2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 return sb->s_fs_info;
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 static inline int shmem_acct_block(unsigned long flags, long pages)
202 if (!(flags & VM_NORESERVE))
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (shmem_acct_block(info->flags, pages))
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
227 percpu_counter_add(&sbinfo->used_blocks, pages);
233 shmem_unacct_blocks(info->flags, pages);
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
256 bool vma_is_shmem(struct vm_area_struct *vma)
258 return vma->vm_ops == &shmem_vm_ops;
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 static int shmem_reserve_inode(struct super_block *sb)
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
279 static void shmem_free_inode(struct super_block *sb)
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
299 * It has to be called with the spinlock held.
301 static void shmem_recalc_inode(struct inode *inode)
303 struct shmem_inode_info *info = SHMEM_I(inode);
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
314 bool shmem_charge(struct inode *inode, long pages)
316 struct shmem_inode_info *info = SHMEM_I(inode);
319 if (!shmem_inode_acct_block(inode, pages))
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
334 void shmem_uncharge(struct inode *inode, long pages)
336 struct shmem_inode_info *info = SHMEM_I(inode);
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
347 shmem_inode_unacct_blocks(inode, pages);
351 * Replace item expected in xarray by a new item, while holding xa_lock.
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
356 XA_STATE(xas, &mapping->i_pages, index);
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
364 xas_store(&xas, replacement);
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
385 * disables huge pages for the mount;
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
392 * only allocate huge pages if requested with fadvise()/madvise();
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
405 * disables huge on shm_mnt and all mounts, for emergency use;
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
416 static int shmem_huge __read_mostly;
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
441 case SHMEM_HUGE_NEVER:
443 case SHMEM_HUGE_ALWAYS:
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
449 case SHMEM_HUGE_DENY:
451 case SHMEM_HUGE_FORCE:
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
466 struct shmem_inode_info *info;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
471 if (list_empty(&sbinfo->shrinklist))
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 inode = igrab(&info->vfs_inode);
481 /* inode is about to be evicted */
483 list_del_init(&info->shrinklist);
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
496 list_move(&info->shrinklist, &list);
501 spin_unlock(&sbinfo->shrinklist_lock);
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
510 list_for_each_safe(pos, next, &list) {
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
516 if (nr_to_split && split >= nr_to_split)
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
534 * Waiting for the lock may lead to deadlock in the
537 if (!trylock_page(page)) {
542 ret = split_huge_page(page);
546 /* If split failed leave the inode on the list */
552 list_del_init(&info->shrinklist);
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
571 if (!READ_ONCE(sbinfo->shrinklist_len))
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
585 #define shmem_huge SHMEM_HUGE_DENY
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
604 * Like add_to_page_cache_locked, but error if expected item has gone.
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp,
609 struct mm_struct *charge_mm)
611 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
613 unsigned long nr = compound_nr(page);
616 VM_BUG_ON_PAGE(PageTail(page), page);
617 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618 VM_BUG_ON_PAGE(!PageLocked(page), page);
619 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620 VM_BUG_ON(expected && PageTransHuge(page));
622 page_ref_add(page, nr);
623 page->mapping = mapping;
626 error = mem_cgroup_charge(page, charge_mm, gfp, PageSwapCache(page));
628 if (!PageSwapCache(page) && PageTransHuge(page)) {
629 count_vm_event(THP_FILE_FALLBACK);
630 count_vm_event(THP_FILE_FALLBACK_CHARGE);
634 cgroup_throttle_swaprate(page, gfp);
639 entry = xas_find_conflict(&xas);
640 if (entry != expected)
641 xas_set_err(&xas, -EEXIST);
642 xas_create_range(&xas);
646 xas_store(&xas, page);
651 if (PageTransHuge(page)) {
652 count_vm_event(THP_FILE_ALLOC);
653 __inc_node_page_state(page, NR_SHMEM_THPS);
655 mapping->nrpages += nr;
656 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
657 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
659 xas_unlock_irq(&xas);
660 } while (xas_nomem(&xas, gfp));
662 if (xas_error(&xas)) {
663 error = xas_error(&xas);
669 page->mapping = NULL;
670 page_ref_sub(page, nr);
675 * Like delete_from_page_cache, but substitutes swap for page.
