1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Can active pages be deactivated as part of reclaim? */
83 #define DEACTIVATE_ANON 1
84 #define DEACTIVATE_FILE 2
85 unsigned int may_deactivate:2;
86 unsigned int force_deactivate:1;
87 unsigned int skipped_deactivate:1;
89 /* Writepage batching in laptop mode; RECLAIM_WRITE */
90 unsigned int may_writepage:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
99 * Cgroups are not reclaimed below their configured memory.low,
100 * unless we threaten to OOM. If any cgroups are skipped due to
101 * memory.low and nothing was reclaimed, go back for memory.low.
103 unsigned int memcg_low_reclaim:1;
104 unsigned int memcg_low_skipped:1;
106 unsigned int hibernation_mode:1;
108 /* One of the zones is ready for compaction */
109 unsigned int compaction_ready:1;
111 /* There is easily reclaimable cold cache in the current node */
112 unsigned int cache_trim_mode:1;
114 /* The file pages on the current node are dangerously low */
115 unsigned int file_is_tiny:1;
117 /* Allocation order */
120 /* Scan (total_size >> priority) pages at once */
123 /* The highest zone to isolate pages for reclaim from */
126 /* This context's GFP mask */
129 /* Incremented by the number of inactive pages that were scanned */
130 unsigned long nr_scanned;
132 /* Number of pages freed so far during a call to shrink_zones() */
133 unsigned long nr_reclaimed;
137 unsigned int unqueued_dirty;
138 unsigned int congested;
139 unsigned int writeback;
140 unsigned int immediate;
141 unsigned int file_taken;
145 /* for recording the reclaimed slab by now */
146 struct reclaim_state reclaim_state;
149 #ifdef ARCH_HAS_PREFETCHW
150 #define prefetchw_prev_lru_page(_page, _base, _field) \
152 if ((_page)->lru.prev != _base) { \
155 prev = lru_to_page(&(_page->lru)); \
156 prefetchw(&prev->_field); \
160 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
164 * From 0 .. 100. Higher means more swappy.
166 int vm_swappiness = 60;
168 * The total number of pages which are beyond the high watermark within all
171 unsigned long vm_total_pages;
173 static void set_task_reclaim_state(struct task_struct *task,
174 struct reclaim_state *rs)
176 /* Check for an overwrite */
177 WARN_ON_ONCE(rs && task->reclaim_state);
179 /* Check for the nulling of an already-nulled member */
180 WARN_ON_ONCE(!rs && !task->reclaim_state);
182 task->reclaim_state = rs;
185 static LIST_HEAD(shrinker_list);
186 static DECLARE_RWSEM(shrinker_rwsem);
190 * We allow subsystems to populate their shrinker-related
191 * LRU lists before register_shrinker_prepared() is called
192 * for the shrinker, since we don't want to impose
193 * restrictions on their internal registration order.
194 * In this case shrink_slab_memcg() may find corresponding
195 * bit is set in the shrinkers map.
197 * This value is used by the function to detect registering
198 * shrinkers and to skip do_shrink_slab() calls for them.
200 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 static DEFINE_IDR(shrinker_idr);
203 static int shrinker_nr_max;
205 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 int id, ret = -ENOMEM;
209 down_write(&shrinker_rwsem);
210 /* This may call shrinker, so it must use down_read_trylock() */
211 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
215 if (id >= shrinker_nr_max) {
216 if (memcg_expand_shrinker_maps(id)) {
217 idr_remove(&shrinker_idr, id);
221 shrinker_nr_max = id + 1;
226 up_write(&shrinker_rwsem);
230 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 int id = shrinker->id;
236 down_write(&shrinker_rwsem);
237 idr_remove(&shrinker_idr, id);
238 up_write(&shrinker_rwsem);
241 static bool cgroup_reclaim(struct scan_control *sc)
243 return sc->target_mem_cgroup;
247 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
248 * @sc: scan_control in question
250 * The normal page dirty throttling mechanism in balance_dirty_pages() is
251 * completely broken with the legacy memcg and direct stalling in
252 * shrink_page_list() is used for throttling instead, which lacks all the
253 * niceties such as fairness, adaptive pausing, bandwidth proportional
254 * allocation and configurability.
256 * This function tests whether the vmscan currently in progress can assume
257 * that the normal dirty throttling mechanism is operational.
259 static bool writeback_throttling_sane(struct scan_control *sc)
261 if (!cgroup_reclaim(sc))
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
270 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
275 static void unregister_memcg_shrinker(struct shrinker *shrinker)
279 static bool cgroup_reclaim(struct scan_control *sc)
284 static bool writeback_throttling_sane(struct scan_control *sc)
291 * This misses isolated pages which are not accounted for to save counters.
292 * As the data only determines if reclaim or compaction continues, it is
293 * not expected that isolated pages will be a dominating factor.
295 unsigned long zone_reclaimable_pages(struct zone *zone)
299 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
300 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
301 if (get_nr_swap_pages() > 0)
302 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
303 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
309 * lruvec_lru_size - Returns the number of pages on the given LRU list.
310 * @lruvec: lru vector
312 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 unsigned long size = 0;
319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322 if (!managed_zone(zone))
325 if (!mem_cgroup_disabled())
326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
334 * Add a shrinker callback to be called from the vm.
336 int prealloc_shrinker(struct shrinker *shrinker)
338 unsigned int size = sizeof(*shrinker->nr_deferred);
340 if (shrinker->flags & SHRINKER_NUMA_AWARE)
343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
344 if (!shrinker->nr_deferred)
347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
348 if (prealloc_memcg_shrinker(shrinker))
355 kfree(shrinker->nr_deferred);
356 shrinker->nr_deferred = NULL;
360 void free_prealloced_shrinker(struct shrinker *shrinker)
362 if (!shrinker->nr_deferred)
365 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
366 unregister_memcg_shrinker(shrinker);
368 kfree(shrinker->nr_deferred);
369 shrinker->nr_deferred = NULL;
372 void register_shrinker_prepared(struct shrinker *shrinker)
374 down_write(&shrinker_rwsem);
375 list_add_tail(&shrinker->list, &shrinker_list);
377 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
378 idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 up_write(&shrinker_rwsem);
383 int register_shrinker(struct shrinker *shrinker)
385 int err = prealloc_shrinker(shrinker);
389 register_shrinker_prepared(shrinker);
392 EXPORT_SYMBOL(register_shrinker);
397 void unregister_shrinker(struct shrinker *shrinker)
399 if (!shrinker->nr_deferred)
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 unregister_memcg_shrinker(shrinker);
403 down_write(&shrinker_rwsem);
404 list_del(&shrinker->list);
405 up_write(&shrinker_rwsem);
406 kfree(shrinker->nr_deferred);
407 shrinker->nr_deferred = NULL;
409 EXPORT_SYMBOL(unregister_shrinker);
411 #define SHRINK_BATCH 128
413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414 struct shrinker *shrinker, int priority)
416 unsigned long freed = 0;
417 unsigned long long delta;
422 int nid = shrinkctl->nid;
423 long batch_size = shrinker->batch ? shrinker->batch
425 long scanned = 0, next_deferred;
427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
430 freeable = shrinker->count_objects(shrinker, shrinkctl);
431 if (freeable == 0 || freeable == SHRINK_EMPTY)
435 * copy the current shrinker scan count into a local variable
436 * and zero it so that other concurrent shrinker invocations
437 * don't also do this scanning work.
439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
442 if (shrinker->seeks) {
443 delta = freeable >> priority;
445 do_div(delta, shrinker->seeks);
448 * These objects don't require any IO to create. Trim
449 * them aggressively under memory pressure to keep
450 * them from causing refetches in the IO caches.
452 delta = freeable / 2;
456 if (total_scan < 0) {
457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
458 shrinker->scan_objects, total_scan);
459 total_scan = freeable;
462 next_deferred = total_scan;
465 * We need to avoid excessive windup on filesystem shrinkers
466 * due to large numbers of GFP_NOFS allocations causing the
467 * shrinkers to return -1 all the time. This results in a large
468 * nr being built up so when a shrink that can do some work
469 * comes along it empties the entire cache due to nr >>>
470 * freeable. This is bad for sustaining a working set in
473 * Hence only allow the shrinker to scan the entire cache when
474 * a large delta change is calculated directly.
476 if (delta < freeable / 4)
477 total_scan = min(total_scan, freeable / 2);
480 * Avoid risking looping forever due to too large nr value:
481 * never try to free more than twice the estimate number of
484 if (total_scan > freeable * 2)
485 total_scan = freeable * 2;
487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488 freeable, delta, total_scan, priority);
491 * Normally, we should not scan less than batch_size objects in one
492 * pass to avoid too frequent shrinker calls, but if the slab has less
493 * than batch_size objects in total and we are really tight on memory,
494 * we will try to reclaim all available objects, otherwise we can end
495 * up failing allocations although there are plenty of reclaimable
496 * objects spread over several slabs with usage less than the
499 * We detect the "tight on memory" situations by looking at the total
500 * number of objects we want to scan (total_scan). If it is greater
501 * than the total number of objects on slab (freeable), we must be
502 * scanning at high prio and therefore should try to reclaim as much as
505 while (total_scan >= batch_size ||
506 total_scan >= freeable) {
508 unsigned long nr_to_scan = min(batch_size, total_scan);
510 shrinkctl->nr_to_scan = nr_to_scan;
511 shrinkctl->nr_scanned = nr_to_scan;
512 ret = shrinker->scan_objects(shrinker, shrinkctl);
513 if (ret == SHRINK_STOP)
517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
518 total_scan -= shrinkctl->nr_scanned;
519 scanned += shrinkctl->nr_scanned;
524 if (next_deferred >= scanned)
525 next_deferred -= scanned;
529 * move the unused scan count back into the shrinker in a
530 * manner that handles concurrent updates. If we exhausted the
531 * scan, there is no need to do an update.
533 if (next_deferred > 0)
534 new_nr = atomic_long_add_return(next_deferred,
535 &shrinker->nr_deferred[nid]);
537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 struct mem_cgroup *memcg, int priority)
547 struct memcg_shrinker_map *map;
548 unsigned long ret, freed = 0;
551 if (!mem_cgroup_online(memcg))
554 if (!down_read_trylock(&shrinker_rwsem))
557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
562 for_each_set_bit(i, map->map, shrinker_nr_max) {
563 struct shrink_control sc = {
564 .gfp_mask = gfp_mask,
568 struct shrinker *shrinker;
570 shrinker = idr_find(&shrinker_idr, i);
571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 clear_bit(i, map->map);
577 /* Call non-slab shrinkers even though kmem is disabled */
578 if (!memcg_kmem_enabled() &&
579 !(shrinker->flags & SHRINKER_NONSLAB))
582 ret = do_shrink_slab(&sc, shrinker, priority);
583 if (ret == SHRINK_EMPTY) {
584 clear_bit(i, map->map);
586 * After the shrinker reported that it had no objects to
587 * free, but before we cleared the corresponding bit in
588 * the memcg shrinker map, a new object might have been
589 * added. To make sure, we have the bit set in this
590 * case, we invoke the shrinker one more time and reset
591 * the bit if it reports that it is not empty anymore.
592 * The memory barrier here pairs with the barrier in
593 * memcg_set_shrinker_bit():
595 * list_lru_add() shrink_slab_memcg()
596 * list_add_tail() clear_bit()
598 * set_bit() do_shrink_slab()
600 smp_mb__after_atomic();
601 ret = do_shrink_slab(&sc, shrinker, priority);
602 if (ret == SHRINK_EMPTY)
605 memcg_set_shrinker_bit(memcg, nid, i);
609 if (rwsem_is_contended(&shrinker_rwsem)) {
615 up_read(&shrinker_rwsem);
618 #else /* CONFIG_MEMCG */
619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
620 struct mem_cgroup *memcg, int priority)
624 #endif /* CONFIG_MEMCG */
627 * shrink_slab - shrink slab caches
628 * @gfp_mask: allocation context
629 * @nid: node whose slab caches to target
630 * @memcg: memory cgroup whose slab caches to target
631 * @priority: the reclaim priority
633 * Call the shrink functions to age shrinkable caches.
635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
636 * unaware shrinkers will receive a node id of 0 instead.
638 * @memcg specifies the memory cgroup to target. Unaware shrinkers
639 * are called only if it is the root cgroup.
641 * @priority is sc->priority, we take the number of objects and >> by priority
642 * in order to get the scan target.
644 * Returns the number of reclaimed slab objects.
