 if (intel_crtc->config.dither)
6999 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7001 I915_WRITE(PIPEMISC(pipe), val);
7005 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7006 intel_clock_t *clock,
7007 bool *has_reduced_clock,
7008 intel_clock_t *reduced_clock)
7010 struct drm_device *dev = crtc->dev;
7011 struct drm_i915_private *dev_priv = dev->dev_private;
7012 struct intel_encoder *intel_encoder;
7014 const intel_limit_t *limit;
7015 bool ret, is_lvds = false;
7017 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7018 switch (intel_encoder->type) {
7019 case INTEL_OUTPUT_LVDS:
7025 refclk = ironlake_get_refclk(crtc);
7028 * Returns a set of divisors for the desired target clock with the given
7029 * refclk, or FALSE. The returned values represent the clock equation:
7030 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7032 limit = intel_limit(crtc, refclk);
7033 ret = dev_priv->display.find_dpll(limit, crtc,
7034 to_intel_crtc(crtc)->config.port_clock,
7035 refclk, NULL, clock);
7039 if (is_lvds && dev_priv->lvds_downclock_avail) {
7041 * Ensure we match the reduced clock's P to the target clock.
7042 * If the clocks don't match, we can't switch the display clock
7043 * by using the FP0/FP1. In such case we will disable the LVDS
7044 * downclock feature.
7046 *has_reduced_clock =
7047 dev_priv->display.find_dpll(limit, crtc,
7048 dev_priv->lvds_downclock,
7056 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7059 * Account for spread spectrum to avoid
7060 * oversubscribing the link. Max center spread
7061 * is 2.5%; use 5% for safety's sake.
7063 u32 bps = target_clock * bpp * 21 / 20;
7064 return DIV_ROUND_UP(bps, link_bw * 8);
7067 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7069 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7072 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7074 intel_clock_t *reduced_clock, u32 *fp2)
7076 struct drm_crtc *crtc = &intel_crtc->base;
7077 struct drm_device *dev = crtc->dev;
7078 struct drm_i915_private *dev_priv = dev->dev_private;
7079 struct intel_encoder *intel_encoder;
7081 int factor, num_connectors = 0;
7082 bool is_lvds = false, is_sdvo = false;
7084 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7085 switch (intel_encoder->type) {
7086 case INTEL_OUTPUT_LVDS:
7089 case INTEL_OUTPUT_SDVO:
7090 case INTEL_OUTPUT_HDMI:
7098 /* Enable autotuning of the PLL clock (if permissible) */
7101 if ((intel_panel_use_ssc(dev_priv) &&
7102 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7103 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7105 } else if (intel_crtc->config.sdvo_tv_clock)
7108 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7111 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7117 dpll |= DPLLB_MODE_LVDS;
7119 dpll |= DPLLB_MODE_DAC_SERIAL;
7121 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7122 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7125 dpll |= DPLL_SDVO_HIGH_SPEED;
7126 if (intel_crtc->config.has_dp_encoder)
7127 dpll |= DPLL_SDVO_HIGH_SPEED;
7129 /* compute bitmask from p1 value */
7130 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7132 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7134 switch (intel_crtc->config.dpll.p2) {
7136 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7139 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7142 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7145 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7149 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7150 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7152 dpll |= PLL_REF_INPUT_DREFCLK;
7154 return dpll | DPLL_VCO_ENABLE;
7157 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7159 struct drm_framebuffer *fb)
7161 struct drm_device *dev = crtc->dev;
7162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163 int num_connectors = 0;
7164 intel_clock_t clock, reduced_clock;
7165 u32 dpll = 0, fp = 0, fp2 = 0;
7166 bool ok, has_reduced_clock = false;
7167 bool is_lvds = false;
7168 struct intel_encoder *encoder;
7169 struct intel_shared_dpll *pll;
7171 for_each_encoder_on_crtc(dev, crtc, encoder) {
7172 switch (encoder->type) {
7173 case INTEL_OUTPUT_LVDS:
7181 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7182 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7184 ok = ironlake_compute_clocks(crtc, &clock,
7185 &has_reduced_clock, &reduced_clock);
7186 if (!ok && !intel_crtc->config.clock_set) {
7187 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7190 /* Compat-code for transition, will disappear. */
7191 if (!intel_crtc->config.clock_set) {
7192 intel_crtc->config.dpll.n = clock.n;
7193 intel_crtc->config.dpll.m1 = clock.m1;
7194 intel_crtc->config.dpll.m2 = clock.m2;
7195 intel_crtc->config.dpll.p1 = clock.p1;
7196 intel_crtc->config.dpll.p2 = clock.p2;
7199 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7200 if (intel_crtc->config.has_pch_encoder) {
7201 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7202 if (has_reduced_clock)
7203 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7205 dpll = ironlake_compute_dpll(intel_crtc,
7206 &fp, &reduced_clock,
7207 has_reduced_clock ? &fp2 : NULL);
7209 intel_crtc->config.dpll_hw_state.dpll = dpll;
7210 intel_crtc->config.dpll_hw_state.fp0 = fp;
7211 if (has_reduced_clock)
7212 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7214 intel_crtc->config.dpll_hw_state.fp1 = fp;
7216 pll = intel_get_shared_dpll(intel_crtc);
7218 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7219 pipe_name(intel_crtc->pipe));
7223 intel_put_shared_dpll(intel_crtc);
7225 if (is_lvds && has_reduced_clock && i915.powersave)
7226 intel_crtc->lowfreq_avail = true;
7228 intel_crtc->lowfreq_avail = false;
7233 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7234 struct intel_link_m_n *m_n)
7236 struct drm_device *dev = crtc->base.dev;
7237 struct drm_i915_private *dev_priv = dev->dev_private;
7238 enum pipe pipe = crtc->pipe;
7240 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7241 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7242 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7244 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7245 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7246 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7249 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7250 enum transcoder transcoder,
7251 struct intel_link_m_n *m_n,
7252 struct intel_link_m_n *m2_n2)
7254 struct drm_device *dev = crtc->base.dev;
7255 struct drm_i915_private *dev_priv = dev->dev_private;
7256 enum pipe pipe = crtc->pipe;
7258 if (INTEL_INFO(dev)->gen >= 5) {
7259 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7260 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7261 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7263 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7264 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7265 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7266 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7267 * gen < 8) and if DRRS is supported (to make sure the
7268 * registers are not unnecessarily read).
7270 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7271 crtc->config.has_drrs) {
7272 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7273 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7274 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7276 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7277 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7278 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7281 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7282 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7283 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7285 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7286 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7287 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7291 void intel_dp_get_m_n(struct intel_crtc *crtc,
7292 struct intel_crtc_config *pipe_config)
7294 if (crtc->config.has_pch_encoder)
7295 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7297 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7298 &pipe_config->dp_m_n,
7299 &pipe_config->dp_m2_n2);
7302 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7303 struct intel_crtc_config *pipe_config)
7305 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7306 &pipe_config->fdi_m_n, NULL);
7309 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7310 struct intel_crtc_config *pipe_config)
7312 struct drm_device *dev = crtc->base.dev;
7313 struct drm_i915_private *dev_priv = dev->dev_private;
7316 tmp = I915_READ(PF_CTL(crtc->pipe));
7318 if (tmp & PF_ENABLE) {
7319 pipe_config->pch_pfit.enabled = true;
7320 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7321 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7323 /* We currently do not free assignements of panel fitters on
7324 * ivb/hsw (since we don't use the higher upscaling modes which
7325 * differentiates them) so just WARN about this case for now. */
7327 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7328 PF_PIPE_SEL_IVB(crtc->pipe));
7333 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7334 struct intel_plane_config *plane_config)
7336 struct drm_device *dev = crtc->base.dev;
7337 struct drm_i915_private *dev_priv = dev->dev_private;
7338 u32 val, base, offset;
7339 int pipe = crtc->pipe, plane = crtc->plane;
7340 int fourcc, pixel_format;
7343 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7344 if (!crtc->base.primary->fb) {
7345 DRM_DEBUG_KMS("failed to alloc fb\n");
7349 val = I915_READ(DSPCNTR(plane));
7351 if (INTEL_INFO(dev)->gen >= 4)
7352 if (val & DISPPLANE_TILED)
7353 plane_config->tiled = true;
7355 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7356 fourcc = intel_format_to_fourcc(pixel_format);
7357 crtc->base.primary->fb->pixel_format = fourcc;
7358 crtc->base.primary->fb->bits_per_pixel =
7359 drm_format_plane_cpp(fourcc, 0) * 8;
7361 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7362 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7363 offset = I915_READ(DSPOFFSET(plane));
7365 if (plane_config->tiled)
7366 offset = I915_READ(DSPTILEOFF(plane));
7368 offset = I915_READ(DSPLINOFF(plane));
7370 plane_config->base = base;
7372 val = I915_READ(PIPESRC(pipe));
7373 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7374 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7376 val = I915_READ(DSPSTRIDE(pipe));
7377 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7379 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7380 plane_config->tiled);
7382 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7385 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7386 pipe, plane, crtc->base.primary->fb->width,
7387 crtc->base.primary->fb->height,
7388 crtc->base.primary->fb->bits_per_pixel, base,
7389 crtc->base.primary->fb->pitches[0],
7390 plane_config->size);
7393 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7394 struct intel_crtc_config *pipe_config)
7396 struct drm_device *dev = crtc->base.dev;
7397 struct drm_i915_private *dev_priv = dev->dev_private;
7400 if (!intel_display_power_enabled(dev_priv,
7401 POWER_DOMAIN_PIPE(crtc->pipe)))
7404 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7405 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7407 tmp = I915_READ(PIPECONF(crtc->pipe));
7408 if (!(tmp & PIPECONF_ENABLE))
7411 switch (tmp & PIPECONF_BPC_MASK) {
7413 pipe_config->pipe_bpp = 18;
7416 pipe_config->pipe_bpp = 24;
7418 case PIPECONF_10BPC:
7419 pipe_config->pipe_bpp = 30;
7421 case PIPECONF_12BPC:
7422 pipe_config->pipe_bpp = 36;
7428 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7429 pipe_config->limited_color_range = true;
7431 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7432 struct intel_shared_dpll *pll;
7434 pipe_config->has_pch_encoder = true;
7436 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7437 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7438 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7440 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7442 if (HAS_PCH_IBX(dev_priv->dev)) {
7443 pipe_config->shared_dpll =
7444 (enum intel_dpll_id) crtc->pipe;
7446 tmp = I915_READ(PCH_DPLL_SEL);
7447 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7448 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7450 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7453 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7455 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7456 &pipe_config->dpll_hw_state));
7458 tmp = pipe_config->dpll_hw_state.dpll;
7459 pipe_config->pixel_multiplier =
7460 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7461 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7463 ironlake_pch_clock_get(crtc, pipe_config);
7465 pipe_config->pixel_multiplier = 1;
7468 intel_get_pipe_timings(crtc, pipe_config);
7470 ironlake_get_pfit_config(crtc, pipe_config);
7475 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7477 struct drm_device *dev = dev_priv->dev;
7478 struct intel_crtc *crtc;
7480 for_each_intel_crtc(dev, crtc)
7481 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7482 pipe_name(crtc->pipe));
7484 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7485 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7486 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7487 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7488 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7489 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7490 "CPU PWM1 enabled\n");
7491 if (IS_HASWELL(dev))
7492 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7493 "CPU PWM2 enabled\n");
7494 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7495 "PCH PWM1 enabled\n");
7496 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7497 "Utility pin enabled\n");
7498 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7501 * In theory we can still leave IRQs enabled, as long as only the HPD
7502 * interrupts remain enabled. We used to check for that, but since it's
7503 * gen-specific and since we only disable LCPLL after we fully disable
7504 * the interrupts, the check below should be enough.
7506 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7509 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7511 struct drm_device *dev = dev_priv->dev;
7513 if (IS_HASWELL(dev))
7514 return I915_READ(D_COMP_HSW);
7516 return I915_READ(D_COMP_BDW);
7519 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7521 struct drm_device *dev = dev_priv->dev;
7523 if (IS_HASWELL(dev)) {
7524 mutex_lock(&dev_priv->rps.hw_lock);
7525 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7527 DRM_ERROR("Failed to write to D_COMP\n");
7528 mutex_unlock(&dev_priv->rps.hw_lock);
7530 I915_WRITE(D_COMP_BDW, val);
7531 POSTING_READ(D_COMP_BDW);
7536 * This function implements pieces of two sequences from BSpec:
7537 * - Sequence for display software to disable LCPLL
7538 * - Sequence for display software to allow package C8+
7539 * The steps implemented here are just the steps that actually touch the LCPLL
7540 * register. Callers should take care of disabling all the display engine
7541 * functions, doing the mode unset, fixing interrupts, etc.
7543 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7544 bool switch_to_fclk, bool allow_power_down)
7548 assert_can_disable_lcpll(dev_priv);
7550 val = I915_READ(LCPLL_CTL);
7552 if (switch_to_fclk) {
7553 val |= LCPLL_CD_SOURCE_FCLK;
7554 I915_WRITE(LCPLL_CTL, val);
7556 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7557 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7558 DRM_ERROR("Switching to FCLK failed\n");
7560 val = I915_READ(LCPLL_CTL);
7563 val |= LCPLL_PLL_DISABLE;
7564 I915_WRITE(LCPLL_CTL, val);
7565 POSTING_READ(LCPLL_CTL);
7567 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7568 DRM_ERROR("LCPLL still locked\n");
7570 val = hsw_read_dcomp(dev_priv);
7571 val |= D_COMP_COMP_DISABLE;
7572 hsw_write_dcomp(dev_priv, val);
7575 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7577 DRM_ERROR("D_COMP RCOMP still in progress\n");
7579 if (allow_power_down) {
7580 val = I915_READ(LCPLL_CTL);
7581 val |= LCPLL_POWER_DOWN_ALLOW;
7582 I915_WRITE(LCPLL_CTL, val);
7583 POSTING_READ(LCPLL_CTL);
7588 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7591 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7594 unsigned long irqflags;
7596 val = I915_READ(LCPLL_CTL);
7598 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7599 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7603 * Make sure we're not on PC8 state before disabling PC8, otherwise
7604 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7606 * The other problem is that hsw_restore_lcpll() is called as part of
7607 * the runtime PM resume sequence, so we can't just call
7608 * gen6_gt_force_wake_get() because that function calls
7609 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7610 * while we are on the resume sequence. So to solve this problem we have
7611 * to call special forcewake code that doesn't touch runtime PM and
7612 * doesn't enable the forcewake delayed work.
7614 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7615 if (dev_priv->uncore.forcewake_count++ == 0)
7616 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7617 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7619 if (val & LCPLL_POWER_DOWN_ALLOW) {
7620 val &= ~LCPLL_POWER_DOWN_ALLOW;
7621 I915_WRITE(LCPLL_CTL, val);
7622 POSTING_READ(LCPLL_CTL);
7625 val = hsw_read_dcomp(dev_priv);
7626 val |= D_COMP_COMP_FORCE;
7627 val &= ~D_COMP_COMP_DISABLE;
7628 hsw_write_dcomp(dev_priv, val);
7630 val = I915_READ(LCPLL_CTL);
7631 val &= ~LCPLL_PLL_DISABLE;
7632 I915_WRITE(LCPLL_CTL, val);
7634 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7635 DRM_ERROR("LCPLL not locked yet\n");
7637 if (val & LCPLL_CD_SOURCE_FCLK) {
7638 val = I915_READ(LCPLL_CTL);
7639 val &= ~LCPLL_CD_SOURCE_FCLK;
7640 I915_WRITE(LCPLL_CTL, val);
7642 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7643 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7644 DRM_ERROR("Switching back to LCPLL failed\n");
7647 /* See the big comment above. */
7648 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7649 if (--dev_priv->uncore.forcewake_count == 0)
7650 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7651 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7655 * Package states C8 and deeper are really deep PC states that can only be
7656 * reached when all the devices on the system allow it, so even if the graphics
7657 * device allows PC8+, it doesn't mean the system will actually get to these
7658 * states. Our driver only allows PC8+ when going into runtime PM.
7660 * The requirements for PC8+ are that all the outputs are disabled, the power
7661 * well is disabled and most interrupts are disabled, and these are also
7662 * requirements for runtime PM. When these conditions are met, we manually do
7663 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7664 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7667 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7668 * the state of some registers, so when we come back from PC8+ we need to
7669 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7670 * need to take care of the registers kept by RC6. Notice that this happens even
7671 * if we don't put the device in PCI D3 state (which is what currently happens
7672 * because of the runtime PM support).
7674 * For more, read "Display Sequences for Package C8" on the hardware
7677 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7679 struct drm_device *dev = dev_priv->dev;
7682 DRM_DEBUG_KMS("Enabling package C8+\n");
7684 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7685 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7686 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7687 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7690 lpt_disable_clkout_dp(dev);
7691 hsw_disable_lcpll(dev_priv, true, true);
7694 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7696 struct drm_device *dev = dev_priv->dev;
7699 DRM_DEBUG_KMS("Disabling package C8+\n");
7701 hsw_restore_lcpll(dev_priv);
7702 lpt_init_pch_refclk(dev);
7704 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7705 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7706 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7707 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7710 intel_prepare_ddi(dev);
7713 static void snb_modeset_global_resources(struct drm_device *dev)
7715 modeset_update_crtc_power_domains(dev);
7718 static void haswell_modeset_global_resources(struct drm_device *dev)
7720 modeset_update_crtc_power_domains(dev);
7723 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7725 struct drm_framebuffer *fb)
7727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7729 if (!intel_ddi_pll_select(intel_crtc))
7732 intel_crtc->lowfreq_avail = false;
7737 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7739 struct intel_crtc_config *pipe_config)
7741 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7743 switch (pipe_config->ddi_pll_sel) {
7744 case PORT_CLK_SEL_WRPLL1:
7745 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7747 case PORT_CLK_SEL_WRPLL2:
7748 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7753 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7754 struct intel_crtc_config *pipe_config)
7756 struct drm_device *dev = crtc->base.dev;
7757 struct drm_i915_private *dev_priv = dev->dev_private;
7758 struct intel_shared_dpll *pll;
7762 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7764 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7766 haswell_get_ddi_pll(dev_priv, port, pipe_config);
7768 if (pipe_config->shared_dpll >= 0) {
7769 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7771 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7772 &pipe_config->dpll_hw_state));
7776 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7777 * DDI E. So just check whether this pipe is wired to DDI E and whether
7778 * the PCH transcoder is on.
