]> Git Repo - linux.git/blob - drivers/watchdog/aspeed_wdt.c
KVM: arm64: Fix S1PTW handling on RO memslots
[linux.git] / drivers / watchdog / aspeed_wdt.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <[email protected]>
6  */
7
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/watchdog.h>
18
19 static bool nowayout = WATCHDOG_NOWAYOUT;
20 module_param(nowayout, bool, 0);
21 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
22                                 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
23
24 struct aspeed_wdt_config {
25         u32 ext_pulse_width_mask;
26         u32 irq_shift;
27         u32 irq_mask;
28 };
29
30 struct aspeed_wdt {
31         struct watchdog_device  wdd;
32         void __iomem            *base;
33         u32                     ctrl;
34         const struct aspeed_wdt_config *cfg;
35 };
36
37 static const struct aspeed_wdt_config ast2400_config = {
38         .ext_pulse_width_mask = 0xff,
39         .irq_shift = 0,
40         .irq_mask = 0,
41 };
42
43 static const struct aspeed_wdt_config ast2500_config = {
44         .ext_pulse_width_mask = 0xfffff,
45         .irq_shift = 12,
46         .irq_mask = GENMASK(31, 12),
47 };
48
49 static const struct aspeed_wdt_config ast2600_config = {
50         .ext_pulse_width_mask = 0xfffff,
51         .irq_shift = 0,
52         .irq_mask = GENMASK(31, 10),
53 };
54
55 static const struct of_device_id aspeed_wdt_of_table[] = {
56         { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
57         { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
58         { .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
59         { },
60 };
61 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
62
63 #define WDT_STATUS              0x00
64 #define WDT_RELOAD_VALUE        0x04
65 #define WDT_RESTART             0x08
66 #define WDT_CTRL                0x0C
67 #define   WDT_CTRL_BOOT_SECONDARY       BIT(7)
68 #define   WDT_CTRL_RESET_MODE_SOC       (0x00 << 5)
69 #define   WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
70 #define   WDT_CTRL_RESET_MODE_ARM_CPU   (0x10 << 5)
71 #define   WDT_CTRL_1MHZ_CLK             BIT(4)
72 #define   WDT_CTRL_WDT_EXT              BIT(3)
73 #define   WDT_CTRL_WDT_INTR             BIT(2)
74 #define   WDT_CTRL_RESET_SYSTEM         BIT(1)
75 #define   WDT_CTRL_ENABLE               BIT(0)
76 #define WDT_TIMEOUT_STATUS      0x10
77 #define   WDT_TIMEOUT_STATUS_IRQ                BIT(2)
78 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY     BIT(1)
79 #define WDT_CLEAR_TIMEOUT_STATUS        0x14
80 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION     BIT(0)
81
82 /*
83  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
84  * enabled), specifically:
85  *
86  * * Pulse duration
87  * * Drive mode: push-pull vs open-drain
88  * * Polarity: Active high or active low
89  *
90  * Pulse duration configuration is available on both the AST2400 and AST2500,
91  * though the field changes between SoCs:
92  *
93  * AST2400: Bits 7:0
94  * AST2500: Bits 19:0
95  *
96  * This difference is captured in struct aspeed_wdt_config.
97  *
98  * The AST2500 exposes the drive mode and polarity options, but not in a
99  * regular fashion. For read purposes, bit 31 represents active high or low,
100  * and bit 30 represents push-pull or open-drain. With respect to write, magic
101  * values need to be written to the top byte to change the state of the drive
102  * mode and polarity bits. Any other value written to the top byte has no
103  * effect on the state of the drive mode or polarity bits. However, the pulse
104  * width value must be preserved (as desired) if written.