646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
647 struct mem_cgroup *memcg,
650 unsigned long ret, freed = 0;
651 struct shrinker *shrinker;
654 * The root memcg might be allocated even though memcg is disabled
655 * via "cgroup_disable=memory" boot parameter. This could make
656 * mem_cgroup_is_root() return false, then just run memcg slab
657 * shrink, but skip global shrink. This may result in premature
660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663 if (!down_read_trylock(&shrinker_rwsem))
666 list_for_each_entry(shrinker, &shrinker_list, list) {
667 struct shrink_control sc = {
668 .gfp_mask = gfp_mask,
673 ret = do_shrink_slab(&sc, shrinker, priority);
674 if (ret == SHRINK_EMPTY)
678 * Bail out if someone want to register a new shrinker to
679 * prevent the regsitration from being stalled for long periods
680 * by parallel ongoing shrinking.
682 if (rwsem_is_contended(&shrinker_rwsem)) {
688 up_read(&shrinker_rwsem);
694 void drop_slab_node(int nid)
699 struct mem_cgroup *memcg = NULL;
702 memcg = mem_cgroup_iter(NULL, NULL, NULL);
704 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
705 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
706 } while (freed > 10);
713 for_each_online_node(nid)
717 static inline int is_page_cache_freeable(struct page *page)
720 * A freeable page cache page is referenced only by the caller
721 * that isolated the page, the page cache and optional buffer
722 * heads at page->private.
724 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
726 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
729 static int may_write_to_inode(struct inode *inode)
731 if (current->flags & PF_SWAPWRITE)
733 if (!inode_write_congested(inode))
735 if (inode_to_bdi(inode) == current->backing_dev_info)
741 * We detected a synchronous write error writing a page out. Probably
742 * -ENOSPC. We need to propagate that into the address_space for a subsequent
743 * fsync(), msync() or close().
745 * The tricky part is that after writepage we cannot touch the mapping: nothing
746 * prevents it from being freed up. But we have a ref on the page and once
747 * that page is locked, the mapping is pinned.
749 * We're allowed to run sleeping lock_page() here because we know the caller has
752 static void handle_write_error(struct address_space *mapping,
753 struct page *page, int error)
756 if (page_mapping(page) == mapping)
757 mapping_set_error(mapping, error);
761 /* possible outcome of pageout() */
763 /* failed to write page out, page is locked */
765 /* move page to the active list, page is locked */
767 /* page has been sent to the disk successfully, page is unlocked */
769 /* page is clean and locked */
774 * pageout is called by shrink_page_list() for each dirty page.
775 * Calls ->writepage().
777 static pageout_t pageout(struct page *page, struct address_space *mapping)
780 * If the page is dirty, only perform writeback if that write
781 * will be non-blocking. To prevent this allocation from being
782 * stalled by pagecache activity. But note that there may be
783 * stalls if we need to run get_block(). We could test
784 * PagePrivate for that.
786 * If this process is currently in __generic_file_write_iter() against
787 * this page's queue, we can perform writeback even if that
790 * If the page is swapcache, write it back even if that would
791 * block, for some throttling. This happens by accident, because
792 * swap_backing_dev_info is bust: it doesn't reflect the
793 * congestion state of the swapdevs. Easy to fix, if needed.
795 if (!is_page_cache_freeable(page))
799 * Some data journaling orphaned pages can have
800 * page->mapping == NULL while being dirty with clean buffers.
802 if (page_has_private(page)) {
803 if (try_to_free_buffers(page)) {
804 ClearPageDirty(page);
805 pr_info("%s: orphaned page\n", __func__);
811 if (mapping->a_ops->writepage == NULL)
812 return PAGE_ACTIVATE;
813 if (!may_write_to_inode(mapping->host))
816 if (clear_page_dirty_for_io(page)) {
818 struct writeback_control wbc = {
819 .sync_mode = WB_SYNC_NONE,
820 .nr_to_write = SWAP_CLUSTER_MAX,
822 .range_end = LLONG_MAX,
826 SetPageReclaim(page);
827 res = mapping->a_ops->writepage(page, &wbc);
829 handle_write_error(mapping, page, res);
830 if (res == AOP_WRITEPAGE_ACTIVATE) {
831 ClearPageReclaim(page);
832 return PAGE_ACTIVATE;
835 if (!PageWriteback(page)) {
836 /* synchronous write or broken a_ops? */
837 ClearPageReclaim(page);
839 trace_mm_vmscan_writepage(page);
840 inc_node_page_state(page, NR_VMSCAN_WRITE);
848 * Same as remove_mapping, but if the page is removed from the mapping, it
849 * gets returned with a refcount of 0.
851 static int __remove_mapping(struct address_space *mapping, struct page *page,
852 bool reclaimed, struct mem_cgroup *target_memcg)
857 BUG_ON(!PageLocked(page));
858 BUG_ON(mapping != page_mapping(page));
860 xa_lock_irqsave(&mapping->i_pages, flags);
862 * The non racy check for a busy page.
864 * Must be careful with the order of the tests. When someone has
865 * a ref to the page, it may be possible that they dirty it then
866 * drop the reference. So if PageDirty is tested before page_count
867 * here, then the following race may occur:
869 * get_user_pages(&page);
870 * [user mapping goes away]
872 * !PageDirty(page) [good]
873 * SetPageDirty(page);
875 * !page_count(page) [good, discard it]
877 * [oops, our write_to data is lost]
879 * Reversing the order of the tests ensures such a situation cannot
880 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
881 * load is not satisfied before that of page->_refcount.
883 * Note that if SetPageDirty is always performed via set_page_dirty,
884 * and thus under the i_pages lock, then this ordering is not required.
886 refcount = 1 + compound_nr(page);
887 if (!page_ref_freeze(page, refcount))
889 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
890 if (unlikely(PageDirty(page))) {
891 page_ref_unfreeze(page, refcount);
895 if (PageSwapCache(page)) {
896 swp_entry_t swap = { .val = page_private(page) };
897 mem_cgroup_swapout(page, swap);
898 __delete_from_swap_cache(page, swap);
899 xa_unlock_irqrestore(&mapping->i_pages, flags);
900 put_swap_page(page, swap);
902 void (*freepage)(struct page *);
905 freepage = mapping->a_ops->freepage;
907 * Remember a shadow entry for reclaimed file cache in
908 * order to detect refaults, thus thrashing, later on.
910 * But don't store shadows in an address space that is
911 * already exiting. This is not just an optizimation,
912 * inode reclaim needs to empty out the radix tree or
913 * the nodes are lost. Don't plant shadows behind its
916 * We also don't store shadows for DAX mappings because the
917 * only page cache pages found in these are zero pages
918 * covering holes, and because we don't want to mix DAX
919 * exceptional entries and shadow exceptional entries in the
920 * same address_space.
922 if (reclaimed && page_is_file_lru(page) &&
923 !mapping_exiting(mapping) && !dax_mapping(mapping))
924 shadow = workingset_eviction(page, target_memcg);
925 __delete_from_page_cache(page, shadow);
926 xa_unlock_irqrestore(&mapping->i_pages, flags);
928 if (freepage != NULL)
935 xa_unlock_irqrestore(&mapping->i_pages, flags);
940 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
941 * someone else has a ref on the page, abort and return 0. If it was
942 * successfully detached, return 1. Assumes the caller has a single ref on
945 int remove_mapping(struct address_space *mapping, struct page *page)
947 if (__remove_mapping(mapping, page, false, NULL)) {
949 * Unfreezing the refcount with 1 rather than 2 effectively
950 * drops the pagecache ref for us without requiring another
953 page_ref_unfreeze(page, 1);
960 * putback_lru_page - put previously isolated page onto appropriate LRU list
961 * @page: page to be put back to appropriate lru list
963 * Add previously isolated @page to appropriate LRU list.
964 * Page may still be unevictable for other reasons.
966 * lru_lock must not be held, interrupts must be enabled.
968 void putback_lru_page(struct page *page)
971 put_page(page); /* drop ref from isolate */
974 enum page_references {
976 PAGEREF_RECLAIM_CLEAN,
981 static enum page_references page_check_references(struct page *page,
982 struct scan_control *sc)
984 int referenced_ptes, referenced_page;
985 unsigned long vm_flags;
987 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
989 referenced_page = TestClearPageReferenced(page);
992 * Mlock lost the isolation race with us. Let try_to_unmap()
993 * move the page to the unevictable list.
995 if (vm_flags & VM_LOCKED)
996 return PAGEREF_RECLAIM;
998 if (referenced_ptes) {
999 if (PageSwapBacked(page))
1000 return PAGEREF_ACTIVATE;
1002 * All mapped pages start out with page table
1003 * references from the instantiating fault, so we need
1004 * to look twice if a mapped file page is used more
1007 * Mark it and spare it for another trip around the
1008 * inactive list. Another page table reference will
1009 * lead to its activation.
1011 * Note: the mark is set for activated pages as well
1012 * so that recently deactivated but used pages are
1013 * quickly recovered.
1015 SetPageReferenced(page);
1017 if (referenced_page || referenced_ptes > 1)
1018 return PAGEREF_ACTIVATE;
1021 * Activate file-backed executable pages after first usage.
1023 if (vm_flags & VM_EXEC)
1024 return PAGEREF_ACTIVATE;
1026 return PAGEREF_KEEP;
1029 /* Reclaim if clean, defer dirty pages to writeback */
1030 if (referenced_page && !PageSwapBacked(page))
1031 return PAGEREF_RECLAIM_CLEAN;
1033 return PAGEREF_RECLAIM;
1036 /* Check if a page is dirty or under writeback */
1037 static void page_check_dirty_writeback(struct page *page,
1038 bool *dirty, bool *writeback)
1040 struct address_space *mapping;
1043 * Anonymous pages are not handled by flushers and must be written
1044 * from reclaim context. Do not stall reclaim based on them
1046 if (!page_is_file_lru(page) ||
1047 (PageAnon(page) && !PageSwapBacked(page))) {
1053 /* By default assume that the page flags are accurate */
1054 *dirty = PageDirty(page);
1055 *writeback = PageWriteback(page);
1057 /* Verify dirty/writeback state if the filesystem supports it */
1058 if (!page_has_private(page))
1061 mapping = page_mapping(page);
1062 if (mapping && mapping->a_ops->is_dirty_writeback)
1063 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1067 * shrink_page_list() returns the number of reclaimed pages
1069 static unsigned int shrink_page_list(struct list_head *page_list,
1070 struct pglist_data *pgdat,
1071 struct scan_control *sc,
1072 enum ttu_flags ttu_flags,
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1076 LIST_HEAD(ret_pages);
1077 LIST_HEAD(free_pages);
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1081 memset(stat, 0, sizeof(*stat));
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1087 enum page_references references = PAGEREF_RECLAIM;
1088 bool dirty, writeback, may_enter_fs;
1089 unsigned int nr_pages;
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1096 if (!trylock_page(page))
1099 VM_BUG_ON_PAGE(PageActive(page), page);
1101 nr_pages = compound_nr(page);
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
1106 if (unlikely(!page_evictable(page)))
1107 goto activate_locked;
1109 if (!sc->may_unmap && page_mapped(page))
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1116 * The number of dirty pages determines if a node is marked
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
1125 if (dirty && !writeback)
1126 stat->nr_unqueued_dirty++;
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1134 mapping = page_mapping(page);
1135 if (((dirty || writeback) && mapping &&
1136 inode_write_congested(mapping->host)) ||
1137 (writeback && PageReclaim(page)))
1138 stat->nr_congested++;
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
1154 * 2) Global or new memcg reclaim encounters a page that is
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
1158 * reclaim and continue scanning.
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1167 * 3) Legacy memcg encounters a page that is already marked
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
1182 if (PageWriteback(page)) {
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187 stat->nr_immediate++;
1188 goto activate_locked;
1191 } else if (writeback_throttling_sane(sc) ||
1192 !PageReclaim(page) || !may_enter_fs) {
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1204 SetPageReclaim(page);
1205 stat->nr_writeback++;
1206 goto activate_locked;
1211 wait_on_page_writeback(page);
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1218 if (!ignore_references)
1219 references = page_check_references(page, sc);
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1223 goto activate_locked;
1225 stat->nr_ref_keep += nr_pages;
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
1235 * Lazyfree page could be freed directly
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1241 if (PageTransHuge(page)) {
1242 /* cannot split THP, skip it */
1243 if (!can_split_huge_page(page, NULL))
1244 goto activate_locked;
1246 * Split pages without a PMD map right
1247 * away. Chances are some or all of the
1248 * tail pages can be freed without IO.