7780 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7781 pipe_config->has_pch_encoder = true;
7783 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7784 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7785 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7787 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7791 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7792 struct intel_crtc_config *pipe_config)
7794 struct drm_device *dev = crtc->base.dev;
7795 struct drm_i915_private *dev_priv = dev->dev_private;
7796 enum intel_display_power_domain pfit_domain;
7799 if (!intel_display_power_enabled(dev_priv,
7800 POWER_DOMAIN_PIPE(crtc->pipe)))
7803 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7804 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7806 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7807 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7808 enum pipe trans_edp_pipe;
7809 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7811 WARN(1, "unknown pipe linked to edp transcoder\n");
7812 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7813 case TRANS_DDI_EDP_INPUT_A_ON:
7814 trans_edp_pipe = PIPE_A;
7816 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7817 trans_edp_pipe = PIPE_B;
7819 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7820 trans_edp_pipe = PIPE_C;
7824 if (trans_edp_pipe == crtc->pipe)
7825 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7828 if (!intel_display_power_enabled(dev_priv,
7829 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7832 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7833 if (!(tmp & PIPECONF_ENABLE))
7836 haswell_get_ddi_port_state(crtc, pipe_config);
7838 intel_get_pipe_timings(crtc, pipe_config);
7840 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7841 if (intel_display_power_enabled(dev_priv, pfit_domain))
7842 ironlake_get_pfit_config(crtc, pipe_config);
7844 if (IS_HASWELL(dev))
7845 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7846 (I915_READ(IPS_CTL) & IPS_ENABLE);
7848 pipe_config->pixel_multiplier = 1;
7856 } hdmi_audio_clock[] = {
7857 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7858 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7859 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7860 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7861 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7862 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7863 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7864 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7865 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7866 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7869 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7870 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7874 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7875 if (mode->clock == hdmi_audio_clock[i].clock)
7879 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7880 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7884 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7885 hdmi_audio_clock[i].clock,
7886 hdmi_audio_clock[i].config);
7888 return hdmi_audio_clock[i].config;
7891 static bool intel_eld_uptodate(struct drm_connector *connector,
7892 int reg_eldv, uint32_t bits_eldv,
7893 int reg_elda, uint32_t bits_elda,
7896 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7897 uint8_t *eld = connector->eld;
7900 i = I915_READ(reg_eldv);
7909 i = I915_READ(reg_elda);
7911 I915_WRITE(reg_elda, i);
7913 for (i = 0; i < eld[2]; i++)
7914 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7920 static void g4x_write_eld(struct drm_connector *connector,
7921 struct drm_crtc *crtc,
7922 struct drm_display_mode *mode)
7924 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7925 uint8_t *eld = connector->eld;
7930 i = I915_READ(G4X_AUD_VID_DID);
7932 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7933 eldv = G4X_ELDV_DEVCL_DEVBLC;
7935 eldv = G4X_ELDV_DEVCTG;
7937 if (intel_eld_uptodate(connector,
7938 G4X_AUD_CNTL_ST, eldv,
7939 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7940 G4X_HDMIW_HDMIEDID))
7943 i = I915_READ(G4X_AUD_CNTL_ST);
7944 i &= ~(eldv | G4X_ELD_ADDR);
7945 len = (i >> 9) & 0x1f; /* ELD buffer size */
7946 I915_WRITE(G4X_AUD_CNTL_ST, i);
7951 len = min_t(uint8_t, eld[2], len);
7952 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7953 for (i = 0; i < len; i++)
7954 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7956 i = I915_READ(G4X_AUD_CNTL_ST);
7958 I915_WRITE(G4X_AUD_CNTL_ST, i);
7961 static void haswell_write_eld(struct drm_connector *connector,
7962 struct drm_crtc *crtc,
7963 struct drm_display_mode *mode)
7965 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7966 uint8_t *eld = connector->eld;
7970 int pipe = to_intel_crtc(crtc)->pipe;
7973 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7974 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7975 int aud_config = HSW_AUD_CFG(pipe);
7976 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7978 /* Audio output enable */
7979 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7980 tmp = I915_READ(aud_cntrl_st2);
7981 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7982 I915_WRITE(aud_cntrl_st2, tmp);
7983 POSTING_READ(aud_cntrl_st2);
7985 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7987 /* Set ELD valid state */
7988 tmp = I915_READ(aud_cntrl_st2);
7989 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7990 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7991 I915_WRITE(aud_cntrl_st2, tmp);
7992 tmp = I915_READ(aud_cntrl_st2);
7993 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7995 /* Enable HDMI mode */
7996 tmp = I915_READ(aud_config);
7997 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7998 /* clear N_programing_enable and N_value_index */
7999 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8000 I915_WRITE(aud_config, tmp);
8002 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8004 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8006 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8007 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8008 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8009 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8011 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8014 if (intel_eld_uptodate(connector,
8015 aud_cntrl_st2, eldv,
8016 aud_cntl_st, IBX_ELD_ADDRESS,
8020 i = I915_READ(aud_cntrl_st2);
8022 I915_WRITE(aud_cntrl_st2, i);
8027 i = I915_READ(aud_cntl_st);
8028 i &= ~IBX_ELD_ADDRESS;
8029 I915_WRITE(aud_cntl_st, i);
8030 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8031 DRM_DEBUG_DRIVER("port num:%d\n", i);
8033 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8034 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8035 for (i = 0; i < len; i++)
8036 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8038 i = I915_READ(aud_cntrl_st2);
8040 I915_WRITE(aud_cntrl_st2, i);
8044 static void ironlake_write_eld(struct drm_connector *connector,
8045 struct drm_crtc *crtc,
8046 struct drm_display_mode *mode)
8048 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8049 uint8_t *eld = connector->eld;
8057 int pipe = to_intel_crtc(crtc)->pipe;
8059 if (HAS_PCH_IBX(connector->dev)) {
8060 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8061 aud_config = IBX_AUD_CFG(pipe);
8062 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8063 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8064 } else if (IS_VALLEYVIEW(connector->dev)) {
8065 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8066 aud_config = VLV_AUD_CFG(pipe);
8067 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8068 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8070 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8071 aud_config = CPT_AUD_CFG(pipe);
8072 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8073 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8076 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8078 if (IS_VALLEYVIEW(connector->dev)) {
8079 struct intel_encoder *intel_encoder;
8080 struct intel_digital_port *intel_dig_port;
8082 intel_encoder = intel_attached_encoder(connector);
8083 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8084 i = intel_dig_port->port;
8086 i = I915_READ(aud_cntl_st);
8087 i = (i >> 29) & DIP_PORT_SEL_MASK;
8088 /* DIP_Port_Select, 0x1 = PortB */
8092 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8093 /* operate blindly on all ports */
8094 eldv = IBX_ELD_VALIDB;
8095 eldv |= IBX_ELD_VALIDB << 4;
8096 eldv |= IBX_ELD_VALIDB << 8;
8098 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8099 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8102 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8103 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8104 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8105 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8107 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8110 if (intel_eld_uptodate(connector,
8111 aud_cntrl_st2, eldv,
8112 aud_cntl_st, IBX_ELD_ADDRESS,
8116 i = I915_READ(aud_cntrl_st2);
8118 I915_WRITE(aud_cntrl_st2, i);
8123 i = I915_READ(aud_cntl_st);
8124 i &= ~IBX_ELD_ADDRESS;
8125 I915_WRITE(aud_cntl_st, i);
8127 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8128 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8129 for (i = 0; i < len; i++)
8130 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8132 i = I915_READ(aud_cntrl_st2);
8134 I915_WRITE(aud_cntrl_st2, i);
8137 void intel_write_eld(struct drm_encoder *encoder,
8138 struct drm_display_mode *mode)
8140 struct drm_crtc *crtc = encoder->crtc;
8141 struct drm_connector *connector;
8142 struct drm_device *dev = encoder->dev;
8143 struct drm_i915_private *dev_priv = dev->dev_private;
8145 connector = drm_select_eld(encoder, mode);
8149 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8152 connector->encoder->base.id,
8153 connector->encoder->name);
8155 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8157 if (dev_priv->display.write_eld)
8158 dev_priv->display.write_eld(connector, crtc, mode);
8161 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8163 struct drm_device *dev = crtc->dev;
8164 struct drm_i915_private *dev_priv = dev->dev_private;
8165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8166 uint32_t cntl = 0, size = 0;
8169 unsigned int width = intel_crtc->cursor_width;
8170 unsigned int height = intel_crtc->cursor_height;
8171 unsigned int stride = roundup_pow_of_two(width) * 4;
8175 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8186 cntl |= CURSOR_ENABLE |
8187 CURSOR_GAMMA_ENABLE |
8188 CURSOR_FORMAT_ARGB |
8189 CURSOR_STRIDE(stride);
8191 size = (height << 12) | width;
8194 if (intel_crtc->cursor_cntl != 0 &&
8195 (intel_crtc->cursor_base != base ||
8196 intel_crtc->cursor_size != size ||
8197 intel_crtc->cursor_cntl != cntl)) {
8198 /* On these chipsets we can only modify the base/size/stride
8199 * whilst the cursor is disabled.
8201 I915_WRITE(_CURACNTR, 0);
8202 POSTING_READ(_CURACNTR);
8203 intel_crtc->cursor_cntl = 0;
8206 if (intel_crtc->cursor_base != base)
8207 I915_WRITE(_CURABASE, base);
8209 if (intel_crtc->cursor_size != size) {
8210 I915_WRITE(CURSIZE, size);
8211 intel_crtc->cursor_size = size;
8214 if (intel_crtc->cursor_cntl != cntl) {
8215 I915_WRITE(_CURACNTR, cntl);
8216 POSTING_READ(_CURACNTR);
8217 intel_crtc->cursor_cntl = cntl;
8221 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8223 struct drm_device *dev = crtc->dev;
8224 struct drm_i915_private *dev_priv = dev->dev_private;
8225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8226 int pipe = intel_crtc->pipe;
8231 cntl = MCURSOR_GAMMA_ENABLE;
8232 switch (intel_crtc->cursor_width) {
8234 cntl |= CURSOR_MODE_64_ARGB_AX;
8237 cntl |= CURSOR_MODE_128_ARGB_AX;
8240 cntl |= CURSOR_MODE_256_ARGB_AX;
8246 cntl |= pipe << 28; /* Connect to correct pipe */
8248 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8249 cntl |= CURSOR_PIPE_CSC_ENABLE;
8251 if (intel_crtc->cursor_cntl != cntl) {
8252 I915_WRITE(CURCNTR(pipe), cntl);
8253 POSTING_READ(CURCNTR(pipe));
8254 intel_crtc->cursor_cntl = cntl;
8257 /* and commit changes on next vblank */
8258 I915_WRITE(CURBASE(pipe), base);
8259 POSTING_READ(CURBASE(pipe));
8262 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8263 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8266 struct drm_device *dev = crtc->dev;
8267 struct drm_i915_private *dev_priv = dev->dev_private;
8268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8269 int pipe = intel_crtc->pipe;
8270 int x = crtc->cursor_x;
8271 int y = crtc->cursor_y;
8272 u32 base = 0, pos = 0;
8275 base = intel_crtc->cursor_addr;
8277 if (x >= intel_crtc->config.pipe_src_w)
8280 if (y >= intel_crtc->config.pipe_src_h)
8284 if (x + intel_crtc->cursor_width <= 0)
8287 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8290 pos |= x << CURSOR_X_SHIFT;
8293 if (y + intel_crtc->cursor_height <= 0)
8296 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8299 pos |= y << CURSOR_Y_SHIFT;
8301 if (base == 0 && intel_crtc->cursor_base == 0)
8304 I915_WRITE(CURPOS(pipe), pos);
8306 if (IS_845G(dev) || IS_I865G(dev))
8307 i845_update_cursor(crtc, base);
8309 i9xx_update_cursor(crtc, base);
8310 intel_crtc->cursor_base = base;
8313 static bool cursor_size_ok(struct drm_device *dev,
8314 uint32_t width, uint32_t height)
8316 if (width == 0 || height == 0)
8320 * 845g/865g are special in that they are only limited by
8321 * the width of their cursors, the height is arbitrary up to
8322 * the precision of the register. Everything else requires
8323 * square cursors, limited to a few power-of-two sizes.
8325 if (IS_845G(dev) || IS_I865G(dev)) {
8326 if ((width & 63) != 0)
8329 if (width > (IS_845G(dev) ? 64 : 512))
8335 switch (width | height) {
8351 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8353 * Note that the object's reference will be consumed if the update fails. If
8354 * the update succeeds, the reference of the old object (if any) will be
8357 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8358 struct drm_i915_gem_object *obj,
8359 uint32_t width, uint32_t height)
8361 struct drm_device *dev = crtc->dev;
8362 struct drm_i915_private *dev_priv = dev->dev_private;
8363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8364 enum pipe pipe = intel_crtc->pipe;
8365 unsigned old_width, stride;
8369 /* if we want to turn off the cursor ignore width and height */
8371 DRM_DEBUG_KMS("cursor off\n");
8373 mutex_lock(&dev->struct_mutex);
8377 /* Check for which cursor types we support */
8378 if (!cursor_size_ok(dev, width, height)) {
8379 DRM_DEBUG("Cursor dimension not supported\n");
8383 stride = roundup_pow_of_two(width) * 4;
8384 if (obj->base.size < stride * height) {
8385 DRM_DEBUG_KMS("buffer is too small\n");
8390 /* we only need to pin inside GTT if cursor is non-phy */
8391 mutex_lock(&dev->struct_mutex);
8392 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8395 if (obj->tiling_mode) {
8396 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8402 * Global gtt pte registers are special registers which actually
8403 * forward writes to a chunk of system memory. Which means that
8404 * there is no risk that the register values disappear as soon
8405 * as we call intel_runtime_pm_put(), so it is correct to wrap
8406 * only the pin/unpin/fence and not more.
8408 intel_runtime_pm_get(dev_priv);
8410 /* Note that the w/a also requires 2 PTE of padding following
8411 * the bo. We currently fill all unused PTE with the shadow
8412 * page and so we should always have valid PTE following the
8413 * cursor preventing the VT-d warning.
8416 if (need_vtd_wa(dev))
8417 alignment = 64*1024;
8419 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8421 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8422 intel_runtime_pm_put(dev_priv);
8426 ret = i915_gem_object_put_fence(obj);
8428 DRM_DEBUG_KMS("failed to release fence for cursor");
8429 intel_runtime_pm_put(dev_priv);
8433 addr = i915_gem_obj_ggtt_offset(obj);
8435 intel_runtime_pm_put(dev_priv);
8437 int align = IS_I830(dev) ? 16 * 1024 : 256;
8438 ret = i915_gem_object_attach_phys(obj, align);
8440 DRM_DEBUG_KMS("failed to attach phys object\n");
8443 addr = obj->phys_handle->busaddr;
8447 if (intel_crtc->cursor_bo) {
8448 if (!INTEL_INFO(dev)->cursor_needs_physical)
8449 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8452 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8453 INTEL_FRONTBUFFER_CURSOR(pipe));
8454 mutex_unlock(&dev->struct_mutex);
8456 old_width = intel_crtc->cursor_width;
8458 intel_crtc->cursor_addr = addr;
8459 intel_crtc->cursor_bo = obj;
8460 intel_crtc->cursor_width = width;
8461 intel_crtc->cursor_height = height;
8463 if (intel_crtc->active) {
8464 if (old_width != width)
8465 intel_update_watermarks(crtc);
8466 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8469 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8473 i915_gem_object_unpin_from_display_plane(obj);
8475 mutex_unlock(&dev->struct_mutex);
8477 drm_gem_object_unreference_unlocked(&obj->base);
8481 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8482 u16 *blue, uint32_t start, uint32_t size)
8484 int end = (start + size > 256) ? 256 : start + size, i;
8485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8487 for (i = start; i < end; i++) {
8488 intel_crtc->lut_r[i] = red[i] >> 8;
8489 intel_crtc->lut_g[i] = green[i] >> 8;
8490 intel_crtc->lut_b[i] = blue[i] >> 8;
8493 intel_crtc_load_lut(crtc);
8496 /* VESA 640x480x72Hz mode to set on the pipe */
8497 static struct drm_display_mode load_detect_mode = {
8498 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8499 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8502 struct drm_framebuffer *
8503 __intel_framebuffer_create(struct drm_device *dev,
8504 struct drm_mode_fb_cmd2 *mode_cmd,
8505 struct drm_i915_gem_object *obj)
8507 struct intel_framebuffer *intel_fb;
8510 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8512 drm_gem_object_unreference_unlocked(&obj->base);
8513 return ERR_PTR(-ENOMEM);
8516 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8520 return &intel_fb->base;
8522 drm_gem_object_unreference_unlocked(&obj->base);
8525 return ERR_PTR(ret);
8528 static struct drm_framebuffer *
8529 intel_framebuffer_create(struct drm_device *dev,
8530 struct drm_mode_fb_cmd2 *mode_cmd,
8531 struct drm_i915_gem_object *obj)
8533 struct drm_framebuffer *fb;
8536 ret = i915_mutex_lock_interruptible(dev);
8538 return ERR_PTR(ret);
8539 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8540 mutex_unlock(&dev->struct_mutex);
8546 intel_framebuffer_pitch_for_width(int width, int bpp)
8548 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8549 return ALIGN(pitch, 64);
8553 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8555 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8556 return PAGE_ALIGN(pitch * mode->vdisplay);
8559 static struct drm_framebuffer *
8560 intel_framebuffer_create_for_mode(struct drm_device *dev,
8561 struct drm_display_mode *mode,
8564 struct drm_i915_gem_object *obj;
8565 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8567 obj = i915_gem_alloc_object(dev,
8568 intel_framebuffer_size_for_mode(mode, bpp));
8570 return ERR_PTR(-ENOMEM);
8572 mode_cmd.width = mode->hdisplay;
8573 mode_cmd.height = mode->vdisplay;
8574 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8576 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8578 return intel_framebuffer_create(dev, &mode_cmd, obj);
8581 static struct drm_framebuffer *
8582 mode_fits_in_fbdev(struct drm_device *dev,
8583 struct drm_display_mode *mode)
8585 #ifdef CONFIG_DRM_I915_FBDEV
8586 struct drm_i915_private *dev_priv = dev->dev_private;
8587 struct drm_i915_gem_object *obj;
8588 struct drm_framebuffer *fb;
8590 if (!dev_priv->fbdev)
8593 if (!dev_priv->fbdev->fb)
8596 obj = dev_priv->fbdev->fb->obj;
8599 fb = &dev_priv->fbdev->fb->base;
8600 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8601 fb->bits_per_pixel))
8604 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8613 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8614 struct drm_display_mode *mode,
8615 struct intel_load_detect_pipe *old,
8616 struct drm_modeset_acquire_ctx *ctx)
8618 struct intel_crtc *intel_crtc;
8619 struct intel_encoder *intel_encoder =
8620 intel_attached_encoder(connector);
8621 struct drm_crtc *possible_crtc;
8622 struct drm_encoder *encoder = &intel_encoder->base;
8623 struct drm_crtc *crtc = NULL;
8624 struct drm_device *dev = encoder->dev;
8625 struct drm_framebuffer *fb;
8626 struct drm_mode_config *config = &dev->mode_config;
8629 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8630 connector->base.id, connector->name,
8631 encoder->base.id, encoder->name);
8634 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8639 * Algorithm gets a little messy:
8641 * - if the connector already has an assigned crtc, use it (but make
8642 * sure it's on first)
8644 * - try to find the first unused crtc that can drive this connector,
8645 * and use that if we find one
8648 /* See if we already have a CRTC for this connector */
8649 if (encoder->crtc) {
8650 crtc = encoder->crtc;
8652 ret = drm_modeset_lock(&crtc->mutex, ctx);
8656 old->dpms_mode = connector->dpms;
8657 old->load_detect_temp = false;
8659 /* Make sure the crtc and connector are running */
8660 if (connector->dpms != DRM_MODE_DPMS_ON)
8661 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8666 /* Find an unused one (if possible) */
8667 for_each_crtc(dev, possible_crtc) {
8669 if (!(encoder->possible_crtcs & (1 << i)))
8671 if (possible_crtc->enabled)
8673 /* This can occur when applying the pipe A quirk on resume. */
8674 if (to_intel_crtc(possible_crtc)->new_enabled)
8677 crtc = possible_crtc;
8682 * If we didn't find an unused CRTC, don't use any.
8685 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8689 ret = drm_modeset_lock(&crtc->mutex, ctx);
8692 intel_encoder->new_crtc = to_intel_crtc(crtc);
8693 to_intel_connector(connector)->new_encoder = intel_encoder;
8695 intel_crtc = to_intel_crtc(crtc);
8696 intel_crtc->new_enabled = true;
8697 intel_crtc->new_config = &intel_crtc->config;
8698 old->dpms_mode = connector->dpms;
8699 old->load_detect_temp = true;
8700 old->release_fb = NULL;
8703 mode = &load_detect_mode;
8705 /* We need a framebuffer large enough to accommodate all accesses
8706 * that the plane may generate whilst we perform load detection.
