]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'drm-intel-next-2014-09-05' of git://anongit.freedesktop.org/drm-intel...
[linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(dev_priv, pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(dev_priv, pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (HAS_GMCH_DISPLAY(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095         struct drm_i915_private *dev_priv =
1096                 container_of(work, struct drm_i915_private, dig_port_work);
1097         unsigned long irqflags;
1098         u32 long_port_mask, short_port_mask;
1099         struct intel_digital_port *intel_dig_port;
1100         int i, ret;
1101         u32 old_bits = 0;
1102
1103         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104         long_port_mask = dev_priv->long_hpd_port_mask;
1105         dev_priv->long_hpd_port_mask = 0;
1106         short_port_mask = dev_priv->short_hpd_port_mask;
1107         dev_priv->short_hpd_port_mask = 0;
1108         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110         for (i = 0; i < I915_MAX_PORTS; i++) {
1111                 bool valid = false;
1112                 bool long_hpd = false;
1113                 intel_dig_port = dev_priv->hpd_irq_port[i];
1114                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115                         continue;
1116
1117                 if (long_port_mask & (1 << i))  {
1118                         valid = true;
1119                         long_hpd = true;
1120                 } else if (short_port_mask & (1 << i))
1121                         valid = true;
1122
1123                 if (valid) {
1124                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125                         if (ret == true) {
1126                                 /* if we get true fallback to old school hpd */
1127                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128                         }
1129                 }
1130         }
1131
1132         if (old_bits) {
1133                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134                 dev_priv->hpd_event_bits |= old_bits;
1135                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136                 schedule_work(&dev_priv->hotplug_work);
1137         }
1138 }
1139
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147         struct drm_i915_private *dev_priv =
1148                 container_of(work, struct drm_i915_private, hotplug_work);
1149         struct drm_device *dev = dev_priv->dev;
1150         struct drm_mode_config *mode_config = &dev->mode_config;
1151         struct intel_connector *intel_connector;
1152         struct intel_encoder *intel_encoder;
1153         struct drm_connector *connector;
1154         unsigned long irqflags;
1155         bool hpd_disabled = false;
1156         bool changed = false;
1157         u32 hpd_event_bits;
1158
1159         mutex_lock(&mode_config->mutex);
1160         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164         hpd_event_bits = dev_priv->hpd_event_bits;
1165         dev_priv->hpd_event_bits = 0;
1166         list_for_each_entry(connector, &mode_config->connector_list, head) {
1167                 intel_connector = to_intel_connector(connector);
1168                 if (!intel_connector->encoder)
1169                         continue;
1170                 intel_encoder = intel_connector->encoder;
1171                 if (intel_encoder->hpd_pin > HPD_NONE &&
1172                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1175                                  "switching from hotplug detection to polling\n",
1176                                 connector->name);
1177                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1180                         hpd_disabled = true;
1181                 }
1182                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184                                       connector->name, intel_encoder->hpd_pin);
1185                 }
1186         }
1187          /* if there were no outputs to poll, poll was disabled,
1188           * therefore make sure it's enabled when disabling HPD on
1189           * some connectors */
1190         if (hpd_disabled) {
1191                 drm_kms_helper_poll_enable(dev);
1192                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194         }
1195
1196         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198         list_for_each_entry(connector, &mode_config->connector_list, head) {
1199                 intel_connector = to_intel_connector(connector);
1200                 if (!intel_connector->encoder)
1201                         continue;
1202                 intel_encoder = intel_connector->encoder;
1203                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204                         if (intel_encoder->hot_plug)
1205                                 intel_encoder->hot_plug(intel_encoder);
1206                         if (intel_hpd_irq_event(dev, connector))
1207                                 changed = true;
1208                 }
1209         }
1210         mutex_unlock(&mode_config->mutex);
1211
1212         if (changed)
1213                 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         u32 busy_up, busy_down, max_avg, min_avg;
1220         u8 new_delay;
1221
1222         spin_lock(&mchdev_lock);
1223
1224         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226         new_delay = dev_priv->ips.cur_delay;
1227
1228         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229         busy_up = I915_READ(RCPREVBSYTUPAVG);
1230         busy_down = I915_READ(RCPREVBSYTDNAVG);
1231         max_avg = I915_READ(RCBMAXAVG);
1232         min_avg = I915_READ(RCBMINAVG);
1233
1234         /* Handle RCS change request from hw */
1235         if (busy_up > max_avg) {
1236                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237                         new_delay = dev_priv->ips.cur_delay - 1;
1238                 if (new_delay < dev_priv->ips.max_delay)
1239                         new_delay = dev_priv->ips.max_delay;
1240         } else if (busy_down < min_avg) {
1241                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242                         new_delay = dev_priv->ips.cur_delay + 1;
1243                 if (new_delay > dev_priv->ips.min_delay)
1244                         new_delay = dev_priv->ips.min_delay;
1245         }
1246
1247         if (ironlake_set_drps(dev, new_delay))
1248                 dev_priv->ips.cur_delay = new_delay;
1249
1250         spin_unlock(&mchdev_lock);
1251
1252         return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256                         struct intel_engine_cs *ring)
1257 {
1258         if (!intel_ring_initialized(ring))
1259                 return;
1260
1261         trace_i915_gem_request_complete(ring);
1262
1263         if (drm_core_check_feature(dev, DRIVER_MODESET))
1264                 intel_notify_mmio_flip(ring);
1265
1266         wake_up_all(&ring->irq_queue);
1267         i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271                             struct intel_rps_ei *rps_ei)
1272 {
1273         u32 cz_ts, cz_freq_khz;
1274         u32 render_count, media_count;
1275         u32 elapsed_render, elapsed_media, elapsed_time;
1276         u32 residency = 0;
1277
1278         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284         if (rps_ei->cz_clock == 0) {
1285                 rps_ei->cz_clock = cz_ts;
1286                 rps_ei->render_c0 = render_count;
1287                 rps_ei->media_c0 = media_count;
1288
1289                 return dev_priv->rps.cur_freq;
1290         }
1291
1292         elapsed_time = cz_ts - rps_ei->cz_clock;
1293         rps_ei->cz_clock = cz_ts;
1294
1295         elapsed_render = render_count - rps_ei->render_c0;
1296         rps_ei->render_c0 = render_count;
1297
1298         elapsed_media = media_count - rps_ei->media_c0;
1299         rps_ei->media_c0 = media_count;
1300
1301         /* Convert all the counters into common unit of milli sec */
1302         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303         elapsed_render /=  cz_freq_khz;
1304         elapsed_media /= cz_freq_khz;
1305
1306         /*
1307          * Calculate overall C0 residency percentage
1308          * only if elapsed time is non zero
1309          */
1310         if (elapsed_time) {
1311                 residency =
1312                         ((max(elapsed_render, elapsed_media) * 100)
1313                                 / elapsed_time);
1314         }
1315
1316         return residency;
1317 }
1318
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327         u32 residency_C0_up = 0, residency_C0_down = 0;
1328         int new_delay, adj;
1329
1330         dev_priv->rps.ei_interrupt_count++;
1331
1332         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335         if (dev_priv->rps.up_ei.cz_clock == 0) {
1336                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338                 return dev_priv->rps.cur_freq;
1339         }
1340
1341
1342         /*
1343          * To down throttle, C0 residency should be less than down threshold
1344          * for continous EI intervals. So calculate down EI counters
1345          * once in VLV_INT_COUNT_FOR_DOWN_EI
1346          */
1347         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349                 dev_priv->rps.ei_interrupt_count = 0;
1350
1351                 residency_C0_down = vlv_c0_residency(dev_priv,
1352                                                      &dev_priv->rps.down_ei);
1353         } else {
1354                 residency_C0_up = vlv_c0_residency(dev_priv,
1355                                                    &dev_priv->rps.up_ei);
1356         }
1357
1358         new_delay = dev_priv->rps.cur_freq;
1359
1360         adj = dev_priv->rps.last_adj;
1361         /* C0 residency is greater than UP threshold. Increase Frequency */
1362         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363                 if (adj > 0)
1364                         adj *= 2;
1365                 else
1366                         adj = 1;
1367
1368                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369                         new_delay = dev_priv->rps.cur_freq + adj;
1370
1371                 /*
1372                  * For better performance, jump directly
1373                  * to RPe if we're below it.
1374                  */
1375                 if (new_delay < dev_priv->rps.efficient_freq)
1376                         new_delay = dev_priv->rps.efficient_freq;
1377
1378         } else if (!dev_priv->rps.ei_interrupt_count &&
1379                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380                 if (adj < 0)
1381                         adj *= 2;
1382                 else
1383                         adj = -1;
1384                 /*
1385                  * This means, C0 residency is less than down threshold over
1386                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387                  */
1388                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389                         new_delay = dev_priv->rps.cur_freq + adj;
1390         }
1391
1392         return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397         struct drm_i915_private *dev_priv =
1398                 container_of(work, struct drm_i915_private, rps.work);
1399         u32 pm_iir;
1400         int new_delay, adj;
1401
1402         spin_lock_irq(&dev_priv->irq_lock);
1403         pm_iir = dev_priv->rps.pm_iir;
1404         dev_priv->rps.pm_iir = 0;
1405         if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406                 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407         else {
1408                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410         }
1411         spin_unlock_irq(&dev_priv->irq_lock);
1412
1413         /* Make sure we didn't queue anything we're not going to process. */
1414         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417                 return;
1418
1419         mutex_lock(&dev_priv->rps.hw_lock);
1420
1421         adj = dev_priv->rps.last_adj;
1422         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423                 if (adj > 0)
1424                         adj *= 2;
1425                 else {
1426                         /* CHV needs even encode values */
1427                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428                 }
1429                 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431                 /*
1432                  * For better performance, jump directly
1433                  * to RPe if we're below it.
1434                  */
1435                 if (new_delay < dev_priv->rps.efficient_freq)
1436                         new_delay = dev_priv->rps.efficient_freq;
1437         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439                         new_delay = dev_priv->rps.efficient_freq;
1440                 else
1441                         new_delay = dev_priv->rps.min_freq_softlimit;
1442                 adj = 0;
1443         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446                 if (adj < 0)
1447                         adj *= 2;
1448                 else {
1449                         /* CHV needs even encode values */
1450                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451                 }
1452                 new_delay = dev_priv->rps.cur_freq + adj;
1453         } else { /* unknown event */
1454                 new_delay = dev_priv->rps.cur_freq;
1455         }
1456
1457         /* sysfs frequency interfaces may have snuck in while servicing the
1458          * interrupt
1459          */
1460         new_delay = clamp_t(int, new_delay,
1461                             dev_priv->rps.min_freq_softlimit,
1462                             dev_priv->rps.max_freq_softlimit);
1463
1464         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466         if (IS_VALLEYVIEW(dev_priv->dev))
1467                 valleyview_set_rps(dev_priv->dev, new_delay);
1468         else
1469                 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471         mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486         struct drm_i915_private *dev_priv =
1487                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488         u32 error_status, row, bank, subbank;
1489         char *parity_event[6];
1490         uint32_t misccpctl;
1491         unsigned long flags;
1492         uint8_t slice = 0;
1493
1494         /* We must turn off DOP level clock gating to access the L3 registers.
1495          * In order to prevent a get/put style interface, acquire struct mutex
1496          * any time we access those registers.