1250 if (!compound_mapcount(page) &&
1251 split_huge_page_to_list(page,
1253 goto activate_locked;
1255 if (!add_to_swap(page)) {
1256 if (!PageTransHuge(page))
1257 goto activate_locked_split;
1258 /* Fallback to swap normal pages */
1259 if (split_huge_page_to_list(page,
1261 goto activate_locked;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 count_vm_event(THP_SWPOUT_FALLBACK);
1265 if (!add_to_swap(page))
1266 goto activate_locked_split;
1269 may_enter_fs = true;
1271 /* Adding to swap updated mapping */
1272 mapping = page_mapping(page);
1274 } else if (unlikely(PageTransHuge(page))) {
1275 /* Split file THP */
1276 if (split_huge_page_to_list(page, page_list))
1281 * THP may get split above, need minus tail pages and update
1282 * nr_pages to avoid accounting tail pages twice.
1284 * The tail pages that are added into swap cache successfully
1287 if ((nr_pages > 1) && !PageTransHuge(page)) {
1288 sc->nr_scanned -= (nr_pages - 1);
1293 * The page is mapped into the page tables of one or more
1294 * processes. Try to unmap it here.
1296 if (page_mapped(page)) {
1297 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1298 bool was_swapbacked = PageSwapBacked(page);
1300 if (unlikely(PageTransHuge(page)))
1301 flags |= TTU_SPLIT_HUGE_PMD;
1303 if (!try_to_unmap(page, flags)) {
1304 stat->nr_unmap_fail += nr_pages;
1305 if (!was_swapbacked && PageSwapBacked(page))
1306 stat->nr_lazyfree_fail += nr_pages;
1307 goto activate_locked;
1311 if (PageDirty(page)) {
1313 * Only kswapd can writeback filesystem pages
1314 * to avoid risk of stack overflow. But avoid
1315 * injecting inefficient single-page IO into
1316 * flusher writeback as much as possible: only
1317 * write pages when we've encountered many
1318 * dirty pages, and when we've already scanned
1319 * the rest of the LRU for clean pages and see
1320 * the same dirty pages again (PageReclaim).
1322 if (page_is_file_lru(page) &&
1323 (!current_is_kswapd() || !PageReclaim(page) ||
1324 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326 * Immediately reclaim when written back.
1327 * Similar in principal to deactivate_page()
1328 * except we already have the page isolated
1329 * and know it's dirty
1331 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1332 SetPageReclaim(page);
1334 goto activate_locked;
1337 if (references == PAGEREF_RECLAIM_CLEAN)
1341 if (!sc->may_writepage)
1345 * Page is dirty. Flush the TLB if a writable entry
1346 * potentially exists to avoid CPU writes after IO
1347 * starts and then write it out here.
1349 try_to_unmap_flush_dirty();
1350 switch (pageout(page, mapping)) {
1354 goto activate_locked;
1356 if (PageWriteback(page))
1358 if (PageDirty(page))
1362 * A synchronous write - probably a ramdisk. Go
1363 * ahead and try to reclaim the page.
1365 if (!trylock_page(page))
1367 if (PageDirty(page) || PageWriteback(page))
1369 mapping = page_mapping(page);
1371 ; /* try to free the page below */
1376 * If the page has buffers, try to free the buffer mappings
1377 * associated with this page. If we succeed we try to free
1380 * We do this even if the page is PageDirty().
1381 * try_to_release_page() does not perform I/O, but it is
1382 * possible for a page to have PageDirty set, but it is actually
1383 * clean (all its buffers are clean). This happens if the
1384 * buffers were written out directly, with submit_bh(). ext3
1385 * will do this, as well as the blockdev mapping.
1386 * try_to_release_page() will discover that cleanness and will
1387 * drop the buffers and mark the page clean - it can be freed.
1389 * Rarely, pages can have buffers and no ->mapping. These are
1390 * the pages which were not successfully invalidated in
1391 * truncate_complete_page(). We try to drop those buffers here
1392 * and if that worked, and the page is no longer mapped into
1393 * process address space (page_count == 1) it can be freed.
1394 * Otherwise, leave the page on the LRU so it is swappable.
1396 if (page_has_private(page)) {
1397 if (!try_to_release_page(page, sc->gfp_mask))
1398 goto activate_locked;
1399 if (!mapping && page_count(page) == 1) {
1401 if (put_page_testzero(page))
1405 * rare race with speculative reference.
1406 * the speculative reference will free
1407 * this page shortly, so we may
1408 * increment nr_reclaimed here (and
1409 * leave it off the LRU).
1417 if (PageAnon(page) && !PageSwapBacked(page)) {
1418 /* follow __remove_mapping for reference */
1419 if (!page_ref_freeze(page, 1))
1421 if (PageDirty(page)) {
1422 page_ref_unfreeze(page, 1);
1426 count_vm_event(PGLAZYFREED);
1427 count_memcg_page_event(page, PGLAZYFREED);
1428 } else if (!mapping || !__remove_mapping(mapping, page, true,
1429 sc->target_mem_cgroup))
1435 * THP may get swapped out in a whole, need account
1438 nr_reclaimed += nr_pages;
1441 * Is there need to periodically free_page_list? It would
1442 * appear not as the counts should be low
1444 if (unlikely(PageTransHuge(page)))
1445 destroy_compound_page(page);
1447 list_add(&page->lru, &free_pages);
1450 activate_locked_split:
1452 * The tail pages that are failed to add into swap cache
1453 * reach here. Fixup nr_scanned and nr_pages.
1456 sc->nr_scanned -= (nr_pages - 1);
1460 /* Not a candidate for swapping, so reclaim swap space. */
1461 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1463 try_to_free_swap(page);
1464 VM_BUG_ON_PAGE(PageActive(page), page);
1465 if (!PageMlocked(page)) {
1466 int type = page_is_file_lru(page);
1467 SetPageActive(page);
1468 stat->nr_activate[type] += nr_pages;
1469 count_memcg_page_event(page, PGACTIVATE);
1474 list_add(&page->lru, &ret_pages);
1475 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1478 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1480 mem_cgroup_uncharge_list(&free_pages);
1481 try_to_unmap_flush();
1482 free_unref_page_list(&free_pages);
1484 list_splice(&ret_pages, page_list);
1485 count_vm_events(PGACTIVATE, pgactivate);
1487 return nr_reclaimed;
1490 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1491 struct list_head *page_list)
1493 struct scan_control sc = {
1494 .gfp_mask = GFP_KERNEL,
1495 .priority = DEF_PRIORITY,
1498 struct reclaim_stat stat;
1499 unsigned int nr_reclaimed;
1500 struct page *page, *next;
1501 LIST_HEAD(clean_pages);
1503 list_for_each_entry_safe(page, next, page_list, lru) {
1504 if (page_is_file_lru(page) && !PageDirty(page) &&
1505 !__PageMovable(page) && !PageUnevictable(page)) {
1506 ClearPageActive(page);
1507 list_move(&page->lru, &clean_pages);
1511 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1512 TTU_IGNORE_ACCESS, &stat, true);
1513 list_splice(&clean_pages, page_list);
1514 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1516 * Since lazyfree pages are isolated from file LRU from the beginning,
1517 * they will rotate back to anonymous LRU in the end if it failed to
1518 * discard so isolated count will be mismatched.
1519 * Compensate the isolated count for both LRU lists.
1521 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1522 stat.nr_lazyfree_fail);
1523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1524 -stat.nr_lazyfree_fail);
1525 return nr_reclaimed;
1529 * Attempt to remove the specified page from its LRU. Only take this page
1530 * if it is of the appropriate PageActive status. Pages which are being
1531 * freed elsewhere are also ignored.
1533 * page: page to consider
1534 * mode: one of the LRU isolation modes defined above
1536 * returns 0 on success, -ve errno on failure.
1538 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542 /* Only take pages on the LRU. */
1546 /* Compaction should not handle unevictable pages but CMA can do so */
1547 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1553 * To minimise LRU disruption, the caller can indicate that it only
1554 * wants to isolate pages it will be able to operate on without
1555 * blocking - clean pages for the most part.
1557 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1558 * that it is possible to migrate without blocking
1560 if (mode & ISOLATE_ASYNC_MIGRATE) {
1561 /* All the caller can do on PageWriteback is block */
1562 if (PageWriteback(page))
1565 if (PageDirty(page)) {
1566 struct address_space *mapping;
1570 * Only pages without mappings or that have a
1571 * ->migratepage callback are possible to migrate
1572 * without blocking. However, we can be racing with
1573 * truncation so it's necessary to lock the page
1574 * to stabilise the mapping as truncation holds
1575 * the page lock until after the page is removed
1576 * from the page cache.
1578 if (!trylock_page(page))
1581 mapping = page_mapping(page);
1582 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1592 if (likely(get_page_unless_zero(page))) {
1594 * Be careful not to clear PageLRU until after we're
1595 * sure the page is not being freed elsewhere -- the
1596 * page release code relies on it.
1607 * Update LRU sizes after isolating pages. The LRU size updates must
1608 * be complete before mem_cgroup_update_lru_size due to a santity check.
1610 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1611 enum lru_list lru, unsigned long *nr_zone_taken)
1615 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1616 if (!nr_zone_taken[zid])
1619 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 * pgdat->lru_lock is heavily contended. Some of the functions that
1626 * shrink the lists perform better by taking out a batch of pages
1627 * and working on them outside the LRU lock.
1629 * For pagecache intensive workloads, this function is the hottest
1630 * spot in the kernel (apart from copy_*_user functions).
1632 * Appropriate locks must be held before calling this function.
1634 * @nr_to_scan: The number of eligible pages to look through on the list.
1635 * @lruvec: The LRU vector to pull pages from.
1636 * @dst: The temp list to put pages on to.
1637 * @nr_scanned: The number of pages that were scanned.
1638 * @sc: The scan_control struct for this reclaim session
1639 * @lru: LRU list id for isolating
1641 * returns how many pages were moved onto *@dst.
1643 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1644 struct lruvec *lruvec, struct list_head *dst,
1645 unsigned long *nr_scanned, struct scan_control *sc,
1648 struct list_head *src = &lruvec->lists[lru];
1649 unsigned long nr_taken = 0;
1650 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1651 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1652 unsigned long skipped = 0;
1653 unsigned long scan, total_scan, nr_pages;
1654 LIST_HEAD(pages_skipped);
1655 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659 while (scan < nr_to_scan && !list_empty(src)) {
1662 page = lru_to_page(src);
1663 prefetchw_prev_lru_page(page, src, flags);
1665 VM_BUG_ON_PAGE(!PageLRU(page), page);
1667 nr_pages = compound_nr(page);
1668 total_scan += nr_pages;
1670 if (page_zonenum(page) > sc->reclaim_idx) {
1671 list_move(&page->lru, &pages_skipped);
1672 nr_skipped[page_zonenum(page)] += nr_pages;
1677 * Do not count skipped pages because that makes the function
1678 * return with no isolated pages if the LRU mostly contains
1679 * ineligible pages. This causes the VM to not reclaim any
1680 * pages, triggering a premature OOM.
1682 * Account all tail pages of THP. This would not cause
1683 * premature OOM since __isolate_lru_page() returns -EBUSY
1684 * only when the page is being freed somewhere else.
1687 switch (__isolate_lru_page(page, mode)) {
1689 nr_taken += nr_pages;
1690 nr_zone_taken[page_zonenum(page)] += nr_pages;
1691 list_move(&page->lru, dst);
1695 /* else it is being freed elsewhere */
1696 list_move(&page->lru, src);
1705 * Splice any skipped pages to the start of the LRU list. Note that
1706 * this disrupts the LRU order when reclaiming for lower zones but
1707 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1708 * scanning would soon rescan the same pages to skip and put the
1709 * system at risk of premature OOM.
1711 if (!list_empty(&pages_skipped)) {
1714 list_splice(&pages_skipped, src);
1715 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1716 if (!nr_skipped[zid])
1719 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1720 skipped += nr_skipped[zid];
1723 *nr_scanned = total_scan;
1724 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1725 total_scan, skipped, nr_taken, mode, lru);
1726 update_lru_sizes(lruvec, lru, nr_zone_taken);
1731 * isolate_lru_page - tries to isolate a page from its LRU list
1732 * @page: page to isolate from its LRU list
1734 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1735 * vmstat statistic corresponding to whatever LRU list the page was on.
1737 * Returns 0 if the page was removed from an LRU list.
1738 * Returns -EBUSY if the page was not on an LRU list.
1740 * The returned page will have PageLRU() cleared. If it was found on
1741 * the active list, it will have PageActive set. If it was found on
1742 * the unevictable list, it will have the PageUnevictable bit set. That flag
1743 * may need to be cleared by the caller before letting the page go.
1745 * The vmstat statistic corresponding to the list on which the page was
1746 * found will be decremented.