8707 * We can not rely on the fbcon either being present (we get called
8708 * during its initialisation to detect all boot displays, or it may
8709 * not even exist) or that it is large enough to satisfy the
8712 fb = mode_fits_in_fbdev(dev, mode);
8714 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8715 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8716 old->release_fb = fb;
8718 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8720 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8724 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8725 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8726 if (old->release_fb)
8727 old->release_fb->funcs->destroy(old->release_fb);
8731 /* let the connector get through one full cycle before testing */
8732 intel_wait_for_vblank(dev, intel_crtc->pipe);
8736 intel_crtc->new_enabled = crtc->enabled;
8737 if (intel_crtc->new_enabled)
8738 intel_crtc->new_config = &intel_crtc->config;
8740 intel_crtc->new_config = NULL;
8742 if (ret == -EDEADLK) {
8743 drm_modeset_backoff(ctx);
8750 void intel_release_load_detect_pipe(struct drm_connector *connector,
8751 struct intel_load_detect_pipe *old)
8753 struct intel_encoder *intel_encoder =
8754 intel_attached_encoder(connector);
8755 struct drm_encoder *encoder = &intel_encoder->base;
8756 struct drm_crtc *crtc = encoder->crtc;
8757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8759 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8760 connector->base.id, connector->name,
8761 encoder->base.id, encoder->name);
8763 if (old->load_detect_temp) {
8764 to_intel_connector(connector)->new_encoder = NULL;
8765 intel_encoder->new_crtc = NULL;
8766 intel_crtc->new_enabled = false;
8767 intel_crtc->new_config = NULL;
8768 intel_set_mode(crtc, NULL, 0, 0, NULL);
8770 if (old->release_fb) {
8771 drm_framebuffer_unregister_private(old->release_fb);
8772 drm_framebuffer_unreference(old->release_fb);
8778 /* Switch crtc and encoder back off if necessary */
8779 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8780 connector->funcs->dpms(connector, old->dpms_mode);
8783 static int i9xx_pll_refclk(struct drm_device *dev,
8784 const struct intel_crtc_config *pipe_config)
8786 struct drm_i915_private *dev_priv = dev->dev_private;
8787 u32 dpll = pipe_config->dpll_hw_state.dpll;
8789 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8790 return dev_priv->vbt.lvds_ssc_freq;
8791 else if (HAS_PCH_SPLIT(dev))
8793 else if (!IS_GEN2(dev))
8799 /* Returns the clock of the currently programmed mode of the given pipe. */
8800 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8801 struct intel_crtc_config *pipe_config)
8803 struct drm_device *dev = crtc->base.dev;
8804 struct drm_i915_private *dev_priv = dev->dev_private;
8805 int pipe = pipe_config->cpu_transcoder;
8806 u32 dpll = pipe_config->dpll_hw_state.dpll;
8808 intel_clock_t clock;
8809 int refclk = i9xx_pll_refclk(dev, pipe_config);
8811 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8812 fp = pipe_config->dpll_hw_state.fp0;
8814 fp = pipe_config->dpll_hw_state.fp1;
8816 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8817 if (IS_PINEVIEW(dev)) {
8818 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8819 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8821 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8822 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8825 if (!IS_GEN2(dev)) {
8826 if (IS_PINEVIEW(dev))
8827 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8828 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8830 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8831 DPLL_FPA01_P1_POST_DIV_SHIFT);
8833 switch (dpll & DPLL_MODE_MASK) {
8834 case DPLLB_MODE_DAC_SERIAL:
8835 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8838 case DPLLB_MODE_LVDS:
8839 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8843 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8844 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8848 if (IS_PINEVIEW(dev))
8849 pineview_clock(refclk, &clock);
8851 i9xx_clock(refclk, &clock);
8853 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8854 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8857 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8858 DPLL_FPA01_P1_POST_DIV_SHIFT);
8860 if (lvds & LVDS_CLKB_POWER_UP)
8865 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8868 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8869 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8871 if (dpll & PLL_P2_DIVIDE_BY_4)
8877 i9xx_clock(refclk, &clock);
8881 * This value includes pixel_multiplier. We will use
8882 * port_clock to compute adjusted_mode.crtc_clock in the
8883 * encoder's get_config() function.
8885 pipe_config->port_clock = clock.dot;
8888 int intel_dotclock_calculate(int link_freq,
8889 const struct intel_link_m_n *m_n)
8892 * The calculation for the data clock is:
8893 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8894 * But we want to avoid losing precison if possible, so:
8895 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8897 * and the link clock is simpler:
8898 * link_clock = (m * link_clock) / n
8904 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8907 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8908 struct intel_crtc_config *pipe_config)
8910 struct drm_device *dev = crtc->base.dev;
8912 /* read out port_clock from the DPLL */
8913 i9xx_crtc_clock_get(crtc, pipe_config);
8916 * This value does not include pixel_multiplier.
8917 * We will check that port_clock and adjusted_mode.crtc_clock
8918 * agree once we know their relationship in the encoder's
8919 * get_config() function.
8921 pipe_config->adjusted_mode.crtc_clock =
8922 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8923 &pipe_config->fdi_m_n);
8926 /** Returns the currently programmed mode of the given pipe. */
8927 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8928 struct drm_crtc *crtc)
8930 struct drm_i915_private *dev_priv = dev->dev_private;
8931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8932 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8933 struct drm_display_mode *mode;
8934 struct intel_crtc_config pipe_config;
8935 int htot = I915_READ(HTOTAL(cpu_transcoder));
8936 int hsync = I915_READ(HSYNC(cpu_transcoder));
8937 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8938 int vsync = I915_READ(VSYNC(cpu_transcoder));
8939 enum pipe pipe = intel_crtc->pipe;
8941 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8946 * Construct a pipe_config sufficient for getting the clock info
8947 * back out of crtc_clock_get.
8949 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8950 * to use a real value here instead.
8952 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8953 pipe_config.pixel_multiplier = 1;
8954 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8955 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8956 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8957 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8959 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8960 mode->hdisplay = (htot & 0xffff) + 1;
8961 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8962 mode->hsync_start = (hsync & 0xffff) + 1;
8963 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8964 mode->vdisplay = (vtot & 0xffff) + 1;
8965 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8966 mode->vsync_start = (vsync & 0xffff) + 1;
8967 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8969 drm_mode_set_name(mode);
8974 static void intel_increase_pllclock(struct drm_device *dev,
8977 struct drm_i915_private *dev_priv = dev->dev_private;
8978 int dpll_reg = DPLL(pipe);
8981 if (!HAS_GMCH_DISPLAY(dev))
8984 if (!dev_priv->lvds_downclock_avail)
8987 dpll = I915_READ(dpll_reg);
8988 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8989 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8991 assert_panel_unlocked(dev_priv, pipe);
8993 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8994 I915_WRITE(dpll_reg, dpll);
8995 intel_wait_for_vblank(dev, pipe);
8997 dpll = I915_READ(dpll_reg);
8998 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8999 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9003 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9005 struct drm_device *dev = crtc->dev;
9006 struct drm_i915_private *dev_priv = dev->dev_private;
9007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9009 if (!HAS_GMCH_DISPLAY(dev))
9012 if (!dev_priv->lvds_downclock_avail)
9016 * Since this is called by a timer, we should never get here in
9019 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9020 int pipe = intel_crtc->pipe;
9021 int dpll_reg = DPLL(pipe);
9024 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9026 assert_panel_unlocked(dev_priv, pipe);
9028 dpll = I915_READ(dpll_reg);
9029 dpll |= DISPLAY_RATE_SELECT_FPA1;
9030 I915_WRITE(dpll_reg, dpll);
9031 intel_wait_for_vblank(dev, pipe);
9032 dpll = I915_READ(dpll_reg);
9033 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9034 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9039 void intel_mark_busy(struct drm_device *dev)
9041 struct drm_i915_private *dev_priv = dev->dev_private;
9043 if (dev_priv->mm.busy)
9046 intel_runtime_pm_get(dev_priv);
9047 i915_update_gfx_val(dev_priv);
9048 dev_priv->mm.busy = true;
9051 void intel_mark_idle(struct drm_device *dev)
9053 struct drm_i915_private *dev_priv = dev->dev_private;
9054 struct drm_crtc *crtc;
9056 if (!dev_priv->mm.busy)
9059 dev_priv->mm.busy = false;
9061 if (!i915.powersave)
9064 for_each_crtc(dev, crtc) {
9065 if (!crtc->primary->fb)
9068 intel_decrease_pllclock(crtc);
9071 if (INTEL_INFO(dev)->gen >= 6)
9072 gen6_rps_idle(dev->dev_private);
9075 intel_runtime_pm_put(dev_priv);
9080 * intel_mark_fb_busy - mark given planes as busy
9082 * @frontbuffer_bits: bits for the affected planes
9083 * @ring: optional ring for asynchronous commands
9085 * This function gets called every time the screen contents change. It can be
9086 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9088 static void intel_mark_fb_busy(struct drm_device *dev,
9089 unsigned frontbuffer_bits,
9090 struct intel_engine_cs *ring)
9092 struct drm_i915_private *dev_priv = dev->dev_private;
9095 if (!i915.powersave)
9098 for_each_pipe(dev_priv, pipe) {
9099 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9102 intel_increase_pllclock(dev, pipe);
9103 if (ring && intel_fbc_enabled(dev))
9104 ring->fbc_dirty = true;
9109 * intel_fb_obj_invalidate - invalidate frontbuffer object
9110 * @obj: GEM object to invalidate
9111 * @ring: set for asynchronous rendering
9113 * This function gets called every time rendering on the given object starts and
9114 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9115 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9116 * until the rendering completes or a flip on this frontbuffer plane is
9119 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9120 struct intel_engine_cs *ring)
9122 struct drm_device *dev = obj->base.dev;
9123 struct drm_i915_private *dev_priv = dev->dev_private;
9125 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9127 if (!obj->frontbuffer_bits)
9131 mutex_lock(&dev_priv->fb_tracking.lock);
9132 dev_priv->fb_tracking.busy_bits
9133 |= obj->frontbuffer_bits;
9134 dev_priv->fb_tracking.flip_bits
9135 &= ~obj->frontbuffer_bits;
9136 mutex_unlock(&dev_priv->fb_tracking.lock);
9139 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9141 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9145 * intel_frontbuffer_flush - flush frontbuffer
9147 * @frontbuffer_bits: frontbuffer plane tracking bits
9149 * This function gets called every time rendering on the given planes has
9150 * completed and frontbuffer caching can be started again. Flushes will get
9151 * delayed if they're blocked by some oustanding asynchronous rendering.
9153 * Can be called without any locks held.
9155 void intel_frontbuffer_flush(struct drm_device *dev,
9156 unsigned frontbuffer_bits)
9158 struct drm_i915_private *dev_priv = dev->dev_private;
9160 /* Delay flushing when rings are still busy.*/
9161 mutex_lock(&dev_priv->fb_tracking.lock);
9162 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9163 mutex_unlock(&dev_priv->fb_tracking.lock);
9165 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9167 intel_edp_psr_flush(dev, frontbuffer_bits);
9170 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9171 * needs to be reworked into a proper frontbuffer tracking scheme like
9174 if (IS_BROADWELL(dev))
9175 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9179 * intel_fb_obj_flush - flush frontbuffer object
9180 * @obj: GEM object to flush
9181 * @retire: set when retiring asynchronous rendering
9183 * This function gets called every time rendering on the given object has
9184 * completed and frontbuffer caching can be started again. If @retire is true
9185 * then any delayed flushes will be unblocked.
9187 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9190 struct drm_device *dev = obj->base.dev;
9191 struct drm_i915_private *dev_priv = dev->dev_private;
9192 unsigned frontbuffer_bits;
9194 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9196 if (!obj->frontbuffer_bits)
9199 frontbuffer_bits = obj->frontbuffer_bits;
9202 mutex_lock(&dev_priv->fb_tracking.lock);
9203 /* Filter out new bits since rendering started. */
9204 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9206 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9207 mutex_unlock(&dev_priv->fb_tracking.lock);
9210 intel_frontbuffer_flush(dev, frontbuffer_bits);
9214 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9216 * @frontbuffer_bits: frontbuffer plane tracking bits
9218 * This function gets called after scheduling a flip on @obj. The actual
9219 * frontbuffer flushing will be delayed until completion is signalled with
9220 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9221 * flush will be cancelled.
9223 * Can be called without any locks held.
9225 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9226 unsigned frontbuffer_bits)
9228 struct drm_i915_private *dev_priv = dev->dev_private;
9230 mutex_lock(&dev_priv->fb_tracking.lock);
9231 dev_priv->fb_tracking.flip_bits
9232 |= frontbuffer_bits;
9233 mutex_unlock(&dev_priv->fb_tracking.lock);
9237 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9239 * @frontbuffer_bits: frontbuffer plane tracking bits
9241 * This function gets called after the flip has been latched and will complete
9242 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9244 * Can be called without any locks held.
9246 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9247 unsigned frontbuffer_bits)
9249 struct drm_i915_private *dev_priv = dev->dev_private;
9251 mutex_lock(&dev_priv->fb_tracking.lock);
9252 /* Mask any cancelled flips. */
9253 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9254 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9255 mutex_unlock(&dev_priv->fb_tracking.lock);
9257 intel_frontbuffer_flush(dev, frontbuffer_bits);
9260 static void intel_crtc_destroy(struct drm_crtc *crtc)
9262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9263 struct drm_device *dev = crtc->dev;
9264 struct intel_unpin_work *work;
9265 unsigned long flags;
9267 spin_lock_irqsave(&dev->event_lock, flags);
9268 work = intel_crtc->unpin_work;
9269 intel_crtc->unpin_work = NULL;
9270 spin_unlock_irqrestore(&dev->event_lock, flags);
9273 cancel_work_sync(&work->work);
9277 drm_crtc_cleanup(crtc);
9282 static void intel_unpin_work_fn(struct work_struct *__work)
9284 struct intel_unpin_work *work =
9285 container_of(__work, struct intel_unpin_work, work);
9286 struct drm_device *dev = work->crtc->dev;
9287 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9289 mutex_lock(&dev->struct_mutex);
9290 intel_unpin_fb_obj(work->old_fb_obj);
9291 drm_gem_object_unreference(&work->pending_flip_obj->base);
9292 drm_gem_object_unreference(&work->old_fb_obj->base);
9294 intel_update_fbc(dev);
9295 mutex_unlock(&dev->struct_mutex);
9297 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9299 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9300 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9305 static void do_intel_finish_page_flip(struct drm_device *dev,
9306 struct drm_crtc *crtc)
9308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9309 struct intel_unpin_work *work;
9310 unsigned long flags;
9312 /* Ignore early vblank irqs */
9313 if (intel_crtc == NULL)
9316 spin_lock_irqsave(&dev->event_lock, flags);
9317 work = intel_crtc->unpin_work;
9319 /* Ensure we don't miss a work->pending update ... */
9322 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9323 spin_unlock_irqrestore(&dev->event_lock, flags);
9327 page_flip_completed(intel_crtc);
9329 spin_unlock_irqrestore(&dev->event_lock, flags);
9332 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9334 struct drm_i915_private *dev_priv = dev->dev_private;
9335 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9337 do_intel_finish_page_flip(dev, crtc);
9340 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9342 struct drm_i915_private *dev_priv = dev->dev_private;
9343 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9345 do_intel_finish_page_flip(dev, crtc);
9348 /* Is 'a' after or equal to 'b'? */
9349 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9351 return !((a - b) & 0x80000000);
9354 static bool page_flip_finished(struct intel_crtc *crtc)
9356 struct drm_device *dev = crtc->base.dev;
9357 struct drm_i915_private *dev_priv = dev->dev_private;
9360 * The relevant registers doen't exist on pre-ctg.
9361 * As the flip done interrupt doesn't trigger for mmio
9362 * flips on gmch platforms, a flip count check isn't
9363 * really needed there. But since ctg has the registers,
9364 * include it in the check anyway.
9366 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9370 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9371 * used the same base address. In that case the mmio flip might
9372 * have completed, but the CS hasn't even executed the flip yet.
9374 * A flip count check isn't enough as the CS might have updated
9375 * the base address just after start of vblank, but before we
9376 * managed to process the interrupt. This means we'd complete the
9379 * Combining both checks should get us a good enough result. It may
9380 * still happen that the CS flip has been executed, but has not
9381 * yet actually completed. But in case the base address is the same
9382 * anyway, we don't really care.
9384 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9385 crtc->unpin_work->gtt_offset &&
9386 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9387 crtc->unpin_work->flip_count);
9390 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9392 struct drm_i915_private *dev_priv = dev->dev_private;
9393 struct intel_crtc *intel_crtc =
9394 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9395 unsigned long flags;
9397 /* NB: An MMIO update of the plane base pointer will also
9398 * generate a page-flip completion irq, i.e. every modeset
9399 * is also accompanied by a spurious intel_prepare_page_flip().
9401 spin_lock_irqsave(&dev->event_lock, flags);
9402 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9403 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9404 spin_unlock_irqrestore(&dev->event_lock, flags);
9407 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9409 /* Ensure that the work item is consistent when activating it ... */
9411 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9412 /* and that it is marked active as soon as the irq could fire. */
9416 static int intel_gen2_queue_flip(struct drm_device *dev,
9417 struct drm_crtc *crtc,
9418 struct drm_framebuffer *fb,
9419 struct drm_i915_gem_object *obj,
9420 struct intel_engine_cs *ring,
9423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9427 ret = intel_ring_begin(ring, 6);
9431 /* Can't queue multiple flips, so wait for the previous
9432 * one to finish before executing the next.
9434 if (intel_crtc->plane)
9435 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9437 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9438 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9439 intel_ring_emit(ring, MI_NOOP);
9440 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9441 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9442 intel_ring_emit(ring, fb->pitches[0]);
9443 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9444 intel_ring_emit(ring, 0); /* aux display base address, unused */
9446 intel_mark_page_flip_active(intel_crtc);
9447 __intel_ring_advance(ring);
9451 static int intel_gen3_queue_flip(struct drm_device *dev,
9452 struct drm_crtc *crtc,
9453 struct drm_framebuffer *fb,
9454 struct drm_i915_gem_object *obj,
9455 struct intel_engine_cs *ring,
9458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9462 ret = intel_ring_begin(ring, 6);
9466 if (intel_crtc->plane)
9467 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9469 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9470 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9471 intel_ring_emit(ring, MI_NOOP);
9472 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9473 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9474 intel_ring_emit(ring, fb->pitches[0]);
9475 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9476 intel_ring_emit(ring, MI_NOOP);
9478 intel_mark_page_flip_active(intel_crtc);
9479 __intel_ring_advance(ring);
9483 static int intel_gen4_queue_flip(struct drm_device *dev,
9484 struct drm_crtc *crtc,
9485 struct drm_framebuffer *fb,
9486 struct drm_i915_gem_object *obj,
9487 struct intel_engine_cs *ring,
9490 struct drm_i915_private *dev_priv = dev->dev_private;
9491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9492 uint32_t pf, pipesrc;
9495 ret = intel_ring_begin(ring, 4);
9499 /* i965+ uses the linear or tiled offsets from the
9500 * Display Registers (which do not change across a page-flip)
9501 * so we need only reprogram the base address.
9503 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9504 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9505 intel_ring_emit(ring, fb->pitches[0]);
9506 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9509 /* XXX Enabling the panel-fitter across page-flip is so far
9510 * untested on non-native modes, so ignore it for now.
9511 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9514 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9515 intel_ring_emit(ring, pf | pipesrc);
9517 intel_mark_page_flip_active(intel_crtc);
9518 __intel_ring_advance(ring);
9522 static int intel_gen6_queue_flip(struct drm_device *dev,
9523 struct drm_crtc *crtc,
9524 struct drm_framebuffer *fb,
9525 struct drm_i915_gem_object *obj,
9526 struct intel_engine_cs *ring,
9529 struct drm_i915_private *dev_priv = dev->dev_private;
9530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9531 uint32_t pf, pipesrc;
9534 ret = intel_ring_begin(ring, 4);
9538 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9539 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9540 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9541 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9543 /* Contrary to the suggestions in the documentation,
9544 * "Enable Panel Fitter" does not seem to be required when page
9545 * flipping with a non-native mode, and worse causes a normal
9547 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9550 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9551 intel_ring_emit(ring, pf | pipesrc);
9553 intel_mark_page_flip_active(intel_crtc);
9554 __intel_ring_advance(ring);
9558 static int intel_gen7_queue_flip(struct drm_device *dev,
9559 struct drm_crtc *crtc,
9560 struct drm_framebuffer *fb,
9561 struct drm_i915_gem_object *obj,
9562 struct intel_engine_cs *ring,
9565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9566 uint32_t plane_bit = 0;
9569 switch (intel_crtc->plane) {
9571 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9574 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9577 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9580 WARN_ONCE(1, "unknown plane in flip command\n");
9585 if (ring->id == RCS) {
9588 * On Gen 8, SRM is now taking an extra dword to accommodate
9589 * 48bits addresses, and we need a NOOP for the batch size to
9597 * BSpec MI_DISPLAY_FLIP for IVB:
9598 * "The full packet must be contained within the same cache line."
9600 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9601 * cacheline, if we ever start emitting more commands before
9602 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9603 * then do the cacheline alignment, and finally emit the
9606 ret = intel_ring_cacheline_align(ring);
9610 ret = intel_ring_begin(ring, len);
9614 /* Unmask the flip-done completion message. Note that the bspec says that
9615 * we should do this for both the BCS and RCS, and that we must not unmask
9616 * more than one flip event at any time (or ensure that one flip message
9617 * can be sent by waiting for flip-done prior to queueing new flips).