1497          */
1498         mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500         /* If we've screwed up tracking, just let the interrupt fire again */
1501         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502                 goto out;
1503
1504         misccpctl = I915_READ(GEN7_MISCCPCTL);
1505         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506         POSTING_READ(GEN7_MISCCPCTL);
1507
1508         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509                 u32 reg;
1510
1511                 slice--;
1512                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513                         break;
1514
1515                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519                 error_status = I915_READ(reg);
1520                 row = GEN7_PARITY_ERROR_ROW(error_status);
1521                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525                 POSTING_READ(reg);
1526
1527                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532                 parity_event[5] = NULL;
1533
1534                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535                                    KOBJ_CHANGE, parity_event);
1536
1537                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538                           slice, row, bank, subbank);
1539
1540                 kfree(parity_event[4]);
1541                 kfree(parity_event[3]);
1542                 kfree(parity_event[2]);
1543                 kfree(parity_event[1]);
1544         }
1545
1546         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549         WARN_ON(dev_priv->l3_parity.which_slice);
1550         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554         mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561         if (!HAS_L3_DPF(dev))
1562                 return;
1563
1564         spin_lock(&dev_priv->irq_lock);
1565         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566         spin_unlock(&dev_priv->irq_lock);
1567
1568         iir &= GT_PARITY_ERROR(dev);
1569         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570                 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573                 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579                                struct drm_i915_private *dev_priv,
1580                                u32 gt_iir)
1581 {
1582         if (gt_iir &
1583             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584                 notify_ring(dev, &dev_priv->ring[RCS]);
1585         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586                 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590                                struct drm_i915_private *dev_priv,
1591                                u32 gt_iir)
1592 {
1593
1594         if (gt_iir &
1595             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596                 notify_ring(dev, &dev_priv->ring[RCS]);
1597         if (gt_iir & GT_BSD_USER_INTERRUPT)
1598                 notify_ring(dev, &dev_priv->ring[VCS]);
1599         if (gt_iir & GT_BLT_USER_INTERRUPT)
1600                 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603                       GT_BSD_CS_ERROR_INTERRUPT |
1604                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606                                   gt_iir);
1607         }
1608
1609         if (gt_iir & GT_PARITY_ERROR(dev))
1610                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616                 return;
1617
1618         spin_lock(&dev_priv->irq_lock);
1619         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620         gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621         spin_unlock(&dev_priv->irq_lock);
1622
1623         queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627                                        struct drm_i915_private *dev_priv,
1628                                        u32 master_ctl)
1629 {
1630         struct intel_engine_cs *ring;
1631         u32 rcs, bcs, vcs;
1632         uint32_t tmp = 0;
1633         irqreturn_t ret = IRQ_NONE;
1634
1635         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636                 tmp = I915_READ(GEN8_GT_IIR(0));
1637                 if (tmp) {
1638                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1639                         ret = IRQ_HANDLED;
1640
1641                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642                         ring = &dev_priv->ring[RCS];
1643                         if (rcs & GT_RENDER_USER_INTERRUPT)
1644                                 notify_ring(dev, ring);
1645                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646                                 intel_execlists_handle_ctx_events(ring);
1647
1648                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649                         ring = &dev_priv->ring[BCS];
1650                         if (bcs & GT_RENDER_USER_INTERRUPT)
1651                                 notify_ring(dev, ring);
1652                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653                                 intel_execlists_handle_ctx_events(ring);
1654                 } else
1655                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656         }
1657
1658         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659                 tmp = I915_READ(GEN8_GT_IIR(1));
1660                 if (tmp) {
1661                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1662                         ret = IRQ_HANDLED;
1663
1664                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665                         ring = &dev_priv->ring[VCS];
1666                         if (vcs & GT_RENDER_USER_INTERRUPT)
1667                                 notify_ring(dev, ring);
1668                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669                                 intel_execlists_handle_ctx_events(ring);
1670
1671                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672                         ring = &dev_priv->ring[VCS2];
1673                         if (vcs & GT_RENDER_USER_INTERRUPT)
1674                                 notify_ring(dev, ring);
1675                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676                                 intel_execlists_handle_ctx_events(ring);
1677                 } else
1678                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679         }
1680
1681         if (master_ctl & GEN8_GT_PM_IRQ) {
1682                 tmp = I915_READ(GEN8_GT_IIR(2));
1683                 if (tmp & dev_priv->pm_rps_events) {
1684                         I915_WRITE(GEN8_GT_IIR(2),
1685                                    tmp & dev_priv->pm_rps_events);
1686                         ret = IRQ_HANDLED;
1687                         gen8_rps_irq_handler(dev_priv, tmp);
1688                 } else
1689                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1690         }
1691
1692         if (master_ctl & GEN8_GT_VECS_IRQ) {
1693                 tmp = I915_READ(GEN8_GT_IIR(3));
1694                 if (tmp) {
1695                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1696                         ret = IRQ_HANDLED;
1697
1698                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699                         ring = &dev_priv->ring[VECS];
1700                         if (vcs & GT_RENDER_USER_INTERRUPT)
1701                                 notify_ring(dev, ring);
1702                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703                                 intel_execlists_handle_ctx_events(ring);
1704                 } else
1705                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706         }
1707
1708         return ret;
1709 }
1710
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713
1714 static int ilk_port_to_hotplug_shift(enum port port)
1715 {
1716         switch (port) {
1717         case PORT_A:
1718         case PORT_E:
1719         default:
1720                 return -1;
1721         case PORT_B:
1722                 return 0;
1723         case PORT_C:
1724                 return 8;
1725         case PORT_D:
1726                 return 16;
1727         }
1728 }
1729
1730 static int g4x_port_to_hotplug_shift(enum port port)
1731 {
1732         switch (port) {
1733         case PORT_A:
1734         case PORT_E:
1735         default:
1736                 return -1;
1737         case PORT_B:
1738                 return 17;
1739         case PORT_C:
1740                 return 19;
1741         case PORT_D:
1742                 return 21;
1743         }
1744 }
1745
1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748         switch (pin) {
1749         case HPD_PORT_B:
1750                 return PORT_B;
1751         case HPD_PORT_C:
1752                 return PORT_C;
1753         case HPD_PORT_D:
1754                 return PORT_D;
1755         default:
1756                 return PORT_A; /* no hpd */
1757         }
1758 }
1759
1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761                                          u32 hotplug_trigger,
1762                                          u32 dig_hotplug_reg,
1763                                          const u32 *hpd)
1764 {
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         int i;
1767         enum port port;
1768         bool storm_detected = false;
1769         bool queue_dig = false, queue_hp = false;
1770         u32 dig_shift;
1771         u32 dig_port_mask = 0;
1772
1773         if (!hotplug_trigger)
1774                 return;
1775
1776         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777                          hotplug_trigger, dig_hotplug_reg);
1778
1779         spin_lock(&dev_priv->irq_lock);
1780         for (i = 1; i < HPD_NUM_PINS; i++) {
1781                 if (!(hpd[i] & hotplug_trigger))
1782                         continue;
1783
1784                 port = get_port_from_pin(i);
1785                 if (port && dev_priv->hpd_irq_port[port]) {
1786                         bool long_hpd;
1787
1788                         if (IS_G4X(dev)) {
1789                                 dig_shift = g4x_port_to_hotplug_shift(port);
1790                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791                         } else {
1792                                 dig_shift = ilk_port_to_hotplug_shift(port);
1793                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794                         }
1795
1796                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797                                          port_name(port),
1798                                          long_hpd ? "long" : "short");
1799                         /* for long HPD pulses we want to have the digital queue happen,
1800                            but we still want HPD storm detection to function. */
1801                         if (long_hpd) {
1802                                 dev_priv->long_hpd_port_mask |= (1 << port);
1803                                 dig_port_mask |= hpd[i];
1804                         } else {
1805                                 /* for short HPD just trigger the digital queue */
1806                                 dev_priv->short_hpd_port_mask |= (1 << port);
1807                                 hotplug_trigger &= ~hpd[i];
1808                         }
1809                         queue_dig = true;
1810                 }
1811         }
1812
1813         for (i = 1; i < HPD_NUM_PINS; i++) {
1814                 if (hpd[i] & hotplug_trigger &&
1815                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816                         /*
1817                          * On GMCH platforms the interrupt mask bits only
1818                          * prevent irq generation, not the setting of the
1819                          * hotplug bits itself. So only WARN about unexpected
1820                          * interrupts on saner platforms.
1821                          */
1822                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824                                   hotplug_trigger, i, hpd[i]);
1825
1826                         continue;
1827                 }
1828
1829                 if (!(hpd[i] & hotplug_trigger) ||
1830                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831                         continue;
1832
1833                 if (!(dig_port_mask & hpd[i])) {
1834                         dev_priv->hpd_event_bits |= (1 << i);
1835                         queue_hp = true;
1836                 }
1837
1838                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1840                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1843                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846                         dev_priv->hpd_event_bits &= ~(1 << i);
1847                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848                         storm_detected = true;
1849                 } else {
1850                         dev_priv->hpd_stats[i].hpd_cnt++;
1851                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852                                       dev_priv->hpd_stats[i].hpd_cnt);
1853                 }
1854         }
1855
1856         if (storm_detected)
1857                 dev_priv->display.hpd_irq_setup(dev);
1858         spin_unlock(&dev_priv->irq_lock);
1859
1860         /*
1861          * Our hotplug handler can grab modeset locks (by calling down into the
1862          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863          * queue for otherwise the flush_work in the pageflip code will
1864          * deadlock.
1865          */
1866         if (queue_dig)
1867                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868         if (queue_hp)
1869                 schedule_work(&dev_priv->hotplug_work);
1870 }
1871
1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876         wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878
1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882
1883         wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885
1886 #if defined(CONFIG_DEBUG_FS)
1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888                                          uint32_t crc0, uint32_t crc1,
1889                                          uint32_t crc2, uint32_t crc3,
1890                                          uint32_t crc4)
1891 {
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894         struct intel_pipe_crc_entry *entry;
1895         int head, tail;
1896
1897         spin_lock(&pipe_crc->lock);
1898
1899         if (!pipe_crc->entries) {
1900                 spin_unlock(&pipe_crc->lock);
1901                 DRM_ERROR("spurious interrupt\n");
1902                 return;
1903         }
1904
1905         head = pipe_crc->head;
1906         tail = pipe_crc->tail;
1907
1908         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909                 spin_unlock(&pipe_crc->lock);
1910                 DRM_ERROR("CRC buffer overflowing\n");
1911                 return;
1912         }
1913
1914         entry = &pipe_crc->entries[head];
1915
1916         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917         entry->crc[0] = crc0;
1918         entry->crc[1] = crc1;
1919         entry->crc[2] = crc2;
1920         entry->crc[3] = crc3;
1921         entry->crc[4] = crc4;
1922
1923         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924         pipe_crc->head = head;
1925
1926         spin_unlock(&pipe_crc->lock);
1927
1928         wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933                              uint32_t crc0, uint32_t crc1,
1934                              uint32_t crc2, uint32_t crc3,
1935                              uint32_t crc4) {}
1936 #endif
1937
1938
1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942
1943         display_pipe_crc_irq_handler(dev, pipe,
1944                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945                                      0, 0, 0, 0);
1946 }
1947
1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951
1952         display_pipe_crc_irq_handler(dev, pipe,
1953                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959
1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962         struct drm_i915_private *dev_priv = dev->dev_private;
1963         uint32_t res1, res2;
1964
1965         if (INTEL_INFO(dev)->gen >= 3)
1966                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967         else
1968                 res1 = 0;
1969
1970         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972         else
1973                 res2 = 0;
1974
1975         display_pipe_crc_irq_handler(dev, pipe,
1976                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1977                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979                                      res1, res2);
1980 }
1981
1982 void gen8_flip_interrupt(struct drm_device *dev)
1983 {
1984         struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986         if (!dev_priv->rps.is_bdw_sw_turbo)
1987                 return;
1988
1989         if(atomic_read(&dev_priv->rps.sw_turbo.flip_received)) {
1990                 mod_timer(&dev_priv->rps.sw_turbo.flip_timer,
1991                                 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies);
1992         }
1993         else {
1994                 dev_priv->rps.sw_turbo.flip_timer.expires =
1995                                 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
1996                 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
1997                 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
1998         }
1999
2000         bdw_software_turbo(dev);
2001 }
2002
2003 /* The RPS events need forcewake, so we add them to a work queue and mask their
2004  * IMR bits until the work is done. Other interrupts can be processed without
2005  * the work queue. */
2006 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
2007 {
2008         if (pm_iir & dev_priv->pm_rps_events) {
2009                 spin_lock(&dev_priv->irq_lock);
2010                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
2011                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
2012                 spin_unlock(&dev_priv->irq_lock);
2013
2014                 queue_work(dev_priv->wq, &dev_priv->rps.work);
2015         }
2016
2017         if (HAS_VEBOX(dev_priv->dev)) {
2018                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
2019                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
2020
2021                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2022                         i915_handle_error(dev_priv->dev, false,
2023                                           "VEBOX CS error interrupt 0x%08x",
2024                                           pm_iir);
2025                 }
2026         }
2027 }
2028
2029 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2030 {
2031         if (!drm_handle_vblank(dev, pipe))
2032                 return false;
2033
2034         return true;
2035 }
2036
2037 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2038 {
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         u32 pipe_stats[I915_MAX_PIPES] = { };
2041         int pipe;
2042
2043         spin_lock(&dev_priv->irq_lock);
2044         for_each_pipe(dev_priv, pipe) {
2045                 int reg;
2046                 u32 mask, iir_bit = 0;
2047
2048                 /*
2049                  * PIPESTAT bits get signalled even when the interrupt is
2050                  * disabled with the mask bits, and some of the status bits do
2051                  * not generate interrupts at all (like the underrun bit). Hence
2052                  * we need to be careful that we only handle what we want to
2053                  * handle.
2054                  */
2055                 mask = 0;
2056                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2057                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
2058
2059                 switch (pipe) {
2060                 case PIPE_A:
2061                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2062                         break;
2063                 case PIPE_B:
2064                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2065                         break;
2066                 case PIPE_C:
2067                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2068                         break;
2069                 }
2070                 if (iir & iir_bit)
2071                         mask |= dev_priv->pipestat_irq_mask[pipe];
2072
2073                 if (!mask)
2074                         continue;
2075
2076                 reg = PIPESTAT(pipe);
2077                 mask |= PIPESTAT_INT_ENABLE_MASK;
2078                 pipe_stats[pipe] = I915_READ(reg) & mask;
2079
2080                 /*
2081                  * Clear the PIPE*STAT regs before the IIR
2082                  */
2083                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2084                                         PIPESTAT_INT_STATUS_MASK))
2085                         I915_WRITE(reg, pipe_stats[pipe]);
2086         }
2087         spin_unlock(&dev_priv->irq_lock);
2088
2089         for_each_pipe(dev_priv, pipe) {
2090                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2091                     intel_pipe_handle_vblank(dev, pipe))
2092                         intel_check_page_flip(dev, pipe);
2093
2094                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2095                         intel_prepare_page_flip(dev, pipe);
2096                         intel_finish_page_flip(dev, pipe);
2097                 }
2098
2099                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2100                         i9xx_pipe_crc_irq_handler(dev, pipe);
2101
2102                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2103                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2104                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2105         }
2106
2107         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2108                 gmbus_irq_handler(dev);
2109 }
2110
2111 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2112 {
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2115
2116         if (hotplug_status) {
2117                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2118                 /*
2119                  * Make sure hotplug status is cleared before we clear IIR, or else we
2120                  * may miss hotplug events.