1750 * (1) Must be called with an elevated refcount on the page. This is a
1751 * fundamentnal difference from isolate_lru_pages (which is called
1752 * without a stable reference).
1753 * (2) the lru_lock must not be held.
1754 * (3) interrupts must be enabled.
1756 int isolate_lru_page(struct page *page)
1760 VM_BUG_ON_PAGE(!page_count(page), page);
1761 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1763 if (PageLRU(page)) {
1764 pg_data_t *pgdat = page_pgdat(page);
1765 struct lruvec *lruvec;
1767 spin_lock_irq(&pgdat->lru_lock);
1768 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1769 if (PageLRU(page)) {
1770 int lru = page_lru(page);
1773 del_page_from_lru_list(page, lruvec, lru);
1776 spin_unlock_irq(&pgdat->lru_lock);
1782 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1783 * then get rescheduled. When there are massive number of tasks doing page
1784 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1785 * the LRU list will go small and be scanned faster than necessary, leading to
1786 * unnecessary swapping, thrashing and OOM.
1788 static int too_many_isolated(struct pglist_data *pgdat, int file,
1789 struct scan_control *sc)
1791 unsigned long inactive, isolated;
1793 if (current_is_kswapd())
1796 if (!writeback_throttling_sane(sc))
1800 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1801 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1803 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1809 * won't get blocked by normal direct-reclaimers, forming a circular
1812 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1815 return isolated > inactive;
1819 * This moves pages from @list to corresponding LRU list.
1821 * We move them the other way if the page is referenced by one or more
1822 * processes, from rmap.
1824 * If the pages are mostly unmapped, the processing is fast and it is
1825 * appropriate to hold zone_lru_lock across the whole operation. But if
1826 * the pages are mapped, the processing is slow (page_referenced()) so we
1827 * should drop zone_lru_lock around each page. It's impossible to balance
1828 * this, so instead we remove the pages from the LRU while processing them.
1829 * It is safe to rely on PG_active against the non-LRU pages in here because
1830 * nobody will play with that bit on a non-LRU page.
1832 * The downside is that we have to touch page->_refcount against each page.
1833 * But we had to alter page->flags anyway.
1835 * Returns the number of pages moved to the given lruvec.
1838 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1839 struct list_head *list)
1841 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1842 int nr_pages, nr_moved = 0;
1843 LIST_HEAD(pages_to_free);
1847 while (!list_empty(list)) {
1848 page = lru_to_page(list);
1849 VM_BUG_ON_PAGE(PageLRU(page), page);
1850 if (unlikely(!page_evictable(page))) {
1851 list_del(&page->lru);
1852 spin_unlock_irq(&pgdat->lru_lock);
1853 putback_lru_page(page);
1854 spin_lock_irq(&pgdat->lru_lock);
1857 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1860 lru = page_lru(page);
1862 nr_pages = hpage_nr_pages(page);
1863 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1864 list_move(&page->lru, &lruvec->lists[lru]);
1866 if (put_page_testzero(page)) {
1867 __ClearPageLRU(page);
1868 __ClearPageActive(page);
1869 del_page_from_lru_list(page, lruvec, lru);
1871 if (unlikely(PageCompound(page))) {
1872 spin_unlock_irq(&pgdat->lru_lock);
1873 destroy_compound_page(page);
1874 spin_lock_irq(&pgdat->lru_lock);
1876 list_add(&page->lru, &pages_to_free);
1878 nr_moved += nr_pages;
1883 * To save our caller's stack, now use input list for pages to free.
1885 list_splice(&pages_to_free, list);
1891 * If a kernel thread (such as nfsd for loop-back mounts) services
1892 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1893 * In that case we should only throttle if the backing device it is
1894 * writing to is congested. In other cases it is safe to throttle.
1896 static int current_may_throttle(void)
1898 return !(current->flags & PF_LOCAL_THROTTLE) ||
1899 current->backing_dev_info == NULL ||
1900 bdi_write_congested(current->backing_dev_info);
1904 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1905 * of reclaimed pages
1907 static noinline_for_stack unsigned long
1908 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1909 struct scan_control *sc, enum lru_list lru)
1911 LIST_HEAD(page_list);
1912 unsigned long nr_scanned;
1913 unsigned int nr_reclaimed = 0;
1914 unsigned long nr_taken;
1915 struct reclaim_stat stat;
1916 int file = is_file_lru(lru);
1917 enum vm_event_item item;
1918 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1919 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1920 bool stalled = false;
1922 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1926 /* wait a bit for the reclaimer. */
1930 /* We are about to die and free our memory. Return now. */
1931 if (fatal_signal_pending(current))
1932 return SWAP_CLUSTER_MAX;
1937 spin_lock_irq(&pgdat->lru_lock);
1939 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1940 &nr_scanned, sc, lru);
1942 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1943 reclaim_stat->recent_scanned[file] += nr_taken;
1945 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1946 if (!cgroup_reclaim(sc))
1947 __count_vm_events(item, nr_scanned);
1948 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1949 spin_unlock_irq(&pgdat->lru_lock);
1954 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1957 spin_lock_irq(&pgdat->lru_lock);
1959 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1960 if (!cgroup_reclaim(sc))
1961 __count_vm_events(item, nr_reclaimed);
1962 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1963 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1964 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1966 move_pages_to_lru(lruvec, &page_list);
1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1970 spin_unlock_irq(&pgdat->lru_lock);
1972 mem_cgroup_uncharge_list(&page_list);
1973 free_unref_page_list(&page_list);
1976 * If dirty pages are scanned that are not queued for IO, it
1977 * implies that flushers are not doing their job. This can
1978 * happen when memory pressure pushes dirty pages to the end of
1979 * the LRU before the dirty limits are breached and the dirty
1980 * data has expired. It can also happen when the proportion of
1981 * dirty pages grows not through writes but through memory
1982 * pressure reclaiming all the clean cache. And in some cases,
1983 * the flushers simply cannot keep up with the allocation
1984 * rate. Nudge the flusher threads in case they are asleep.
1986 if (stat.nr_unqueued_dirty == nr_taken)
1987 wakeup_flusher_threads(WB_REASON_VMSCAN);
1989 sc->nr.dirty += stat.nr_dirty;
1990 sc->nr.congested += stat.nr_congested;
1991 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1992 sc->nr.writeback += stat.nr_writeback;
1993 sc->nr.immediate += stat.nr_immediate;
1994 sc->nr.taken += nr_taken;
1996 sc->nr.file_taken += nr_taken;
1998 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1999 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2000 return nr_reclaimed;
2003 static void shrink_active_list(unsigned long nr_to_scan,
2004 struct lruvec *lruvec,
2005 struct scan_control *sc,
2008 unsigned long nr_taken;
2009 unsigned long nr_scanned;
2010 unsigned long vm_flags;
2011 LIST_HEAD(l_hold); /* The pages which were snipped off */
2012 LIST_HEAD(l_active);
2013 LIST_HEAD(l_inactive);
2015 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2016 unsigned nr_deactivate, nr_activate;
2017 unsigned nr_rotated = 0;
2018 int file = is_file_lru(lru);
2019 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2023 spin_lock_irq(&pgdat->lru_lock);
2025 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2026 &nr_scanned, sc, lru);
2028 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2029 reclaim_stat->recent_scanned[file] += nr_taken;
2031 __count_vm_events(PGREFILL, nr_scanned);
2032 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2034 spin_unlock_irq(&pgdat->lru_lock);
2036 while (!list_empty(&l_hold)) {
2038 page = lru_to_page(&l_hold);
2039 list_del(&page->lru);
2041 if (unlikely(!page_evictable(page))) {
2042 putback_lru_page(page);
2046 if (unlikely(buffer_heads_over_limit)) {
2047 if (page_has_private(page) && trylock_page(page)) {
2048 if (page_has_private(page))
2049 try_to_release_page(page, 0);
2054 if (page_referenced(page, 0, sc->target_mem_cgroup,
2056 nr_rotated += hpage_nr_pages(page);
2058 * Identify referenced, file-backed active pages and
2059 * give them one more trip around the active list. So
2060 * that executable code get better chances to stay in
2061 * memory under moderate memory pressure. Anon pages
2062 * are not likely to be evicted by use-once streaming
2063 * IO, plus JVM can create lots of anon VM_EXEC pages,
2064 * so we ignore them here.
2066 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2067 list_add(&page->lru, &l_active);
2072 ClearPageActive(page); /* we are de-activating */
2073 SetPageWorkingset(page);
2074 list_add(&page->lru, &l_inactive);
2078 * Move pages back to the lru list.
2080 spin_lock_irq(&pgdat->lru_lock);
2082 * Count referenced pages from currently used mappings as rotated,
2083 * even though only some of them are actually re-activated. This
2084 * helps balance scan pressure between file and anonymous pages in
2087 reclaim_stat->recent_rotated[file] += nr_rotated;
2089 nr_activate = move_pages_to_lru(lruvec, &l_active);
2090 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2091 /* Keep all free pages in l_active list */
2092 list_splice(&l_inactive, &l_active);
2094 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2095 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2097 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2098 spin_unlock_irq(&pgdat->lru_lock);
2100 mem_cgroup_uncharge_list(&l_active);
2101 free_unref_page_list(&l_active);
2102 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2103 nr_deactivate, nr_rotated, sc->priority, file);
2106 unsigned long reclaim_pages(struct list_head *page_list)
2108 int nid = NUMA_NO_NODE;
2109 unsigned int nr_reclaimed = 0;
2110 LIST_HEAD(node_page_list);
2111 struct reclaim_stat dummy_stat;
2113 struct scan_control sc = {
2114 .gfp_mask = GFP_KERNEL,
2115 .priority = DEF_PRIORITY,
2121 while (!list_empty(page_list)) {
2122 page = lru_to_page(page_list);
2123 if (nid == NUMA_NO_NODE) {
2124 nid = page_to_nid(page);
2125 INIT_LIST_HEAD(&node_page_list);
2128 if (nid == page_to_nid(page)) {
2129 ClearPageActive(page);
2130 list_move(&page->lru, &node_page_list);
2134 nr_reclaimed += shrink_page_list(&node_page_list,
2137 &dummy_stat, false);
2138 while (!list_empty(&node_page_list)) {
2139 page = lru_to_page(&node_page_list);
2140 list_del(&page->lru);
2141 putback_lru_page(page);
2147 if (!list_empty(&node_page_list)) {
2148 nr_reclaimed += shrink_page_list(&node_page_list,
2151 &dummy_stat, false);
2152 while (!list_empty(&node_page_list)) {
2153 page = lru_to_page(&node_page_list);
2154 list_del(&page->lru);
2155 putback_lru_page(page);
2159 return nr_reclaimed;
2162 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2163 struct lruvec *lruvec, struct scan_control *sc)
2165 if (is_active_lru(lru)) {
2166 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2167 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2169 sc->skipped_deactivate = 1;
2173 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2177 * The inactive anon list should be small enough that the VM never has
2178 * to do too much work.
2180 * The inactive file list should be small enough to leave most memory
2181 * to the established workingset on the scan-resistant active list,
2182 * but large enough to avoid thrashing the aggregate readahead window.
2184 * Both inactive lists should also be large enough that each inactive
2185 * page has a chance to be referenced again before it is reclaimed.
2187 * If that fails and refaulting is observed, the inactive list grows.
2189 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190 * on this LRU, maintained by the pageout code. An inactive_ratio
2191 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2194 * memory ratio inactive
2195 * -------------------------------------
2204 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2206 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2207 unsigned long inactive, active;
2208 unsigned long inactive_ratio;
2211 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2212 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2214 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2216 inactive_ratio = int_sqrt(10 * gb);
2220 return inactive * inactive_ratio < active;
2231 * Determine how aggressively the anon and file LRU lists should be
2232 * scanned. The relative value of each set of LRU lists is determined
2233 * by looking at the fraction of the pages scanned we did rotate back
2234 * onto the active list instead of evict.
2236 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2237 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2239 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2242 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2243 int swappiness = mem_cgroup_swappiness(memcg);
2244 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2246 u64 denominator = 0; /* gcc */
2247 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2248 unsigned long anon_prio, file_prio;
2249 enum scan_balance scan_balance;
2250 unsigned long anon, file;
2251 unsigned long ap, fp;
2254 /* If we have no swap space, do not bother scanning anon pages. */
2255 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2256 scan_balance = SCAN_FILE;
2261 * Global reclaim will swap to prevent OOM even with no
2262 * swappiness, but memcg users want to use this knob to
2263 * disable swapping for individual groups completely when
2264 * using the memory controller's swap limit feature would be
2267 if (cgroup_reclaim(sc) && !swappiness) {
2268 scan_balance = SCAN_FILE;
2273 * Do not apply any pressure balancing cleverness when the
2274 * system is close to OOM, scan both anon and file equally
2275 * (unless the swappiness setting disagrees with swapping).