9618 * Experimentation says that BCS works despite DERRMR masking all
9619 * flip-done completion events and that unmasking all planes at once
9620 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9621 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9623 if (ring->id == RCS) {
9624 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9625 intel_ring_emit(ring, DERRMR);
9626 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9627 DERRMR_PIPEB_PRI_FLIP_DONE |
9628 DERRMR_PIPEC_PRI_FLIP_DONE));
9630 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9631 MI_SRM_LRM_GLOBAL_GTT);
9633 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9634 MI_SRM_LRM_GLOBAL_GTT);
9635 intel_ring_emit(ring, DERRMR);
9636 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9638 intel_ring_emit(ring, 0);
9639 intel_ring_emit(ring, MI_NOOP);
9643 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9644 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9645 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9646 intel_ring_emit(ring, (MI_NOOP));
9648 intel_mark_page_flip_active(intel_crtc);
9649 __intel_ring_advance(ring);
9653 static bool use_mmio_flip(struct intel_engine_cs *ring,
9654 struct drm_i915_gem_object *obj)
9657 * This is not being used for older platforms, because
9658 * non-availability of flip done interrupt forces us to use
9659 * CS flips. Older platforms derive flip done using some clever
9660 * tricks involving the flip_pending status bits and vblank irqs.
9661 * So using MMIO flips there would disrupt this mechanism.
9667 if (INTEL_INFO(ring->dev)->gen < 5)
9670 if (i915.use_mmio_flip < 0)
9672 else if (i915.use_mmio_flip > 0)
9674 else if (i915.enable_execlists)
9677 return ring != obj->ring;
9680 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9682 struct drm_device *dev = intel_crtc->base.dev;
9683 struct drm_i915_private *dev_priv = dev->dev_private;
9684 struct intel_framebuffer *intel_fb =
9685 to_intel_framebuffer(intel_crtc->base.primary->fb);
9686 struct drm_i915_gem_object *obj = intel_fb->obj;
9690 intel_mark_page_flip_active(intel_crtc);
9692 reg = DSPCNTR(intel_crtc->plane);
9693 dspcntr = I915_READ(reg);
9695 if (INTEL_INFO(dev)->gen >= 4) {
9696 if (obj->tiling_mode != I915_TILING_NONE)
9697 dspcntr |= DISPPLANE_TILED;
9699 dspcntr &= ~DISPPLANE_TILED;
9701 I915_WRITE(reg, dspcntr);
9703 I915_WRITE(DSPSURF(intel_crtc->plane),
9704 intel_crtc->unpin_work->gtt_offset);
9705 POSTING_READ(DSPSURF(intel_crtc->plane));
9708 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9710 struct intel_engine_cs *ring;
9713 lockdep_assert_held(&obj->base.dev->struct_mutex);
9715 if (!obj->last_write_seqno)
9720 if (i915_seqno_passed(ring->get_seqno(ring, true),
9721 obj->last_write_seqno))
9724 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9728 if (WARN_ON(!ring->irq_get(ring)))
9734 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9736 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9737 struct intel_crtc *intel_crtc;
9738 unsigned long irq_flags;
9741 seqno = ring->get_seqno(ring, false);
9743 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9744 for_each_intel_crtc(ring->dev, intel_crtc) {
9745 struct intel_mmio_flip *mmio_flip;
9747 mmio_flip = &intel_crtc->mmio_flip;
9748 if (mmio_flip->seqno == 0)
9751 if (ring->id != mmio_flip->ring_id)
9754 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9755 intel_do_mmio_flip(intel_crtc);
9756 mmio_flip->seqno = 0;
9757 ring->irq_put(ring);
9760 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9763 static int intel_queue_mmio_flip(struct drm_device *dev,
9764 struct drm_crtc *crtc,
9765 struct drm_framebuffer *fb,
9766 struct drm_i915_gem_object *obj,
9767 struct intel_engine_cs *ring,
9770 struct drm_i915_private *dev_priv = dev->dev_private;
9771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9772 unsigned long irq_flags;
9775 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9778 ret = intel_postpone_flip(obj);
9782 intel_do_mmio_flip(intel_crtc);
9786 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9787 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9788 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9789 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9792 * Double check to catch cases where irq fired before
9793 * mmio flip data was ready
9795 intel_notify_mmio_flip(obj->ring);
9799 static int intel_default_queue_flip(struct drm_device *dev,
9800 struct drm_crtc *crtc,
9801 struct drm_framebuffer *fb,
9802 struct drm_i915_gem_object *obj,
9803 struct intel_engine_cs *ring,
9809 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9810 struct drm_crtc *crtc)
9812 struct drm_i915_private *dev_priv = dev->dev_private;
9813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9814 struct intel_unpin_work *work = intel_crtc->unpin_work;
9817 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9820 if (!work->enable_stall_check)
9823 if (work->flip_ready_vblank == 0) {
9824 if (work->flip_queued_ring &&
9825 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9826 work->flip_queued_seqno))
9829 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9832 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9835 /* Potential stall - if we see that the flip has happened,
9836 * assume a missed interrupt. */
9837 if (INTEL_INFO(dev)->gen >= 4)
9838 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9840 addr = I915_READ(DSPADDR(intel_crtc->plane));
9842 /* There is a potential issue here with a false positive after a flip
9843 * to the same address. We could address this by checking for a
9844 * non-incrementing frame counter.
9846 return addr == work->gtt_offset;
9849 void intel_check_page_flip(struct drm_device *dev, int pipe)
9851 struct drm_i915_private *dev_priv = dev->dev_private;
9852 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9854 unsigned long flags;
9859 spin_lock_irqsave(&dev->event_lock, flags);
9860 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9861 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9862 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9863 page_flip_completed(intel_crtc);
9865 spin_unlock_irqrestore(&dev->event_lock, flags);
9868 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9869 struct drm_framebuffer *fb,
9870 struct drm_pending_vblank_event *event,
9871 uint32_t page_flip_flags)
9873 struct drm_device *dev = crtc->dev;
9874 struct drm_i915_private *dev_priv = dev->dev_private;
9875 struct drm_framebuffer *old_fb = crtc->primary->fb;
9876 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9878 enum pipe pipe = intel_crtc->pipe;
9879 struct intel_unpin_work *work;
9880 struct intel_engine_cs *ring;
9881 unsigned long flags;
9884 //trigger software GT busyness calculation
9885 gen8_flip_interrupt(dev);
9888 * drm_mode_page_flip_ioctl() should already catch this, but double
9889 * check to be safe. In the future we may enable pageflipping from
9890 * a disabled primary plane.
9892 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9895 /* Can't change pixel format via MI display flips. */
9896 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9900 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9901 * Note that pitch changes could also affect these register.
9903 if (INTEL_INFO(dev)->gen > 3 &&
9904 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9905 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9908 if (i915_terminally_wedged(&dev_priv->gpu_error))
9911 work = kzalloc(sizeof(*work), GFP_KERNEL);
9915 work->event = event;
9917 work->old_fb_obj = intel_fb_obj(old_fb);
9918 INIT_WORK(&work->work, intel_unpin_work_fn);
9920 ret = drm_crtc_vblank_get(crtc);
9924 /* We borrow the event spin lock for protecting unpin_work */
9925 spin_lock_irqsave(&dev->event_lock, flags);
9926 if (intel_crtc->unpin_work) {
9927 /* Before declaring the flip queue wedged, check if
9928 * the hardware completed the operation behind our backs.
9930 if (__intel_pageflip_stall_check(dev, crtc)) {
9931 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9932 page_flip_completed(intel_crtc);
9934 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9935 spin_unlock_irqrestore(&dev->event_lock, flags);
9937 drm_crtc_vblank_put(crtc);
9942 intel_crtc->unpin_work = work;
9943 spin_unlock_irqrestore(&dev->event_lock, flags);
9945 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9946 flush_workqueue(dev_priv->wq);
9948 ret = i915_mutex_lock_interruptible(dev);
9952 /* Reference the objects for the scheduled work. */
9953 drm_gem_object_reference(&work->old_fb_obj->base);
9954 drm_gem_object_reference(&obj->base);
9956 crtc->primary->fb = fb;
9958 work->pending_flip_obj = obj;
9960 atomic_inc(&intel_crtc->unpin_work_count);
9961 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9963 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9964 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9966 if (IS_VALLEYVIEW(dev)) {
9967 ring = &dev_priv->ring[BCS];
9968 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9969 /* vlv: DISPLAY_FLIP fails to change tiling */
9971 } else if (IS_IVYBRIDGE(dev)) {
9972 ring = &dev_priv->ring[BCS];
9973 } else if (INTEL_INFO(dev)->gen >= 7) {
9975 if (ring == NULL || ring->id != RCS)
9976 ring = &dev_priv->ring[BCS];
9978 ring = &dev_priv->ring[RCS];
9981 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9983 goto cleanup_pending;
9986 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9988 if (use_mmio_flip(ring, obj)) {
9989 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9994 work->flip_queued_seqno = obj->last_write_seqno;
9995 work->flip_queued_ring = obj->ring;
9997 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10000 goto cleanup_unpin;
10002 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10003 work->flip_queued_ring = ring;
10006 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10007 work->enable_stall_check = true;
10009 i915_gem_track_fb(work->old_fb_obj, obj,
10010 INTEL_FRONTBUFFER_PRIMARY(pipe));
10012 intel_disable_fbc(dev);
10013 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10014 mutex_unlock(&dev->struct_mutex);
10016 trace_i915_flip_request(intel_crtc->plane, obj);
10021 intel_unpin_fb_obj(obj);
10023 atomic_dec(&intel_crtc->unpin_work_count);
10024 crtc->primary->fb = old_fb;
10025 drm_gem_object_unreference(&work->old_fb_obj->base);
10026 drm_gem_object_unreference(&obj->base);
10027 mutex_unlock(&dev->struct_mutex);
10030 spin_lock_irqsave(&dev->event_lock, flags);
10031 intel_crtc->unpin_work = NULL;
10032 spin_unlock_irqrestore(&dev->event_lock, flags);
10034 drm_crtc_vblank_put(crtc);
10040 intel_crtc_wait_for_pending_flips(crtc);
10041 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10042 if (ret == 0 && event)
10043 drm_send_vblank_event(dev, pipe, event);
10048 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10049 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10050 .load_lut = intel_crtc_load_lut,
10054 * intel_modeset_update_staged_output_state
10056 * Updates the staged output configuration state, e.g. after we've read out the
10057 * current hw state.
10059 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10061 struct intel_crtc *crtc;
10062 struct intel_encoder *encoder;
10063 struct intel_connector *connector;
10065 list_for_each_entry(connector, &dev->mode_config.connector_list,
10067 connector->new_encoder =
10068 to_intel_encoder(connector->base.encoder);
10071 for_each_intel_encoder(dev, encoder) {
10072 encoder->new_crtc =
10073 to_intel_crtc(encoder->base.crtc);
10076 for_each_intel_crtc(dev, crtc) {
10077 crtc->new_enabled = crtc->base.enabled;
10079 if (crtc->new_enabled)
10080 crtc->new_config = &crtc->config;
10082 crtc->new_config = NULL;
10087 * intel_modeset_commit_output_state
10089 * This function copies the stage display pipe configuration to the real one.
10091 static void intel_modeset_commit_output_state(struct drm_device *dev)
10093 struct intel_crtc *crtc;
10094 struct intel_encoder *encoder;
10095 struct intel_connector *connector;
10097 list_for_each_entry(connector, &dev->mode_config.connector_list,
10099 connector->base.encoder = &connector->new_encoder->base;
10102 for_each_intel_encoder(dev, encoder) {
10103 encoder->base.crtc = &encoder->new_crtc->base;
10106 for_each_intel_crtc(dev, crtc) {
10107 crtc->base.enabled = crtc->new_enabled;
10112 connected_sink_compute_bpp(struct intel_connector *connector,
10113 struct intel_crtc_config *pipe_config)
10115 int bpp = pipe_config->pipe_bpp;
10117 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10118 connector->base.base.id,
10119 connector->base.name);
10121 /* Don't use an invalid EDID bpc value */
10122 if (connector->base.display_info.bpc &&
10123 connector->base.display_info.bpc * 3 < bpp) {
10124 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10125 bpp, connector->base.display_info.bpc*3);
10126 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10129 /* Clamp bpp to 8 on screens without EDID 1.4 */
10130 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10131 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10133 pipe_config->pipe_bpp = 24;
10138 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10139 struct drm_framebuffer *fb,
10140 struct intel_crtc_config *pipe_config)
10142 struct drm_device *dev = crtc->base.dev;
10143 struct intel_connector *connector;
10146 switch (fb->pixel_format) {
10147 case DRM_FORMAT_C8:
10148 bpp = 8*3; /* since we go through a colormap */
10150 case DRM_FORMAT_XRGB1555:
10151 case DRM_FORMAT_ARGB1555:
10152 /* checked in intel_framebuffer_init already */
10153 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10155 case DRM_FORMAT_RGB565:
10156 bpp = 6*3; /* min is 18bpp */
10158 case DRM_FORMAT_XBGR8888:
10159 case DRM_FORMAT_ABGR8888:
10160 /* checked in intel_framebuffer_init already */
10161 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10163 case DRM_FORMAT_XRGB8888:
10164 case DRM_FORMAT_ARGB8888:
10167 case DRM_FORMAT_XRGB2101010:
10168 case DRM_FORMAT_ARGB2101010:
10169 case DRM_FORMAT_XBGR2101010:
10170 case DRM_FORMAT_ABGR2101010:
10171 /* checked in intel_framebuffer_init already */
10172 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10176 /* TODO: gen4+ supports 16 bpc floating point, too. */
10178 DRM_DEBUG_KMS("unsupported depth\n");
10182 pipe_config->pipe_bpp = bpp;
10184 /* Clamp display bpp to EDID value */
10185 list_for_each_entry(connector, &dev->mode_config.connector_list,
10187 if (!connector->new_encoder ||
10188 connector->new_encoder->new_crtc != crtc)
10191 connected_sink_compute_bpp(connector, pipe_config);
10197 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10199 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10200 "type: 0x%x flags: 0x%x\n",
10202 mode->crtc_hdisplay, mode->crtc_hsync_start,
10203 mode->crtc_hsync_end, mode->crtc_htotal,
10204 mode->crtc_vdisplay, mode->crtc_vsync_start,
10205 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10208 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10209 struct intel_crtc_config *pipe_config,
10210 const char *context)
10212 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10213 context, pipe_name(crtc->pipe));
10215 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10216 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10217 pipe_config->pipe_bpp, pipe_config->dither);
10218 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10219 pipe_config->has_pch_encoder,
10220 pipe_config->fdi_lanes,
10221 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10222 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10223 pipe_config->fdi_m_n.tu);
10224 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10225 pipe_config->has_dp_encoder,
10226 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10227 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10228 pipe_config->dp_m_n.tu);
10230 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10231 pipe_config->has_dp_encoder,
10232 pipe_config->dp_m2_n2.gmch_m,
10233 pipe_config->dp_m2_n2.gmch_n,
10234 pipe_config->dp_m2_n2.link_m,
10235 pipe_config->dp_m2_n2.link_n,
10236 pipe_config->dp_m2_n2.tu);
10238 DRM_DEBUG_KMS("requested mode:\n");
10239 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10240 DRM_DEBUG_KMS("adjusted mode:\n");
10241 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10242 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10243 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10244 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10245 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10246 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10247 pipe_config->gmch_pfit.control,
10248 pipe_config->gmch_pfit.pgm_ratios,
10249 pipe_config->gmch_pfit.lvds_border_bits);
10250 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10251 pipe_config->pch_pfit.pos,
10252 pipe_config->pch_pfit.size,
10253 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10254 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10255 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10258 static bool encoders_cloneable(const struct intel_encoder *a,
10259 const struct intel_encoder *b)
10261 /* masks could be asymmetric, so check both ways */
10262 return a == b || (a->cloneable & (1 << b->type) &&
10263 b->cloneable & (1 << a->type));
10266 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10267 struct intel_encoder *encoder)
10269 struct drm_device *dev = crtc->base.dev;
10270 struct intel_encoder *source_encoder;
10272 for_each_intel_encoder(dev, source_encoder) {
10273 if (source_encoder->new_crtc != crtc)
10276 if (!encoders_cloneable(encoder, source_encoder))
10283 static bool check_encoder_cloning(struct intel_crtc *crtc)
10285 struct drm_device *dev = crtc->base.dev;
10286 struct intel_encoder *encoder;
10288 for_each_intel_encoder(dev, encoder) {
10289 if (encoder->new_crtc != crtc)
10292 if (!check_single_encoder_cloning(crtc, encoder))
10299 static struct intel_crtc_config *
10300 intel_modeset_pipe_config(struct drm_crtc *crtc,
10301 struct drm_framebuffer *fb,
10302 struct drm_display_mode *mode)
10304 struct drm_device *dev = crtc->dev;
10305 struct intel_encoder *encoder;
10306 struct intel_crtc_config *pipe_config;
10307 int plane_bpp, ret = -EINVAL;
10310 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10311 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10312 return ERR_PTR(-EINVAL);
10315 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10317 return ERR_PTR(-ENOMEM);
10319 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10320 drm_mode_copy(&pipe_config->requested_mode, mode);
10322 pipe_config->cpu_transcoder =
10323 (enum transcoder) to_intel_crtc(crtc)->pipe;
10324 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10327 * Sanitize sync polarity flags based on requested ones. If neither
10328 * positive or negative polarity is requested, treat this as meaning
10329 * negative polarity.
10331 if (!(pipe_config->adjusted_mode.flags &
10332 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10333 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10335 if (!(pipe_config->adjusted_mode.flags &
10336 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10337 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10339 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10340 * plane pixel format and any sink constraints into account. Returns the
10341 * source plane bpp so that dithering can be selected on mismatches
10342 * after encoders and crtc also have had their say. */
10343 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10349 * Determine the real pipe dimensions. Note that stereo modes can
10350 * increase the actual pipe size due to the frame doubling and
10351 * insertion of additional space for blanks between the frame. This
10352 * is stored in the crtc timings. We use the requested mode to do this
10353 * computation to clearly distinguish it from the adjusted mode, which
10354 * can be changed by the connectors in the below retry loop.
10356 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10357 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10358 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10361 /* Ensure the port clock defaults are reset when retrying. */
10362 pipe_config->port_clock = 0;
10363 pipe_config->pixel_multiplier = 1;
10365 /* Fill in default crtc timings, allow encoders to overwrite them. */
10366 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10368 /* Pass our mode to the connectors and the CRTC to give them a chance to
10369 * adjust it according to limitations or connector properties, and also
10370 * a chance to reject the mode entirely.
10372 for_each_intel_encoder(dev, encoder) {
10374 if (&encoder->new_crtc->base != crtc)
10377 if (!(encoder->compute_config(encoder, pipe_config))) {
10378 DRM_DEBUG_KMS("Encoder config failure\n");
10383 /* Set default port clock if not overwritten by the encoder. Needs to be
10384 * done afterwards in case the encoder adjusts the mode. */
10385 if (!pipe_config->port_clock)
10386 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10387 * pipe_config->pixel_multiplier;
10389 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10391 DRM_DEBUG_KMS("CRTC fixup failed\n");
10395 if (ret == RETRY) {
10396 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10401 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10403 goto encoder_retry;
10406 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10407 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10408 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10410 return pipe_config;
10412 kfree(pipe_config);
10413 return ERR_PTR(ret);
10416 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10417 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10419 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10420 unsigned *prepare_pipes, unsigned *disable_pipes)
10422 struct intel_crtc *intel_crtc;
10423 struct drm_device *dev = crtc->dev;
10424 struct intel_encoder *encoder;
10425 struct intel_connector *connector;
10426 struct drm_crtc *tmp_crtc;
10428 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10430 /* Check which crtcs have changed outputs connected to them, these need
10431 * to be part of the prepare_pipes mask. We don't (yet) support global
10432 * modeset across multiple crtcs, so modeset_pipes will only have one
10433 * bit set at most. */
10434 list_for_each_entry(connector, &dev->mode_config.connector_list,
10436 if (connector->base.encoder == &connector->new_encoder->base)
10439 if (connector->base.encoder) {
10440 tmp_crtc = connector->base.encoder->crtc;
10442 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10445 if (connector->new_encoder)
10447 1 << connector->new_encoder->new_crtc->pipe;
10450 for_each_intel_encoder(dev, encoder) {
10451 if (encoder->base.crtc == &encoder->new_crtc->base)
10454 if (encoder->base.crtc) {
10455 tmp_crtc = encoder->base.crtc;
10457 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10460 if (encoder->new_crtc)
10461 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10464 /* Check for pipes that will be enabled/disabled ... */
10465 for_each_intel_crtc(dev, intel_crtc) {
10466 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10469 if (!intel_crtc->new_enabled)
10470 *disable_pipes |= 1 << intel_crtc->pipe;
10472 *prepare_pipes |= 1 << intel_crtc->pipe;
10476 /* set_mode is also used to update properties on life display pipes. */
10477 intel_crtc = to_intel_crtc(crtc);
10478 if (intel_crtc->new_enabled)
10479 *prepare_pipes |= 1 << intel_crtc->pipe;
10482 * For simplicity do a full modeset on any pipe where the output routing
10483 * changed. We could be more clever, but that would require us to be
10484 * more careful with calling the relevant encoder->mode_set functions.