2121                  */
2122                 POSTING_READ(PORT_HOTPLUG_STAT);
2123
2124                 if (IS_G4X(dev)) {
2125                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2126
2127                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2128                 } else {
2129                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2130
2131                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2132                 }
2133
2134                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2135                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2136                         dp_aux_irq_handler(dev);
2137         }
2138 }
2139
2140 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2141 {
2142         struct drm_device *dev = arg;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         u32 iir, gt_iir, pm_iir;
2145         irqreturn_t ret = IRQ_NONE;
2146
2147         while (true) {
2148                 /* Find, clear, then process each source of interrupt */
2149
2150                 gt_iir = I915_READ(GTIIR);
2151                 if (gt_iir)
2152                         I915_WRITE(GTIIR, gt_iir);
2153
2154                 pm_iir = I915_READ(GEN6_PMIIR);
2155                 if (pm_iir)
2156                         I915_WRITE(GEN6_PMIIR, pm_iir);
2157
2158                 iir = I915_READ(VLV_IIR);
2159                 if (iir) {
2160                         /* Consume port before clearing IIR or we'll miss events */
2161                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2162                                 i9xx_hpd_irq_handler(dev);
2163                         I915_WRITE(VLV_IIR, iir);
2164                 }
2165
2166                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2167                         goto out;
2168
2169                 ret = IRQ_HANDLED;
2170
2171                 if (gt_iir)
2172                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2173                 if (pm_iir)
2174                         gen6_rps_irq_handler(dev_priv, pm_iir);
2175                 /* Call regardless, as some status bits might not be
2176                  * signalled in iir */
2177                 valleyview_pipestat_irq_handler(dev, iir);
2178         }
2179
2180 out:
2181         return ret;
2182 }
2183
2184 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2185 {
2186         struct drm_device *dev = arg;
2187         struct drm_i915_private *dev_priv = dev->dev_private;
2188         u32 master_ctl, iir;
2189         irqreturn_t ret = IRQ_NONE;
2190
2191         for (;;) {
2192                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2193                 iir = I915_READ(VLV_IIR);
2194
2195                 if (master_ctl == 0 && iir == 0)
2196                         break;
2197
2198                 ret = IRQ_HANDLED;
2199
2200                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2201
2202                 /* Find, clear, then process each source of interrupt */
2203
2204                 if (iir) {
2205                         /* Consume port before clearing IIR or we'll miss events */
2206                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2207                                 i9xx_hpd_irq_handler(dev);
2208                         I915_WRITE(VLV_IIR, iir);
2209                 }
2210
2211                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2212
2213                 /* Call regardless, as some status bits might not be
2214                  * signalled in iir */
2215                 valleyview_pipestat_irq_handler(dev, iir);
2216
2217                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2218                 POSTING_READ(GEN8_MASTER_IRQ);
2219         }
2220
2221         return ret;
2222 }
2223
2224 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2225 {
2226         struct drm_i915_private *dev_priv = dev->dev_private;
2227         int pipe;
2228         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2229         u32 dig_hotplug_reg;
2230
2231         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2232         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2233
2234         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2235
2236         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2237                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2238                                SDE_AUDIO_POWER_SHIFT);
2239                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2240                                  port_name(port));
2241         }
2242
2243         if (pch_iir & SDE_AUX_MASK)
2244                 dp_aux_irq_handler(dev);
2245
2246         if (pch_iir & SDE_GMBUS)
2247                 gmbus_irq_handler(dev);
2248
2249         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2250                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2251
2252         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2253                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2254
2255         if (pch_iir & SDE_POISON)
2256                 DRM_ERROR("PCH poison interrupt\n");
2257
2258         if (pch_iir & SDE_FDI_MASK)
2259                 for_each_pipe(dev_priv, pipe)
2260                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2261                                          pipe_name(pipe),
2262                                          I915_READ(FDI_RX_IIR(pipe)));
2263
2264         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2265                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2266
2267         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2268                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2269
2270         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2271                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2272                                                           false))
2273                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2274
2275         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2276                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2277                                                           false))
2278                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2279 }
2280
2281 static void ivb_err_int_handler(struct drm_device *dev)
2282 {
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284         u32 err_int = I915_READ(GEN7_ERR_INT);
2285         enum pipe pipe;
2286
2287         if (err_int & ERR_INT_POISON)
2288                 DRM_ERROR("Poison interrupt\n");
2289
2290         for_each_pipe(dev_priv, pipe) {
2291                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2292                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2293                                                                   false))
2294                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2295                                           pipe_name(pipe));
2296                 }
2297
2298                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2299                         if (IS_IVYBRIDGE(dev))
2300                                 ivb_pipe_crc_irq_handler(dev, pipe);
2301                         else
2302                                 hsw_pipe_crc_irq_handler(dev, pipe);
2303                 }
2304         }
2305
2306         I915_WRITE(GEN7_ERR_INT, err_int);
2307 }
2308
2309 static void cpt_serr_int_handler(struct drm_device *dev)
2310 {
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312         u32 serr_int = I915_READ(SERR_INT);
2313
2314         if (serr_int & SERR_INT_POISON)
2315                 DRM_ERROR("PCH poison interrupt\n");
2316
2317         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2318                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2319                                                           false))
2320                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2321
2322         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2323                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2324                                                           false))
2325                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2326
2327         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2328                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2329                                                           false))
2330                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2331
2332         I915_WRITE(SERR_INT, serr_int);
2333 }
2334
2335 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2336 {
2337         struct drm_i915_private *dev_priv = dev->dev_private;
2338         int pipe;
2339         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2340         u32 dig_hotplug_reg;
2341
2342         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2343         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2344
2345         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2346
2347         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2348                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2349                                SDE_AUDIO_POWER_SHIFT_CPT);
2350                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2351                                  port_name(port));
2352         }
2353
2354         if (pch_iir & SDE_AUX_MASK_CPT)
2355                 dp_aux_irq_handler(dev);
2356
2357         if (pch_iir & SDE_GMBUS_CPT)
2358                 gmbus_irq_handler(dev);
2359
2360         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2361                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2362
2363         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2364                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2365
2366         if (pch_iir & SDE_FDI_MASK_CPT)
2367                 for_each_pipe(dev_priv, pipe)
2368                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2369                                          pipe_name(pipe),
2370                                          I915_READ(FDI_RX_IIR(pipe)));
2371
2372         if (pch_iir & SDE_ERROR_CPT)
2373                 cpt_serr_int_handler(dev);
2374 }
2375
2376 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2377 {
2378         struct drm_i915_private *dev_priv = dev->dev_private;
2379         enum pipe pipe;
2380
2381         if (de_iir & DE_AUX_CHANNEL_A)
2382                 dp_aux_irq_handler(dev);
2383
2384         if (de_iir & DE_GSE)
2385                 intel_opregion_asle_intr(dev);
2386
2387         if (de_iir & DE_POISON)
2388                 DRM_ERROR("Poison interrupt\n");
2389
2390         for_each_pipe(dev_priv, pipe) {
2391                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2392                     intel_pipe_handle_vblank(dev, pipe))
2393                         intel_check_page_flip(dev, pipe);
2394
2395                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2396                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2397                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2398                                           pipe_name(pipe));
2399
2400                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2401                         i9xx_pipe_crc_irq_handler(dev, pipe);
2402
2403                 /* plane/pipes map 1:1 on ilk+ */
2404                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2405                         intel_prepare_page_flip(dev, pipe);
2406                         intel_finish_page_flip_plane(dev, pipe);
2407                 }
2408         }
2409
2410         /* check event from PCH */
2411         if (de_iir & DE_PCH_EVENT) {
2412                 u32 pch_iir = I915_READ(SDEIIR);
2413
2414                 if (HAS_PCH_CPT(dev))
2415                         cpt_irq_handler(dev, pch_iir);
2416                 else
2417                         ibx_irq_handler(dev, pch_iir);
2418
2419                 /* should clear PCH hotplug event before clear CPU irq */
2420                 I915_WRITE(SDEIIR, pch_iir);
2421         }
2422
2423         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2424                 ironlake_rps_change_irq_handler(dev);
2425 }
2426
2427 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2428 {
2429         struct drm_i915_private *dev_priv = dev->dev_private;
2430         enum pipe pipe;
2431
2432         if (de_iir & DE_ERR_INT_IVB)
2433                 ivb_err_int_handler(dev);
2434
2435         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2436                 dp_aux_irq_handler(dev);
2437
2438         if (de_iir & DE_GSE_IVB)
2439                 intel_opregion_asle_intr(dev);
2440
2441         for_each_pipe(dev_priv, pipe) {
2442                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2443                     intel_pipe_handle_vblank(dev, pipe))
2444                         intel_check_page_flip(dev, pipe);
2445
2446                 /* plane/pipes map 1:1 on ilk+ */
2447                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2448                         intel_prepare_page_flip(dev, pipe);
2449                         intel_finish_page_flip_plane(dev, pipe);
2450                 }
2451         }
2452
2453         /* check event from PCH */
2454         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2455                 u32 pch_iir = I915_READ(SDEIIR);
2456
2457                 cpt_irq_handler(dev, pch_iir);
2458
2459                 /* clear PCH hotplug event before clear CPU irq */
2460                 I915_WRITE(SDEIIR, pch_iir);
2461         }
2462 }
2463
2464 /*
2465  * To handle irqs with the minimum potential races with fresh interrupts, we:
2466  * 1 - Disable Master Interrupt Control.
2467  * 2 - Find the source(s) of the interrupt.
2468  * 3 - Clear the Interrupt Identity bits (IIR).
2469  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2470  * 5 - Re-enable Master Interrupt Control.
2471  */
2472 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2473 {
2474         struct drm_device *dev = arg;
2475         struct drm_i915_private *dev_priv = dev->dev_private;
2476         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2477         irqreturn_t ret = IRQ_NONE;
2478
2479         /* We get interrupts on unclaimed registers, so check for this before we
2480          * do any I915_{READ,WRITE}. */
2481         intel_uncore_check_errors(dev);
2482
2483         /* disable master interrupt before clearing iir  */
2484         de_ier = I915_READ(DEIER);
2485         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2486         POSTING_READ(DEIER);
2487
2488         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2489          * interrupts will will be stored on its back queue, and then we'll be
2490          * able to process them after we restore SDEIER (as soon as we restore
2491          * it, we'll get an interrupt if SDEIIR still has something to process
2492          * due to its back queue). */
2493         if (!HAS_PCH_NOP(dev)) {
2494                 sde_ier = I915_READ(SDEIER);
2495                 I915_WRITE(SDEIER, 0);
2496                 POSTING_READ(SDEIER);
2497         }
2498
2499         /* Find, clear, then process each source of interrupt */
2500
2501         gt_iir = I915_READ(GTIIR);
2502         if (gt_iir) {
2503                 I915_WRITE(GTIIR, gt_iir);
2504                 ret = IRQ_HANDLED;
2505                 if (INTEL_INFO(dev)->gen >= 6)
2506                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2507                 else
2508                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2509         }
2510
2511         de_iir = I915_READ(DEIIR);
2512         if (de_iir) {
2513                 I915_WRITE(DEIIR, de_iir);
2514                 ret = IRQ_HANDLED;
2515                 if (INTEL_INFO(dev)->gen >= 7)
2516                         ivb_display_irq_handler(dev, de_iir);
2517                 else
2518                         ilk_display_irq_handler(dev, de_iir);
2519         }
2520
2521         if (INTEL_INFO(dev)->gen >= 6) {
2522                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2523                 if (pm_iir) {
2524                         I915_WRITE(GEN6_PMIIR, pm_iir);
2525                         ret = IRQ_HANDLED;
2526                         gen6_rps_irq_handler(dev_priv, pm_iir);
2527                 }
2528         }
2529
2530         I915_WRITE(DEIER, de_ier);
2531         POSTING_READ(DEIER);
2532         if (!HAS_PCH_NOP(dev)) {
2533                 I915_WRITE(SDEIER, sde_ier);
2534                 POSTING_READ(SDEIER);
2535         }
2536
2537         return ret;
2538 }
2539
2540 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2541 {
2542         struct drm_device *dev = arg;
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544         u32 master_ctl;
2545         irqreturn_t ret = IRQ_NONE;
2546         uint32_t tmp = 0;
2547         enum pipe pipe;
2548
2549         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2550         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2551         if (!master_ctl)
2552                 return IRQ_NONE;
2553
2554         I915_WRITE(GEN8_MASTER_IRQ, 0);
2555         POSTING_READ(GEN8_MASTER_IRQ);
2556
2557         /* Find, clear, then process each source of interrupt */
2558
2559         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2560
2561         if (master_ctl & GEN8_DE_MISC_IRQ) {
2562                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2563                 if (tmp) {
2564                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2565                         ret = IRQ_HANDLED;
2566                         if (tmp & GEN8_DE_MISC_GSE)
2567                                 intel_opregion_asle_intr(dev);
2568                         else
2569                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2570                 }
2571                 else
2572                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2573         }
2574
2575         if (master_ctl & GEN8_DE_PORT_IRQ) {
2576                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2577                 if (tmp) {
2578                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2579                         ret = IRQ_HANDLED;
2580                         if (tmp & GEN8_AUX_CHANNEL_A)
2581                                 dp_aux_irq_handler(dev);
2582                         else
2583                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2584                 }
2585                 else
2586                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2587         }
2588
2589         for_each_pipe(dev_priv, pipe) {
2590                 uint32_t pipe_iir;
2591
2592                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2593                         continue;
2594
2595                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2596                 if (pipe_iir) {
2597                         ret = IRQ_HANDLED;
2598                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2599                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2600                             intel_pipe_handle_vblank(dev, pipe))
2601                                 intel_check_page_flip(dev, pipe);
2602
2603                         if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2604                                 intel_prepare_page_flip(dev, pipe);
2605                                 intel_finish_page_flip_plane(dev, pipe);
2606                         }
2607
2608                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2609                                 hsw_pipe_crc_irq_handler(dev, pipe);
2610
2611                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2612                                 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2613                                                                           false))
2614                                         DRM_ERROR("Pipe %c FIFO underrun\n",
2615                                                   pipe_name(pipe));
2616                         }
2617
2618                         if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2619                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2620                                           pipe_name(pipe),
2621                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2622                         }
2623                 } else
2624                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2625         }
2626
2627         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2628                 /*
2629                  * FIXME(BDW): Assume for now that the new interrupt handling
2630                  * scheme also closed the SDE interrupt handling race we've seen
2631                  * on older pch-split platforms. But this needs testing.