677 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
679 struct address_space *mapping = page->mapping;
682 VM_BUG_ON_PAGE(PageCompound(page), page);
684 xa_lock_irq(&mapping->i_pages);
685 error = shmem_replace_entry(mapping, page->index, page, radswap);
686 page->mapping = NULL;
688 __dec_node_page_state(page, NR_FILE_PAGES);
689 __dec_node_page_state(page, NR_SHMEM);
690 xa_unlock_irq(&mapping->i_pages);
696 * Remove swap entry from page cache, free the swap and its page cache.
698 static int shmem_free_swap(struct address_space *mapping,
699 pgoff_t index, void *radswap)
703 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
706 free_swap_and_cache(radix_to_swp_entry(radswap));
711 * Determine (in bytes) how many of the shmem object's pages mapped by the
712 * given offsets are swapped out.
714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715 * as long as the inode doesn't go away and racy results are not a problem.
717 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
718 pgoff_t start, pgoff_t end)
720 XA_STATE(xas, &mapping->i_pages, start);
722 unsigned long swapped = 0;
725 xas_for_each(&xas, page, end - 1) {
726 if (xas_retry(&xas, page))
728 if (xa_is_value(page))
731 if (need_resched()) {
739 return swapped << PAGE_SHIFT;
743 * Determine (in bytes) how many of the shmem object's pages mapped by the
744 * given vma is swapped out.
746 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
747 * as long as the inode doesn't go away and racy results are not a problem.
749 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
751 struct inode *inode = file_inode(vma->vm_file);
752 struct shmem_inode_info *info = SHMEM_I(inode);
753 struct address_space *mapping = inode->i_mapping;
754 unsigned long swapped;
756 /* Be careful as we don't hold info->lock */
757 swapped = READ_ONCE(info->swapped);
760 * The easier cases are when the shmem object has nothing in swap, or
761 * the vma maps it whole. Then we can simply use the stats that we
767 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
768 return swapped << PAGE_SHIFT;
770 /* Here comes the more involved part */
771 return shmem_partial_swap_usage(mapping,
772 linear_page_index(vma, vma->vm_start),
773 linear_page_index(vma, vma->vm_end));
777 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
779 void shmem_unlock_mapping(struct address_space *mapping)
782 pgoff_t indices[PAGEVEC_SIZE];
787 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
789 while (!mapping_unevictable(mapping)) {
791 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
792 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
794 pvec.nr = find_get_entries(mapping, index,
795 PAGEVEC_SIZE, pvec.pages, indices);
798 index = indices[pvec.nr - 1] + 1;
799 pagevec_remove_exceptionals(&pvec);
800 check_move_unevictable_pages(&pvec);
801 pagevec_release(&pvec);
807 * Check whether a hole-punch or truncation needs to split a huge page,
808 * returning true if no split was required, or the split has been successful.
810 * Eviction (or truncation to 0 size) should never need to split a huge page;
811 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
812 * head, and then succeeded to trylock on tail.
814 * A split can only succeed when there are no additional references on the
815 * huge page: so the split below relies upon find_get_entries() having stopped
816 * when it found a subpage of the huge page, without getting further references.
818 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
820 if (!PageTransCompound(page))
823 /* Just proceed to delete a huge page wholly within the range punched */
824 if (PageHead(page) &&
825 page->index >= start && page->index + HPAGE_PMD_NR <= end)
828 /* Try to split huge page, so we can truly punch the hole or truncate */
829 return split_huge_page(page) >= 0;
833 * Remove range of pages and swap entries from page cache, and free them.