10486 if (*prepare_pipes)
10487 *modeset_pipes = *prepare_pipes;
10489 /* ... and mask these out. */
10490 *modeset_pipes &= ~(*disable_pipes);
10491 *prepare_pipes &= ~(*disable_pipes);
10494 * HACK: We don't (yet) fully support global modesets. intel_set_config
10495 * obies this rule, but the modeset restore mode of
10496 * intel_modeset_setup_hw_state does not.
10498 *modeset_pipes &= 1 << intel_crtc->pipe;
10499 *prepare_pipes &= 1 << intel_crtc->pipe;
10501 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10502 *modeset_pipes, *prepare_pipes, *disable_pipes);
10505 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10507 struct drm_encoder *encoder;
10508 struct drm_device *dev = crtc->dev;
10510 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10511 if (encoder->crtc == crtc)
10518 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10520 struct intel_encoder *intel_encoder;
10521 struct intel_crtc *intel_crtc;
10522 struct drm_connector *connector;
10524 for_each_intel_encoder(dev, intel_encoder) {
10525 if (!intel_encoder->base.crtc)
10528 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10530 if (prepare_pipes & (1 << intel_crtc->pipe))
10531 intel_encoder->connectors_active = false;
10534 intel_modeset_commit_output_state(dev);
10536 /* Double check state. */
10537 for_each_intel_crtc(dev, intel_crtc) {
10538 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10539 WARN_ON(intel_crtc->new_config &&
10540 intel_crtc->new_config != &intel_crtc->config);
10541 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10544 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10545 if (!connector->encoder || !connector->encoder->crtc)
10548 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10550 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10551 struct drm_property *dpms_property =
10552 dev->mode_config.dpms_property;
10554 connector->dpms = DRM_MODE_DPMS_ON;
10555 drm_object_property_set_value(&connector->base,
10559 intel_encoder = to_intel_encoder(connector->encoder);
10560 intel_encoder->connectors_active = true;
10566 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10570 if (clock1 == clock2)
10573 if (!clock1 || !clock2)
10576 diff = abs(clock1 - clock2);
10578 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10584 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10585 list_for_each_entry((intel_crtc), \
10586 &(dev)->mode_config.crtc_list, \
10588 if (mask & (1 <<(intel_crtc)->pipe))
10591 intel_pipe_config_compare(struct drm_device *dev,
10592 struct intel_crtc_config *current_config,
10593 struct intel_crtc_config *pipe_config)
10595 #define PIPE_CONF_CHECK_X(name) \
10596 if (current_config->name != pipe_config->name) { \
10597 DRM_ERROR("mismatch in " #name " " \
10598 "(expected 0x%08x, found 0x%08x)\n", \
10599 current_config->name, \
10600 pipe_config->name); \
10604 #define PIPE_CONF_CHECK_I(name) \
10605 if (current_config->name != pipe_config->name) { \
10606 DRM_ERROR("mismatch in " #name " " \
10607 "(expected %i, found %i)\n", \
10608 current_config->name, \
10609 pipe_config->name); \
10613 /* This is required for BDW+ where there is only one set of registers for
10614 * switching between high and low RR.
10615 * This macro can be used whenever a comparison has to be made between one
10616 * hw state and multiple sw state variables.
10618 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10619 if ((current_config->name != pipe_config->name) && \
10620 (current_config->alt_name != pipe_config->name)) { \
10621 DRM_ERROR("mismatch in " #name " " \
10622 "(expected %i or %i, found %i)\n", \
10623 current_config->name, \
10624 current_config->alt_name, \
10625 pipe_config->name); \
10629 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10630 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10631 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10632 "(expected %i, found %i)\n", \
10633 current_config->name & (mask), \
10634 pipe_config->name & (mask)); \
10638 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10639 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10640 DRM_ERROR("mismatch in " #name " " \
10641 "(expected %i, found %i)\n", \
10642 current_config->name, \
10643 pipe_config->name); \
10647 #define PIPE_CONF_QUIRK(quirk) \
10648 ((current_config->quirks | pipe_config->quirks) & (quirk))
10650 PIPE_CONF_CHECK_I(cpu_transcoder);
10652 PIPE_CONF_CHECK_I(has_pch_encoder);
10653 PIPE_CONF_CHECK_I(fdi_lanes);
10654 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10655 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10656 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10657 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10658 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10660 PIPE_CONF_CHECK_I(has_dp_encoder);
10662 if (INTEL_INFO(dev)->gen < 8) {
10663 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10664 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10665 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10666 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10667 PIPE_CONF_CHECK_I(dp_m_n.tu);
10669 if (current_config->has_drrs) {
10670 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10671 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10672 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10673 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10674 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10677 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10678 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10679 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10680 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10681 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10684 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10685 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10686 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10687 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10688 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10689 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10691 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10692 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10693 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10694 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10695 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10696 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10698 PIPE_CONF_CHECK_I(pixel_multiplier);
10699 PIPE_CONF_CHECK_I(has_hdmi_sink);
10700 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10701 IS_VALLEYVIEW(dev))
10702 PIPE_CONF_CHECK_I(limited_color_range);
10704 PIPE_CONF_CHECK_I(has_audio);
10706 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10707 DRM_MODE_FLAG_INTERLACE);
10709 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10710 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10711 DRM_MODE_FLAG_PHSYNC);
10712 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10713 DRM_MODE_FLAG_NHSYNC);
10714 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10715 DRM_MODE_FLAG_PVSYNC);
10716 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10717 DRM_MODE_FLAG_NVSYNC);
10720 PIPE_CONF_CHECK_I(pipe_src_w);
10721 PIPE_CONF_CHECK_I(pipe_src_h);
10724 * FIXME: BIOS likes to set up a cloned config with lvds+external
10725 * screen. Since we don't yet re-compute the pipe config when moving
10726 * just the lvds port away to another pipe the sw tracking won't match.
10728 * Proper atomic modesets with recomputed global state will fix this.
10729 * Until then just don't check gmch state for inherited modes.
10731 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10732 PIPE_CONF_CHECK_I(gmch_pfit.control);
10733 /* pfit ratios are autocomputed by the hw on gen4+ */
10734 if (INTEL_INFO(dev)->gen < 4)
10735 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10736 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10739 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10740 if (current_config->pch_pfit.enabled) {
10741 PIPE_CONF_CHECK_I(pch_pfit.pos);
10742 PIPE_CONF_CHECK_I(pch_pfit.size);
10745 /* BDW+ don't expose a synchronous way to read the state */
10746 if (IS_HASWELL(dev))
10747 PIPE_CONF_CHECK_I(ips_enabled);
10749 PIPE_CONF_CHECK_I(double_wide);
10751 PIPE_CONF_CHECK_X(ddi_pll_sel);
10753 PIPE_CONF_CHECK_I(shared_dpll);
10754 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10755 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10756 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10757 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10758 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10760 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10761 PIPE_CONF_CHECK_I(pipe_bpp);
10763 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10764 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10766 #undef PIPE_CONF_CHECK_X
10767 #undef PIPE_CONF_CHECK_I
10768 #undef PIPE_CONF_CHECK_I_ALT
10769 #undef PIPE_CONF_CHECK_FLAGS
10770 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10771 #undef PIPE_CONF_QUIRK
10777 check_connector_state(struct drm_device *dev)
10779 struct intel_connector *connector;
10781 list_for_each_entry(connector, &dev->mode_config.connector_list,
10783 /* This also checks the encoder/connector hw state with the
10784 * ->get_hw_state callbacks. */
10785 intel_connector_check_state(connector);
10787 WARN(&connector->new_encoder->base != connector->base.encoder,
10788 "connector's staged encoder doesn't match current encoder\n");
10793 check_encoder_state(struct drm_device *dev)
10795 struct intel_encoder *encoder;
10796 struct intel_connector *connector;
10798 for_each_intel_encoder(dev, encoder) {
10799 bool enabled = false;
10800 bool active = false;
10801 enum pipe pipe, tracked_pipe;
10803 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10804 encoder->base.base.id,
10805 encoder->base.name);
10807 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10808 "encoder's stage crtc doesn't match current crtc\n");
10809 WARN(encoder->connectors_active && !encoder->base.crtc,
10810 "encoder's active_connectors set, but no crtc\n");
10812 list_for_each_entry(connector, &dev->mode_config.connector_list,
10814 if (connector->base.encoder != &encoder->base)
10817 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10821 * for MST connectors if we unplug the connector is gone
10822 * away but the encoder is still connected to a crtc
10823 * until a modeset happens in response to the hotplug.
10825 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10828 WARN(!!encoder->base.crtc != enabled,
10829 "encoder's enabled state mismatch "
10830 "(expected %i, found %i)\n",
10831 !!encoder->base.crtc, enabled);
10832 WARN(active && !encoder->base.crtc,
10833 "active encoder with no crtc\n");
10835 WARN(encoder->connectors_active != active,
10836 "encoder's computed active state doesn't match tracked active state "
10837 "(expected %i, found %i)\n", active, encoder->connectors_active);
10839 active = encoder->get_hw_state(encoder, &pipe);
10840 WARN(active != encoder->connectors_active,
10841 "encoder's hw state doesn't match sw tracking "
10842 "(expected %i, found %i)\n",
10843 encoder->connectors_active, active);
10845 if (!encoder->base.crtc)
10848 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10849 WARN(active && pipe != tracked_pipe,
10850 "active encoder's pipe doesn't match"
10851 "(expected %i, found %i)\n",
10852 tracked_pipe, pipe);
10858 check_crtc_state(struct drm_device *dev)
10860 struct drm_i915_private *dev_priv = dev->dev_private;
10861 struct intel_crtc *crtc;
10862 struct intel_encoder *encoder;
10863 struct intel_crtc_config pipe_config;
10865 for_each_intel_crtc(dev, crtc) {
10866 bool enabled = false;
10867 bool active = false;
10869 memset(&pipe_config, 0, sizeof(pipe_config));
10871 DRM_DEBUG_KMS("[CRTC:%d]\n",
10872 crtc->base.base.id);
10874 WARN(crtc->active && !crtc->base.enabled,
10875 "active crtc, but not enabled in sw tracking\n");
10877 for_each_intel_encoder(dev, encoder) {
10878 if (encoder->base.crtc != &crtc->base)
10881 if (encoder->connectors_active)
10885 WARN(active != crtc->active,
10886 "crtc's computed active state doesn't match tracked active state "
10887 "(expected %i, found %i)\n", active, crtc->active);
10888 WARN(enabled != crtc->base.enabled,
10889 "crtc's computed enabled state doesn't match tracked enabled state "
10890 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10892 active = dev_priv->display.get_pipe_config(crtc,
10895 /* hw state is inconsistent with the pipe quirk */
10896 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10897 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10898 active = crtc->active;
10900 for_each_intel_encoder(dev, encoder) {
10902 if (encoder->base.crtc != &crtc->base)
10904 if (encoder->get_hw_state(encoder, &pipe))
10905 encoder->get_config(encoder, &pipe_config);
10908 WARN(crtc->active != active,
10909 "crtc active state doesn't match with hw state "
10910 "(expected %i, found %i)\n", crtc->active, active);
10913 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10914 WARN(1, "pipe state doesn't match!\n");
10915 intel_dump_pipe_config(crtc, &pipe_config,
10917 intel_dump_pipe_config(crtc, &crtc->config,
10924 check_shared_dpll_state(struct drm_device *dev)
10926 struct drm_i915_private *dev_priv = dev->dev_private;
10927 struct intel_crtc *crtc;
10928 struct intel_dpll_hw_state dpll_hw_state;
10931 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10932 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10933 int enabled_crtcs = 0, active_crtcs = 0;
10936 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10938 DRM_DEBUG_KMS("%s\n", pll->name);
10940 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10942 WARN(pll->active > pll->refcount,
10943 "more active pll users than references: %i vs %i\n",
10944 pll->active, pll->refcount);
10945 WARN(pll->active && !pll->on,
10946 "pll in active use but not on in sw tracking\n");
10947 WARN(pll->on && !pll->active,
10948 "pll in on but not on in use in sw tracking\n");
10949 WARN(pll->on != active,
10950 "pll on state mismatch (expected %i, found %i)\n",
10953 for_each_intel_crtc(dev, crtc) {
10954 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10956 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10959 WARN(pll->active != active_crtcs,
10960 "pll active crtcs mismatch (expected %i, found %i)\n",
10961 pll->active, active_crtcs);
10962 WARN(pll->refcount != enabled_crtcs,
10963 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10964 pll->refcount, enabled_crtcs);
10966 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10967 sizeof(dpll_hw_state)),
10968 "pll hw state mismatch\n");
10973 intel_modeset_check_state(struct drm_device *dev)
10975 check_connector_state(dev);
10976 check_encoder_state(dev);
10977 check_crtc_state(dev);
10978 check_shared_dpll_state(dev);
10981 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10985 * FDI already provided one idea for the dotclock.
10986 * Yell if the encoder disagrees.
10988 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10989 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10990 pipe_config->adjusted_mode.crtc_clock, dotclock);
10993 static void update_scanline_offset(struct intel_crtc *crtc)
10995 struct drm_device *dev = crtc->base.dev;
10998 * The scanline counter increments at the leading edge of hsync.
11000 * On most platforms it starts counting from vtotal-1 on the
11001 * first active line. That means the scanline counter value is
11002 * always one less than what we would expect. Ie. just after
11003 * start of vblank, which also occurs at start of hsync (on the
11004 * last active line), the scanline counter will read vblank_start-1.
11006 * On gen2 the scanline counter starts counting from 1 instead
11007 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11008 * to keep the value positive), instead of adding one.
11010 * On HSW+ the behaviour of the scanline counter depends on the output
11011 * type. For DP ports it behaves like most other platforms, but on HDMI
11012 * there's an extra 1 line difference. So we need to add two instead of
11013 * one to the value.
11015 if (IS_GEN2(dev)) {
11016 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11019 vtotal = mode->crtc_vtotal;
11020 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11023 crtc->scanline_offset = vtotal - 1;
11024 } else if (HAS_DDI(dev) &&
11025 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11026 crtc->scanline_offset = 2;
11028 crtc->scanline_offset = 1;
11031 static int __intel_set_mode(struct drm_crtc *crtc,
11032 struct drm_display_mode *mode,
11033 int x, int y, struct drm_framebuffer *fb)
11035 struct drm_device *dev = crtc->dev;
11036 struct drm_i915_private *dev_priv = dev->dev_private;
11037 struct drm_display_mode *saved_mode;
11038 struct intel_crtc_config *pipe_config = NULL;
11039 struct intel_crtc *intel_crtc;
11040 unsigned disable_pipes, prepare_pipes, modeset_pipes;
11043 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11047 intel_modeset_affected_pipes(crtc, &modeset_pipes,
11048 &prepare_pipes, &disable_pipes);
11050 *saved_mode = crtc->mode;
11052 /* Hack: Because we don't (yet) support global modeset on multiple
11053 * crtcs, we don't keep track of the new mode for more than one crtc.
11054 * Hence simply check whether any bit is set in modeset_pipes in all the
11055 * pieces of code that are not yet converted to deal with mutliple crtcs
11056 * changing their mode at the same time. */
11057 if (modeset_pipes) {
11058 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11059 if (IS_ERR(pipe_config)) {
11060 ret = PTR_ERR(pipe_config);
11061 pipe_config = NULL;
11065 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11067 to_intel_crtc(crtc)->new_config = pipe_config;
11071 * See if the config requires any additional preparation, e.g.
11072 * to adjust global state with pipes off. We need to do this
11073 * here so we can get the modeset_pipe updated config for the new
11074 * mode set on this crtc. For other crtcs we need to use the
11075 * adjusted_mode bits in the crtc directly.
11077 if (IS_VALLEYVIEW(dev)) {
11078 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11080 /* may have added more to prepare_pipes than we should */
11081 prepare_pipes &= ~disable_pipes;
11084 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11085 intel_crtc_disable(&intel_crtc->base);
11087 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11088 if (intel_crtc->base.enabled)
11089 dev_priv->display.crtc_disable(&intel_crtc->base);
11092 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11093 * to set it here already despite that we pass it down the callchain.
11095 if (modeset_pipes) {
11096 crtc->mode = *mode;
11097 /* mode_set/enable/disable functions rely on a correct pipe
11099 to_intel_crtc(crtc)->config = *pipe_config;
11100 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11103 * Calculate and store various constants which
11104 * are later needed by vblank and swap-completion
11105 * timestamping. They are derived from true hwmode.
11107 drm_calc_timestamping_constants(crtc,
11108 &pipe_config->adjusted_mode);
11111 /* Only after disabling all output pipelines that will be changed can we
11112 * update the the output configuration. */
11113 intel_modeset_update_state(dev, prepare_pipes);
11115 if (dev_priv->display.modeset_global_resources)
11116 dev_priv->display.modeset_global_resources(dev);
11118 /* Set up the DPLL and any encoders state that needs to adjust or depend
11121 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11122 struct drm_framebuffer *old_fb = crtc->primary->fb;
11123 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11124 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11126 mutex_lock(&dev->struct_mutex);
11127 ret = intel_pin_and_fence_fb_obj(dev,
11131 DRM_ERROR("pin & fence failed\n");
11132 mutex_unlock(&dev->struct_mutex);
11136 intel_unpin_fb_obj(old_obj);
11137 i915_gem_track_fb(old_obj, obj,
11138 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11139 mutex_unlock(&dev->struct_mutex);
11141 crtc->primary->fb = fb;
11145 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11151 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11152 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11153 update_scanline_offset(intel_crtc);
11155 dev_priv->display.crtc_enable(&intel_crtc->base);
11158 /* FIXME: add subpixel order */
11160 if (ret && crtc->enabled)
11161 crtc->mode = *saved_mode;
11164 kfree(pipe_config);
11169 static int intel_set_mode(struct drm_crtc *crtc,
11170 struct drm_display_mode *mode,
11171 int x, int y, struct drm_framebuffer *fb)
11175 ret = __intel_set_mode(crtc, mode, x, y, fb);
11178 intel_modeset_check_state(crtc->dev);
11183 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11185 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11188 #undef for_each_intel_crtc_masked
11190 static void intel_set_config_free(struct intel_set_config *config)
11195 kfree(config->save_connector_encoders);
11196 kfree(config->save_encoder_crtcs);
11197 kfree(config->save_crtc_enabled);
11201 static int intel_set_config_save_state(struct drm_device *dev,
11202 struct intel_set_config *config)
11204 struct drm_crtc *crtc;
11205 struct drm_encoder *encoder;
11206 struct drm_connector *connector;
11209 config->save_crtc_enabled =
11210 kcalloc(dev->mode_config.num_crtc,
11211 sizeof(bool), GFP_KERNEL);
11212 if (!config->save_crtc_enabled)
11215 config->save_encoder_crtcs =
11216 kcalloc(dev->mode_config.num_encoder,
11217 sizeof(struct drm_crtc *), GFP_KERNEL);
11218 if (!config->save_encoder_crtcs)
11221 config->save_connector_encoders =
11222 kcalloc(dev->mode_config.num_connector,
11223 sizeof(struct drm_encoder *), GFP_KERNEL);
11224 if (!config->save_connector_encoders)
11227 /* Copy data. Note that driver private data is not affected.
11228 * Should anything bad happen only the expected state is
11229 * restored, not the drivers personal bookkeeping.