2277 if (!sc->priority && swappiness) {
2278 scan_balance = SCAN_EQUAL;
2283 * If the system is almost out of file pages, force-scan anon.
2285 if (sc->file_is_tiny) {
2286 scan_balance = SCAN_ANON;
2291 * If there is enough inactive page cache, we do not reclaim
2292 * anything from the anonymous working right now.
2294 if (sc->cache_trim_mode) {
2295 scan_balance = SCAN_FILE;
2299 scan_balance = SCAN_FRACT;
2302 * With swappiness at 100, anonymous and file have the same priority.
2303 * This scanning priority is essentially the inverse of IO cost.
2305 anon_prio = swappiness;
2306 file_prio = 200 - anon_prio;
2309 * OK, so we have swap space and a fair amount of page cache
2310 * pages. We use the recently rotated / recently scanned
2311 * ratios to determine how valuable each cache is.
2313 * Because workloads change over time (and to avoid overflow)
2314 * we keep these statistics as a floating average, which ends
2315 * up weighing recent references more than old ones.
2317 * anon in [0], file in [1]
2320 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2321 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2322 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2323 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2325 spin_lock_irq(&pgdat->lru_lock);
2326 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2327 reclaim_stat->recent_scanned[0] /= 2;
2328 reclaim_stat->recent_rotated[0] /= 2;
2331 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2332 reclaim_stat->recent_scanned[1] /= 2;
2333 reclaim_stat->recent_rotated[1] /= 2;
2337 * The amount of pressure on anon vs file pages is inversely
2338 * proportional to the fraction of recently scanned pages on
2339 * each list that were recently referenced and in active use.
2341 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2342 ap /= reclaim_stat->recent_rotated[0] + 1;
2344 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2345 fp /= reclaim_stat->recent_rotated[1] + 1;
2346 spin_unlock_irq(&pgdat->lru_lock);
2350 denominator = ap + fp + 1;
2352 for_each_evictable_lru(lru) {
2353 int file = is_file_lru(lru);
2354 unsigned long lruvec_size;
2356 unsigned long protection;
2358 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2359 protection = mem_cgroup_protection(memcg,
2360 sc->memcg_low_reclaim);
2364 * Scale a cgroup's reclaim pressure by proportioning
2365 * its current usage to its memory.low or memory.min
2368 * This is important, as otherwise scanning aggression
2369 * becomes extremely binary -- from nothing as we
2370 * approach the memory protection threshold, to totally
2371 * nominal as we exceed it. This results in requiring
2372 * setting extremely liberal protection thresholds. It
2373 * also means we simply get no protection at all if we
2374 * set it too low, which is not ideal.
2376 * If there is any protection in place, we reduce scan
2377 * pressure by how much of the total memory used is
2378 * within protection thresholds.
2380 * There is one special case: in the first reclaim pass,
2381 * we skip over all groups that are within their low
2382 * protection. If that fails to reclaim enough pages to
2383 * satisfy the reclaim goal, we come back and override
2384 * the best-effort low protection. However, we still
2385 * ideally want to honor how well-behaved groups are in
2386 * that case instead of simply punishing them all
2387 * equally. As such, we reclaim them based on how much
2388 * memory they are using, reducing the scan pressure
2389 * again by how much of the total memory used is under
2392 unsigned long cgroup_size = mem_cgroup_size(memcg);
2394 /* Avoid TOCTOU with earlier protection check */
2395 cgroup_size = max(cgroup_size, protection);
2397 scan = lruvec_size - lruvec_size * protection /
2401 * Minimally target SWAP_CLUSTER_MAX pages to keep
2402 * reclaim moving forwards, avoiding decremeting
2403 * sc->priority further than desirable.
2405 scan = max(scan, SWAP_CLUSTER_MAX);
2410 scan >>= sc->priority;
2413 * If the cgroup's already been deleted, make sure to
2414 * scrape out the remaining cache.
2416 if (!scan && !mem_cgroup_online(memcg))
2417 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2419 switch (scan_balance) {
2421 /* Scan lists relative to size */
2425 * Scan types proportional to swappiness and
2426 * their relative recent reclaim efficiency.
2427 * Make sure we don't miss the last page on
2428 * the offlined memory cgroups because of a
2431 scan = mem_cgroup_online(memcg) ?
2432 div64_u64(scan * fraction[file], denominator) :
2433 DIV64_U64_ROUND_UP(scan * fraction[file],
2438 /* Scan one type exclusively */
2439 if ((scan_balance == SCAN_FILE) != file)
2443 /* Look ma, no brain */
2451 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2453 unsigned long nr[NR_LRU_LISTS];
2454 unsigned long targets[NR_LRU_LISTS];
2455 unsigned long nr_to_scan;
2457 unsigned long nr_reclaimed = 0;
2458 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2459 struct blk_plug plug;
2462 get_scan_count(lruvec, sc, nr);
2464 /* Record the original scan target for proportional adjustments later */
2465 memcpy(targets, nr, sizeof(nr));
2468 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2469 * event that can occur when there is little memory pressure e.g.
2470 * multiple streaming readers/writers. Hence, we do not abort scanning
2471 * when the requested number of pages are reclaimed when scanning at
2472 * DEF_PRIORITY on the assumption that the fact we are direct
2473 * reclaiming implies that kswapd is not keeping up and it is best to
2474 * do a batch of work at once. For memcg reclaim one check is made to
2475 * abort proportional reclaim if either the file or anon lru has already
2476 * dropped to zero at the first pass.
2478 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2479 sc->priority == DEF_PRIORITY);
2481 blk_start_plug(&plug);
2482 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2483 nr[LRU_INACTIVE_FILE]) {
2484 unsigned long nr_anon, nr_file, percentage;
2485 unsigned long nr_scanned;
2487 for_each_evictable_lru(lru) {
2489 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2490 nr[lru] -= nr_to_scan;
2492 nr_reclaimed += shrink_list(lru, nr_to_scan,
2499 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2503 * For kswapd and memcg, reclaim at least the number of pages
2504 * requested. Ensure that the anon and file LRUs are scanned
2505 * proportionally what was requested by get_scan_count(). We
2506 * stop reclaiming one LRU and reduce the amount scanning
2507 * proportional to the original scan target.
2509 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2510 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2513 * It's just vindictive to attack the larger once the smaller
2514 * has gone to zero. And given the way we stop scanning the
2515 * smaller below, this makes sure that we only make one nudge
2516 * towards proportionality once we've got nr_to_reclaim.
2518 if (!nr_file || !nr_anon)
2521 if (nr_file > nr_anon) {
2522 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2523 targets[LRU_ACTIVE_ANON] + 1;
2525 percentage = nr_anon * 100 / scan_target;
2527 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2528 targets[LRU_ACTIVE_FILE] + 1;
2530 percentage = nr_file * 100 / scan_target;
2533 /* Stop scanning the smaller of the LRU */
2535 nr[lru + LRU_ACTIVE] = 0;
2538 * Recalculate the other LRU scan count based on its original
2539 * scan target and the percentage scanning already complete
2541 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2542 nr_scanned = targets[lru] - nr[lru];
2543 nr[lru] = targets[lru] * (100 - percentage) / 100;
2544 nr[lru] -= min(nr[lru], nr_scanned);
2547 nr_scanned = targets[lru] - nr[lru];
2548 nr[lru] = targets[lru] * (100 - percentage) / 100;
2549 nr[lru] -= min(nr[lru], nr_scanned);
2551 scan_adjusted = true;
2553 blk_finish_plug(&plug);
2554 sc->nr_reclaimed += nr_reclaimed;
2557 * Even if we did not try to evict anon pages at all, we want to
2558 * rebalance the anon lru active/inactive ratio.
2560 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2561 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2562 sc, LRU_ACTIVE_ANON);
2565 /* Use reclaim/compaction for costly allocs or under memory pressure */
2566 static bool in_reclaim_compaction(struct scan_control *sc)
2568 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2569 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2570 sc->priority < DEF_PRIORITY - 2))
2577 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2578 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2579 * true if more pages should be reclaimed such that when the page allocator
2580 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2581 * It will give up earlier than that if there is difficulty reclaiming pages.
2583 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2584 unsigned long nr_reclaimed,
2585 struct scan_control *sc)
2587 unsigned long pages_for_compaction;
2588 unsigned long inactive_lru_pages;
2591 /* If not in reclaim/compaction mode, stop */
2592 if (!in_reclaim_compaction(sc))
2596 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2597 * number of pages that were scanned. This will return to the caller
2598 * with the risk reclaim/compaction and the resulting allocation attempt
2599 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2600 * allocations through requiring that the full LRU list has been scanned
2601 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2602 * scan, but that approximation was wrong, and there were corner cases
2603 * where always a non-zero amount of pages were scanned.
2608 /* If compaction would go ahead or the allocation would succeed, stop */
2609 for (z = 0; z <= sc->reclaim_idx; z++) {
2610 struct zone *zone = &pgdat->node_zones[z];
2611 if (!managed_zone(zone))
2614 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2615 case COMPACT_SUCCESS:
2616 case COMPACT_CONTINUE:
2619 /* check next zone */
2625 * If we have not reclaimed enough pages for compaction and the
2626 * inactive lists are large enough, continue reclaiming
2628 pages_for_compaction = compact_gap(sc->order);
2629 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2630 if (get_nr_swap_pages() > 0)
2631 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2633 return inactive_lru_pages > pages_for_compaction;
2636 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2638 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2639 struct mem_cgroup *memcg;
2641 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2643 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2644 unsigned long reclaimed;
2645 unsigned long scanned;
2647 switch (mem_cgroup_protected(target_memcg, memcg)) {
2648 case MEMCG_PROT_MIN:
2651 * If there is no reclaimable memory, OOM.
2654 case MEMCG_PROT_LOW:
2657 * Respect the protection only as long as
2658 * there is an unprotected supply
2659 * of reclaimable memory from other cgroups.
2661 if (!sc->memcg_low_reclaim) {
2662 sc->memcg_low_skipped = 1;
2665 memcg_memory_event(memcg, MEMCG_LOW);
2667 case MEMCG_PROT_NONE:
2669 * All protection thresholds breached. We may
2670 * still choose to vary the scan pressure
2671 * applied based on by how much the cgroup in
2672 * question has exceeded its protection
2673 * thresholds (see get_scan_count).
2678 reclaimed = sc->nr_reclaimed;
2679 scanned = sc->nr_scanned;
2681 shrink_lruvec(lruvec, sc);
2683 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2686 /* Record the group's reclaim efficiency */
2687 vmpressure(sc->gfp_mask, memcg, false,
2688 sc->nr_scanned - scanned,
2689 sc->nr_reclaimed - reclaimed);
2691 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2694 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2696 struct reclaim_state *reclaim_state = current->reclaim_state;
2697 unsigned long nr_reclaimed, nr_scanned;
2698 struct lruvec *target_lruvec;
2699 bool reclaimable = false;
2702 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2705 memset(&sc->nr, 0, sizeof(sc->nr));
2707 nr_reclaimed = sc->nr_reclaimed;
2708 nr_scanned = sc->nr_scanned;
2711 * Target desirable inactive:active list ratios for the anon
2712 * and file LRU lists.
2714 if (!sc->force_deactivate) {
2715 unsigned long refaults;
2717 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2718 sc->may_deactivate |= DEACTIVATE_ANON;
2720 sc->may_deactivate &= ~DEACTIVATE_ANON;
2723 * When refaults are being observed, it means a new
2724 * workingset is being established. Deactivate to get
2725 * rid of any stale active pages quickly.
2727 refaults = lruvec_page_state(target_lruvec,
2728 WORKINGSET_ACTIVATE);
2729 if (refaults != target_lruvec->refaults ||
2730 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2731 sc->may_deactivate |= DEACTIVATE_FILE;
2733 sc->may_deactivate &= ~DEACTIVATE_FILE;
2735 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2738 * If we have plenty of inactive file pages that aren't
2739 * thrashing, try to reclaim those first before touching
2742 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2743 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2744 sc->cache_trim_mode = 1;
2746 sc->cache_trim_mode = 0;
2749 * Prevent the reclaimer from falling into the cache trap: as
2750 * cache pages start out inactive, every cache fault will tip
2751 * the scan balance towards the file LRU. And as the file LRU
2752 * shrinks, so does the window for rotation from references.
2753 * This means we have a runaway feedback loop where a tiny
2754 * thrashing file LRU becomes infinitely more attractive than
2755 * anon pages. Try to detect this based on file LRU size.