105  */
106 #define WDT_RESET_WIDTH         0x18
107 #define   WDT_RESET_WIDTH_ACTIVE_HIGH   BIT(31)
108 #define     WDT_ACTIVE_HIGH_MAGIC       (0xA5 << 24)
109 #define     WDT_ACTIVE_LOW_MAGIC        (0x5A << 24)
110 #define   WDT_RESET_WIDTH_PUSH_PULL     BIT(30)
111 #define     WDT_PUSH_PULL_MAGIC         (0xA8 << 24)
112 #define     WDT_OPEN_DRAIN_MAGIC        (0x8A << 24)
113
114 #define WDT_RESTART_MAGIC       0x4755
115
116 /* 32 bits at 1MHz, in milliseconds */
117 #define WDT_MAX_TIMEOUT_MS      4294967
118 #define WDT_DEFAULT_TIMEOUT     30
119 #define WDT_RATE_1MHZ           1000000
120
121 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
122 {
123         return container_of(wdd, struct aspeed_wdt, wdd);
124 }
125
126 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
127 {
128         wdt->ctrl |= WDT_CTRL_ENABLE;
129
130         writel(0, wdt->base + WDT_CTRL);
131         writel(count, wdt->base + WDT_RELOAD_VALUE);
132         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
133         writel(wdt->ctrl, wdt->base + WDT_CTRL);
134 }
135
136 static int aspeed_wdt_start(struct watchdog_device *wdd)
137 {
138         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
139
140         aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
141
142         return 0;
143 }
144
145 static int aspeed_wdt_stop(struct watchdog_device *wdd)
146 {
147         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
148
149         wdt->ctrl &= ~WDT_CTRL_ENABLE;
150         writel(wdt->ctrl, wdt->base + WDT_CTRL);
151
152         return 0;
153 }
154
155 static int aspeed_wdt_ping(struct watchdog_device *wdd)
156 {
157         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
158
159         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
160
161         return 0;
162 }
163
164 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
165                                   unsigned int timeout)
166 {
167         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
168         u32 actual;
169
170         wdd->timeout = timeout;
171
172         actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
173
174         writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
175         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
176
177         return 0;
178 }
179
180 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
181                                      unsigned int pretimeout)
182 {
183         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
184         u32 actual = pretimeout * WDT_RATE_1MHZ;
185         u32 s = wdt->cfg->irq_shift;
186         u32 m = wdt->cfg->irq_mask;
187
188         wdd->pretimeout = pretimeout;
189         wdt->ctrl &= ~m;
190         if (pretimeout)
191                 wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
192         else
193                 wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
194
195         writel(wdt->ctrl, wdt->base + WDT_CTRL);
196
197         return 0;
198 }
199
200 static int aspeed_wdt_restart(struct watchdog_device *wdd,
201                               unsigned long action, void *data)
202 {
203         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
204
205         wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
206         aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
207
208         mdelay(1000);
209
210         return 0;
211 }
212
213 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
214 static ssize_t access_cs0_show(struct device *dev,
215                                struct device_attribute *attr, char *buf)
216 {
217         struct aspeed_wdt *wdt = dev_get_drvdata(dev);
218         u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
219
220         return sysfs_emit(buf, "%u\n",
221                           !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
222 }
223
224 static ssize_t access_cs0_store(struct device *dev,
225                                 struct device_attribute *attr, const char *buf,
226                                 size_t size)
227 {
228         struct aspeed_wdt *wdt = dev_get_drvdata(dev);
229         unsigned long val;
230
231         if (kstrtoul(buf, 10, &val))
232                 return -EINVAL;
233
234         if (val)
235                 writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
236                        wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
237
238         return size;
239 }
240
241 /*
242  * This attribute exists only if the system has booted from the alternate
243  * flash with 'alt-boot' option.
244  *
245  * At alternate flash the 'access_cs0' sysfs node provides:
246  *   ast2400: a way to get access to the primary SPI flash chip at CS0
247  *            after booting from the alternate chip at CS1.
248  *   ast2500: a way to restore the normal address mapping from
249  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
250  *
251  * Clearing the boot code selection and timeout counter also resets to the
252  * initial state the chip select line mapping. When the SoC is in normal
253  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
254  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
255  * wdt2 expiration) the behavior differs as described above.