11232 for_each_crtc(dev, crtc) {
11233 config->save_crtc_enabled[count++] = crtc->enabled;
11237 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11238 config->save_encoder_crtcs[count++] = encoder->crtc;
11242 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11243 config->save_connector_encoders[count++] = connector->encoder;
11249 static void intel_set_config_restore_state(struct drm_device *dev,
11250 struct intel_set_config *config)
11252 struct intel_crtc *crtc;
11253 struct intel_encoder *encoder;
11254 struct intel_connector *connector;
11258 for_each_intel_crtc(dev, crtc) {
11259 crtc->new_enabled = config->save_crtc_enabled[count++];
11261 if (crtc->new_enabled)
11262 crtc->new_config = &crtc->config;
11264 crtc->new_config = NULL;
11268 for_each_intel_encoder(dev, encoder) {
11269 encoder->new_crtc =
11270 to_intel_crtc(config->save_encoder_crtcs[count++]);
11274 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11275 connector->new_encoder =
11276 to_intel_encoder(config->save_connector_encoders[count++]);
11281 is_crtc_connector_off(struct drm_mode_set *set)
11285 if (set->num_connectors == 0)
11288 if (WARN_ON(set->connectors == NULL))
11291 for (i = 0; i < set->num_connectors; i++)
11292 if (set->connectors[i]->encoder &&
11293 set->connectors[i]->encoder->crtc == set->crtc &&
11294 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11301 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11302 struct intel_set_config *config)
11305 /* We should be able to check here if the fb has the same properties
11306 * and then just flip_or_move it */
11307 if (is_crtc_connector_off(set)) {
11308 config->mode_changed = true;
11309 } else if (set->crtc->primary->fb != set->fb) {
11311 * If we have no fb, we can only flip as long as the crtc is
11312 * active, otherwise we need a full mode set. The crtc may
11313 * be active if we've only disabled the primary plane, or
11314 * in fastboot situations.
11316 if (set->crtc->primary->fb == NULL) {
11317 struct intel_crtc *intel_crtc =
11318 to_intel_crtc(set->crtc);
11320 if (intel_crtc->active) {
11321 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11322 config->fb_changed = true;
11324 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11325 config->mode_changed = true;
11327 } else if (set->fb == NULL) {
11328 config->mode_changed = true;
11329 } else if (set->fb->pixel_format !=
11330 set->crtc->primary->fb->pixel_format) {
11331 config->mode_changed = true;
11333 config->fb_changed = true;
11337 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11338 config->fb_changed = true;
11340 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11341 DRM_DEBUG_KMS("modes are different, full mode set\n");
11342 drm_mode_debug_printmodeline(&set->crtc->mode);
11343 drm_mode_debug_printmodeline(set->mode);
11344 config->mode_changed = true;
11347 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11348 set->crtc->base.id, config->mode_changed, config->fb_changed);
11352 intel_modeset_stage_output_state(struct drm_device *dev,
11353 struct drm_mode_set *set,
11354 struct intel_set_config *config)
11356 struct intel_connector *connector;
11357 struct intel_encoder *encoder;
11358 struct intel_crtc *crtc;
11361 /* The upper layers ensure that we either disable a crtc or have a list
11362 * of connectors. For paranoia, double-check this. */
11363 WARN_ON(!set->fb && (set->num_connectors != 0));
11364 WARN_ON(set->fb && (set->num_connectors == 0));
11366 list_for_each_entry(connector, &dev->mode_config.connector_list,
11368 /* Otherwise traverse passed in connector list and get encoders
11370 for (ro = 0; ro < set->num_connectors; ro++) {
11371 if (set->connectors[ro] == &connector->base) {
11372 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11377 /* If we disable the crtc, disable all its connectors. Also, if
11378 * the connector is on the changing crtc but not on the new
11379 * connector list, disable it. */
11380 if ((!set->fb || ro == set->num_connectors) &&
11381 connector->base.encoder &&
11382 connector->base.encoder->crtc == set->crtc) {
11383 connector->new_encoder = NULL;
11385 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11386 connector->base.base.id,
11387 connector->base.name);
11391 if (&connector->new_encoder->base != connector->base.encoder) {
11392 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11393 config->mode_changed = true;
11396 /* connector->new_encoder is now updated for all connectors. */
11398 /* Update crtc of enabled connectors. */
11399 list_for_each_entry(connector, &dev->mode_config.connector_list,
11401 struct drm_crtc *new_crtc;
11403 if (!connector->new_encoder)
11406 new_crtc = connector->new_encoder->base.crtc;
11408 for (ro = 0; ro < set->num_connectors; ro++) {
11409 if (set->connectors[ro] == &connector->base)
11410 new_crtc = set->crtc;
11413 /* Make sure the new CRTC will work with the encoder */
11414 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11418 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11420 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11421 connector->base.base.id,
11422 connector->base.name,
11423 new_crtc->base.id);
11426 /* Check for any encoders that needs to be disabled. */
11427 for_each_intel_encoder(dev, encoder) {
11428 int num_connectors = 0;
11429 list_for_each_entry(connector,
11430 &dev->mode_config.connector_list,
11432 if (connector->new_encoder == encoder) {
11433 WARN_ON(!connector->new_encoder->new_crtc);
11438 if (num_connectors == 0)
11439 encoder->new_crtc = NULL;
11440 else if (num_connectors > 1)
11443 /* Only now check for crtc changes so we don't miss encoders
11444 * that will be disabled. */
11445 if (&encoder->new_crtc->base != encoder->base.crtc) {
11446 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11447 config->mode_changed = true;
11450 /* Now we've also updated encoder->new_crtc for all encoders. */
11451 list_for_each_entry(connector, &dev->mode_config.connector_list,
11453 if (connector->new_encoder)
11454 if (connector->new_encoder != connector->encoder)
11455 connector->encoder = connector->new_encoder;
11457 for_each_intel_crtc(dev, crtc) {
11458 crtc->new_enabled = false;
11460 for_each_intel_encoder(dev, encoder) {
11461 if (encoder->new_crtc == crtc) {
11462 crtc->new_enabled = true;
11467 if (crtc->new_enabled != crtc->base.enabled) {
11468 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11469 crtc->new_enabled ? "en" : "dis");
11470 config->mode_changed = true;
11473 if (crtc->new_enabled)
11474 crtc->new_config = &crtc->config;
11476 crtc->new_config = NULL;
11482 static void disable_crtc_nofb(struct intel_crtc *crtc)
11484 struct drm_device *dev = crtc->base.dev;
11485 struct intel_encoder *encoder;
11486 struct intel_connector *connector;
11488 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11489 pipe_name(crtc->pipe));
11491 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11492 if (connector->new_encoder &&
11493 connector->new_encoder->new_crtc == crtc)
11494 connector->new_encoder = NULL;
11497 for_each_intel_encoder(dev, encoder) {
11498 if (encoder->new_crtc == crtc)
11499 encoder->new_crtc = NULL;
11502 crtc->new_enabled = false;
11503 crtc->new_config = NULL;
11506 static int intel_crtc_set_config(struct drm_mode_set *set)
11508 struct drm_device *dev;
11509 struct drm_mode_set save_set;
11510 struct intel_set_config *config;
11514 BUG_ON(!set->crtc);
11515 BUG_ON(!set->crtc->helper_private);
11517 /* Enforce sane interface api - has been abused by the fb helper. */
11518 BUG_ON(!set->mode && set->fb);
11519 BUG_ON(set->fb && set->num_connectors == 0);
11522 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11523 set->crtc->base.id, set->fb->base.id,
11524 (int)set->num_connectors, set->x, set->y);
11526 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11529 dev = set->crtc->dev;
11532 config = kzalloc(sizeof(*config), GFP_KERNEL);
11536 ret = intel_set_config_save_state(dev, config);
11540 save_set.crtc = set->crtc;
11541 save_set.mode = &set->crtc->mode;
11542 save_set.x = set->crtc->x;
11543 save_set.y = set->crtc->y;
11544 save_set.fb = set->crtc->primary->fb;
11546 /* Compute whether we need a full modeset, only an fb base update or no
11547 * change at all. In the future we might also check whether only the
11548 * mode changed, e.g. for LVDS where we only change the panel fitter in
11550 intel_set_config_compute_mode_changes(set, config);
11552 ret = intel_modeset_stage_output_state(dev, set, config);
11556 if (config->mode_changed) {
11557 ret = intel_set_mode(set->crtc, set->mode,
11558 set->x, set->y, set->fb);
11559 } else if (config->fb_changed) {
11560 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11562 intel_crtc_wait_for_pending_flips(set->crtc);
11564 ret = intel_pipe_set_base(set->crtc,
11565 set->x, set->y, set->fb);
11568 * We need to make sure the primary plane is re-enabled if it
11569 * has previously been turned off.
11571 if (!intel_crtc->primary_enabled && ret == 0) {
11572 WARN_ON(!intel_crtc->active);
11573 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11577 * In the fastboot case this may be our only check of the
11578 * state after boot. It would be better to only do it on
11579 * the first update, but we don't have a nice way of doing that
11580 * (and really, set_config isn't used much for high freq page
11581 * flipping, so increasing its cost here shouldn't be a big
11584 if (i915.fastboot && ret == 0)
11585 intel_modeset_check_state(set->crtc->dev);
11589 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11590 set->crtc->base.id, ret);
11592 intel_set_config_restore_state(dev, config);
11595 * HACK: if the pipe was on, but we didn't have a framebuffer,
11596 * force the pipe off to avoid oopsing in the modeset code
11597 * due to fb==NULL. This should only happen during boot since
11598 * we don't yet reconstruct the FB from the hardware state.
11600 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11601 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11603 /* Try to restore the config */
11604 if (config->mode_changed &&
11605 intel_set_mode(save_set.crtc, save_set.mode,
11606 save_set.x, save_set.y, save_set.fb))
11607 DRM_ERROR("failed to restore config after modeset failure\n");
11611 intel_set_config_free(config);
11615 static const struct drm_crtc_funcs intel_crtc_funcs = {
11616 .gamma_set = intel_crtc_gamma_set,
11617 .set_config = intel_crtc_set_config,
11618 .destroy = intel_crtc_destroy,
11619 .page_flip = intel_crtc_page_flip,
11622 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11623 struct intel_shared_dpll *pll,
11624 struct intel_dpll_hw_state *hw_state)
11628 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11631 val = I915_READ(PCH_DPLL(pll->id));
11632 hw_state->dpll = val;
11633 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11634 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11636 return val & DPLL_VCO_ENABLE;
11639 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11640 struct intel_shared_dpll *pll)
11642 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11643 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11646 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11647 struct intel_shared_dpll *pll)
11649 /* PCH refclock must be enabled first */
11650 ibx_assert_pch_refclk_enabled(dev_priv);
11652 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11654 /* Wait for the clocks to stabilize. */
11655 POSTING_READ(PCH_DPLL(pll->id));
11658 /* The pixel multiplier can only be updated once the
11659 * DPLL is enabled and the clocks are stable.
11661 * So write it again.
11663 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11664 POSTING_READ(PCH_DPLL(pll->id));
11668 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11669 struct intel_shared_dpll *pll)
11671 struct drm_device *dev = dev_priv->dev;
11672 struct intel_crtc *crtc;
11674 /* Make sure no transcoder isn't still depending on us. */
11675 for_each_intel_crtc(dev, crtc) {
11676 if (intel_crtc_to_shared_dpll(crtc) == pll)
11677 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11680 I915_WRITE(PCH_DPLL(pll->id), 0);
11681 POSTING_READ(PCH_DPLL(pll->id));
11685 static char *ibx_pch_dpll_names[] = {
11690 static void ibx_pch_dpll_init(struct drm_device *dev)
11692 struct drm_i915_private *dev_priv = dev->dev_private;
11695 dev_priv->num_shared_dpll = 2;
11697 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11698 dev_priv->shared_dplls[i].id = i;
11699 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11700 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11701 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11702 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11703 dev_priv->shared_dplls[i].get_hw_state =
11704 ibx_pch_dpll_get_hw_state;
11708 static void intel_shared_dpll_init(struct drm_device *dev)
11710 struct drm_i915_private *dev_priv = dev->dev_private;
11713 intel_ddi_pll_init(dev);
11714 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11715 ibx_pch_dpll_init(dev);
11717 dev_priv->num_shared_dpll = 0;
11719 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11723 intel_primary_plane_disable(struct drm_plane *plane)
11725 struct drm_device *dev = plane->dev;
11726 struct intel_crtc *intel_crtc;
11731 BUG_ON(!plane->crtc);
11733 intel_crtc = to_intel_crtc(plane->crtc);
11736 * Even though we checked plane->fb above, it's still possible that
11737 * the primary plane has been implicitly disabled because the crtc
11738 * coordinates given weren't visible, or because we detected
11739 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11740 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11741 * In either case, we need to unpin the FB and let the fb pointer get
11742 * updated, but otherwise we don't need to touch the hardware.
11744 if (!intel_crtc->primary_enabled)
11745 goto disable_unpin;
11747 intel_crtc_wait_for_pending_flips(plane->crtc);
11748 intel_disable_primary_hw_plane(plane, plane->crtc);
11751 mutex_lock(&dev->struct_mutex);
11752 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11753 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11754 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11755 mutex_unlock(&dev->struct_mutex);
11762 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11763 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11764 unsigned int crtc_w, unsigned int crtc_h,
11765 uint32_t src_x, uint32_t src_y,
11766 uint32_t src_w, uint32_t src_h)
11768 struct drm_device *dev = crtc->dev;
11769 struct drm_i915_private *dev_priv = dev->dev_private;
11770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11771 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11772 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11773 struct drm_rect dest = {
11774 /* integer pixels */
11777 .x2 = crtc_x + crtc_w,
11778 .y2 = crtc_y + crtc_h,
11780 struct drm_rect src = {
11781 /* 16.16 fixed point */
11784 .x2 = src_x + src_w,
11785 .y2 = src_y + src_h,
11787 const struct drm_rect clip = {
11788 /* integer pixels */
11789 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11790 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11793 int crtc_x, crtc_y;
11794 unsigned int crtc_w, crtc_h;
11795 uint32_t src_x, src_y, src_w, src_h;
11806 struct intel_plane *intel_plane = to_intel_plane(plane);
11810 ret = drm_plane_helper_check_update(plane, crtc, fb,
11811 &src, &dest, &clip,
11812 DRM_PLANE_HELPER_NO_SCALING,
11813 DRM_PLANE_HELPER_NO_SCALING,
11814 false, true, &visible);
11820 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11821 * updating the fb pointer, and returning without touching the
11822 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11823 * turn on the display with all planes setup as desired.
11825 if (!crtc->enabled) {
11826 mutex_lock(&dev->struct_mutex);
11829 * If we already called setplane while the crtc was disabled,
11830 * we may have an fb pinned; unpin it.
11833 intel_unpin_fb_obj(old_obj);
11835 i915_gem_track_fb(old_obj, obj,
11836 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11838 /* Pin and return without programming hardware */
11839 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11840 mutex_unlock(&dev->struct_mutex);
11845 intel_crtc_wait_for_pending_flips(crtc);
11848 * If clipping results in a non-visible primary plane, we'll disable
11849 * the primary plane. Note that this is a bit different than what
11850 * happens if userspace explicitly disables the plane by passing fb=0
11851 * because plane->fb still gets set and pinned.
11854 mutex_lock(&dev->struct_mutex);
11857 * Try to pin the new fb first so that we can bail out if we
11860 if (plane->fb != fb) {
11861 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11863 mutex_unlock(&dev->struct_mutex);
11868 i915_gem_track_fb(old_obj, obj,
11869 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11871 if (intel_crtc->primary_enabled)
11872 intel_disable_primary_hw_plane(plane, crtc);
11875 if (plane->fb != fb)
11877 intel_unpin_fb_obj(old_obj);
11879 mutex_unlock(&dev->struct_mutex);
11882 if (intel_crtc && intel_crtc->active &&
11883 intel_crtc->primary_enabled) {
11885 * FBC does not work on some platforms for rotated
11886 * planes, so disable it when rotation is not 0 and
11887 * update it when rotation is set back to 0.