2757 if (!cgroup_reclaim(sc)) {
2758 unsigned long total_high_wmark = 0;
2759 unsigned long free, anon;
2762 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2763 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2764 node_page_state(pgdat, NR_INACTIVE_FILE);
2766 for (z = 0; z < MAX_NR_ZONES; z++) {
2767 struct zone *zone = &pgdat->node_zones[z];
2768 if (!managed_zone(zone))
2771 total_high_wmark += high_wmark_pages(zone);
2775 * Consider anon: if that's low too, this isn't a
2776 * runaway file reclaim problem, but rather just
2777 * extreme pressure. Reclaim as per usual then.
2779 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2782 file + free <= total_high_wmark &&
2783 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2784 anon >> sc->priority;
2787 shrink_node_memcgs(pgdat, sc);
2789 if (reclaim_state) {
2790 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2791 reclaim_state->reclaimed_slab = 0;
2794 /* Record the subtree's reclaim efficiency */
2795 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2796 sc->nr_scanned - nr_scanned,
2797 sc->nr_reclaimed - nr_reclaimed);
2799 if (sc->nr_reclaimed - nr_reclaimed)
2802 if (current_is_kswapd()) {
2804 * If reclaim is isolating dirty pages under writeback,
2805 * it implies that the long-lived page allocation rate
2806 * is exceeding the page laundering rate. Either the
2807 * global limits are not being effective at throttling
2808 * processes due to the page distribution throughout
2809 * zones or there is heavy usage of a slow backing
2810 * device. The only option is to throttle from reclaim
2811 * context which is not ideal as there is no guarantee
2812 * the dirtying process is throttled in the same way
2813 * balance_dirty_pages() manages.
2815 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2816 * count the number of pages under pages flagged for
2817 * immediate reclaim and stall if any are encountered
2818 * in the nr_immediate check below.
2820 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2821 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2823 /* Allow kswapd to start writing pages during reclaim.*/
2824 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2825 set_bit(PGDAT_DIRTY, &pgdat->flags);
2828 * If kswapd scans pages marked marked for immediate
2829 * reclaim and under writeback (nr_immediate), it
2830 * implies that pages are cycling through the LRU
2831 * faster than they are written so also forcibly stall.
2833 if (sc->nr.immediate)
2834 congestion_wait(BLK_RW_ASYNC, HZ/10);
2838 * Tag a node/memcg as congested if all the dirty pages
2839 * scanned were backed by a congested BDI and
2840 * wait_iff_congested will stall.
2842 * Legacy memcg will stall in page writeback so avoid forcibly
2843 * stalling in wait_iff_congested().
2845 if ((current_is_kswapd() ||
2846 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2847 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2848 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2851 * Stall direct reclaim for IO completions if underlying BDIs
2852 * and node is congested. Allow kswapd to continue until it
2853 * starts encountering unqueued dirty pages or cycling through
2854 * the LRU too quickly.
2856 if (!current_is_kswapd() && current_may_throttle() &&
2857 !sc->hibernation_mode &&
2858 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2859 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2861 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2866 * Kswapd gives up on balancing particular nodes after too
2867 * many failures to reclaim anything from them and goes to
2868 * sleep. On reclaim progress, reset the failure counter. A
2869 * successful direct reclaim run will revive a dormant kswapd.
2872 pgdat->kswapd_failures = 0;
2876 * Returns true if compaction should go ahead for a costly-order request, or
2877 * the allocation would already succeed without compaction. Return false if we
2878 * should reclaim first.
2880 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2882 unsigned long watermark;
2883 enum compact_result suitable;
2885 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2886 if (suitable == COMPACT_SUCCESS)
2887 /* Allocation should succeed already. Don't reclaim. */
2889 if (suitable == COMPACT_SKIPPED)
2890 /* Compaction cannot yet proceed. Do reclaim. */
2894 * Compaction is already possible, but it takes time to run and there
2895 * are potentially other callers using the pages just freed. So proceed
2896 * with reclaim to make a buffer of free pages available to give
2897 * compaction a reasonable chance of completing and allocating the page.
2898 * Note that we won't actually reclaim the whole buffer in one attempt
2899 * as the target watermark in should_continue_reclaim() is lower. But if
2900 * we are already above the high+gap watermark, don't reclaim at all.
2902 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2904 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2908 * This is the direct reclaim path, for page-allocating processes. We only
2909 * try to reclaim pages from zones which will satisfy the caller's allocation
2912 * If a zone is deemed to be full of pinned pages then just give it a light
2913 * scan then give up on it.
2915 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2919 unsigned long nr_soft_reclaimed;
2920 unsigned long nr_soft_scanned;
2922 pg_data_t *last_pgdat = NULL;
2925 * If the number of buffer_heads in the machine exceeds the maximum
2926 * allowed level, force direct reclaim to scan the highmem zone as
2927 * highmem pages could be pinning lowmem pages storing buffer_heads
2929 orig_mask = sc->gfp_mask;
2930 if (buffer_heads_over_limit) {
2931 sc->gfp_mask |= __GFP_HIGHMEM;
2932 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2935 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2936 sc->reclaim_idx, sc->nodemask) {
2938 * Take care memory controller reclaiming has small influence
2941 if (!cgroup_reclaim(sc)) {
2942 if (!cpuset_zone_allowed(zone,
2943 GFP_KERNEL | __GFP_HARDWALL))
2947 * If we already have plenty of memory free for
2948 * compaction in this zone, don't free any more.
2949 * Even though compaction is invoked for any
2950 * non-zero order, only frequent costly order
2951 * reclamation is disruptive enough to become a
2952 * noticeable problem, like transparent huge
2955 if (IS_ENABLED(CONFIG_COMPACTION) &&
2956 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2957 compaction_ready(zone, sc)) {
2958 sc->compaction_ready = true;
2963 * Shrink each node in the zonelist once. If the
2964 * zonelist is ordered by zone (not the default) then a
2965 * node may be shrunk multiple times but in that case
2966 * the user prefers lower zones being preserved.
2968 if (zone->zone_pgdat == last_pgdat)
2972 * This steals pages from memory cgroups over softlimit
2973 * and returns the number of reclaimed pages and
2974 * scanned pages. This works for global memory pressure
2975 * and balancing, not for a memcg's limit.
2977 nr_soft_scanned = 0;
2978 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2979 sc->order, sc->gfp_mask,
2981 sc->nr_reclaimed += nr_soft_reclaimed;
2982 sc->nr_scanned += nr_soft_scanned;
2983 /* need some check for avoid more shrink_zone() */
2986 /* See comment about same check for global reclaim above */
2987 if (zone->zone_pgdat == last_pgdat)
2989 last_pgdat = zone->zone_pgdat;
2990 shrink_node(zone->zone_pgdat, sc);
2994 * Restore to original mask to avoid the impact on the caller if we
2995 * promoted it to __GFP_HIGHMEM.
2997 sc->gfp_mask = orig_mask;
3000 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3002 struct lruvec *target_lruvec;
3003 unsigned long refaults;
3005 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3006 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
3007 target_lruvec->refaults = refaults;
3011 * This is the main entry point to direct page reclaim.
3013 * If a full scan of the inactive list fails to free enough memory then we
3014 * are "out of memory" and something needs to be killed.
3016 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3017 * high - the zone may be full of dirty or under-writeback pages, which this
3018 * caller can't do much about. We kick the writeback threads and take explicit
3019 * naps in the hope that some of these pages can be written. But if the
3020 * allocating task holds filesystem locks which prevent writeout this might not
3021 * work, and the allocation attempt will fail.
3023 * returns: 0, if no pages reclaimed
3024 * else, the number of pages reclaimed
3026 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3027 struct scan_control *sc)
3029 int initial_priority = sc->priority;
3030 pg_data_t *last_pgdat;
3034 delayacct_freepages_start();
3036 if (!cgroup_reclaim(sc))
3037 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3040 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3043 shrink_zones(zonelist, sc);
3045 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3048 if (sc->compaction_ready)
3052 * If we're getting trouble reclaiming, start doing
3053 * writepage even in laptop mode.
3055 if (sc->priority < DEF_PRIORITY - 2)
3056 sc->may_writepage = 1;
3057 } while (--sc->priority >= 0);
3060 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3062 if (zone->zone_pgdat == last_pgdat)
3064 last_pgdat = zone->zone_pgdat;
3066 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3068 if (cgroup_reclaim(sc)) {
3069 struct lruvec *lruvec;
3071 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3073 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3077 delayacct_freepages_end();
3079 if (sc->nr_reclaimed)
3080 return sc->nr_reclaimed;
3082 /* Aborted reclaim to try compaction? don't OOM, then */
3083 if (sc->compaction_ready)
3087 * We make inactive:active ratio decisions based on the node's
3088 * composition of memory, but a restrictive reclaim_idx or a
3089 * memory.low cgroup setting can exempt large amounts of
3090 * memory from reclaim. Neither of which are very common, so
3091 * instead of doing costly eligibility calculations of the
3092 * entire cgroup subtree up front, we assume the estimates are
3093 * good, and retry with forcible deactivation if that fails.
3095 if (sc->skipped_deactivate) {
3096 sc->priority = initial_priority;
3097 sc->force_deactivate = 1;
3098 sc->skipped_deactivate = 0;
3102 /* Untapped cgroup reserves? Don't OOM, retry. */
3103 if (sc->memcg_low_skipped) {
3104 sc->priority = initial_priority;
3105 sc->force_deactivate = 0;
3106 sc->memcg_low_reclaim = 1;
3107 sc->memcg_low_skipped = 0;
3114 static bool allow_direct_reclaim(pg_data_t *pgdat)
3117 unsigned long pfmemalloc_reserve = 0;
3118 unsigned long free_pages = 0;
3122 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3125 for (i = 0; i <= ZONE_NORMAL; i++) {
3126 zone = &pgdat->node_zones[i];
3127 if (!managed_zone(zone))
3130 if (!zone_reclaimable_pages(zone))
3133 pfmemalloc_reserve += min_wmark_pages(zone);
3134 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3137 /* If there are no reserves (unexpected config) then do not throttle */
3138 if (!pfmemalloc_reserve)
3141 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3143 /* kswapd must be awake if processes are being throttled */
3144 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3145 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3146 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3148 wake_up_interruptible(&pgdat->kswapd_wait);
3155 * Throttle direct reclaimers if backing storage is backed by the network
3156 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3157 * depleted. kswapd will continue to make progress and wake the processes
3158 * when the low watermark is reached.
3160 * Returns true if a fatal signal was delivered during throttling. If this
3161 * happens, the page allocator should not consider triggering the OOM killer.
3163 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3164 nodemask_t *nodemask)
3168 pg_data_t *pgdat = NULL;
3171 * Kernel threads should not be throttled as they may be indirectly
3172 * responsible for cleaning pages necessary for reclaim to make forward
3173 * progress. kjournald for example may enter direct reclaim while
3174 * committing a transaction where throttling it could forcing other
3175 * processes to block on log_wait_commit().
3177 if (current->flags & PF_KTHREAD)
3181 * If a fatal signal is pending, this process should not throttle.
3182 * It should return quickly so it can exit and free its memory
3184 if (fatal_signal_pending(current))
3188 * Check if the pfmemalloc reserves are ok by finding the first node
3189 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3190 * GFP_KERNEL will be required for allocating network buffers when
3191 * swapping over the network so ZONE_HIGHMEM is unusable.
3193 * Throttling is based on the first usable node and throttled processes
3194 * wait on a queue until kswapd makes progress and wakes them. There
3195 * is an affinity then between processes waking up and where reclaim
3196 * progress has been made assuming the process wakes on the same node.
3197 * More importantly, processes running on remote nodes will not compete
3198 * for remote pfmemalloc reserves and processes on different nodes
3199 * should make reasonable progress.
3201 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3202 gfp_zone(gfp_mask), nodemask) {
3203 if (zone_idx(zone) > ZONE_NORMAL)
3206 /* Throttle based on the first usable node */
3207 pgdat = zone->zone_pgdat;
3208 if (allow_direct_reclaim(pgdat))
3213 /* If no zone was usable by the allocation flags then do not throttle */
3217 /* Account for the throttling */
3218 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3221 * If the caller cannot enter the filesystem, it's possible that it
3222 * is due to the caller holding an FS lock or performing a journal
3223 * transaction in the case of a filesystem like ext[3|4]. In this case,
3224 * it is not safe to block on pfmemalloc_wait as kswapd could be
3225 * blocked waiting on the same lock. Instead, throttle for up to a
3226 * second before continuing.