834 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
836 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
839 struct address_space *mapping = inode->i_mapping;
840 struct shmem_inode_info *info = SHMEM_I(inode);
841 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
842 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
843 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
844 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
846 pgoff_t indices[PAGEVEC_SIZE];
847 long nr_swaps_freed = 0;
852 end = -1; /* unsigned, so actually very big */
856 while (index < end) {
857 pvec.nr = find_get_entries(mapping, index,
858 min(end - index, (pgoff_t)PAGEVEC_SIZE),
859 pvec.pages, indices);
862 for (i = 0; i < pagevec_count(&pvec); i++) {
863 struct page *page = pvec.pages[i];
869 if (xa_is_value(page)) {
872 nr_swaps_freed += !shmem_free_swap(mapping,
877 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
879 if (!trylock_page(page))
882 if ((!unfalloc || !PageUptodate(page)) &&
883 page_mapping(page) == mapping) {
884 VM_BUG_ON_PAGE(PageWriteback(page), page);
885 if (shmem_punch_compound(page, start, end))
886 truncate_inode_page(mapping, page);
890 pagevec_remove_exceptionals(&pvec);
891 pagevec_release(&pvec);
897 struct page *page = NULL;
898 shmem_getpage(inode, start - 1, &page, SGP_READ);
900 unsigned int top = PAGE_SIZE;
905 zero_user_segment(page, partial_start, top);
906 set_page_dirty(page);
912 struct page *page = NULL;
913 shmem_getpage(inode, end, &page, SGP_READ);
915 zero_user_segment(page, 0, partial_end);
916 set_page_dirty(page);
925 while (index < end) {
928 pvec.nr = find_get_entries(mapping, index,
929 min(end - index, (pgoff_t)PAGEVEC_SIZE),
930 pvec.pages, indices);
932 /* If all gone or hole-punch or unfalloc, we're done */
933 if (index == start || end != -1)
935 /* But if truncating, restart to make sure all gone */
939 for (i = 0; i < pagevec_count(&pvec); i++) {
940 struct page *page = pvec.pages[i];
946 if (xa_is_value(page)) {
949 if (shmem_free_swap(mapping, index, page)) {
950 /* Swap was replaced by page: retry */
960 if (!unfalloc || !PageUptodate(page)) {
961 if (page_mapping(page) != mapping) {
962 /* Page was replaced by swap: retry */
967 VM_BUG_ON_PAGE(PageWriteback(page), page);
968 if (shmem_punch_compound(page, start, end))
969 truncate_inode_page(mapping, page);
970 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
971 /* Wipe the page and don't get stuck */
972 clear_highpage(page);
973 flush_dcache_page(page);
974 set_page_dirty(page);
976 round_up(start, HPAGE_PMD_NR))
982 pagevec_remove_exceptionals(&pvec);
983 pagevec_release(&pvec);
987 spin_lock_irq(&info->lock);
988 info->swapped -= nr_swaps_freed;
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
993 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
995 shmem_undo_range(inode, lstart, lend, false);
996 inode->i_ctime = inode->i_mtime = current_time(inode);
998 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1000 static int shmem_getattr(const struct path *path, struct kstat *stat,
1001 u32 request_mask, unsigned int query_flags)
1003 struct inode *inode = path->dentry->d_inode;
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1007 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008 spin_lock_irq(&info->lock);
1009 shmem_recalc_inode(inode);
1010 spin_unlock_irq(&info->lock);
1012 generic_fillattr(inode, stat);
1014 if (is_huge_enabled(sb_info))
1015 stat->blksize = HPAGE_PMD_SIZE;
1020 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1022 struct inode *inode = d_inode(dentry);
1023 struct shmem_inode_info *info = SHMEM_I(inode);
1024 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 error = setattr_prepare(dentry, attr);
1031 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032 loff_t oldsize = inode->i_size;
1033 loff_t newsize = attr->ia_size;
1035 /* protected by i_mutex */
1036 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 if (newsize != oldsize) {
1041 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1045 i_size_write(inode, newsize);
1046 inode->i_ctime = inode->i_mtime = current_time(inode);
1048 if (newsize <= oldsize) {
1049 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050 if (oldsize > holebegin)
1051 unmap_mapping_range(inode->i_mapping,
1054 shmem_truncate_range(inode,
1055 newsize, (loff_t)-1);
1056 /* unmap again to remove racily COWed private pages */
1057 if (oldsize > holebegin)
1058 unmap_mapping_range(inode->i_mapping,
1062 * Part of the huge page can be beyond i_size: subject
1063 * to shrink under memory pressure.