11889 * FIXME: This is redundant with the fbc update done in
11890 * the primary plane enable function except that that
11891 * one is done too late. We eventually need to unify
11894 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11895 dev_priv->fbc.plane == intel_crtc->plane &&
11896 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11897 intel_disable_fbc(dev);
11900 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11904 if (!intel_crtc->primary_enabled)
11905 intel_enable_primary_hw_plane(plane, crtc);
11908 intel_plane->crtc_x = orig.crtc_x;
11909 intel_plane->crtc_y = orig.crtc_y;
11910 intel_plane->crtc_w = orig.crtc_w;
11911 intel_plane->crtc_h = orig.crtc_h;
11912 intel_plane->src_x = orig.src_x;
11913 intel_plane->src_y = orig.src_y;
11914 intel_plane->src_w = orig.src_w;
11915 intel_plane->src_h = orig.src_h;
11916 intel_plane->obj = obj;
11921 /* Common destruction function for both primary and cursor planes */
11922 static void intel_plane_destroy(struct drm_plane *plane)
11924 struct intel_plane *intel_plane = to_intel_plane(plane);
11925 drm_plane_cleanup(plane);
11926 kfree(intel_plane);
11929 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11930 .update_plane = intel_primary_plane_setplane,
11931 .disable_plane = intel_primary_plane_disable,
11932 .destroy = intel_plane_destroy,
11933 .set_property = intel_plane_set_property
11936 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11939 struct intel_plane *primary;
11940 const uint32_t *intel_primary_formats;
11943 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11944 if (primary == NULL)
11947 primary->can_scale = false;
11948 primary->max_downscale = 1;
11949 primary->pipe = pipe;
11950 primary->plane = pipe;
11951 primary->rotation = BIT(DRM_ROTATE_0);
11952 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11953 primary->plane = !pipe;
11955 if (INTEL_INFO(dev)->gen <= 3) {
11956 intel_primary_formats = intel_primary_formats_gen2;
11957 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11959 intel_primary_formats = intel_primary_formats_gen4;
11960 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11963 drm_universal_plane_init(dev, &primary->base, 0,
11964 &intel_primary_plane_funcs,
11965 intel_primary_formats, num_formats,
11966 DRM_PLANE_TYPE_PRIMARY);
11968 if (INTEL_INFO(dev)->gen >= 4) {
11969 if (!dev->mode_config.rotation_property)
11970 dev->mode_config.rotation_property =
11971 drm_mode_create_rotation_property(dev,
11972 BIT(DRM_ROTATE_0) |
11973 BIT(DRM_ROTATE_180));
11974 if (dev->mode_config.rotation_property)
11975 drm_object_attach_property(&primary->base.base,
11976 dev->mode_config.rotation_property,
11977 primary->rotation);
11980 return &primary->base;
11984 intel_cursor_plane_disable(struct drm_plane *plane)
11989 BUG_ON(!plane->crtc);
11991 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11995 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11996 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11997 unsigned int crtc_w, unsigned int crtc_h,
11998 uint32_t src_x, uint32_t src_y,
11999 uint32_t src_w, uint32_t src_h)
12001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12002 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12003 struct drm_i915_gem_object *obj = intel_fb->obj;
12004 struct drm_rect dest = {
12005 /* integer pixels */
12008 .x2 = crtc_x + crtc_w,
12009 .y2 = crtc_y + crtc_h,
12011 struct drm_rect src = {
12012 /* 16.16 fixed point */
12015 .x2 = src_x + src_w,
12016 .y2 = src_y + src_h,
12018 const struct drm_rect clip = {
12019 /* integer pixels */
12020 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12021 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
12026 ret = drm_plane_helper_check_update(plane, crtc, fb,
12027 &src, &dest, &clip,
12028 DRM_PLANE_HELPER_NO_SCALING,
12029 DRM_PLANE_HELPER_NO_SCALING,
12030 true, true, &visible);
12034 crtc->cursor_x = crtc_x;
12035 crtc->cursor_y = crtc_y;
12036 if (fb != crtc->cursor->fb) {
12037 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12039 intel_crtc_update_cursor(crtc, visible);
12041 intel_frontbuffer_flip(crtc->dev,
12042 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12047 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12048 .update_plane = intel_cursor_plane_update,
12049 .disable_plane = intel_cursor_plane_disable,
12050 .destroy = intel_plane_destroy,
12053 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12056 struct intel_plane *cursor;
12058 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12059 if (cursor == NULL)
12062 cursor->can_scale = false;
12063 cursor->max_downscale = 1;
12064 cursor->pipe = pipe;
12065 cursor->plane = pipe;
12067 drm_universal_plane_init(dev, &cursor->base, 0,
12068 &intel_cursor_plane_funcs,
12069 intel_cursor_formats,
12070 ARRAY_SIZE(intel_cursor_formats),
12071 DRM_PLANE_TYPE_CURSOR);
12072 return &cursor->base;
12075 static void intel_crtc_init(struct drm_device *dev, int pipe)
12077 struct drm_i915_private *dev_priv = dev->dev_private;
12078 struct intel_crtc *intel_crtc;
12079 struct drm_plane *primary = NULL;
12080 struct drm_plane *cursor = NULL;
12083 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12084 if (intel_crtc == NULL)
12087 primary = intel_primary_plane_create(dev, pipe);
12091 cursor = intel_cursor_plane_create(dev, pipe);
12095 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12096 cursor, &intel_crtc_funcs);
12100 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12101 for (i = 0; i < 256; i++) {
12102 intel_crtc->lut_r[i] = i;
12103 intel_crtc->lut_g[i] = i;
12104 intel_crtc->lut_b[i] = i;
12108 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12109 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12111 intel_crtc->pipe = pipe;
12112 intel_crtc->plane = pipe;
12113 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12114 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12115 intel_crtc->plane = !pipe;
12118 intel_crtc->cursor_base = ~0;
12119 intel_crtc->cursor_cntl = ~0;
12120 intel_crtc->cursor_size = ~0;
12122 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12123 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12124 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12125 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12127 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12129 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12134 drm_plane_cleanup(primary);
12136 drm_plane_cleanup(cursor);
12140 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12142 struct drm_encoder *encoder = connector->base.encoder;
12143 struct drm_device *dev = connector->base.dev;
12145 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12148 return INVALID_PIPE;
12150 return to_intel_crtc(encoder->crtc)->pipe;
12153 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12154 struct drm_file *file)
12156 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12157 struct drm_crtc *drmmode_crtc;
12158 struct intel_crtc *crtc;
12160 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12163 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12165 if (!drmmode_crtc) {
12166 DRM_ERROR("no such CRTC id\n");
12170 crtc = to_intel_crtc(drmmode_crtc);
12171 pipe_from_crtc_id->pipe = crtc->pipe;
12176 static int intel_encoder_clones(struct intel_encoder *encoder)
12178 struct drm_device *dev = encoder->base.dev;
12179 struct intel_encoder *source_encoder;
12180 int index_mask = 0;
12183 for_each_intel_encoder(dev, source_encoder) {
12184 if (encoders_cloneable(encoder, source_encoder))
12185 index_mask |= (1 << entry);
12193 static bool has_edp_a(struct drm_device *dev)
12195 struct drm_i915_private *dev_priv = dev->dev_private;
12197 if (!IS_MOBILE(dev))
12200 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12203 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12209 const char *intel_output_name(int output)
12211 static const char *names[] = {
12212 [INTEL_OUTPUT_UNUSED] = "Unused",
12213 [INTEL_OUTPUT_ANALOG] = "Analog",
12214 [INTEL_OUTPUT_DVO] = "DVO",
12215 [INTEL_OUTPUT_SDVO] = "SDVO",
12216 [INTEL_OUTPUT_LVDS] = "LVDS",
12217 [INTEL_OUTPUT_TVOUT] = "TV",
12218 [INTEL_OUTPUT_HDMI] = "HDMI",
12219 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12220 [INTEL_OUTPUT_EDP] = "eDP",
12221 [INTEL_OUTPUT_DSI] = "DSI",
12222 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12225 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12228 return names[output];
12231 static bool intel_crt_present(struct drm_device *dev)
12233 struct drm_i915_private *dev_priv = dev->dev_private;
12238 if (IS_CHERRYVIEW(dev))
12241 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12247 static void intel_setup_outputs(struct drm_device *dev)
12249 struct drm_i915_private *dev_priv = dev->dev_private;
12250 struct intel_encoder *encoder;
12251 bool dpd_is_edp = false;
12253 intel_lvds_init(dev);
12255 if (intel_crt_present(dev))
12256 intel_crt_init(dev);
12258 if (HAS_DDI(dev)) {
12261 /* Haswell uses DDI functions to detect digital outputs */
12262 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12263 /* DDI A only supports eDP */
12265 intel_ddi_init(dev, PORT_A);
12267 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12269 found = I915_READ(SFUSE_STRAP);
12271 if (found & SFUSE_STRAP_DDIB_DETECTED)
12272 intel_ddi_init(dev, PORT_B);
12273 if (found & SFUSE_STRAP_DDIC_DETECTED)
12274 intel_ddi_init(dev, PORT_C);
12275 if (found & SFUSE_STRAP_DDID_DETECTED)
12276 intel_ddi_init(dev, PORT_D);
12277 } else if (HAS_PCH_SPLIT(dev)) {
12279 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12281 if (has_edp_a(dev))
12282 intel_dp_init(dev, DP_A, PORT_A);
12284 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12285 /* PCH SDVOB multiplex with HDMIB */
12286 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12288 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12289 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12290 intel_dp_init(dev, PCH_DP_B, PORT_B);
12293 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12294 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12296 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12297 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12299 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12300 intel_dp_init(dev, PCH_DP_C, PORT_C);
12302 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12303 intel_dp_init(dev, PCH_DP_D, PORT_D);
12304 } else if (IS_VALLEYVIEW(dev)) {
12305 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12306 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12308 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12309 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12312 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12313 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12315 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12316 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12319 if (IS_CHERRYVIEW(dev)) {
12320 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12321 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12323 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12324 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12328 intel_dsi_init(dev);
12329 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12330 bool found = false;
12332 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12333 DRM_DEBUG_KMS("probing SDVOB\n");
12334 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12335 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12336 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12337 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12340 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12341 intel_dp_init(dev, DP_B, PORT_B);
12344 /* Before G4X SDVOC doesn't have its own detect register */
12346 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12347 DRM_DEBUG_KMS("probing SDVOC\n");
12348 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12351 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12353 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12354 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12355 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12357 if (SUPPORTS_INTEGRATED_DP(dev))
12358 intel_dp_init(dev, DP_C, PORT_C);
12361 if (SUPPORTS_INTEGRATED_DP(dev) &&
12362 (I915_READ(DP_D) & DP_DETECTED))
12363 intel_dp_init(dev, DP_D, PORT_D);
12364 } else if (IS_GEN2(dev))
12365 intel_dvo_init(dev);
12367 if (SUPPORTS_TV(dev))
12368 intel_tv_init(dev);
12370 intel_edp_psr_init(dev);
12372 for_each_intel_encoder(dev, encoder) {
12373 encoder->base.possible_crtcs = encoder->crtc_mask;
12374 encoder->base.possible_clones =
12375 intel_encoder_clones(encoder);
12378 intel_init_pch_refclk(dev);
12380 drm_helper_move_panel_connectors_to_head(dev);
12383 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12385 struct drm_device *dev = fb->dev;
12386 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12388 drm_framebuffer_cleanup(fb);
12389 mutex_lock(&dev->struct_mutex);
12390 WARN_ON(!intel_fb->obj->framebuffer_references--);
12391 drm_gem_object_unreference(&intel_fb->obj->base);
12392 mutex_unlock(&dev->struct_mutex);
12396 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12397 struct drm_file *file,
12398 unsigned int *handle)
12400 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12401 struct drm_i915_gem_object *obj = intel_fb->obj;
12403 return drm_gem_handle_create(file, &obj->base, handle);
12406 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12407 .destroy = intel_user_framebuffer_destroy,
12408 .create_handle = intel_user_framebuffer_create_handle,
12411 static int intel_framebuffer_init(struct drm_device *dev,
12412 struct intel_framebuffer *intel_fb,
12413 struct drm_mode_fb_cmd2 *mode_cmd,
12414 struct drm_i915_gem_object *obj)
12416 int aligned_height;
12420 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12422 if (obj->tiling_mode == I915_TILING_Y) {
12423 DRM_DEBUG("hardware does not support tiling Y\n");
12427 if (mode_cmd->pitches[0] & 63) {
12428 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12429 mode_cmd->pitches[0]);
12433 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12434 pitch_limit = 32*1024;
12435 } else if (INTEL_INFO(dev)->gen >= 4) {
12436 if (obj->tiling_mode)
12437 pitch_limit = 16*1024;
12439 pitch_limit = 32*1024;
12440 } else if (INTEL_INFO(dev)->gen >= 3) {
12441 if (obj->tiling_mode)
12442 pitch_limit = 8*1024;
12444 pitch_limit = 16*1024;
12446 /* XXX DSPC is limited to 4k tiled */
12447 pitch_limit = 8*1024;
12449 if (mode_cmd->pitches[0] > pitch_limit) {
12450 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12451 obj->tiling_mode ? "tiled" : "linear",
12452 mode_cmd->pitches[0], pitch_limit);
12456 if (obj->tiling_mode != I915_TILING_NONE &&
12457 mode_cmd->pitches[0] != obj->stride) {
12458 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12459 mode_cmd->pitches[0], obj->stride);
12463 /* Reject formats not supported by any plane early. */
12464 switch (mode_cmd->pixel_format) {
12465 case DRM_FORMAT_C8:
12466 case DRM_FORMAT_RGB565:
12467 case DRM_FORMAT_XRGB8888:
12468 case DRM_FORMAT_ARGB8888:
12470 case DRM_FORMAT_XRGB1555:
12471 case DRM_FORMAT_ARGB1555:
12472 if (INTEL_INFO(dev)->gen > 3) {
12473 DRM_DEBUG("unsupported pixel format: %s\n",
12474 drm_get_format_name(mode_cmd->pixel_format));
12478 case DRM_FORMAT_XBGR8888:
12479 case DRM_FORMAT_ABGR8888:
12480 case DRM_FORMAT_XRGB2101010:
12481 case DRM_FORMAT_ARGB2101010:
12482 case DRM_FORMAT_XBGR2101010:
12483 case DRM_FORMAT_ABGR2101010:
12484 if (INTEL_INFO(dev)->gen < 4) {
12485 DRM_DEBUG("unsupported pixel format: %s\n",
12486 drm_get_format_name(mode_cmd->pixel_format));
12490 case DRM_FORMAT_YUYV:
12491 case DRM_FORMAT_UYVY:
12492 case DRM_FORMAT_YVYU:
12493 case DRM_FORMAT_VYUY:
12494 if (INTEL_INFO(dev)->gen < 5) {
12495 DRM_DEBUG("unsupported pixel format: %s\n",
12496 drm_get_format_name(mode_cmd->pixel_format));
12501 DRM_DEBUG("unsupported pixel format: %s\n",
12502 drm_get_format_name(mode_cmd->pixel_format));
12506 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12507 if (mode_cmd->offsets[0] != 0)
12510 aligned_height = intel_align_height(dev, mode_cmd->height,
12512 /* FIXME drm helper for size checks (especially planar formats)? */
12513 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12516 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12517 intel_fb->obj = obj;
12518 intel_fb->obj->framebuffer_references++;
12520 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12522 DRM_ERROR("framebuffer init failed %d\n", ret);
12529 static struct drm_framebuffer *
12530 intel_user_framebuffer_create(struct drm_device *dev,
12531 struct drm_file *filp,
12532 struct drm_mode_fb_cmd2 *mode_cmd)
12534 struct drm_i915_gem_object *obj;
12536 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12537 mode_cmd->handles[0]));
12538 if (&obj->base == NULL)
12539 return ERR_PTR(-ENOENT);
12541 return intel_framebuffer_create(dev, mode_cmd, obj);
12544 #ifndef CONFIG_DRM_I915_FBDEV
12545 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12550 static const struct drm_mode_config_funcs intel_mode_funcs = {
12551 .fb_create = intel_user_framebuffer_create,
12552 .output_poll_changed = intel_fbdev_output_poll_changed,
12555 /* Set up chip specific display functions */
12556 static void intel_init_display(struct drm_device *dev)
12558 struct drm_i915_private *dev_priv = dev->dev_private;
12560 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12561 dev_priv->display.find_dpll = g4x_find_best_dpll;
12562 else if (IS_CHERRYVIEW(dev))
12563 dev_priv->display.find_dpll = chv_find_best_dpll;
12564 else if (IS_VALLEYVIEW(dev))
12565 dev_priv->display.find_dpll = vlv_find_best_dpll;
12566 else if (IS_PINEVIEW(dev))
12567 dev_priv->display.find_dpll = pnv_find_best_dpll;
12569 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12571 if (HAS_DDI(dev)) {
12572 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12573 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12574 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12575 dev_priv->display.crtc_enable = haswell_crtc_enable;
12576 dev_priv->display.crtc_disable = haswell_crtc_disable;
12577 dev_priv->display.off = ironlake_crtc_off;
12578 dev_priv->display.update_primary_plane =
12579 ironlake_update_primary_plane;
12580 } else if (HAS_PCH_SPLIT(dev)) {
12581 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12582 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12583 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12584 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12585 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12586 dev_priv->display.off = ironlake_crtc_off;
12587 dev_priv->display.update_primary_plane =
12588 ironlake_update_primary_plane;
12589 } else if (IS_VALLEYVIEW(dev)) {
12590 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12591 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12592 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12593 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12594 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12595 dev_priv->display.off = i9xx_crtc_off;
12596 dev_priv->display.update_primary_plane =
12597 i9xx_update_primary_plane;
12599 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12600 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12601 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12602 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12603 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12604 dev_priv->display.off = i9xx_crtc_off;
12605 dev_priv->display.update_primary_plane =
12606 i9xx_update_primary_plane;
12609 /* Returns the core display clock speed */
12610 if (IS_VALLEYVIEW(dev))
12611 dev_priv->display.get_display_clock_speed =
12612 valleyview_get_display_clock_speed;
12613 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12614 dev_priv->display.get_display_clock_speed =
12615 i945_get_display_clock_speed;
12616 else if (IS_I915G(dev))
12617 dev_priv->display.get_display_clock_speed =
12618 i915_get_display_clock_speed;
12619 else if (IS_I945GM(dev) || IS_845G(dev))
12620 dev_priv->display.get_display_clock_speed =
12621 i9xx_misc_get_display_clock_speed;
12622 else if (IS_PINEVIEW(dev))
12623 dev_priv->display.get_display_clock_speed =
12624 pnv_get_display_clock_speed;
12625 else if (IS_I915GM(dev))
12626 dev_priv->display.get_display_clock_speed =
12627 i915gm_get_display_clock_speed;
12628 else if (IS_I865G(dev))
12629 dev_priv->display.get_display_clock_speed =
12630 i865_get_display_clock_speed;
12631 else if (IS_I85X(dev))
12632 dev_priv->display.get_display_clock_speed =
12633 i855_get_display_clock_speed;
12634 else /* 852, 830 */
12635 dev_priv->display.get_display_clock_speed =
12636 i830_get_display_clock_speed;
12639 dev_priv->display.write_eld = g4x_write_eld;
12640 } else if (IS_GEN5(dev)) {
12641 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12642 dev_priv->display.write_eld = ironlake_write_eld;
12643 } else if (IS_GEN6(dev)) {
12644 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12645 dev_priv->display.write_eld = ironlake_write_eld;
12646 dev_priv->display.modeset_global_resources =
12647 snb_modeset_global_resources;
12648 } else if (IS_IVYBRIDGE(dev)) {
12649 /* FIXME: detect B0+ stepping and use auto training */
12650 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12651 dev_priv->display.write_eld = ironlake_write_eld;
12652 dev_priv->display.modeset_global_resources =
12653 ivb_modeset_global_resources;
12654 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12655 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12656 dev_priv->display.write_eld = haswell_write_eld;
12657 dev_priv->display.modeset_global_resources =
12658 haswell_modeset_global_resources;
12659 } else if (IS_VALLEYVIEW(dev)) {
12660 dev_priv->display.modeset_global_resources =
12661 valleyview_modeset_global_resources;
12662 dev_priv->display.write_eld = ironlake_write_eld;
12665 /* Default just returns -ENODEV to indicate unsupported */
12666 dev_priv->display.queue_flip = intel_default_queue_flip;
12668 switch (INTEL_INFO(dev)->gen) {
12670 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12674 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12679 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12683 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12686 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12687 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12691 intel_panel_init_backlight_funcs(dev);
12693 mutex_init(&dev_priv->pps_mutex);
12697 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12698 * resume, or other times. This quirk makes sure that's the case for
12699 * affected systems.
12701 static void quirk_pipea_force(struct drm_device *dev)
12703 struct drm_i915_private *dev_priv = dev->dev_private;
12705 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12706 DRM_INFO("applying pipe a force quirk\n");
12709 static void quirk_pipeb_force(struct drm_device *dev)
12711 struct drm_i915_private *dev_priv = dev->dev_private;
12713 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12714 DRM_INFO("applying pipe b force quirk\n");
12718 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12720 static void quirk_ssc_force_disable(struct drm_device *dev)
12722 struct drm_i915_private *dev_priv = dev->dev_private;
12723 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12724 DRM_INFO("applying lvds SSC disable quirk\n");
12728 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12731 static void quirk_invert_brightness(struct drm_device *dev)
12733 struct drm_i915_private *dev_priv = dev->dev_private;
12734 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12735 DRM_INFO("applying inverted panel brightness quirk\n");
12738 /* Some VBT's incorrectly indicate no backlight is present */
12739 static void quirk_backlight_present(struct drm_device *dev)
12741 struct drm_i915_private *dev_priv = dev->dev_private;
12742 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12743 DRM_INFO("applying backlight present quirk\n");
12746 struct intel_quirk {
12748 int subsystem_vendor;
12749 int subsystem_device;
12750 void (*hook)(struct drm_device *dev);
12753 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12754 struct intel_dmi_quirk {
12755 void (*hook)(struct drm_device *dev);
12756 const struct dmi_system_id (*dmi_id_list)[];
12759 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12761 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12765 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12767 .dmi_id_list = &(const struct dmi_system_id[]) {
12769 .callback = intel_dmi_reverse_brightness,
12770 .ident = "NCR Corporation",
12771 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12772 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12775 { } /* terminating entry */
12777 .hook = quirk_invert_brightness,
12781 static struct intel_quirk intel_quirks[] = {
12782 /* HP Mini needs pipe A force quirk (LP: #322104) */
12783 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12785 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12786 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12788 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12789 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12791 /* 830 needs to leave pipe A & dpll A up */
12792 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12794 /* 830 needs to leave pipe B & dpll B up */
12795 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12797 /* Lenovo U160 cannot use SSC on LVDS */
12798 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12800 /* Sony Vaio Y cannot use SSC on LVDS */
12801 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12803 /* Acer Aspire 5734Z must invert backlight brightness */
12804 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12806 /* Acer/eMachines G725 */
12807 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12809 /* Acer/eMachines e725 */
12810 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12812 /* Acer/Packard Bell NCL20 */
12813 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12815 /* Acer Aspire 4736Z */
12816 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12818 /* Acer Aspire 5336 */
12819 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12821 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12822 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12824 /* Acer C720 Chromebook (Core i3 4005U) */
12825 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12827 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12828 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12830 /* HP Chromebook 14 (Celeron 2955U) */
12831 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12834 static void intel_init_quirks(struct drm_device *dev)
12836 struct pci_dev *d = dev->pdev;
12839 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12840 struct intel_quirk *q = &intel_quirks[i];
12842 if (d->device == q->device &&
12843 (d->subsystem_vendor == q->subsystem_vendor ||
12844 q->subsystem_vendor == PCI_ANY_ID) &&
12845 (d->subsystem_device == q->subsystem_device ||
12846 q->subsystem_device == PCI_ANY_ID))
12849 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12850 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12851 intel_dmi_quirks[i].hook(dev);
12855 /* Disable the VGA plane that we never use */
12856 static void i915_disable_vga(struct drm_device *dev)
12858 struct drm_i915_private *dev_priv = dev->dev_private;
12860 u32 vga_reg = i915_vgacntrl_reg(dev);
12862 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12863 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12864 outb(SR01, VGA_SR_INDEX);
12865 sr1 = inb(VGA_SR_DATA);
12866 outb(sr1 | 1<<5, VGA_SR_DATA);
12867 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12871 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12872 * from S3 without preserving (some of?) the other bits.