3228 if (!(gfp_mask & __GFP_FS)) {
3229 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3230 allow_direct_reclaim(pgdat), HZ);
3235 /* Throttle until kswapd wakes the process */
3236 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3237 allow_direct_reclaim(pgdat));
3240 if (fatal_signal_pending(current))
3247 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3248 gfp_t gfp_mask, nodemask_t *nodemask)
3250 unsigned long nr_reclaimed;
3251 struct scan_control sc = {
3252 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3253 .gfp_mask = current_gfp_context(gfp_mask),
3254 .reclaim_idx = gfp_zone(gfp_mask),
3256 .nodemask = nodemask,
3257 .priority = DEF_PRIORITY,
3258 .may_writepage = !laptop_mode,
3264 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3265 * Confirm they are large enough for max values.
3267 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3268 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3269 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3272 * Do not enter reclaim if fatal signal was delivered while throttled.
3273 * 1 is returned so that the page allocator does not OOM kill at this
3276 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3279 set_task_reclaim_state(current, &sc.reclaim_state);
3280 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3282 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3284 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3285 set_task_reclaim_state(current, NULL);
3287 return nr_reclaimed;
3292 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3293 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3294 gfp_t gfp_mask, bool noswap,
3296 unsigned long *nr_scanned)
3298 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3299 struct scan_control sc = {
3300 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3301 .target_mem_cgroup = memcg,
3302 .may_writepage = !laptop_mode,
3304 .reclaim_idx = MAX_NR_ZONES - 1,
3305 .may_swap = !noswap,
3308 WARN_ON_ONCE(!current->reclaim_state);
3310 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3311 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3313 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3317 * NOTE: Although we can get the priority field, using it
3318 * here is not a good idea, since it limits the pages we can scan.
3319 * if we don't reclaim here, the shrink_node from balance_pgdat
3320 * will pick up pages from other mem cgroup's as well. We hack
3321 * the priority and make it zero.
3323 shrink_lruvec(lruvec, &sc);
3325 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3327 *nr_scanned = sc.nr_scanned;
3329 return sc.nr_reclaimed;
3332 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3333 unsigned long nr_pages,
3337 unsigned long nr_reclaimed;
3338 unsigned long pflags;
3339 unsigned int noreclaim_flag;
3340 struct scan_control sc = {
3341 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3342 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3343 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3344 .reclaim_idx = MAX_NR_ZONES - 1,
3345 .target_mem_cgroup = memcg,
3346 .priority = DEF_PRIORITY,
3347 .may_writepage = !laptop_mode,
3349 .may_swap = may_swap,
3352 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3353 * equal pressure on all the nodes. This is based on the assumption that
3354 * the reclaim does not bail out early.
3356 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358 set_task_reclaim_state(current, &sc.reclaim_state);
3360 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3362 psi_memstall_enter(&pflags);
3363 noreclaim_flag = memalloc_noreclaim_save();
3365 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367 memalloc_noreclaim_restore(noreclaim_flag);
3368 psi_memstall_leave(&pflags);
3370 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3371 set_task_reclaim_state(current, NULL);
3373 return nr_reclaimed;
3377 static void age_active_anon(struct pglist_data *pgdat,
3378 struct scan_control *sc)
3380 struct mem_cgroup *memcg;
3381 struct lruvec *lruvec;
3383 if (!total_swap_pages)
3386 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3387 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3390 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3392 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3393 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3394 sc, LRU_ACTIVE_ANON);
3395 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3399 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3405 * Check for watermark boosts top-down as the higher zones
3406 * are more likely to be boosted. Both watermarks and boosts
3407 * should not be checked at the time time as reclaim would
3408 * start prematurely when there is no boosting and a lower
3411 for (i = highest_zoneidx; i >= 0; i--) {
3412 zone = pgdat->node_zones + i;
3413 if (!managed_zone(zone))
3416 if (zone->watermark_boost)
3424 * Returns true if there is an eligible zone balanced for the request order
3425 * and highest_zoneidx
3427 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3430 unsigned long mark = -1;
3434 * Check watermarks bottom-up as lower zones are more likely to
3437 for (i = 0; i <= highest_zoneidx; i++) {
3438 zone = pgdat->node_zones + i;
3440 if (!managed_zone(zone))
3443 mark = high_wmark_pages(zone);
3444 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3449 * If a node has no populated zone within highest_zoneidx, it does not
3450 * need balancing by definition. This can happen if a zone-restricted
3451 * allocation tries to wake a remote kswapd.
3459 /* Clear pgdat state for congested, dirty or under writeback. */
3460 static void clear_pgdat_congested(pg_data_t *pgdat)
3462 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3464 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3465 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3466 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3470 * Prepare kswapd for sleeping. This verifies that there are no processes
3471 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3473 * Returns true if kswapd is ready to sleep
3475 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3476 int highest_zoneidx)
3479 * The throttled processes are normally woken up in balance_pgdat() as
3480 * soon as allow_direct_reclaim() is true. But there is a potential
3481 * race between when kswapd checks the watermarks and a process gets
3482 * throttled. There is also a potential race if processes get
3483 * throttled, kswapd wakes, a large process exits thereby balancing the
3484 * zones, which causes kswapd to exit balance_pgdat() before reaching
3485 * the wake up checks. If kswapd is going to sleep, no process should
3486 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3487 * the wake up is premature, processes will wake kswapd and get
3488 * throttled again. The difference from wake ups in balance_pgdat() is
3489 * that here we are under prepare_to_wait().
3491 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3492 wake_up_all(&pgdat->pfmemalloc_wait);
3494 /* Hopeless node, leave it to direct reclaim */
3495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3498 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3499 clear_pgdat_congested(pgdat);
3507 * kswapd shrinks a node of pages that are at or below the highest usable
3508 * zone that is currently unbalanced.
3510 * Returns true if kswapd scanned at least the requested number of pages to
3511 * reclaim or if the lack of progress was due to pages under writeback.
3512 * This is used to determine if the scanning priority needs to be raised.
3514 static bool kswapd_shrink_node(pg_data_t *pgdat,
3515 struct scan_control *sc)
3520 /* Reclaim a number of pages proportional to the number of zones */
3521 sc->nr_to_reclaim = 0;
3522 for (z = 0; z <= sc->reclaim_idx; z++) {
3523 zone = pgdat->node_zones + z;
3524 if (!managed_zone(zone))
3527 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3531 * Historically care was taken to put equal pressure on all zones but
3532 * now pressure is applied based on node LRU order.
3534 shrink_node(pgdat, sc);
3537 * Fragmentation may mean that the system cannot be rebalanced for
3538 * high-order allocations. If twice the allocation size has been
3539 * reclaimed then recheck watermarks only at order-0 to prevent
3540 * excessive reclaim. Assume that a process requested a high-order
3541 * can direct reclaim/compact.
3543 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3546 return sc->nr_scanned >= sc->nr_to_reclaim;
3550 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3551 * that are eligible for use by the caller until at least one zone is
3554 * Returns the order kswapd finished reclaiming at.
3556 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3557 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3558 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3559 * or lower is eligible for reclaim until at least one usable zone is
3562 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3565 unsigned long nr_soft_reclaimed;
3566 unsigned long nr_soft_scanned;
3567 unsigned long pflags;
3568 unsigned long nr_boost_reclaim;
3569 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3572 struct scan_control sc = {
3573 .gfp_mask = GFP_KERNEL,
3578 set_task_reclaim_state(current, &sc.reclaim_state);
3579 psi_memstall_enter(&pflags);
3580 __fs_reclaim_acquire();
3582 count_vm_event(PAGEOUTRUN);
3585 * Account for the reclaim boost. Note that the zone boost is left in
3586 * place so that parallel allocations that are near the watermark will
3587 * stall or direct reclaim until kswapd is finished.
3589 nr_boost_reclaim = 0;
3590 for (i = 0; i <= highest_zoneidx; i++) {
3591 zone = pgdat->node_zones + i;
3592 if (!managed_zone(zone))
3595 nr_boost_reclaim += zone->watermark_boost;
3596 zone_boosts[i] = zone->watermark_boost;
3598 boosted = nr_boost_reclaim;
3601 sc.priority = DEF_PRIORITY;
3603 unsigned long nr_reclaimed = sc.nr_reclaimed;
3604 bool raise_priority = true;
3608 sc.reclaim_idx = highest_zoneidx;
3611 * If the number of buffer_heads exceeds the maximum allowed
3612 * then consider reclaiming from all zones. This has a dual
3613 * purpose -- on 64-bit systems it is expected that
3614 * buffer_heads are stripped during active rotation. On 32-bit
3615 * systems, highmem pages can pin lowmem memory and shrinking
3616 * buffers can relieve lowmem pressure. Reclaim may still not
3617 * go ahead if all eligible zones for the original allocation
3618 * request are balanced to avoid excessive reclaim from kswapd.
3620 if (buffer_heads_over_limit) {
3621 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3622 zone = pgdat->node_zones + i;
3623 if (!managed_zone(zone))
3632 * If the pgdat is imbalanced then ignore boosting and preserve
3633 * the watermarks for a later time and restart. Note that the
3634 * zone watermarks will be still reset at the end of balancing
3635 * on the grounds that the normal reclaim should be enough to
3636 * re-evaluate if boosting is required when kswapd next wakes.
3638 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3639 if (!balanced && nr_boost_reclaim) {
3640 nr_boost_reclaim = 0;
3645 * If boosting is not active then only reclaim if there are no
3646 * eligible zones. Note that sc.reclaim_idx is not used as
3647 * buffer_heads_over_limit may have adjusted it.
3649 if (!nr_boost_reclaim && balanced)
3652 /* Limit the priority of boosting to avoid reclaim writeback */
3653 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3654 raise_priority = false;
3657 * Do not writeback or swap pages for boosted reclaim. The
3658 * intent is to relieve pressure not issue sub-optimal IO
3659 * from reclaim context. If no pages are reclaimed, the
3660 * reclaim will be aborted.
3662 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3663 sc.may_swap = !nr_boost_reclaim;
3666 * Do some background aging of the anon list, to give
3667 * pages a chance to be referenced before reclaiming. All
3668 * pages are rotated regardless of classzone as this is
3669 * about consistent aging.
3671 age_active_anon(pgdat, &sc);
3674 * If we're getting trouble reclaiming, start doing writepage
3675 * even in laptop mode.
3677 if (sc.priority < DEF_PRIORITY - 2)
3678 sc.may_writepage = 1;
3680 /* Call soft limit reclaim before calling shrink_node. */
3682 nr_soft_scanned = 0;
3683 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3684 sc.gfp_mask, &nr_soft_scanned);
3685 sc.nr_reclaimed += nr_soft_reclaimed;
3688 * There should be no need to raise the scanning priority if
3689 * enough pages are already being scanned that that high
3690 * watermark would be met at 100% efficiency.
3692 if (kswapd_shrink_node(pgdat, &sc))
3693 raise_priority = false;
3696 * If the low watermark is met there is no need for processes
3697 * to be throttled on pfmemalloc_wait as they should not be
3698 * able to safely make forward progress. Wake them
3700 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3701 allow_direct_reclaim(pgdat))
3702 wake_up_all(&pgdat->pfmemalloc_wait);
3704 /* Check if kswapd should be suspending */
3705 __fs_reclaim_release();
3706 ret = try_to_freeze();
3707 __fs_reclaim_acquire();
3708 if (ret || kthread_should_stop())
3712 * Raise priority if scanning rate is too low or there was no
3713 * progress in reclaiming pages
3715 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3716 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3719 * If reclaim made no progress for a boost, stop reclaim as
3720 * IO cannot be queued and it could be an infinite loop in
3721 * extreme circumstances.
3723 if (nr_boost_reclaim && !nr_reclaimed)
3726 if (raise_priority || !nr_reclaimed)
3728 } while (sc.priority >= 1);
3730 if (!sc.nr_reclaimed)
3731 pgdat->kswapd_failures++;
3734 /* If reclaim was boosted, account for the reclaim done in this pass */
3736 unsigned long flags;
3738 for (i = 0; i <= highest_zoneidx; i++) {
3739 if (!zone_boosts[i])
3742 /* Increments are under the zone lock */
3743 zone = pgdat->node_zones + i;
3744 spin_lock_irqsave(&zone->lock, flags);
3745 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3746 spin_unlock_irqrestore(&zone->lock, flags);
3750 * As there is now likely space, wakeup kcompact to defragment
3753 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3756 snapshot_refaults(NULL, pgdat);
3757 __fs_reclaim_release();
3758 psi_memstall_leave(&pflags);
3759 set_task_reclaim_state(current, NULL);
3762 * Return the order kswapd stopped reclaiming at as
3763 * prepare_kswapd_sleep() takes it into account. If another caller
3764 * entered the allocator slow path while kswapd was awake, order will
3765 * remain at the higher level.