1065 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1066 spin_lock(&sbinfo->shrinklist_lock);
1068 * _careful to defend against unlocked access to
1069 * ->shrink_list in shmem_unused_huge_shrink()
1071 if (list_empty_careful(&info->shrinklist)) {
1072 list_add_tail(&info->shrinklist,
1073 &sbinfo->shrinklist);
1074 sbinfo->shrinklist_len++;
1076 spin_unlock(&sbinfo->shrinklist_lock);
1081 setattr_copy(inode, attr);
1082 if (attr->ia_valid & ATTR_MODE)
1083 error = posix_acl_chmod(inode, inode->i_mode);
1087 static void shmem_evict_inode(struct inode *inode)
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1090 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1092 if (inode->i_mapping->a_ops == &shmem_aops) {
1093 shmem_unacct_size(info->flags, inode->i_size);
1095 shmem_truncate_range(inode, 0, (loff_t)-1);
1096 if (!list_empty(&info->shrinklist)) {
1097 spin_lock(&sbinfo->shrinklist_lock);
1098 if (!list_empty(&info->shrinklist)) {
1099 list_del_init(&info->shrinklist);
1100 sbinfo->shrinklist_len--;
1102 spin_unlock(&sbinfo->shrinklist_lock);
1104 while (!list_empty(&info->swaplist)) {
1105 /* Wait while shmem_unuse() is scanning this inode... */
1106 wait_var_event(&info->stop_eviction,
1107 !atomic_read(&info->stop_eviction));
1108 mutex_lock(&shmem_swaplist_mutex);
1109 /* ...but beware of the race if we peeked too early */
1110 if (!atomic_read(&info->stop_eviction))
1111 list_del_init(&info->swaplist);
1112 mutex_unlock(&shmem_swaplist_mutex);
1116 simple_xattrs_free(&info->xattrs);
1117 WARN_ON(inode->i_blocks);
1118 shmem_free_inode(inode->i_sb);
1122 extern struct swap_info_struct *swap_info[];
1124 static int shmem_find_swap_entries(struct address_space *mapping,
1125 pgoff_t start, unsigned int nr_entries,
1126 struct page **entries, pgoff_t *indices,
1127 unsigned int type, bool frontswap)
1129 XA_STATE(xas, &mapping->i_pages, start);
1132 unsigned int ret = 0;
1138 xas_for_each(&xas, page, ULONG_MAX) {
1139 if (xas_retry(&xas, page))
1142 if (!xa_is_value(page))
1145 entry = radix_to_swp_entry(page);
1146 if (swp_type(entry) != type)
1149 !frontswap_test(swap_info[type], swp_offset(entry)))
1152 indices[ret] = xas.xa_index;
1153 entries[ret] = page;
1155 if (need_resched()) {
1159 if (++ret == nr_entries)
1168 * Move the swapped pages for an inode to page cache. Returns the count
1169 * of pages swapped in, or the error in case of failure.
1171 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1177 struct address_space *mapping = inode->i_mapping;
1179 for (i = 0; i < pvec.nr; i++) {
1180 struct page *page = pvec.pages[i];
1182 if (!xa_is_value(page))
1184 error = shmem_swapin_page(inode, indices[i],
1186 mapping_gfp_mask(mapping),
1193 if (error == -ENOMEM)
1197 return error ? error : ret;
1201 * If swap found in inode, free it and move page from swapcache to filecache.