12874 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12875 POSTING_READ(vga_reg);
12878 void intel_modeset_init_hw(struct drm_device *dev)
12880 intel_prepare_ddi(dev);
12882 if (IS_VALLEYVIEW(dev))
12883 vlv_update_cdclk(dev);
12885 intel_init_clock_gating(dev);
12887 intel_enable_gt_powersave(dev);
12890 void intel_modeset_suspend_hw(struct drm_device *dev)
12892 intel_suspend_hw(dev);
12895 void intel_modeset_init(struct drm_device *dev)
12897 struct drm_i915_private *dev_priv = dev->dev_private;
12900 struct intel_crtc *crtc;
12902 drm_mode_config_init(dev);
12904 dev->mode_config.min_width = 0;
12905 dev->mode_config.min_height = 0;
12907 dev->mode_config.preferred_depth = 24;
12908 dev->mode_config.prefer_shadow = 1;
12910 dev->mode_config.funcs = &intel_mode_funcs;
12912 intel_init_quirks(dev);
12914 intel_init_pm(dev);
12916 if (INTEL_INFO(dev)->num_pipes == 0)
12919 intel_init_display(dev);
12921 if (IS_GEN2(dev)) {
12922 dev->mode_config.max_width = 2048;
12923 dev->mode_config.max_height = 2048;
12924 } else if (IS_GEN3(dev)) {
12925 dev->mode_config.max_width = 4096;
12926 dev->mode_config.max_height = 4096;
12928 dev->mode_config.max_width = 8192;
12929 dev->mode_config.max_height = 8192;
12932 if (IS_845G(dev) || IS_I865G(dev)) {
12933 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12934 dev->mode_config.cursor_height = 1023;
12935 } else if (IS_GEN2(dev)) {
12936 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12937 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12939 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12940 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12943 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12945 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12946 INTEL_INFO(dev)->num_pipes,
12947 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12949 for_each_pipe(dev_priv, pipe) {
12950 intel_crtc_init(dev, pipe);
12951 for_each_sprite(pipe, sprite) {
12952 ret = intel_plane_init(dev, pipe, sprite);
12954 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12955 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12959 intel_init_dpio(dev);
12961 intel_shared_dpll_init(dev);
12963 /* save the BIOS value before clobbering it */
12964 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12965 /* Just disable it once at startup */
12966 i915_disable_vga(dev);
12967 intel_setup_outputs(dev);
12969 /* Just in case the BIOS is doing something questionable. */
12970 intel_disable_fbc(dev);
12972 drm_modeset_lock_all(dev);
12973 intel_modeset_setup_hw_state(dev, false);
12974 drm_modeset_unlock_all(dev);
12976 for_each_intel_crtc(dev, crtc) {
12981 * Note that reserving the BIOS fb up front prevents us
12982 * from stuffing other stolen allocations like the ring
12983 * on top. This prevents some ugliness at boot time, and
12984 * can even allow for smooth boot transitions if the BIOS
12985 * fb is large enough for the active pipe configuration.
12987 if (dev_priv->display.get_plane_config) {
12988 dev_priv->display.get_plane_config(crtc,
12989 &crtc->plane_config);
12991 * If the fb is shared between multiple heads, we'll
12992 * just get the first one.
12994 intel_find_plane_obj(crtc, &crtc->plane_config);
12999 static void intel_enable_pipe_a(struct drm_device *dev)
13001 struct intel_connector *connector;
13002 struct drm_connector *crt = NULL;
13003 struct intel_load_detect_pipe load_detect_temp;
13004 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13006 /* We can't just switch on the pipe A, we need to set things up with a
13007 * proper mode and output configuration. As a gross hack, enable pipe A
13008 * by enabling the load detect pipe once. */
13009 list_for_each_entry(connector,
13010 &dev->mode_config.connector_list,
13012 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13013 crt = &connector->base;
13021 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13022 intel_release_load_detect_pipe(crt, &load_detect_temp);
13026 intel_check_plane_mapping(struct intel_crtc *crtc)
13028 struct drm_device *dev = crtc->base.dev;
13029 struct drm_i915_private *dev_priv = dev->dev_private;
13032 if (INTEL_INFO(dev)->num_pipes == 1)
13035 reg = DSPCNTR(!crtc->plane);
13036 val = I915_READ(reg);
13038 if ((val & DISPLAY_PLANE_ENABLE) &&
13039 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13045 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13047 struct drm_device *dev = crtc->base.dev;
13048 struct drm_i915_private *dev_priv = dev->dev_private;
13051 /* Clear any frame start delays used for debugging left by the BIOS */
13052 reg = PIPECONF(crtc->config.cpu_transcoder);
13053 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13055 /* restore vblank interrupts to correct state */
13056 if (crtc->active) {
13057 update_scanline_offset(crtc);
13058 drm_vblank_on(dev, crtc->pipe);
13060 drm_vblank_off(dev, crtc->pipe);
13062 /* We need to sanitize the plane -> pipe mapping first because this will
13063 * disable the crtc (and hence change the state) if it is wrong. Note
13064 * that gen4+ has a fixed plane -> pipe mapping. */
13065 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13066 struct intel_connector *connector;
13069 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13070 crtc->base.base.id);
13072 /* Pipe has the wrong plane attached and the plane is active.
13073 * Temporarily change the plane mapping and disable everything
13075 plane = crtc->plane;
13076 crtc->plane = !plane;
13077 crtc->primary_enabled = true;
13078 dev_priv->display.crtc_disable(&crtc->base);
13079 crtc->plane = plane;
13081 /* ... and break all links. */
13082 list_for_each_entry(connector, &dev->mode_config.connector_list,
13084 if (connector->encoder->base.crtc != &crtc->base)
13087 connector->base.dpms = DRM_MODE_DPMS_OFF;
13088 connector->base.encoder = NULL;
13090 /* multiple connectors may have the same encoder:
13091 * handle them and break crtc link separately */
13092 list_for_each_entry(connector, &dev->mode_config.connector_list,
13094 if (connector->encoder->base.crtc == &crtc->base) {
13095 connector->encoder->base.crtc = NULL;
13096 connector->encoder->connectors_active = false;
13099 WARN_ON(crtc->active);
13100 crtc->base.enabled = false;
13103 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13104 crtc->pipe == PIPE_A && !crtc->active) {
13105 /* BIOS forgot to enable pipe A, this mostly happens after
13106 * resume. Force-enable the pipe to fix this, the update_dpms
13107 * call below we restore the pipe to the right state, but leave
13108 * the required bits on. */
13109 intel_enable_pipe_a(dev);
13112 /* Adjust the state of the output pipe according to whether we
13113 * have active connectors/encoders. */
13114 intel_crtc_update_dpms(&crtc->base);
13116 if (crtc->active != crtc->base.enabled) {
13117 struct intel_encoder *encoder;
13119 /* This can happen either due to bugs in the get_hw_state
13120 * functions or because the pipe is force-enabled due to the
13122 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13123 crtc->base.base.id,
13124 crtc->base.enabled ? "enabled" : "disabled",
13125 crtc->active ? "enabled" : "disabled");
13127 crtc->base.enabled = crtc->active;
13129 /* Because we only establish the connector -> encoder ->
13130 * crtc links if something is active, this means the
13131 * crtc is now deactivated. Break the links. connector
13132 * -> encoder links are only establish when things are
13133 * actually up, hence no need to break them. */
13134 WARN_ON(crtc->active);
13136 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13137 WARN_ON(encoder->connectors_active);
13138 encoder->base.crtc = NULL;
13142 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13144 * We start out with underrun reporting disabled to avoid races.
13145 * For correct bookkeeping mark this on active crtcs.
13147 * Also on gmch platforms we dont have any hardware bits to
13148 * disable the underrun reporting. Which means we need to start
13149 * out with underrun reporting disabled also on inactive pipes,
13150 * since otherwise we'll complain about the garbage we read when
13151 * e.g. coming up after runtime pm.
13153 * No protection against concurrent access is required - at
13154 * worst a fifo underrun happens which also sets this to false.
13156 crtc->cpu_fifo_underrun_disabled = true;
13157 crtc->pch_fifo_underrun_disabled = true;
13161 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13163 struct intel_connector *connector;
13164 struct drm_device *dev = encoder->base.dev;
13166 /* We need to check both for a crtc link (meaning that the
13167 * encoder is active and trying to read from a pipe) and the
13168 * pipe itself being active. */
13169 bool has_active_crtc = encoder->base.crtc &&
13170 to_intel_crtc(encoder->base.crtc)->active;
13172 if (encoder->connectors_active && !has_active_crtc) {
13173 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13174 encoder->base.base.id,
13175 encoder->base.name);
13177 /* Connector is active, but has no active pipe. This is
13178 * fallout from our resume register restoring. Disable
13179 * the encoder manually again. */
13180 if (encoder->base.crtc) {
13181 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13182 encoder->base.base.id,
13183 encoder->base.name);
13184 encoder->disable(encoder);
13185 if (encoder->post_disable)
13186 encoder->post_disable(encoder);
13188 encoder->base.crtc = NULL;
13189 encoder->connectors_active = false;
13191 /* Inconsistent output/port/pipe state happens presumably due to
13192 * a bug in one of the get_hw_state functions. Or someplace else
13193 * in our code, like the register restore mess on resume. Clamp
13194 * things to off as a safer default. */
13195 list_for_each_entry(connector,
13196 &dev->mode_config.connector_list,
13198 if (connector->encoder != encoder)
13200 connector->base.dpms = DRM_MODE_DPMS_OFF;
13201 connector->base.encoder = NULL;
13204 /* Enabled encoders without active connectors will be fixed in
13205 * the crtc fixup. */
13208 void i915_redisable_vga_power_on(struct drm_device *dev)
13210 struct drm_i915_private *dev_priv = dev->dev_private;
13211 u32 vga_reg = i915_vgacntrl_reg(dev);
13213 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13214 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13215 i915_disable_vga(dev);
13219 void i915_redisable_vga(struct drm_device *dev)
13221 struct drm_i915_private *dev_priv = dev->dev_private;
13223 /* This function can be called both from intel_modeset_setup_hw_state or
13224 * at a very early point in our resume sequence, where the power well
13225 * structures are not yet restored. Since this function is at a very
13226 * paranoid "someone might have enabled VGA while we were not looking"
13227 * level, just check if the power well is enabled instead of trying to
13228 * follow the "don't touch the power well if we don't need it" policy
13229 * the rest of the driver uses. */
13230 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13233 i915_redisable_vga_power_on(dev);
13236 static bool primary_get_hw_state(struct intel_crtc *crtc)
13238 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13243 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13246 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13248 struct drm_i915_private *dev_priv = dev->dev_private;
13250 struct intel_crtc *crtc;
13251 struct intel_encoder *encoder;
13252 struct intel_connector *connector;
13255 for_each_intel_crtc(dev, crtc) {
13256 memset(&crtc->config, 0, sizeof(crtc->config));
13258 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13260 crtc->active = dev_priv->display.get_pipe_config(crtc,
13263 crtc->base.enabled = crtc->active;
13264 crtc->primary_enabled = primary_get_hw_state(crtc);
13266 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13267 crtc->base.base.id,
13268 crtc->active ? "enabled" : "disabled");
13271 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13272 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13274 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13276 for_each_intel_crtc(dev, crtc) {
13277 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13280 pll->refcount = pll->active;
13282 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13283 pll->name, pll->refcount, pll->on);
13286 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13289 for_each_intel_encoder(dev, encoder) {
13292 if (encoder->get_hw_state(encoder, &pipe)) {
13293 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13294 encoder->base.crtc = &crtc->base;
13295 encoder->get_config(encoder, &crtc->config);
13297 encoder->base.crtc = NULL;
13300 encoder->connectors_active = false;
13301 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13302 encoder->base.base.id,
13303 encoder->base.name,
13304 encoder->base.crtc ? "enabled" : "disabled",
13308 list_for_each_entry(connector, &dev->mode_config.connector_list,
13310 if (connector->get_hw_state(connector)) {
13311 connector->base.dpms = DRM_MODE_DPMS_ON;
13312 connector->encoder->connectors_active = true;
13313 connector->base.encoder = &connector->encoder->base;
13315 connector->base.dpms = DRM_MODE_DPMS_OFF;
13316 connector->base.encoder = NULL;
13318 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13319 connector->base.base.id,
13320 connector->base.name,
13321 connector->base.encoder ? "enabled" : "disabled");
13325 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13326 * and i915 state tracking structures. */
13327 void intel_modeset_setup_hw_state(struct drm_device *dev,
13328 bool force_restore)
13330 struct drm_i915_private *dev_priv = dev->dev_private;
13332 struct intel_crtc *crtc;
13333 struct intel_encoder *encoder;
13336 intel_modeset_readout_hw_state(dev);
13339 * Now that we have the config, copy it to each CRTC struct
13340 * Note that this could go away if we move to using crtc_config
13341 * checking everywhere.
13343 for_each_intel_crtc(dev, crtc) {
13344 if (crtc->active && i915.fastboot) {
13345 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13346 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13347 crtc->base.base.id);
13348 drm_mode_debug_printmodeline(&crtc->base.mode);
13352 /* HW state is read out, now we need to sanitize this mess. */
13353 for_each_intel_encoder(dev, encoder) {
13354 intel_sanitize_encoder(encoder);
13357 for_each_pipe(dev_priv, pipe) {
13358 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13359 intel_sanitize_crtc(crtc);
13360 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13363 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13364 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13366 if (!pll->on || pll->active)
13369 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13371 pll->disable(dev_priv, pll);
13375 if (HAS_PCH_SPLIT(dev))
13376 ilk_wm_get_hw_state(dev);
13378 if (force_restore) {
13379 i915_redisable_vga(dev);
13382 * We need to use raw interfaces for restoring state to avoid
13383 * checking (bogus) intermediate states.
13385 for_each_pipe(dev_priv, pipe) {
13386 struct drm_crtc *crtc =
13387 dev_priv->pipe_to_crtc_mapping[pipe];
13389 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13390 crtc->primary->fb);
13393 intel_modeset_update_staged_output_state(dev);
13396 intel_modeset_check_state(dev);
13399 void intel_modeset_gem_init(struct drm_device *dev)
13401 struct drm_crtc *c;
13402 struct drm_i915_gem_object *obj;
13404 mutex_lock(&dev->struct_mutex);
13405 intel_init_gt_powersave(dev);
13406 mutex_unlock(&dev->struct_mutex);
13408 intel_modeset_init_hw(dev);
13410 intel_setup_overlay(dev);
13413 * Make sure any fbs we allocated at startup are properly
13414 * pinned & fenced. When we do the allocation it's too early
13417 mutex_lock(&dev->struct_mutex);
13418 for_each_crtc(dev, c) {
13419 obj = intel_fb_obj(c->primary->fb);
13423 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13424 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13425 to_intel_crtc(c)->pipe);
13426 drm_framebuffer_unreference(c->primary->fb);
13427 c->primary->fb = NULL;
13430 mutex_unlock(&dev->struct_mutex);
13433 void intel_connector_unregister(struct intel_connector *intel_connector)
13435 struct drm_connector *connector = &intel_connector->base;
13437 intel_panel_destroy_backlight(connector);
13438 drm_connector_unregister(connector);
13441 void intel_modeset_cleanup(struct drm_device *dev)
13443 struct drm_i915_private *dev_priv = dev->dev_private;
13444 struct drm_connector *connector;
13447 * Interrupts and polling as the first thing to avoid creating havoc.
13448 * Too much stuff here (turning of rps, connectors, ...) would
13449 * experience fancy races otherwise.
13451 drm_irq_uninstall(dev);
13452 intel_hpd_cancel_work(dev_priv);
13453 dev_priv->pm._irqs_disabled = true;
13456 * Due to the hpd irq storm handling the hotplug work can re-arm the
13457 * poll handlers. Hence disable polling after hpd handling is shut down.
13459 drm_kms_helper_poll_fini(dev);
13461 mutex_lock(&dev->struct_mutex);
13463 intel_unregister_dsm_handler();
13465 intel_disable_fbc(dev);
13467 intel_disable_gt_powersave(dev);
13469 ironlake_teardown_rc6(dev);
13471 mutex_unlock(&dev->struct_mutex);
13473 /* flush any delayed tasks or pending work */
13474 flush_scheduled_work();
13476 /* destroy the backlight and sysfs files before encoders/connectors */
13477 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13478 struct intel_connector *intel_connector;
13480 intel_connector = to_intel_connector(connector);
13481 intel_connector->unregister(intel_connector);
13484 drm_mode_config_cleanup(dev);
13486 intel_cleanup_overlay(dev);
13488 mutex_lock(&dev->struct_mutex);
13489 intel_cleanup_gt_powersave(dev);
13490 mutex_unlock(&dev->struct_mutex);
13494 * Return which encoder is currently attached for connector.
13496 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13498 return &intel_attached_encoder(connector)->base;
13501 void intel_connector_attach_encoder(struct intel_connector *connector,
13502 struct intel_encoder *encoder)
13504 connector->encoder = encoder;
13505 drm_mode_connector_attach_encoder(&connector->base,
13510 * set vga decode state - true == enable VGA decode
13512 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13514 struct drm_i915_private *dev_priv = dev->dev_private;
13515 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13518 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13519 DRM_ERROR("failed to read control word\n");
13523 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13527 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13529 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13531 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13532 DRM_ERROR("failed to write control word\n");
13539 struct intel_display_error_state {
13541 u32 power_well_driver;
13543 int num_transcoders;
13545 struct intel_cursor_error_state {
13550 } cursor[I915_MAX_PIPES];
13552 struct intel_pipe_error_state {
13553 bool power_domain_on;
13556 } pipe[I915_MAX_PIPES];
13558 struct intel_plane_error_state {
13566 } plane[I915_MAX_PIPES];
13568 struct intel_transcoder_error_state {
13569 bool power_domain_on;
13570 enum transcoder cpu_transcoder;
13583 struct intel_display_error_state *
13584 intel_display_capture_error_state(struct drm_device *dev)
13586 struct drm_i915_private *dev_priv = dev->dev_private;
13587 struct intel_display_error_state *error;
13588 int transcoders[] = {
13596 if (INTEL_INFO(dev)->num_pipes == 0)
13599 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13603 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13604 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13606 for_each_pipe(dev_priv, i) {
13607 error->pipe[i].power_domain_on =
13608 intel_display_power_enabled_unlocked(dev_priv,
13609 POWER_DOMAIN_PIPE(i));
13610 if (!error->pipe[i].power_domain_on)
13613 error->cursor[i].control = I915_READ(CURCNTR(i));
13614 error->cursor[i].position = I915_READ(CURPOS(i));
13615 error->cursor[i].base = I915_READ(CURBASE(i));
13617 error->plane[i].control = I915_READ(DSPCNTR(i));
13618 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13619 if (INTEL_INFO(dev)->gen <= 3) {
13620 error->plane[i].size = I915_READ(DSPSIZE(i));
13621 error->plane[i].pos = I915_READ(DSPPOS(i));
13623 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13624 error->plane[i].addr = I915_READ(DSPADDR(i));
13625 if (INTEL_INFO(dev)->gen >= 4) {
13626 error->plane[i].surface = I915_READ(DSPSURF(i));
13627 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13630 error->pipe[i].source = I915_READ(PIPESRC(i));
13632 if (HAS_GMCH_DISPLAY(dev))
13633 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13636 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13637 if (HAS_DDI(dev_priv->dev))
13638 error->num_transcoders++; /* Account for eDP. */
13640 for (i = 0; i < error->num_transcoders; i++) {
13641 enum transcoder cpu_transcoder = transcoders[i];
13643 error->transcoder[i].power_domain_on =
13644 intel_display_power_enabled_unlocked(dev_priv,
13645 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13646 if (!error->transcoder[i].power_domain_on)
13649 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13651 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13652 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13653 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13654 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13655 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13656 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13657 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13663 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13666 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13667 struct drm_device *dev,
13668 struct intel_display_error_state *error)
13670 struct drm_i915_private *dev_priv = dev->dev_private;
13676 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13677 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13678 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13679 error->power_well_driver);
13680 for_each_pipe(dev_priv, i) {
13681 err_printf(m, "Pipe [%d]:\n", i);
13682 err_printf(m, " Power: %s\n",
13683 error->pipe[i].power_domain_on ? "on" : "off");
13684 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13685 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13687 err_printf(m, "Plane [%d]:\n", i);
13688 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13689 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13690 if (INTEL_INFO(dev)->gen <= 3) {
13691 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13692 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13694 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13695 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13696 if (INTEL_INFO(dev)->gen >= 4) {
13697 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13698 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13701 err_printf(m, "Cursor [%d]:\n", i);
13702 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13703 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13704 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13707 for (i = 0; i < error->num_transcoders; i++) {
13708 err_printf(m, "CPU transcoder: %c\n",
13709 transcoder_name(error->transcoder[i].cpu_transcoder));
13710 err_printf(m, " Power: %s\n",
13711 error->transcoder[i].power_domain_on ? "on" : "off");
13712 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13713 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13714 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13715 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13716 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13717 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13718 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13722 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13724 struct intel_crtc *crtc;
13726 for_each_intel_crtc(dev, crtc) {
13727 struct intel_unpin_work *work;
13728 unsigned long irqflags;
13730 spin_lock_irqsave(&dev->event_lock, irqflags);
13732 work = crtc->unpin_work;
13734 if (work && work->event &&
13735 work->event->base.file_priv == file) {
13736 kfree(work->event);
13737 work->event = NULL;
13740 spin_unlock_irqrestore(&dev->event_lock, irqflags);