3771 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3772 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3773 * not a valid index then either kswapd runs for first time or kswapd couldn't
3774 * sleep after previous reclaim attempt (node is still unbalanced). In that
3775 * case return the zone index of the previous kswapd reclaim cycle.
3777 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3778 enum zone_type prev_highest_zoneidx)
3780 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3782 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3785 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3786 unsigned int highest_zoneidx)
3791 if (freezing(current) || kthread_should_stop())
3794 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3797 * Try to sleep for a short interval. Note that kcompactd will only be
3798 * woken if it is possible to sleep for a short interval. This is
3799 * deliberate on the assumption that if reclaim cannot keep an
3800 * eligible zone balanced that it's also unlikely that compaction will
3803 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3805 * Compaction records what page blocks it recently failed to
3806 * isolate pages from and skips them in the future scanning.
3807 * When kswapd is going to sleep, it is reasonable to assume
3808 * that pages and compaction may succeed so reset the cache.
3810 reset_isolation_suitable(pgdat);
3813 * We have freed the memory, now we should compact it to make
3814 * allocation of the requested order possible.
3816 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3818 remaining = schedule_timeout(HZ/10);
3821 * If woken prematurely then reset kswapd_highest_zoneidx and
3822 * order. The values will either be from a wakeup request or
3823 * the previous request that slept prematurely.
3826 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3827 kswapd_highest_zoneidx(pgdat,
3830 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3831 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3834 finish_wait(&pgdat->kswapd_wait, &wait);
3835 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3839 * After a short sleep, check if it was a premature sleep. If not, then
3840 * go fully to sleep until explicitly woken up.
3843 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3844 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3847 * vmstat counters are not perfectly accurate and the estimated
3848 * value for counters such as NR_FREE_PAGES can deviate from the
3849 * true value by nr_online_cpus * threshold. To avoid the zone
3850 * watermarks being breached while under pressure, we reduce the
3851 * per-cpu vmstat threshold while kswapd is awake and restore
3852 * them before going back to sleep.
3854 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3856 if (!kthread_should_stop())
3859 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3862 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3864 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3866 finish_wait(&pgdat->kswapd_wait, &wait);
3870 * The background pageout daemon, started as a kernel thread
3871 * from the init process.
3873 * This basically trickles out pages so that we have _some_
3874 * free memory available even if there is no other activity
3875 * that frees anything up. This is needed for things like routing
3876 * etc, where we otherwise might have all activity going on in
3877 * asynchronous contexts that cannot page things out.
3879 * If there are applications that are active memory-allocators
3880 * (most normal use), this basically shouldn't matter.
3882 static int kswapd(void *p)
3884 unsigned int alloc_order, reclaim_order;
3885 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3886 pg_data_t *pgdat = (pg_data_t*)p;
3887 struct task_struct *tsk = current;
3888 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3890 if (!cpumask_empty(cpumask))
3891 set_cpus_allowed_ptr(tsk, cpumask);
3894 * Tell the memory management that we're a "memory allocator",
3895 * and that if we need more memory we should get access to it
3896 * regardless (see "__alloc_pages()"). "kswapd" should
3897 * never get caught in the normal page freeing logic.
3899 * (Kswapd normally doesn't need memory anyway, but sometimes
3900 * you need a small amount of memory in order to be able to
3901 * page out something else, and this flag essentially protects
3902 * us from recursively trying to free more memory as we're
3903 * trying to free the first piece of memory in the first place).
3905 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3908 WRITE_ONCE(pgdat->kswapd_order, 0);
3909 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3913 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3914 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3918 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3921 /* Read the new order and highest_zoneidx */
3922 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3923 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3925 WRITE_ONCE(pgdat->kswapd_order, 0);
3926 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3928 ret = try_to_freeze();
3929 if (kthread_should_stop())
3933 * We can speed up thawing tasks if we don't call balance_pgdat
3934 * after returning from the refrigerator
3940 * Reclaim begins at the requested order but if a high-order
3941 * reclaim fails then kswapd falls back to reclaiming for
3942 * order-0. If that happens, kswapd will consider sleeping
3943 * for the order it finished reclaiming at (reclaim_order)
3944 * but kcompactd is woken to compact for the original
3945 * request (alloc_order).
3947 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3949 reclaim_order = balance_pgdat(pgdat, alloc_order,
3951 if (reclaim_order < alloc_order)
3952 goto kswapd_try_sleep;
3955 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3961 * A zone is low on free memory or too fragmented for high-order memory. If
3962 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3963 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3964 * has failed or is not needed, still wake up kcompactd if only compaction is
3967 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3968 enum zone_type highest_zoneidx)
3971 enum zone_type curr_idx;
3973 if (!managed_zone(zone))
3976 if (!cpuset_zone_allowed(zone, gfp_flags))
3979 pgdat = zone->zone_pgdat;
3980 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3982 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3983 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3985 if (READ_ONCE(pgdat->kswapd_order) < order)
3986 WRITE_ONCE(pgdat->kswapd_order, order);
3988 if (!waitqueue_active(&pgdat->kswapd_wait))
3991 /* Hopeless node, leave it to direct reclaim if possible */
3992 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3993 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3994 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3996 * There may be plenty of free memory available, but it's too
3997 * fragmented for high-order allocations. Wake up kcompactd
3998 * and rely on compaction_suitable() to determine if it's
3999 * needed. If it fails, it will defer subsequent attempts to
4000 * ratelimit its work.
4002 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4003 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4007 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4009 wake_up_interruptible(&pgdat->kswapd_wait);
4012 #ifdef CONFIG_HIBERNATION
4014 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4017 * Rather than trying to age LRUs the aim is to preserve the overall
4018 * LRU order by reclaiming preferentially
4019 * inactive > active > active referenced > active mapped
4021 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4023 struct scan_control sc = {
4024 .nr_to_reclaim = nr_to_reclaim,
4025 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4026 .reclaim_idx = MAX_NR_ZONES - 1,
4027 .priority = DEF_PRIORITY,
4031 .hibernation_mode = 1,
4033 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4034 unsigned long nr_reclaimed;
4035 unsigned int noreclaim_flag;
4037 fs_reclaim_acquire(sc.gfp_mask);
4038 noreclaim_flag = memalloc_noreclaim_save();
4039 set_task_reclaim_state(current, &sc.reclaim_state);
4041 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4043 set_task_reclaim_state(current, NULL);
4044 memalloc_noreclaim_restore(noreclaim_flag);
4045 fs_reclaim_release(sc.gfp_mask);
4047 return nr_reclaimed;
4049 #endif /* CONFIG_HIBERNATION */
4052 * This kswapd start function will be called by init and node-hot-add.
4053 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4055 int kswapd_run(int nid)
4057 pg_data_t *pgdat = NODE_DATA(nid);
4063 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4064 if (IS_ERR(pgdat->kswapd)) {
4065 /* failure at boot is fatal */
4066 BUG_ON(system_state < SYSTEM_RUNNING);
4067 pr_err("Failed to start kswapd on node %d\n", nid);
4068 ret = PTR_ERR(pgdat->kswapd);
4069 pgdat->kswapd = NULL;
4075 * Called by memory hotplug when all memory in a node is offlined. Caller must
4076 * hold mem_hotplug_begin/end().
4078 void kswapd_stop(int nid)
4080 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4083 kthread_stop(kswapd);
4084 NODE_DATA(nid)->kswapd = NULL;
4088 static int __init kswapd_init(void)
4093 for_each_node_state(nid, N_MEMORY)
4098 module_init(kswapd_init)
4104 * If non-zero call node_reclaim when the number of free pages falls below
4107 int node_reclaim_mode __read_mostly;
4109 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4110 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
4113 * Priority for NODE_RECLAIM. This determines the fraction of pages
4114 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4117 #define NODE_RECLAIM_PRIORITY 4
4120 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4123 int sysctl_min_unmapped_ratio = 1;
4126 * If the number of slab pages in a zone grows beyond this percentage then
4127 * slab reclaim needs to occur.
4129 int sysctl_min_slab_ratio = 5;
4131 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4133 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4134 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4135 node_page_state(pgdat, NR_ACTIVE_FILE);
4138 * It's possible for there to be more file mapped pages than
4139 * accounted for by the pages on the file LRU lists because
4140 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4142 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4145 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4146 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4148 unsigned long nr_pagecache_reclaimable;
4149 unsigned long delta = 0;
4152 * If RECLAIM_UNMAP is set, then all file pages are considered
4153 * potentially reclaimable. Otherwise, we have to worry about
4154 * pages like swapcache and node_unmapped_file_pages() provides
4157 if (node_reclaim_mode & RECLAIM_UNMAP)
4158 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4160 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4162 /* If we can't clean pages, remove dirty pages from consideration */
4163 if (!(node_reclaim_mode & RECLAIM_WRITE))
4164 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4166 /* Watch for any possible underflows due to delta */
4167 if (unlikely(delta > nr_pagecache_reclaimable))
4168 delta = nr_pagecache_reclaimable;
4170 return nr_pagecache_reclaimable - delta;
4174 * Try to free up some pages from this node through reclaim.
4176 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4178 /* Minimum pages needed in order to stay on node */
4179 const unsigned long nr_pages = 1 << order;
4180 struct task_struct *p = current;
4181 unsigned int noreclaim_flag;
4182 struct scan_control sc = {
4183 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4184 .gfp_mask = current_gfp_context(gfp_mask),
4186 .priority = NODE_RECLAIM_PRIORITY,
4187 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4188 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4190 .reclaim_idx = gfp_zone(gfp_mask),
4193 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4197 fs_reclaim_acquire(sc.gfp_mask);
4199 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4200 * and we also need to be able to write out pages for RECLAIM_WRITE
4201 * and RECLAIM_UNMAP.
4203 noreclaim_flag = memalloc_noreclaim_save();
4204 p->flags |= PF_SWAPWRITE;
4205 set_task_reclaim_state(p, &sc.reclaim_state);
4207 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4209 * Free memory by calling shrink node with increasing
4210 * priorities until we have enough memory freed.
4213 shrink_node(pgdat, &sc);
4214 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4217 set_task_reclaim_state(p, NULL);
4218 current->flags &= ~PF_SWAPWRITE;
4219 memalloc_noreclaim_restore(noreclaim_flag);
4220 fs_reclaim_release(sc.gfp_mask);
4222 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4224 return sc.nr_reclaimed >= nr_pages;
4227 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4232 * Node reclaim reclaims unmapped file backed pages and
4233 * slab pages if we are over the defined limits.
4235 * A small portion of unmapped file backed pages is needed for
4236 * file I/O otherwise pages read by file I/O will be immediately
4237 * thrown out if the node is overallocated. So we do not reclaim
4238 * if less than a specified percentage of the node is used by
4239 * unmapped file backed pages.
4241 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4242 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4243 return NODE_RECLAIM_FULL;
4246 * Do not scan if the allocation should not be delayed.
4248 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4249 return NODE_RECLAIM_NOSCAN;
4252 * Only run node reclaim on the local node or on nodes that do not
4253 * have associated processors. This will favor the local processor
4254 * over remote processors and spread off node memory allocations
4255 * as wide as possible.
4257 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4258 return NODE_RECLAIM_NOSCAN;
4260 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4261 return NODE_RECLAIM_NOSCAN;
4263 ret = __node_reclaim(pgdat, gfp_mask, order);
4264 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4267 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4274 * check_move_unevictable_pages - check pages for evictability and move to
4275 * appropriate zone lru list
4276 * @pvec: pagevec with lru pages to check
4278 * Checks pages for evictability, if an evictable page is in the unevictable
4279 * lru list, moves it to the appropriate evictable lru list. This function
4280 * should be only used for lru pages.
4282 void check_move_unevictable_pages(struct pagevec *pvec)
4284 struct lruvec *lruvec;
4285 struct pglist_data *pgdat = NULL;
4290 for (i = 0; i < pvec->nr; i++) {
4291 struct page *page = pvec->pages[i];
4292 struct pglist_data *pagepgdat = page_pgdat(page);
4295 if (pagepgdat != pgdat) {
4297 spin_unlock_irq(&pgdat->lru_lock);
4299 spin_lock_irq(&pgdat->lru_lock);
4301 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4303 if (!PageLRU(page) || !PageUnevictable(page))
4306 if (page_evictable(page)) {
4307 enum lru_list lru = page_lru_base_type(page);
4309 VM_BUG_ON_PAGE(PageActive(page), page);
4310 ClearPageUnevictable(page);
4311 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4312 add_page_to_lru_list(page, lruvec, lru);
4318 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4319 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4320 spin_unlock_irq(&pgdat->lru_lock);
4323 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);