1203 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1204 bool frontswap, unsigned long *fs_pages_to_unuse)
1206 struct address_space *mapping = inode->i_mapping;
1208 struct pagevec pvec;
1209 pgoff_t indices[PAGEVEC_SIZE];
1210 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 pagevec_init(&pvec);
1215 unsigned int nr_entries = PAGEVEC_SIZE;
1217 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1218 nr_entries = *fs_pages_to_unuse;
1220 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1221 pvec.pages, indices,
1228 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1232 if (frontswap_partial) {
1233 *fs_pages_to_unuse -= ret;
1234 if (*fs_pages_to_unuse == 0) {
1235 ret = FRONTSWAP_PAGES_UNUSED;
1240 start = indices[pvec.nr - 1];
1247 * Read all the shared memory data that resides in the swap
1248 * device 'type' back into memory, so the swap device can be
1251 int shmem_unuse(unsigned int type, bool frontswap,
1252 unsigned long *fs_pages_to_unuse)
1254 struct shmem_inode_info *info, *next;
1257 if (list_empty(&shmem_swaplist))
1260 mutex_lock(&shmem_swaplist_mutex);
1261 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1262 if (!info->swapped) {
1263 list_del_init(&info->swaplist);
1267 * Drop the swaplist mutex while searching the inode for swap;
1268 * but before doing so, make sure shmem_evict_inode() will not
1269 * remove placeholder inode from swaplist, nor let it be freed
1270 * (igrab() would protect from unlink, but not from unmount).
1272 atomic_inc(&info->stop_eviction);
1273 mutex_unlock(&shmem_swaplist_mutex);
1275 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1279 mutex_lock(&shmem_swaplist_mutex);
1280 next = list_next_entry(info, swaplist);
1282 list_del_init(&info->swaplist);
1283 if (atomic_dec_and_test(&info->stop_eviction))
1284 wake_up_var(&info->stop_eviction);
1288 mutex_unlock(&shmem_swaplist_mutex);
1294 * Move the page from the page cache to the swap cache.
1296 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1298 struct shmem_inode_info *info;
1299 struct address_space *mapping;
1300 struct inode *inode;
1304 VM_BUG_ON_PAGE(PageCompound(page), page);
1305 BUG_ON(!PageLocked(page));
1306 mapping = page->mapping;
1307 index = page->index;
1308 inode = mapping->host;
1309 info = SHMEM_I(inode);
1310 if (info->flags & VM_LOCKED)
1312 if (!total_swap_pages)
1316 * Our capabilities prevent regular writeback or sync from ever calling
1317 * shmem_writepage; but a stacking filesystem might use ->writepage of
1318 * its underlying filesystem, in which case tmpfs should write out to
1319 * swap only in response to memory pressure, and not for the writeback
1322 if (!wbc->for_reclaim) {
1323 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1328 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1329 * value into swapfile.c, the only way we can correctly account for a
1330 * fallocated page arriving here is now to initialize it and write it.
1332 * That's okay for a page already fallocated earlier, but if we have
1333 * not yet completed the fallocation, then (a) we want to keep track
1334 * of this page in case we have to undo it, and (b) it may not be a
1335 * good idea to continue anyway, once we're pushing into swap. So
1336 * reactivate the page, and let shmem_fallocate() quit when too many.
1338 if (!PageUptodate(page)) {
1339 if (inode->i_private) {
1340 struct shmem_falloc *shmem_falloc;
1341 spin_lock(&inode->i_lock);
1342 shmem_falloc = inode->i_private;
1344 !shmem_falloc->waitq &&
1345 index >= shmem_falloc->start &&
1346 index < shmem_falloc->next)
1347 shmem_falloc->nr_unswapped++;
1349 shmem_falloc = NULL;
1350 spin_unlock(&inode->i_lock);
1354 clear_highpage(page);
1355 flush_dcache_page(page);
1356 SetPageUptodate(page);
1359 swap = get_swap_page(page);
1364 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1365 * if it's not already there. Do it now before the page is
1366 * moved to swap cache, when its pagelock no longer protects
1367 * the inode from eviction. But don't unlock the mutex until
1368 * we've incremented swapped, because shmem_unuse_inode() will
1369 * prune a !swapped inode from the swaplist under this mutex.