2632                  */
2633                 u32 pch_iir = I915_READ(SDEIIR);
2634                 if (pch_iir) {
2635                         I915_WRITE(SDEIIR, pch_iir);
2636                         ret = IRQ_HANDLED;
2637                         cpt_irq_handler(dev, pch_iir);
2638                 } else
2639                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2640
2641         }
2642
2643         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2644         POSTING_READ(GEN8_MASTER_IRQ);
2645
2646         return ret;
2647 }
2648
2649 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2650                                bool reset_completed)
2651 {
2652         struct intel_engine_cs *ring;
2653         int i;
2654
2655         /*
2656          * Notify all waiters for GPU completion events that reset state has
2657          * been changed, and that they need to restart their wait after
2658          * checking for potential errors (and bail out to drop locks if there is
2659          * a gpu reset pending so that i915_error_work_func can acquire them).
2660          */
2661
2662         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2663         for_each_ring(ring, dev_priv, i)
2664                 wake_up_all(&ring->irq_queue);
2665
2666         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2667         wake_up_all(&dev_priv->pending_flip_queue);
2668
2669         /*
2670          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2671          * reset state is cleared.
2672          */
2673         if (reset_completed)
2674                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2675 }
2676
2677 /**
2678  * i915_error_work_func - do process context error handling work
2679  * @work: work struct
2680  *
2681  * Fire an error uevent so userspace can see that a hang or error
2682  * was detected.
2683  */
2684 static void i915_error_work_func(struct work_struct *work)
2685 {
2686         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2687                                                     work);
2688         struct drm_i915_private *dev_priv =
2689                 container_of(error, struct drm_i915_private, gpu_error);
2690         struct drm_device *dev = dev_priv->dev;
2691         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2692         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2693         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2694         int ret;
2695
2696         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2697
2698         /*
2699          * Note that there's only one work item which does gpu resets, so we
2700          * need not worry about concurrent gpu resets potentially incrementing
2701          * error->reset_counter twice. We only need to take care of another
2702          * racing irq/hangcheck declaring the gpu dead for a second time. A
2703          * quick check for that is good enough: schedule_work ensures the
2704          * correct ordering between hang detection and this work item, and since
2705          * the reset in-progress bit is only ever set by code outside of this
2706          * work we don't need to worry about any other races.
2707          */
2708         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2709                 DRM_DEBUG_DRIVER("resetting chip\n");
2710                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2711                                    reset_event);
2712
2713                 /*
2714                  * In most cases it's guaranteed that we get here with an RPM
2715                  * reference held, for example because there is a pending GPU
2716                  * request that won't finish until the reset is done. This
2717                  * isn't the case at least when we get here by doing a
2718                  * simulated reset via debugs, so get an RPM reference.
2719                  */
2720                 intel_runtime_pm_get(dev_priv);
2721                 /*
2722                  * All state reset _must_ be completed before we update the
2723                  * reset counter, for otherwise waiters might miss the reset
2724                  * pending state and not properly drop locks, resulting in
2725                  * deadlocks with the reset work.
2726                  */
2727                 ret = i915_reset(dev);
2728
2729                 intel_display_handle_reset(dev);
2730
2731                 intel_runtime_pm_put(dev_priv);
2732
2733                 if (ret == 0) {
2734                         /*
2735                          * After all the gem state is reset, increment the reset
2736                          * counter and wake up everyone waiting for the reset to
2737                          * complete.
2738                          *
2739                          * Since unlock operations are a one-sided barrier only,
2740                          * we need to insert a barrier here to order any seqno
2741                          * updates before
2742                          * the counter increment.
2743                          */
2744                         smp_mb__before_atomic();
2745                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2746
2747                         kobject_uevent_env(&dev->primary->kdev->kobj,
2748                                            KOBJ_CHANGE, reset_done_event);
2749                 } else {
2750                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2751                 }
2752
2753                 /*
2754                  * Note: The wake_up also serves as a memory barrier so that
2755                  * waiters see the update value of the reset counter atomic_t.
2756                  */
2757                 i915_error_wake_up(dev_priv, true);
2758         }
2759 }
2760
2761 static void i915_report_and_clear_eir(struct drm_device *dev)
2762 {
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         uint32_t instdone[I915_NUM_INSTDONE_REG];
2765         u32 eir = I915_READ(EIR);
2766         int pipe, i;
2767
2768         if (!eir)
2769                 return;
2770
2771         pr_err("render error detected, EIR: 0x%08x\n", eir);
2772
2773         i915_get_extra_instdone(dev, instdone);
2774
2775         if (IS_G4X(dev)) {
2776                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2777                         u32 ipeir = I915_READ(IPEIR_I965);
2778
2779                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2780                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2781                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2782                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2783                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2784                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2785                         I915_WRITE(IPEIR_I965, ipeir);
2786                         POSTING_READ(IPEIR_I965);
2787                 }
2788                 if (eir & GM45_ERROR_PAGE_TABLE) {
2789                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2790                         pr_err("page table error\n");
2791                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2792                         I915_WRITE(PGTBL_ER, pgtbl_err);
2793                         POSTING_READ(PGTBL_ER);
2794                 }
2795         }
2796
2797         if (!IS_GEN2(dev)) {
2798                 if (eir & I915_ERROR_PAGE_TABLE) {
2799                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2800                         pr_err("page table error\n");
2801                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2802                         I915_WRITE(PGTBL_ER, pgtbl_err);
2803                         POSTING_READ(PGTBL_ER);
2804                 }
2805         }
2806
2807         if (eir & I915_ERROR_MEMORY_REFRESH) {
2808                 pr_err("memory refresh error:\n");
2809                 for_each_pipe(dev_priv, pipe)
2810                         pr_err("pipe %c stat: 0x%08x\n",
2811                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2812                 /* pipestat has already been acked */
2813         }
2814         if (eir & I915_ERROR_INSTRUCTION) {
2815                 pr_err("instruction error\n");
2816                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2817                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2818                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2819                 if (INTEL_INFO(dev)->gen < 4) {
2820                         u32 ipeir = I915_READ(IPEIR);
2821
2822                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2823                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2824                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2825                         I915_WRITE(IPEIR, ipeir);
2826                         POSTING_READ(IPEIR);
2827                 } else {
2828                         u32 ipeir = I915_READ(IPEIR_I965);
2829
2830                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2831                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2832                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2833                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2834                         I915_WRITE(IPEIR_I965, ipeir);
2835                         POSTING_READ(IPEIR_I965);
2836                 }
2837         }
2838
2839         I915_WRITE(EIR, eir);
2840         POSTING_READ(EIR);
2841         eir = I915_READ(EIR);
2842         if (eir) {
2843                 /*
2844                  * some errors might have become stuck,
2845                  * mask them.
2846                  */
2847                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2848                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2849                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2850         }
2851 }
2852
2853 /**
2854  * i915_handle_error - handle an error interrupt
2855  * @dev: drm device
2856  *
2857  * Do some basic checking of regsiter state at error interrupt time and
2858  * dump it to the syslog.  Also call i915_capture_error_state() to make
2859  * sure we get a record and make it available in debugfs.  Fire a uevent
2860  * so userspace knows something bad happened (should trigger collection
2861  * of a ring dump etc.).
2862  */
2863 void i915_handle_error(struct drm_device *dev, bool wedged,
2864                        const char *fmt, ...)
2865 {
2866         struct drm_i915_private *dev_priv = dev->dev_private;
2867         va_list args;
2868         char error_msg[80];
2869
2870         va_start(args, fmt);
2871         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2872         va_end(args);
2873
2874         i915_capture_error_state(dev, wedged, error_msg);
2875         i915_report_and_clear_eir(dev);
2876
2877         if (wedged) {
2878                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2879                                 &dev_priv->gpu_error.reset_counter);
2880
2881                 /*
2882                  * Wakeup waiting processes so that the reset work function
2883                  * i915_error_work_func doesn't deadlock trying to grab various
2884                  * locks. By bumping the reset counter first, the woken
2885                  * processes will see a reset in progress and back off,
2886                  * releasing their locks and then wait for the reset completion.
2887                  * We must do this for _all_ gpu waiters that might hold locks
2888                  * that the reset work needs to acquire.
2889                  *
2890                  * Note: The wake_up serves as the required memory barrier to
2891                  * ensure that the waiters see the updated value of the reset
2892                  * counter atomic_t.
2893                  */
2894                 i915_error_wake_up(dev_priv, false);
2895         }
2896
2897         /*
2898          * Our reset work can grab modeset locks (since it needs to reset the
2899          * state of outstanding pagelips). Hence it must not be run on our own
2900          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2901          * code will deadlock.
2902          */
2903         schedule_work(&dev_priv->gpu_error.work);
2904 }
2905
2906 /* Called from drm generic code, passed 'crtc' which
2907  * we use as a pipe index
2908  */
2909 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2910 {
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         unsigned long irqflags;
2913
2914         if (!i915_pipe_enabled(dev, pipe))
2915                 return -EINVAL;
2916
2917         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2918         if (INTEL_INFO(dev)->gen >= 4)
2919                 i915_enable_pipestat(dev_priv, pipe,
2920                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2921         else
2922                 i915_enable_pipestat(dev_priv, pipe,
2923                                      PIPE_VBLANK_INTERRUPT_STATUS);
2924         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2925
2926         return 0;
2927 }
2928
2929 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2930 {
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         unsigned long irqflags;
2933         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2934                                                      DE_PIPE_VBLANK(pipe);
2935
2936         if (!i915_pipe_enabled(dev, pipe))
2937                 return -EINVAL;
2938
2939         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2940         ironlake_enable_display_irq(dev_priv, bit);
2941         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2942
2943         return 0;
2944 }
2945
2946 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2947 {
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949         unsigned long irqflags;
2950
2951         if (!i915_pipe_enabled(dev, pipe))
2952                 return -EINVAL;
2953
2954         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2955         i915_enable_pipestat(dev_priv, pipe,
2956                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2957         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2958
2959         return 0;
2960 }
2961
2962 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         unsigned long irqflags;
2966
2967         if (!i915_pipe_enabled(dev, pipe))
2968                 return -EINVAL;
2969
2970         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2971         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2972         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2973         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2974         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975         return 0;
2976 }
2977
2978 /* Called from drm generic code, passed 'crtc' which
2979  * we use as a pipe index
2980  */
2981 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2982 {
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984         unsigned long irqflags;
2985
2986         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2987         i915_disable_pipestat(dev_priv, pipe,
2988                               PIPE_VBLANK_INTERRUPT_STATUS |
2989                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2990         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2991 }
2992
2993 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2994 {
2995         struct drm_i915_private *dev_priv = dev->dev_private;
2996         unsigned long irqflags;
2997         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2998                                                      DE_PIPE_VBLANK(pipe);
2999
3000         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3001         ironlake_disable_display_irq(dev_priv, bit);
3002         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3003 }
3004
3005 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3006 {
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         unsigned long irqflags;
3009
3010         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3011         i915_disable_pipestat(dev_priv, pipe,
3012                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3013         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3014 }
3015
3016 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3017 {
3018         struct drm_i915_private *dev_priv = dev->dev_private;
3019         unsigned long irqflags;
3020
3021         if (!i915_pipe_enabled(dev, pipe))
3022                 return;
3023
3024         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3025         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3026         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3027         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3028         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3029 }
3030
3031 static u32
3032 ring_last_seqno(struct intel_engine_cs *ring)
3033 {
3034         return list_entry(ring->request_list.prev,
3035                           struct drm_i915_gem_request, list)->seqno;
3036 }
3037
3038 static bool
3039 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3040 {
3041         return (list_empty(&ring->request_list) ||
3042                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3043 }
3044
3045 static bool
3046 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3047 {
3048         if (INTEL_INFO(dev)->gen >= 8) {
3049                 return (ipehr >> 23) == 0x1c;
3050         } else {
3051                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3052                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3053                                  MI_SEMAPHORE_REGISTER);
3054         }
3055 }
3056
3057 static struct intel_engine_cs *
3058 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3059 {
3060         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3061         struct intel_engine_cs *signaller;
3062         int i;
3063
3064         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3065                 for_each_ring(signaller, dev_priv, i) {
3066                         if (ring == signaller)
3067                                 continue;
3068
3069                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
3070                                 return signaller;
3071                 }
3072         } else {
3073                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3074
3075                 for_each_ring(signaller, dev_priv, i) {
3076                         if(ring == signaller)
3077                                 continue;
3078
3079                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3080                                 return signaller;
3081                 }
3082         }
3083
3084         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3085                   ring->id, ipehr, offset);
3086
3087         return NULL;
3088 }
3089
3090 static struct intel_engine_cs *
3091 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3092 {
3093         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3094         u32 cmd, ipehr, head;
3095         u64 offset = 0;
3096         int i, backwards;
3097
3098         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3099         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3100                 return NULL;
3101
3102         /*
3103          * HEAD is likely pointing to the dword after the actual command,
3104          * so scan backwards until we find the MBOX. But limit it to just 3
3105          * or 4 dwords depending on the semaphore wait command size.