256  *
257  * This option can be used with wdt2 (watchdog1) only.
258  */
259 static DEVICE_ATTR_RW(access_cs0);
260
261 static struct attribute *bswitch_attrs[] = {
262         &dev_attr_access_cs0.attr,
263         NULL
264 };
265 ATTRIBUTE_GROUPS(bswitch);
266
267 static const struct watchdog_ops aspeed_wdt_ops = {
268         .start          = aspeed_wdt_start,
269         .stop           = aspeed_wdt_stop,
270         .ping           = aspeed_wdt_ping,
271         .set_timeout    = aspeed_wdt_set_timeout,
272         .set_pretimeout = aspeed_wdt_set_pretimeout,
273         .restart        = aspeed_wdt_restart,
274         .owner          = THIS_MODULE,
275 };
276
277 static const struct watchdog_info aspeed_wdt_info = {
278         .options        = WDIOF_KEEPALIVEPING
279                         | WDIOF_MAGICCLOSE
280                         | WDIOF_SETTIMEOUT,
281         .identity       = KBUILD_MODNAME,
282 };
283
284 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
285         .options        = WDIOF_KEEPALIVEPING
286                         | WDIOF_PRETIMEOUT
287                         | WDIOF_MAGICCLOSE
288                         | WDIOF_SETTIMEOUT,
289         .identity       = KBUILD_MODNAME,
290 };
291
292 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
293 {
294         struct watchdog_device *wdd = arg;
295         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
296         u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
297
298         if (status & WDT_TIMEOUT_STATUS_IRQ)
299                 watchdog_notify_pretimeout(wdd);
300
301         return IRQ_HANDLED;
302 }
303
304 static int aspeed_wdt_probe(struct platform_device *pdev)
305 {
306         struct device *dev = &pdev->dev;
307         const struct of_device_id *ofdid;
308         struct aspeed_wdt *wdt;
309         struct device_node *np;
310         const char *reset_type;
311         u32 duration;
312         u32 status;
313         int ret;
314
315         wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
316         if (!wdt)
317                 return -ENOMEM;
318
319         np = dev->of_node;
320
321         ofdid = of_match_node(aspeed_wdt_of_table, np);
322         if (!ofdid)
323                 return -EINVAL;
324         wdt->cfg = ofdid->data;
325
326         wdt->base = devm_platform_ioremap_resource(pdev, 0);
327         if (IS_ERR(wdt->base))
328                 return PTR_ERR(wdt->base);
329
330         wdt->wdd.info = &aspeed_wdt_info;
331
332         if (wdt->cfg->irq_mask) {
333                 int irq = platform_get_irq_optional(pdev, 0);
334
335                 if (irq > 0) {
336                         ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
337                                                IRQF_SHARED, dev_name(dev),
338                                                wdt);
339                         if (ret)
340                                 return ret;
341
342                         wdt->wdd.info = &aspeed_wdt_pretimeout_info;
343                 }
344         }
345
346         wdt->wdd.ops = &aspeed_wdt_ops;
347         wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
348         wdt->wdd.parent = dev;
349
350         wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
351         watchdog_init_timeout(&wdt->wdd, 0, dev);
352
353         watchdog_set_nowayout(&wdt->wdd, nowayout);
354
355         /*
356          * On clock rates:
357          *  - ast2400 wdt can run at PCLK, or 1MHz
358          *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
359          *  - ast2600 always runs at 1MHz
360          *
361          * Set the ast2400 to run at 1MHz as it simplifies the driver.