1371 mutex_lock(&shmem_swaplist_mutex);
1372 if (list_empty(&info->swaplist))
1373 list_add(&info->swaplist, &shmem_swaplist);
1375 if (add_to_swap_cache(page, swap,
1376 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1377 spin_lock_irq(&info->lock);
1378 shmem_recalc_inode(inode);
1380 spin_unlock_irq(&info->lock);
1382 swap_shmem_alloc(swap);
1383 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385 mutex_unlock(&shmem_swaplist_mutex);
1386 BUG_ON(page_mapped(page));
1387 swap_writepage(page, wbc);
1391 mutex_unlock(&shmem_swaplist_mutex);
1392 put_swap_page(page, swap);
1394 set_page_dirty(page);
1395 if (wbc->for_reclaim)
1396 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1401 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1402 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1406 if (!mpol || mpol->mode == MPOL_DEFAULT)
1407 return; /* show nothing */
1409 mpol_to_str(buffer, sizeof(buffer), mpol);
1411 seq_printf(seq, ",mpol=%s", buffer);
1414 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 struct mempolicy *mpol = NULL;
1418 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1419 mpol = sbinfo->mpol;
1421 spin_unlock(&sbinfo->stat_lock);
1425 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1426 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1433 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #define vm_policy vm_private_data
1438 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1439 struct shmem_inode_info *info, pgoff_t index)
1441 /* Create a pseudo vma that just contains the policy */
1442 vma_init(vma, NULL);
1443 /* Bias interleave by inode number to distribute better across nodes */
1444 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1445 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1448 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 /* Drop reference taken by mpol_shared_policy_lookup() */
1451 mpol_cond_put(vma->vm_policy);
1454 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1455 struct shmem_inode_info *info, pgoff_t index)
1457 struct vm_area_struct pvma;
1459 struct vm_fault vmf;
1461 shmem_pseudo_vma_init(&pvma, info, index);
1464 page = swap_cluster_readahead(swap, gfp, &vmf);
1465 shmem_pseudo_vma_destroy(&pvma);
1470 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1471 struct shmem_inode_info *info, pgoff_t index)
1473 struct vm_area_struct pvma;
1474 struct address_space *mapping = info->vfs_inode.i_mapping;
1478 hindex = round_down(index, HPAGE_PMD_NR);
1479 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1483 shmem_pseudo_vma_init(&pvma, info, hindex);
1484 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1485 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1486 shmem_pseudo_vma_destroy(&pvma);
1488 prep_transhuge_page(page);
1490 count_vm_event(THP_FILE_FALLBACK);
1494 static struct page *shmem_alloc_page(gfp_t gfp,
1495 struct shmem_inode_info *info, pgoff_t index)
1497 struct vm_area_struct pvma;
1500 shmem_pseudo_vma_init(&pvma, info, index);
1501 page = alloc_page_vma(gfp, &pvma, 0);
1502 shmem_pseudo_vma_destroy(&pvma);
1507 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1508 struct inode *inode,
1509 pgoff_t index, bool huge)
1511 struct shmem_inode_info *info = SHMEM_I(inode);
1516 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1518 nr = huge ? HPAGE_PMD_NR : 1;
1520 if (!shmem_inode_acct_block(inode, nr))
1524 page = shmem_alloc_hugepage(gfp, info, index);
1526 page = shmem_alloc_page(gfp, info, index);
1528 __SetPageLocked(page);
1529 __SetPageSwapBacked(page);
1534 shmem_inode_unacct_blocks(inode, nr);
1536 return ERR_PTR(err);
1540 * When a page is moved from swapcache to shmem filecache (either by the
1541 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1542 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1543 * ignorance of the mapping it belongs to. If that mapping has special
1544 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1545 * we may need to copy to a suitable page before moving to filecache.
1547 * In a future release, this may well be extended to respect cpuset and
1548 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1549 * but for now it is a simple matter of zone.
1551 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1553 return page_zonenum(page) > gfp_zone(gfp);
1556 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1559 struct page *oldpage, *newpage;
1560 struct address_space *swap_mapping;
1566 entry.val = page_private(oldpage);
1567 swap_index = swp_offset(entry);
1568 swap_mapping = page_mapping(oldpage);
1571 * We have arrived here because our zones are constrained, so don't
1572 * limit chance of success by further cpuset and node constraints.
1574 gfp &= ~GFP_CONSTRAINT_MASK;
1575 newpage = shmem_alloc_page(gfp, info, index);
1580 copy_highpage(newpage, oldpage);
1581 flush_dcache_page(newpage);
1583 __SetPageLocked(newpage);
1584 __SetPageSwapBacked(newpage);
1585 SetPageUptodate(newpage);
1586 set_page_private(newpage, entry.val);
1587 SetPageSwapCache(newpage);
1590 * Our caller will very soon move newpage out of swapcache, but it's
1591 * a nice clean interface for us to replace oldpage by newpage there.