3106          * Note that we don't care about ACTHD here since that might
3107          * point at at batch, and semaphores are always emitted into the
3108          * ringbuffer itself.
3109          */
3110         head = I915_READ_HEAD(ring) & HEAD_ADDR;
3111         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3112
3113         for (i = backwards; i; --i) {
3114                 /*
3115                  * Be paranoid and presume the hw has gone off into the wild -
3116                  * our ring is smaller than what the hardware (and hence
3117                  * HEAD_ADDR) allows. Also handles wrap-around.
3118                  */
3119                 head &= ring->buffer->size - 1;
3120
3121                 /* This here seems to blow up */
3122                 cmd = ioread32(ring->buffer->virtual_start + head);
3123                 if (cmd == ipehr)
3124                         break;
3125
3126                 head -= 4;
3127         }
3128
3129         if (!i)
3130                 return NULL;
3131
3132         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3133         if (INTEL_INFO(ring->dev)->gen >= 8) {
3134                 offset = ioread32(ring->buffer->virtual_start + head + 12);
3135                 offset <<= 32;
3136                 offset = ioread32(ring->buffer->virtual_start + head + 8);
3137         }
3138         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3139 }
3140
3141 static int semaphore_passed(struct intel_engine_cs *ring)
3142 {
3143         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3144         struct intel_engine_cs *signaller;
3145         u32 seqno;
3146
3147         ring->hangcheck.deadlock++;
3148
3149         signaller = semaphore_waits_for(ring, &seqno);
3150         if (signaller == NULL)
3151                 return -1;
3152
3153         /* Prevent pathological recursion due to driver bugs */
3154         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3155                 return -1;
3156
3157         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3158                 return 1;
3159
3160         /* cursory check for an unkickable deadlock */
3161         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3162             semaphore_passed(signaller) < 0)
3163                 return -1;
3164
3165         return 0;
3166 }
3167
3168 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3169 {
3170         struct intel_engine_cs *ring;
3171         int i;
3172
3173         for_each_ring(ring, dev_priv, i)
3174                 ring->hangcheck.deadlock = 0;
3175 }
3176
3177 static enum intel_ring_hangcheck_action
3178 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3179 {
3180         struct drm_device *dev = ring->dev;
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182         u32 tmp;
3183
3184         if (acthd != ring->hangcheck.acthd) {
3185                 if (acthd > ring->hangcheck.max_acthd) {
3186                         ring->hangcheck.max_acthd = acthd;
3187                         return HANGCHECK_ACTIVE;
3188                 }
3189
3190                 return HANGCHECK_ACTIVE_LOOP;
3191         }
3192
3193         if (IS_GEN2(dev))
3194                 return HANGCHECK_HUNG;
3195
3196         /* Is the chip hanging on a WAIT_FOR_EVENT?
3197          * If so we can simply poke the RB_WAIT bit
3198          * and break the hang. This should work on
3199          * all but the second generation chipsets.
3200          */
3201         tmp = I915_READ_CTL(ring);
3202         if (tmp & RING_WAIT) {
3203                 i915_handle_error(dev, false,
3204                                   "Kicking stuck wait on %s",
3205                                   ring->name);
3206                 I915_WRITE_CTL(ring, tmp);
3207                 return HANGCHECK_KICK;
3208         }
3209
3210         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3211                 switch (semaphore_passed(ring)) {
3212                 default:
3213                         return HANGCHECK_HUNG;
3214                 case 1:
3215                         i915_handle_error(dev, false,
3216                                           "Kicking stuck semaphore on %s",
3217                                           ring->name);
3218                         I915_WRITE_CTL(ring, tmp);
3219                         return HANGCHECK_KICK;
3220                 case 0:
3221                         return HANGCHECK_WAIT;
3222                 }
3223         }
3224
3225         return HANGCHECK_HUNG;
3226 }
3227
3228 /**
3229  * This is called when the chip hasn't reported back with completed
3230  * batchbuffers in a long time. We keep track per ring seqno progress and
3231  * if there are no progress, hangcheck score for that ring is increased.
3232  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3233  * we kick the ring. If we see no progress on three subsequent calls
3234  * we assume chip is wedged and try to fix it by resetting the chip.
3235  */
3236 static void i915_hangcheck_elapsed(unsigned long data)
3237 {
3238         struct drm_device *dev = (struct drm_device *)data;
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240         struct intel_engine_cs *ring;
3241         int i;
3242         int busy_count = 0, rings_hung = 0;
3243         bool stuck[I915_NUM_RINGS] = { 0 };
3244 #define BUSY 1
3245 #define KICK 5
3246 #define HUNG 20
3247
3248         if (!i915.enable_hangcheck)
3249                 return;
3250
3251         for_each_ring(ring, dev_priv, i) {
3252                 u64 acthd;
3253                 u32 seqno;
3254                 bool busy = true;
3255
3256                 semaphore_clear_deadlocks(dev_priv);
3257
3258                 seqno = ring->get_seqno(ring, false);
3259                 acthd = intel_ring_get_active_head(ring);
3260
3261                 if (ring->hangcheck.seqno == seqno) {
3262                         if (ring_idle(ring, seqno)) {
3263                                 ring->hangcheck.action = HANGCHECK_IDLE;
3264
3265                                 if (waitqueue_active(&ring->irq_queue)) {
3266                                         /* Issue a wake-up to catch stuck h/w. */
3267                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3268                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3269                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3270                                                                   ring->name);
3271                                                 else
3272                                                         DRM_INFO("Fake missed irq on %s\n",
3273                                                                  ring->name);
3274                                                 wake_up_all(&ring->irq_queue);
3275                                         }
3276                                         /* Safeguard against driver failure */
3277                                         ring->hangcheck.score += BUSY;
3278                                 } else
3279                                         busy = false;
3280                         } else {
3281                                 /* We always increment the hangcheck score
3282                                  * if the ring is busy and still processing
3283                                  * the same request, so that no single request
3284                                  * can run indefinitely (such as a chain of
3285                                  * batches). The only time we do not increment
3286                                  * the hangcheck score on this ring, if this
3287                                  * ring is in a legitimate wait for another
3288                                  * ring. In that case the waiting ring is a
3289                                  * victim and we want to be sure we catch the
3290                                  * right culprit. Then every time we do kick
3291                                  * the ring, add a small increment to the
3292                                  * score so that we can catch a batch that is
3293                                  * being repeatedly kicked and so responsible
3294                                  * for stalling the machine.
3295                                  */
3296                                 ring->hangcheck.action = ring_stuck(ring,
3297                                                                     acthd);
3298
3299                                 switch (ring->hangcheck.action) {
3300                                 case HANGCHECK_IDLE:
3301                                 case HANGCHECK_WAIT:
3302                                 case HANGCHECK_ACTIVE:
3303                                         break;
3304                                 case HANGCHECK_ACTIVE_LOOP:
3305                                         ring->hangcheck.score += BUSY;
3306                                         break;
3307                                 case HANGCHECK_KICK:
3308                                         ring->hangcheck.score += KICK;
3309                                         break;
3310                                 case HANGCHECK_HUNG:
3311                                         ring->hangcheck.score += HUNG;
3312                                         stuck[i] = true;
3313                                         break;
3314                                 }
3315                         }
3316                 } else {
3317                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3318
3319                         /* Gradually reduce the count so that we catch DoS
3320                          * attempts across multiple batches.
3321                          */
3322                         if (ring->hangcheck.score > 0)
3323                                 ring->hangcheck.score--;
3324
3325                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3326                 }
3327
3328                 ring->hangcheck.seqno = seqno;
3329                 ring->hangcheck.acthd = acthd;
3330                 busy_count += busy;
3331         }
3332
3333         for_each_ring(ring, dev_priv, i) {
3334                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3335                         DRM_INFO("%s on %s\n",
3336                                  stuck[i] ? "stuck" : "no progress",
3337                                  ring->name);
3338                         rings_hung++;
3339                 }
3340         }
3341
3342         if (rings_hung)
3343                 return i915_handle_error(dev, true, "Ring hung");
3344
3345         if (busy_count)
3346                 /* Reset timer case chip hangs without another request
3347                  * being added */
3348                 i915_queue_hangcheck(dev);
3349 }
3350
3351 void i915_queue_hangcheck(struct drm_device *dev)
3352 {
3353         struct drm_i915_private *dev_priv = dev->dev_private;
3354         if (!i915.enable_hangcheck)
3355                 return;
3356
3357         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3358                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3359 }
3360
3361 static void ibx_irq_reset(struct drm_device *dev)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365         if (HAS_PCH_NOP(dev))
3366                 return;
3367
3368         GEN5_IRQ_RESET(SDE);
3369
3370         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3371                 I915_WRITE(SERR_INT, 0xffffffff);
3372 }
3373
3374 /*
3375  * SDEIER is also touched by the interrupt handler to work around missed PCH
3376  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3377  * instead we unconditionally enable all PCH interrupt sources here, but then
3378  * only unmask them as needed with SDEIMR.
3379  *
3380  * This function needs to be called before interrupts are enabled.
3381  */
3382 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3383 {
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385
3386         if (HAS_PCH_NOP(dev))
3387                 return;
3388
3389         WARN_ON(I915_READ(SDEIER) != 0);
3390         I915_WRITE(SDEIER, 0xffffffff);
3391         POSTING_READ(SDEIER);
3392 }
3393
3394 static void gen5_gt_irq_reset(struct drm_device *dev)
3395 {
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397
3398         GEN5_IRQ_RESET(GT);
3399         if (INTEL_INFO(dev)->gen >= 6)
3400                 GEN5_IRQ_RESET(GEN6_PM);
3401 }
3402
3403 /* drm_dma.h hooks
3404 */
3405 static void ironlake_irq_reset(struct drm_device *dev)
3406 {
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408
3409         I915_WRITE(HWSTAM, 0xffffffff);
3410
3411         GEN5_IRQ_RESET(DE);
3412         if (IS_GEN7(dev))
3413                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3414
3415         gen5_gt_irq_reset(dev);
3416
3417         ibx_irq_reset(dev);
3418 }
3419
3420 static void valleyview_irq_preinstall(struct drm_device *dev)
3421 {
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         int pipe;
3424
3425         /* VLV magic */
3426         I915_WRITE(VLV_IMR, 0);
3427         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3428         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3429         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3430
3431         /* and GT */
3432         I915_WRITE(GTIIR, I915_READ(GTIIR));
3433         I915_WRITE(GTIIR, I915_READ(GTIIR));
3434
3435         gen5_gt_irq_reset(dev);
3436
3437         I915_WRITE(DPINVGTT, 0xff);
3438
3439         I915_WRITE(PORT_HOTPLUG_EN, 0);
3440         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3441         for_each_pipe(dev_priv, pipe)
3442                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3443         I915_WRITE(VLV_IIR, 0xffffffff);
3444         I915_WRITE(VLV_IMR, 0xffffffff);
3445         I915_WRITE(VLV_IER, 0x0);
3446         POSTING_READ(VLV_IER);
3447 }
3448
3449 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3450 {
3451         GEN8_IRQ_RESET_NDX(GT, 0);
3452         GEN8_IRQ_RESET_NDX(GT, 1);
3453         GEN8_IRQ_RESET_NDX(GT, 2);
3454         GEN8_IRQ_RESET_NDX(GT, 3);
3455 }
3456
3457 static void gen8_irq_reset(struct drm_device *dev)
3458 {
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460         int pipe;
3461
3462         I915_WRITE(GEN8_MASTER_IRQ, 0);
3463         POSTING_READ(GEN8_MASTER_IRQ);
3464
3465         gen8_gt_irq_reset(dev_priv);
3466
3467         for_each_pipe(dev_priv, pipe)
3468                 if (intel_display_power_enabled(dev_priv,
3469                                                 POWER_DOMAIN_PIPE(pipe)))
3470                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3471
3472         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3473         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3474         GEN5_IRQ_RESET(GEN8_PCU_);
3475
3476         ibx_irq_reset(dev);
3477 }
3478
3479 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3480 {
3481         unsigned long irqflags;
3482
3483         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3484         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3485                           ~dev_priv->de_irq_mask[PIPE_B]);
3486         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3487                           ~dev_priv->de_irq_mask[PIPE_C]);
3488         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3489 }
3490
3491 static void cherryview_irq_preinstall(struct drm_device *dev)
3492 {
3493         struct drm_i915_private *dev_priv = dev->dev_private;
3494         int pipe;
3495
3496         I915_WRITE(GEN8_MASTER_IRQ, 0);
3497         POSTING_READ(GEN8_MASTER_IRQ);
3498
3499         gen8_gt_irq_reset(dev_priv);
3500
3501         GEN5_IRQ_RESET(GEN8_PCU_);
3502
3503         POSTING_READ(GEN8_PCU_IIR);
3504
3505         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3506
3507         I915_WRITE(PORT_HOTPLUG_EN, 0);
3508         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3509
3510         for_each_pipe(dev_priv, pipe)
3511                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3512
3513         I915_WRITE(VLV_IMR, 0xffffffff);
3514         I915_WRITE(VLV_IER, 0x0);
3515         I915_WRITE(VLV_IIR, 0xffffffff);
3516         POSTING_READ(VLV_IIR);
3517 }
3518
3519 static void ibx_hpd_irq_setup(struct drm_device *dev)
3520 {
3521         struct drm_i915_private *dev_priv = dev->dev_private;
3522         struct intel_encoder *intel_encoder;
3523         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3524
3525         if (HAS_PCH_IBX(dev)) {
3526                 hotplug_irqs = SDE_HOTPLUG_MASK;
3527                 for_each_intel_encoder(dev, intel_encoder)
3528                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3529                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3530         } else {
3531                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3532                 for_each_intel_encoder(dev, intel_encoder)
3533                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3534                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3535         }
3536
3537         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3538
3539         /*
3540          * Enable digital hotplug on the PCH, and configure the DP short pulse
3541          * duration to 2ms (which is the minimum in the Display Port spec)
3542          *
3543          * This register is the same on all known PCH chips.