362          */
363         if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
364                 wdt->ctrl = WDT_CTRL_1MHZ_CLK;
365
366         /*
367          * Control reset on a per-device basis to ensure the
368          * host is not affected by a BMC reboot
369          */
370         ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
371         if (ret) {
372                 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
373         } else {
374                 if (!strcmp(reset_type, "cpu"))
375                         wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
376                                      WDT_CTRL_RESET_SYSTEM;
377                 else if (!strcmp(reset_type, "soc"))
378                         wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
379                                      WDT_CTRL_RESET_SYSTEM;
380                 else if (!strcmp(reset_type, "system"))
381                         wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
382                                      WDT_CTRL_RESET_SYSTEM;
383                 else if (strcmp(reset_type, "none"))
384                         return -EINVAL;
385         }
386         if (of_property_read_bool(np, "aspeed,external-signal"))
387                 wdt->ctrl |= WDT_CTRL_WDT_EXT;
388         if (of_property_read_bool(np, "aspeed,alt-boot"))
389                 wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
390
391         if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
392                 /*
393                  * The watchdog is running, but invoke aspeed_wdt_start() to
394                  * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
395                  * configuration conforms to the driver's expectations.
396                  * Primarily, ensure we're using the 1MHz clock source.
397                  */
398                 aspeed_wdt_start(&wdt->wdd);
399                 set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
400         }
401
402         if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
403                 (of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
404                 u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
405
406                 reg &= wdt->cfg->ext_pulse_width_mask;
407                 if (of_property_read_bool(np, "aspeed,ext-active-high"))
408                         reg |= WDT_ACTIVE_HIGH_MAGIC;
409                 else
410                         reg |= WDT_ACTIVE_LOW_MAGIC;
411
412                 writel(reg, wdt->base + WDT_RESET_WIDTH);
413
414                 reg &= wdt->cfg->ext_pulse_width_mask;
415                 if (of_property_read_bool(np, "aspeed,ext-push-pull"))
416                         reg |= WDT_PUSH_PULL_MAGIC;
417                 else
418                         reg |= WDT_OPEN_DRAIN_MAGIC;
419
420                 writel(reg, wdt->base + WDT_RESET_WIDTH);
421         }
422
423         if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
424                 u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
425
426                 if (duration == 0 || duration > max_duration) {
427                         dev_err(dev, "Invalid pulse duration: %uus\n",
428                                 duration);
429                         duration = max(1U, min(max_duration, duration));
430                         dev_info(dev, "Pulse duration set to %uus\n",
431                                  duration);
432                 }
433
434                 /*
435                  * The watchdog is always configured with a 1MHz source, so
436                  * there is no need to scale the microsecond value. However we
437                  * need to offset it - from the datasheet:
438                  *
439                  * "This register decides the asserting duration of wdt_ext and
440                  * wdt_rstarm signal. The default value is 0xFF. It means the
441                  * default asserting duration of wdt_ext and wdt_rstarm is
442                  * 256us."
443                  *
444                  * This implies a value of 0 gives a 1us pulse.
445                  */
446                 writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
447         }
448
449         status = readl(wdt->base + WDT_TIMEOUT_STATUS);
450         if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
451                 wdt->wdd.bootstatus = WDIOF_CARDRESET;
452
453                 if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
454                     of_device_is_compatible(np, "aspeed,ast2500-wdt"))
455                         wdt->wdd.groups = bswitch_groups;
456         }
457
458         dev_set_drvdata(dev, wdt);
459
460         return devm_watchdog_register_device(dev, &wdt->wdd);
461 }
462
463 static struct platform_driver aspeed_watchdog_driver = {
464         .probe = aspeed_wdt_probe,
465         .driver = {
466                 .name = KBUILD_MODNAME,
467                 .of_match_table = of_match_ptr(aspeed_wdt_of_table),
468         },
469 };
470
471 static int __init aspeed_wdt_init(void)
472 {
473         return platform_driver_register(&aspeed_watchdog_driver);
474 }
475 arch_initcall(aspeed_wdt_init);
476
477 static void __exit aspeed_wdt_exit(void)
478 {
479         platform_driver_unregister(&aspeed_watchdog_driver);
480 }
481 module_exit(aspeed_wdt_exit);
482
483 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
484 MODULE_LICENSE("GPL");
This page took 0.060314 seconds and 4 git commands to generate.