3544          */
3545         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3546         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3547         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3548         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3549         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3550         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3551 }
3552
3553 static void ibx_irq_postinstall(struct drm_device *dev)
3554 {
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556         u32 mask;
3557
3558         if (HAS_PCH_NOP(dev))
3559                 return;
3560
3561         if (HAS_PCH_IBX(dev))
3562                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3563         else
3564                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3565
3566         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3567         I915_WRITE(SDEIMR, ~mask);
3568 }
3569
3570 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3571 {
3572         struct drm_i915_private *dev_priv = dev->dev_private;
3573         u32 pm_irqs, gt_irqs;
3574
3575         pm_irqs = gt_irqs = 0;
3576
3577         dev_priv->gt_irq_mask = ~0;
3578         if (HAS_L3_DPF(dev)) {
3579                 /* L3 parity interrupt is always unmasked. */
3580                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3581                 gt_irqs |= GT_PARITY_ERROR(dev);
3582         }
3583
3584         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3585         if (IS_GEN5(dev)) {
3586                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3587                            ILK_BSD_USER_INTERRUPT;
3588         } else {
3589                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3590         }
3591
3592         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3593
3594         if (INTEL_INFO(dev)->gen >= 6) {
3595                 pm_irqs |= dev_priv->pm_rps_events;
3596
3597                 if (HAS_VEBOX(dev))
3598                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3599
3600                 dev_priv->pm_irq_mask = 0xffffffff;
3601                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3602         }
3603 }
3604
3605 static int ironlake_irq_postinstall(struct drm_device *dev)
3606 {
3607         unsigned long irqflags;
3608         struct drm_i915_private *dev_priv = dev->dev_private;
3609         u32 display_mask, extra_mask;
3610
3611         if (INTEL_INFO(dev)->gen >= 7) {
3612                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3613                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3614                                 DE_PLANEB_FLIP_DONE_IVB |
3615                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3616                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3617                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3618         } else {
3619                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3620                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3621                                 DE_AUX_CHANNEL_A |
3622                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3623                                 DE_POISON);
3624                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3625                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3626         }
3627
3628         dev_priv->irq_mask = ~display_mask;
3629
3630         I915_WRITE(HWSTAM, 0xeffe);
3631
3632         ibx_irq_pre_postinstall(dev);
3633
3634         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3635
3636         gen5_gt_irq_postinstall(dev);
3637
3638         ibx_irq_postinstall(dev);
3639
3640         if (IS_IRONLAKE_M(dev)) {
3641                 /* Enable PCU event interrupts
3642                  *
3643                  * spinlocking not required here for correctness since interrupt
3644                  * setup is guaranteed to run in single-threaded context. But we
3645                  * need it to make the assert_spin_locked happy. */
3646                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3647                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3648                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3649         }
3650
3651         return 0;
3652 }
3653
3654 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3655 {
3656         u32 pipestat_mask;
3657         u32 iir_mask;
3658
3659         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3660                         PIPE_FIFO_UNDERRUN_STATUS;
3661
3662         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3663         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3664         POSTING_READ(PIPESTAT(PIPE_A));
3665
3666         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3667                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3668
3669         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3670                                                PIPE_GMBUS_INTERRUPT_STATUS);
3671         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3672
3673         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3674                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3675                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3676         dev_priv->irq_mask &= ~iir_mask;
3677
3678         I915_WRITE(VLV_IIR, iir_mask);
3679         I915_WRITE(VLV_IIR, iir_mask);
3680         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3681         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3682         POSTING_READ(VLV_IER);
3683 }
3684
3685 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3686 {
3687         u32 pipestat_mask;
3688         u32 iir_mask;
3689
3690         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3691                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3692                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3693
3694         dev_priv->irq_mask |= iir_mask;
3695         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3696         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3697         I915_WRITE(VLV_IIR, iir_mask);
3698         I915_WRITE(VLV_IIR, iir_mask);
3699         POSTING_READ(VLV_IIR);
3700
3701         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3702                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3703
3704         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3705                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3706         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3707
3708         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3709                         PIPE_FIFO_UNDERRUN_STATUS;
3710         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3711         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3712         POSTING_READ(PIPESTAT(PIPE_A));
3713 }
3714
3715 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3716 {
3717         assert_spin_locked(&dev_priv->irq_lock);
3718
3719         if (dev_priv->display_irqs_enabled)
3720                 return;
3721
3722         dev_priv->display_irqs_enabled = true;
3723
3724         if (dev_priv->dev->irq_enabled)
3725                 valleyview_display_irqs_install(dev_priv);
3726 }
3727
3728 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3729 {
3730         assert_spin_locked(&dev_priv->irq_lock);
3731
3732         if (!dev_priv->display_irqs_enabled)
3733                 return;
3734
3735         dev_priv->display_irqs_enabled = false;
3736
3737         if (dev_priv->dev->irq_enabled)
3738                 valleyview_display_irqs_uninstall(dev_priv);
3739 }
3740
3741 static int valleyview_irq_postinstall(struct drm_device *dev)
3742 {
3743         struct drm_i915_private *dev_priv = dev->dev_private;
3744         unsigned long irqflags;
3745
3746         dev_priv->irq_mask = ~0;
3747
3748         I915_WRITE(PORT_HOTPLUG_EN, 0);
3749         POSTING_READ(PORT_HOTPLUG_EN);
3750
3751         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3752         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3753         I915_WRITE(VLV_IIR, 0xffffffff);
3754         POSTING_READ(VLV_IER);
3755
3756         /* Interrupt setup is already guaranteed to be single-threaded, this is
3757          * just to make the assert_spin_locked check happy. */
3758         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3759         if (dev_priv->display_irqs_enabled)
3760                 valleyview_display_irqs_install(dev_priv);
3761         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3762
3763         I915_WRITE(VLV_IIR, 0xffffffff);
3764         I915_WRITE(VLV_IIR, 0xffffffff);
3765
3766         gen5_gt_irq_postinstall(dev);
3767
3768         /* ack & enable invalid PTE error interrupts */
3769 #if 0 /* FIXME: add support to irq handler for checking these bits */
3770         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3771         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3772 #endif
3773
3774         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3775
3776         return 0;
3777 }
3778
3779 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3780 {
3781         /* These are interrupts we'll toggle with the ring mask register */
3782         uint32_t gt_interrupts[] = {
3783                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3784                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3785                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3786                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3787                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3788                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3789                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3790                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3791                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3792                 0,
3793                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3794                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3795                 };
3796
3797         dev_priv->pm_irq_mask = 0xffffffff;
3798         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3799         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3800         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3801         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3802 }
3803
3804 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3805 {
3806         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3807                 GEN8_PIPE_CDCLK_CRC_DONE |
3808                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3809         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3810                 GEN8_PIPE_FIFO_UNDERRUN;
3811         int pipe;
3812         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3813         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3814         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3815
3816         for_each_pipe(dev_priv, pipe)
3817                 if (intel_display_power_enabled(dev_priv,
3818                                 POWER_DOMAIN_PIPE(pipe)))
3819                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3820                                           dev_priv->de_irq_mask[pipe],
3821                                           de_pipe_enables);
3822
3823         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3824 }
3825
3826 static int gen8_irq_postinstall(struct drm_device *dev)
3827 {
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829
3830         ibx_irq_pre_postinstall(dev);
3831
3832         gen8_gt_irq_postinstall(dev_priv);
3833         gen8_de_irq_postinstall(dev_priv);
3834
3835         ibx_irq_postinstall(dev);
3836
3837         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3838         POSTING_READ(GEN8_MASTER_IRQ);
3839
3840         return 0;
3841 }
3842
3843 static int cherryview_irq_postinstall(struct drm_device *dev)
3844 {
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3847                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3848                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3849                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3850         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3851                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3852         unsigned long irqflags;
3853         int pipe;
3854
3855         /*
3856          * Leave vblank interrupts masked initially.  enable/disable will
3857          * toggle them based on usage.
3858          */
3859         dev_priv->irq_mask = ~enable_mask;
3860
3861         for_each_pipe(dev_priv, pipe)
3862                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3863
3864         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3865         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3866         for_each_pipe(dev_priv, pipe)
3867                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3868         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3869
3870         I915_WRITE(VLV_IIR, 0xffffffff);
3871         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3872         I915_WRITE(VLV_IER, enable_mask);
3873
3874         gen8_gt_irq_postinstall(dev_priv);
3875
3876         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3877         POSTING_READ(GEN8_MASTER_IRQ);
3878
3879         return 0;
3880 }
3881
3882 static void gen8_irq_uninstall(struct drm_device *dev)
3883 {
3884         struct drm_i915_private *dev_priv = dev->dev_private;
3885
3886         if (!dev_priv)
3887                 return;
3888
3889         gen8_irq_reset(dev);
3890 }
3891
3892 static void valleyview_irq_uninstall(struct drm_device *dev)
3893 {
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895         unsigned long irqflags;
3896         int pipe;
3897
3898         if (!dev_priv)
3899                 return;
3900
3901         I915_WRITE(VLV_MASTER_IER, 0);
3902
3903         for_each_pipe(dev_priv, pipe)
3904                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3905
3906         I915_WRITE(HWSTAM, 0xffffffff);
3907         I915_WRITE(PORT_HOTPLUG_EN, 0);
3908         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3909
3910         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3911         if (dev_priv->display_irqs_enabled)
3912                 valleyview_display_irqs_uninstall(dev_priv);
3913         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3914
3915         dev_priv->irq_mask = 0;
3916
3917         I915_WRITE(VLV_IIR, 0xffffffff);
3918         I915_WRITE(VLV_IMR, 0xffffffff);
3919         I915_WRITE(VLV_IER, 0x0);
3920         POSTING_READ(VLV_IER);
3921 }
3922
3923 static void cherryview_irq_uninstall(struct drm_device *dev)
3924 {
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926         int pipe;
3927
3928         if (!dev_priv)
3929                 return;
3930
3931         I915_WRITE(GEN8_MASTER_IRQ, 0);
3932         POSTING_READ(GEN8_MASTER_IRQ);
3933
3934 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3935 do {                                                            \
3936         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3937         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3938         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3939         POSTING_READ(GEN8_##type##_IIR(which));                 \
3940         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3941 } while (0)
3942
3943 #define GEN8_IRQ_FINI(type)                             \
3944 do {                                                    \
3945         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3946         I915_WRITE(GEN8_##type##_IER, 0);               \
3947         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3948         POSTING_READ(GEN8_##type##_IIR);                \
3949         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3950 } while (0)
3951
3952         GEN8_IRQ_FINI_NDX(GT, 0);
3953         GEN8_IRQ_FINI_NDX(GT, 1);
3954         GEN8_IRQ_FINI_NDX(GT, 2);
3955         GEN8_IRQ_FINI_NDX(GT, 3);
3956
3957         GEN8_IRQ_FINI(PCU);
3958
3959 #undef GEN8_IRQ_FINI
3960 #undef GEN8_IRQ_FINI_NDX
3961
3962         I915_WRITE(PORT_HOTPLUG_EN, 0);
3963         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3964
3965         for_each_pipe(dev_priv, pipe)
3966                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3967
3968         I915_WRITE(VLV_IMR, 0xffffffff);
3969         I915_WRITE(VLV_IER, 0x0);
3970         I915_WRITE(VLV_IIR, 0xffffffff);
3971         POSTING_READ(VLV_IIR);
3972 }
3973
3974 static void ironlake_irq_uninstall(struct drm_device *dev)
3975 {
3976         struct drm_i915_private *dev_priv = dev->dev_private;
3977
3978         if (!dev_priv)
3979                 return;
3980
3981         ironlake_irq_reset(dev);
3982 }
3983
3984 static void i8xx_irq_preinstall(struct drm_device * dev)
3985 {
3986         struct drm_i915_private *dev_priv = dev->dev_private;
3987         int pipe;
3988
3989         for_each_pipe(dev_priv, pipe)
3990                 I915_WRITE(PIPESTAT(pipe), 0);
3991         I915_WRITE16(IMR, 0xffff);
3992         I915_WRITE16(IER, 0x0);
3993         POSTING_READ16(IER);
3994 }
3995
3996 static int i8xx_irq_postinstall(struct drm_device *dev)
3997 {
3998         struct drm_i915_private *dev_priv = dev->dev_private;
3999         unsigned long irqflags;
4000
4001         I915_WRITE16(EMR,
4002                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4003
4004         /* Unmask the interrupts that we always want on. */
4005         dev_priv->irq_mask =
4006                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4007                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4008                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4009                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4010                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4011         I915_WRITE16(IMR, dev_priv->irq_mask);
4012
4013         I915_WRITE16(IER,
4014                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4015                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4016                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4017                      I915_USER_INTERRUPT);
4018         POSTING_READ16(IER);
4019
4020         /* Interrupt setup is already guaranteed to be single-threaded, this is
4021          * just to make the assert_spin_locked check happy. */
4022         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4023         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4024         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4025         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4026
4027         return 0;
4028 }
4029
4030 /*
4031  * Returns true when a page flip has completed.
4032  */
4033 static bool i8xx_handle_vblank(struct drm_device *dev,
4034                                int plane, int pipe, u32 iir)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4038
4039         if (!intel_pipe_handle_vblank(dev, pipe))
4040                 return false;
4041
4042         if ((iir & flip_pending) == 0)
4043                 goto check_page_flip;
4044
4045         intel_prepare_page_flip(dev, plane);
4046
4047         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4048          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4049          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4050          * the flip is completed (no longer pending). Since this doesn't raise
4051          * an interrupt per se, we watch for the change at vblank.
4052          */
4053         if (I915_READ16(ISR) & flip_pending)
4054                 goto check_page_flip;
4055
4056         intel_finish_page_flip(dev, pipe);
4057         return true;
4058
4059 check_page_flip:
4060         intel_check_page_flip(dev, pipe);
4061         return false;
4062 }
4063
4064 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4065 {
4066         struct drm_device *dev = arg;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         u16 iir, new_iir;
4069         u32 pipe_stats[2];
4070         unsigned long irqflags;
4071         int pipe;
4072         u16 flip_mask =
4073                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4074                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4075
4076         iir = I915_READ16(IIR);
4077         if (iir == 0)
4078                 return IRQ_NONE;
4079
4080         while (iir & ~flip_mask) {
4081                 /* Can't rely on pipestat interrupt bit in iir as it might
4082                  * have been cleared after the pipestat interrupt was received.
4083                  * It doesn't set the bit in iir again, but it still produces
4084                  * interrupts (for non-MSI).
4085                  */
4086                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4087                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4088                         i915_handle_error(dev, false,
4089                                           "Command parser error, iir 0x%08x",
4090                                           iir);
4091
4092                 for_each_pipe(dev_priv, pipe) {
4093                         int reg = PIPESTAT(pipe);
4094                         pipe_stats[pipe] = I915_READ(reg);
4095
4096                         /*
4097                          * Clear the PIPE*STAT regs before the IIR
4098                          */
4099                         if (pipe_stats[pipe] & 0x8000ffff)
4100                                 I915_WRITE(reg, pipe_stats[pipe]);
4101                 }
4102                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4103
4104                 I915_WRITE16(IIR, iir & ~flip_mask);
4105                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4106
4107                 i915_update_dri1_breadcrumb(dev);
4108
4109                 if (iir & I915_USER_INTERRUPT)
4110                         notify_ring(dev, &dev_priv->ring[RCS]);
4111
4112                 for_each_pipe(dev_priv, pipe) {
4113                         int plane = pipe;
4114                         if (HAS_FBC(dev))
4115                                 plane = !plane;
4116
4117                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4118                             i8xx_handle_vblank(dev, plane, pipe, iir))
4119                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4120
4121                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4122                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4123
4124                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4125                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4126                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4127                 }
4128
4129                 iir = new_iir;
4130         }
4131
4132         return IRQ_HANDLED;
4133 }
4134
4135 static void i8xx_irq_uninstall(struct drm_device * dev)
4136 {
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         int pipe;
4139
4140         for_each_pipe(dev_priv, pipe) {
4141                 /* Clear enable bits; then clear status bits */
4142                 I915_WRITE(PIPESTAT(pipe), 0);
4143                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4144         }
4145         I915_WRITE16(IMR, 0xffff);
4146         I915_WRITE16(IER, 0x0);
4147         I915_WRITE16(IIR, I915_READ16(IIR));
4148 }
4149
4150 static void i915_irq_preinstall(struct drm_device * dev)
4151 {
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         int pipe;
4154
4155         if (I915_HAS_HOTPLUG(dev)) {
4156                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4157                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4158         }
4159
4160         I915_WRITE16(HWSTAM, 0xeffe);
4161         for_each_pipe(dev_priv, pipe)
4162                 I915_WRITE(PIPESTAT(pipe), 0);
4163         I915_WRITE(IMR, 0xffffffff);
4164         I915_WRITE(IER, 0x0);
4165         POSTING_READ(IER);
4166 }
4167
4168 static int i915_irq_postinstall(struct drm_device *dev)
4169 {
4170         struct drm_i915_private *dev_priv = dev->dev_private;
4171         u32 enable_mask;
4172         unsigned long irqflags;
4173
4174         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4175
4176         /* Unmask the interrupts that we always want on. */
4177         dev_priv->irq_mask =
4178                 ~(I915_ASLE_INTERRUPT |
4179                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4180                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4181                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4182                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4183                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4184
4185         enable_mask =
4186                 I915_ASLE_INTERRUPT |
4187                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4188                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4189                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4190                 I915_USER_INTERRUPT;
4191
4192         if (I915_HAS_HOTPLUG(dev)) {
4193                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4194                 POSTING_READ(PORT_HOTPLUG_EN);
4195
4196                 /* Enable in IER... */
4197                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4198                 /* and unmask in IMR */
4199                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4200         }
4201
4202         I915_WRITE(IMR, dev_priv->irq_mask);
4203         I915_WRITE(IER, enable_mask);
4204         POSTING_READ(IER);
4205
4206         i915_enable_asle_pipestat(dev);
4207
4208         /* Interrupt setup is already guaranteed to be single-threaded, this is
4209          * just to make the assert_spin_locked check happy. */
4210         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4211         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4212         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4213         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4214
4215         return 0;
4216 }
4217
4218 /*
4219  * Returns true when a page flip has completed.
4220  */
4221 static bool i915_handle_vblank(struct drm_device *dev,
4222                                int plane, int pipe, u32 iir)
4223 {
4224         struct drm_i915_private *dev_priv = dev->dev_private;
4225         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4226
4227         if (!intel_pipe_handle_vblank(dev, pipe))
4228                 return false;
4229
4230         if ((iir & flip_pending) == 0)
4231                 goto check_page_flip;
4232
4233         intel_prepare_page_flip(dev, plane);
4234
4235         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4236          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4237          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4238          * the flip is completed (no longer pending). Since this doesn't raise
4239          * an interrupt per se, we watch for the change at vblank.
4240          */
4241         if (I915_READ(ISR) & flip_pending)
4242                 goto check_page_flip;
4243
4244         intel_finish_page_flip(dev, pipe);
4245         return true;
4246
4247 check_page_flip:
4248         intel_check_page_flip(dev, pipe);
4249         return false;
4250 }
4251
4252 static irqreturn_t i915_irq_handler(int irq, void *arg)
4253 {
4254         struct drm_device *dev = arg;
4255         struct drm_i915_private *dev_priv = dev->dev_private;
4256         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4257         unsigned long irqflags;
4258         u32 flip_mask =
4259                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4260                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4261         int pipe, ret = IRQ_NONE;
4262
4263         iir = I915_READ(IIR);
4264         do {
4265                 bool irq_received = (iir & ~flip_mask) != 0;
4266                 bool blc_event = false;
4267
4268                 /* Can't rely on pipestat interrupt bit in iir as it might
4269                  * have been cleared after the pipestat interrupt was received.
4270                  * It doesn't set the bit in iir again, but it still produces
4271                  * interrupts (for non-MSI).
4272                  */
4273                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4274                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4275                         i915_handle_error(dev, false,
4276                                           "Command parser error, iir 0x%08x",
4277                                           iir);
4278
4279                 for_each_pipe(dev_priv, pipe) {
4280                         int reg = PIPESTAT(pipe);
4281                         pipe_stats[pipe] = I915_READ(reg);
4282
4283                         /* Clear the PIPE*STAT regs before the IIR */
4284                         if (pipe_stats[pipe] & 0x8000ffff) {
4285                                 I915_WRITE(reg, pipe_stats[pipe]);
4286                                 irq_received = true;
4287                         }
4288                 }
4289                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4290
4291                 if (!irq_received)
4292                         break;
4293
4294                 /* Consume port.  Then clear IIR or we'll miss events */
4295                 if (I915_HAS_HOTPLUG(dev) &&
4296                     iir & I915_DISPLAY_PORT_INTERRUPT)
4297                         i9xx_hpd_irq_handler(dev);
4298
4299                 I915_WRITE(IIR, iir & ~flip_mask);
4300                 new_iir = I915_READ(IIR); /* Flush posted writes */
4301
4302                 if (iir & I915_USER_INTERRUPT)
4303                         notify_ring(dev, &dev_priv->ring[RCS]);
4304
4305                 for_each_pipe(dev_priv, pipe) {
4306                         int plane = pipe;
4307                         if (HAS_FBC(dev))
4308                                 plane = !plane;
4309
4310                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4311                             i915_handle_vblank(dev, plane, pipe, iir))
4312                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4313
4314                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4315                                 blc_event = true;
4316
4317                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4318                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4319
4320                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4321                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4322                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4323                 }
4324
4325                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4326                         intel_opregion_asle_intr(dev);
4327
4328                 /* With MSI, interrupts are only generated when iir
4329                  * transitions from zero to nonzero.  If another bit got
4330                  * set while we were handling the existing iir bits, then
4331                  * we would never get another interrupt.
4332                  *
4333                  * This is fine on non-MSI as well, as if we hit this path
4334                  * we avoid exiting the interrupt handler only to generate
4335                  * another one.
4336                  *
4337                  * Note that for MSI this could cause a stray interrupt report
4338                  * if an interrupt landed in the time between writing IIR and
4339                  * the posting read.  This should be rare enough to never
4340                  * trigger the 99% of 100,000 interrupts test for disabling
4341                  * stray interrupts.
4342                  */
4343                 ret = IRQ_HANDLED;
4344                 iir = new_iir;
4345         } while (iir & ~flip_mask);
4346
4347         i915_update_dri1_breadcrumb(dev);
4348
4349         return ret;
4350 }
4351
4352 static void i915_irq_uninstall(struct drm_device * dev)
4353 {
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         int pipe;
4356
4357         if (I915_HAS_HOTPLUG(dev)) {
4358                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4359                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4360         }
4361
4362         I915_WRITE16(HWSTAM, 0xffff);
4363         for_each_pipe(dev_priv, pipe) {
4364                 /* Clear enable bits; then clear status bits */
4365                 I915_WRITE(PIPESTAT(pipe), 0);
4366                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4367         }
4368         I915_WRITE(IMR, 0xffffffff);
4369         I915_WRITE(IER, 0x0);
4370
4371         I915_WRITE(IIR, I915_READ(IIR));
4372 }
4373
4374 static void i965_irq_preinstall(struct drm_device * dev)
4375 {
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         int pipe;
4378
4379         I915_WRITE(PORT_HOTPLUG_EN, 0);
4380         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4381
4382         I915_WRITE(HWSTAM, 0xeffe);
4383         for_each_pipe(dev_priv, pipe)
4384                 I915_WRITE(PIPESTAT(pipe), 0);
4385         I915_WRITE(IMR, 0xffffffff);
4386         I915_WRITE(IER, 0x0);
4387         POSTING_READ(IER);
4388 }
4389
4390 static int i965_irq_postinstall(struct drm_device *dev)
4391 {
4392         struct drm_i915_private *dev_priv = dev->dev_private;
4393         u32 enable_mask;
4394         u32 error_mask;
4395         unsigned long irqflags;
4396
4397         /* Unmask the interrupts that we always want on. */
4398         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4399                                I915_DISPLAY_PORT_INTERRUPT |
4400                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4401                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4402                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4403                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4404                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4405
4406         enable_mask = ~dev_priv->irq_mask;
4407         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4408                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4409         enable_mask |= I915_USER_INTERRUPT;
4410
4411         if (IS_G4X(dev))
4412                 enable_mask |= I915_BSD_USER_INTERRUPT;
4413
4414         /* Interrupt setup is already guaranteed to be single-threaded, this is
4415          * just to make the assert_spin_locked check happy. */
4416         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4417         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4418         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4419         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4420         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4421
4422         /*
4423          * Enable some error detection, note the instruction error mask
4424          * bit is reserved, so we leave it masked.
4425          */
4426         if (IS_G4X(dev)) {
4427                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4428                                GM45_ERROR_MEM_PRIV |
4429                                GM45_ERROR_CP_PRIV |
4430                                I915_ERROR_MEMORY_REFRESH);
4431         } else {
4432                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4433                                I915_ERROR_MEMORY_REFRESH);
4434         }
4435         I915_WRITE(EMR, error_mask);
4436
4437         I915_WRITE(IMR, dev_priv->irq_mask);
4438         I915_WRITE(IER, enable_mask);
4439         POSTING_READ(IER);
4440
4441         I915_WRITE(PORT_HOTPLUG_EN, 0);
4442         POSTING_READ(PORT_HOTPLUG_EN);
4443
4444         i915_enable_asle_pipestat(dev);
4445
4446         return 0;
4447 }
4448
4449 static void i915_hpd_irq_setup(struct drm_device *dev)
4450 {
4451         struct drm_i915_private *dev_priv = dev->dev_private;
4452         struct intel_encoder *intel_encoder;
4453         u32 hotplug_en;
4454
4455         assert_spin_locked(&dev_priv->irq_lock);
4456
4457         if (I915_HAS_HOTPLUG(dev)) {
4458                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4459                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4460                 /* Note HDMI and DP share hotplug bits */
4461                 /* enable bits are the same for all generations */
4462                 for_each_intel_encoder(dev, intel_encoder)
4463                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4464                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4465                 /* Programming the CRT detection parameters tends
4466                    to generate a spurious hotplug event about three
4467                    seconds later.  So just do it once.
4468                 */
4469                 if (IS_G4X(dev))
4470                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4471                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4472                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4473
4474                 /* Ignore TV since it's buggy */
4475                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4476         }
4477 }
4478
4479 static irqreturn_t i965_irq_handler(int irq, void *arg)
4480 {
4481         struct drm_device *dev = arg;
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         u32 iir, new_iir;
4484         u32 pipe_stats[I915_MAX_PIPES];
4485         unsigned long irqflags;
4486         int ret = IRQ_NONE, pipe;
4487         u32 flip_mask =
4488                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4489                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4490
4491         iir = I915_READ(IIR);
4492
4493         for (;;) {
4494                 bool irq_received = (iir & ~flip_mask) != 0;
4495                 bool blc_event = false;
4496
4497                 /* Can't rely on pipestat interrupt bit in iir as it might
4498                  * have been cleared after the pipestat interrupt was received.
4499                  * It doesn't set the bit in iir again, but it still produces
4500                  * interrupts (for non-MSI).
4501                  */
4502                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4503                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4504                         i915_handle_error(dev, false,
4505                                           "Command parser error, iir 0x%08x",
4506                                           iir);
4507
4508                 for_each_pipe(dev_priv, pipe) {
4509                         int reg = PIPESTAT(pipe);
4510                         pipe_stats[pipe] = I915_READ(reg);
4511
4512                         /*
4513                          * Clear the PIPE*STAT regs before the IIR
4514                          */
4515                         if (pipe_stats[pipe] & 0x8000ffff) {
4516                                 I915_WRITE(reg, pipe_stats[pipe]);
4517                                 irq_received = true;
4518                         }
4519                 }
4520                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4521
4522                 if (!irq_received)
4523                         break;
4524
4525                 ret = IRQ_HANDLED;
4526
4527                 /* Consume port.  Then clear IIR or we'll miss events */
4528                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4529                         i9xx_hpd_irq_handler(dev);
4530
4531                 I915_WRITE(IIR, iir & ~flip_mask);
4532                 new_iir = I915_READ(IIR); /* Flush posted writes */
4533
4534                 if (iir & I915_USER_INTERRUPT)
4535                         notify_ring(dev, &dev_priv->ring[RCS]);
4536                 if (iir & I915_BSD_USER_INTERRUPT)
4537                         notify_ring(dev, &dev_priv->ring[VCS]);
4538
4539                 for_each_pipe(dev_priv, pipe) {
4540                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4541                             i915_handle_vblank(dev, pipe, pipe, iir))
4542                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4543
4544                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4545                                 blc_event = true;
4546
4547                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4548                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4549
4550                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4551                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4552                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4553                 }
4554
4555                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4556                         intel_opregion_asle_intr(dev);
4557
4558                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4559                         gmbus_irq_handler(dev);
4560
4561                 /* With MSI, interrupts are only generated when iir
4562                  * transitions from zero to nonzero.  If another bit got
4563                  * set while we were handling the existing iir bits, then
4564                  * we would never get another interrupt.
4565                  *
4566                  * This is fine on non-MSI as well, as if we hit this path
4567                  * we avoid exiting the interrupt handler only to generate
4568                  * another one.
4569                  *
4570                  * Note that for MSI this could cause a stray interrupt report
4571                  * if an interrupt landed in the time between writing IIR and
4572                  * the posting read.  This should be rare enough to never
4573                  * trigger the 99% of 100,000 interrupts test for disabling
4574                  * stray interrupts.
4575                  */
4576                 iir = new_iir;
4577         }
4578
4579         i915_update_dri1_breadcrumb(dev);
4580
4581         return ret;
4582 }
4583
4584 static void i965_irq_uninstall(struct drm_device * dev)
4585 {
4586         struct drm_i915_private *dev_priv = dev->dev_private;
4587         int pipe;
4588
4589         if (!dev_priv)
4590                 return;
4591
4592         I915_WRITE(PORT_HOTPLUG_EN, 0);
4593         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4594
4595         I915_WRITE(HWSTAM, 0xffffffff);
4596         for_each_pipe(dev_priv, pipe)
4597                 I915_WRITE(PIPESTAT(pipe), 0);
4598         I915_WRITE(IMR, 0xffffffff);
4599         I915_WRITE(IER, 0x0);
4600
4601         for_each_pipe(dev_priv, pipe)
4602                 I915_WRITE(PIPESTAT(pipe),
4603                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4604         I915_WRITE(IIR, I915_READ(IIR));
4605 }
4606
4607 static void intel_hpd_irq_reenable(struct work_struct *work)
4608 {
4609         struct drm_i915_private *dev_priv =
4610                 container_of(work, typeof(*dev_priv),
4611                              hotplug_reenable_work.work);
4612         struct drm_device *dev = dev_priv->dev;
4613         struct drm_mode_config *mode_config = &dev->mode_config;
4614         unsigned long irqflags;
4615         int i;
4616
4617         intel_runtime_pm_get(dev_priv);
4618
4619         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4620         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4621                 struct drm_connector *connector;
4622
4623                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4624                         continue;
4625
4626                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4627
4628                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4629                         struct intel_connector *intel_connector = to_intel_connector(connector);
4630
4631                         if (intel_connector->encoder->hpd_pin == i) {
4632                                 if (connector->polled != intel_connector->polled)
4633                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4634                                                          connector->name);
4635                                 connector->polled = intel_connector->polled;
4636                                 if (!connector->polled)
4637                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4638                         }
4639                 }
4640         }
4641         if (dev_priv->display.hpd_irq_setup)
4642                 dev_priv->display.hpd_irq_setup(dev);
4643         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4644
4645         intel_runtime_pm_put(dev_priv);
4646 }
4647
4648 void intel_irq_init(struct drm_device *dev)
4649 {
4650         struct drm_i915_private *dev_priv = dev->dev_private;
4651
4652         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4653         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4654         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4655         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4656         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4657
4658         /* Let's track the enabled rps events */
4659         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4660                 /* WaGsvRC0ResidencyMethod:vlv */
4661                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4662         else
4663                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4664
4665         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4666                     i915_hangcheck_elapsed,
4667                     (unsigned long) dev);
4668         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4669                           intel_hpd_irq_reenable);
4670
4671         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4672
4673         /* Haven't installed the IRQ handler yet */
4674         dev_priv->pm._irqs_disabled = true;
4675
4676         if (IS_GEN2(dev)) {
4677                 dev->max_vblank_count = 0;
4678                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4679         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4680                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4681                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4682         } else {
4683                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4684                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4685         }
4686
4687         /*
4688          * Opt out of the vblank disable timer on everything except gen2.
4689          * Gen2 doesn't have a hardware frame counter and so depends on
4690          * vblank interrupts to produce sane vblank seuquence numbers.
4691          */
4692         if (!IS_GEN2(dev))
4693                 dev->vblank_disable_immediate = true;
4694
4695         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4696                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4697                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4698         }
4699
4700         if (IS_CHERRYVIEW(dev)) {
4701                 dev->driver->irq_handler = cherryview_irq_handler;
4702                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4703                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4704                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4705                 dev->driver->enable_vblank = valleyview_enable_vblank;
4706                 dev->driver->disable_vblank = valleyview_disable_vblank;
4707                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4708         } else if (IS_VALLEYVIEW(dev)) {
4709                 dev->driver->irq_handler = valleyview_irq_handler;
4710                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4711                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4712                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4713                 dev->driver->enable_vblank = valleyview_enable_vblank;
4714                 dev->driver->disable_vblank = valleyview_disable_vblank;
4715                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4716         } else if (IS_GEN8(dev)) {
4717                 dev->driver->irq_handler = gen8_irq_handler;
4718                 dev->driver->irq_preinstall = gen8_irq_reset;
4719                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4720                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4721                 dev->driver->enable_vblank = gen8_enable_vblank;
4722                 dev->driver->disable_vblank = gen8_disable_vblank;
4723                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4724         } else if (HAS_PCH_SPLIT(dev)) {
4725                 dev->driver->irq_handler = ironlake_irq_handler;
4726                 dev->driver->irq_preinstall = ironlake_irq_reset;
4727                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4728                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4729                 dev->driver->enable_vblank = ironlake_enable_vblank;
4730                 dev->driver->disable_vblank = ironlake_disable_vblank;
4731                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4732         } else {
4733                 if (INTEL_INFO(dev)->gen == 2) {
4734                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4735                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4736                         dev->driver->irq_handler = i8xx_irq_handler;
4737                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4738                 } else if (INTEL_INFO(dev)->gen == 3) {
4739                         dev->driver->irq_preinstall = i915_irq_preinstall;
4740                         dev->driver->irq_postinstall = i915_irq_postinstall;
4741                         dev->driver->irq_uninstall = i915_irq_uninstall;
4742                         dev->driver->irq_handler = i915_irq_handler;
4743                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4744                 } else {
4745                         dev->driver->irq_preinstall = i965_irq_preinstall;
4746                         dev->driver->irq_postinstall = i965_irq_postinstall;
4747                         dev->driver->irq_uninstall = i965_irq_uninstall;
4748                         dev->driver->irq_handler = i965_irq_handler;
4749                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4750                 }
4751                 dev->driver->enable_vblank = i915_enable_vblank;
4752                 dev->driver->disable_vblank = i915_disable_vblank;
4753         }
4754 }
4755
4756 void intel_hpd_init(struct drm_device *dev)
4757 {
4758         struct drm_i915_private *dev_priv = dev->dev_private;
4759         struct drm_mode_config *mode_config = &dev->mode_config;
4760         struct drm_connector *connector;
4761         unsigned long irqflags;
4762         int i;
4763
4764         for (i = 1; i < HPD_NUM_PINS; i++) {
4765                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4766                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4767         }
4768         list_for_each_entry(connector, &mode_config->connector_list, head) {
4769                 struct intel_connector *intel_connector = to_intel_connector(connector);
4770                 connector->polled = intel_connector->polled;
4771                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4772                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4773                 if (intel_connector->mst_port)
4774                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4775         }
4776
4777         /* Interrupt setup is already guaranteed to be single-threaded, this is
4778          * just to make the assert_spin_locked checks happy. */
4779         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4780         if (dev_priv->display.hpd_irq_setup)
4781                 dev_priv->display.hpd_irq_setup(dev);
4782         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4783 }
4784
4785 /* Disable interrupts so we can allow runtime PM. */
4786 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4787 {
4788         struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790         dev->driver->irq_uninstall(dev);
4791         dev_priv->pm._irqs_disabled = true;
4792 }
4793
4794 /* Restore interrupts so we can recover from runtime PM. */
4795 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4796 {
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798
4799         dev_priv->pm._irqs_disabled = false;
4800         dev->driver->irq_preinstall(dev);
4801         dev->driver->irq_postinstall(dev);
4802 }
This page took 0.312359 seconds and 4 git commands to generate.