1593 xa_lock_irq(&swap_mapping->i_pages);
1594 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1596 __inc_node_page_state(newpage, NR_FILE_PAGES);
1597 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1599 xa_unlock_irq(&swap_mapping->i_pages);
1601 if (unlikely(error)) {
1603 * Is this possible? I think not, now that our callers check
1604 * both PageSwapCache and page_private after getting page lock;
1605 * but be defensive. Reverse old to newpage for clear and free.
1609 mem_cgroup_migrate(oldpage, newpage);
1610 lru_cache_add_anon(newpage);
1614 ClearPageSwapCache(oldpage);
1615 set_page_private(oldpage, 0);
1617 unlock_page(oldpage);
1624 * Swap in the page pointed to by *pagep.
1625 * Caller has to make sure that *pagep contains a valid swapped page.
1626 * Returns 0 and the page in pagep if success. On failure, returns the
1627 * the error code and NULL in *pagep.
1629 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1630 struct page **pagep, enum sgp_type sgp,
1631 gfp_t gfp, struct vm_area_struct *vma,
1632 vm_fault_t *fault_type)
1634 struct address_space *mapping = inode->i_mapping;
1635 struct shmem_inode_info *info = SHMEM_I(inode);
1636 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1641 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1642 swap = radix_to_swp_entry(*pagep);
1645 /* Look it up and read it in.. */
1646 page = lookup_swap_cache(swap, NULL, 0);
1648 /* Or update major stats only when swapin succeeds?? */
1650 *fault_type |= VM_FAULT_MAJOR;
1651 count_vm_event(PGMAJFAULT);
1652 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654 /* Here we actually start the io */
1655 page = shmem_swapin(swap, gfp, info, index);
1662 /* We have to do this with page locked to prevent races */
1664 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1665 !shmem_confirm_swap(mapping, index, swap)) {
1669 if (!PageUptodate(page)) {
1673 wait_on_page_writeback(page);
1675 if (shmem_should_replace_page(page, gfp)) {
1676 error = shmem_replace_page(&page, gfp, info, index);
1681 error = shmem_add_to_page_cache(page, mapping, index,
1682 swp_to_radix_entry(swap), gfp,
1687 spin_lock_irq(&info->lock);
1689 shmem_recalc_inode(inode);
1690 spin_unlock_irq(&info->lock);
1692 if (sgp == SGP_WRITE)
1693 mark_page_accessed(page);
1695 delete_from_swap_cache(page);
1696 set_page_dirty(page);
1702 if (!shmem_confirm_swap(mapping, index, swap))
1714 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1716 * If we allocate a new one we do not mark it dirty. That's up to the
1717 * vm. If we swap it in we mark it dirty since we also free the swap
1718 * entry since a page cannot live in both the swap and page cache.
1720 * vmf and fault_type are only supplied by shmem_fault:
1721 * otherwise they are NULL.
1723 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1724 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1725 struct vm_area_struct *vma, struct vm_fault *vmf,
1726 vm_fault_t *fault_type)
1728 struct address_space *mapping = inode->i_mapping;
1729 struct shmem_inode_info *info = SHMEM_I(inode);
1730 struct shmem_sb_info *sbinfo;
1731 struct mm_struct *charge_mm;
1733 enum sgp_type sgp_huge = sgp;
1734 pgoff_t hindex = index;
1739 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1741 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1744 if (sgp <= SGP_CACHE &&
1745 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1749 sbinfo = SHMEM_SB(inode->i_sb);
1750 charge_mm = vma ? vma->vm_mm : current->mm;
1752 page = find_lock_entry(mapping, index);
1753 if (xa_is_value(page)) {
1754 error = shmem_swapin_page(inode, index, &page,
1755 sgp, gfp, vma, fault_type);
1756 if (error == -EEXIST)
1763 if (page && sgp == SGP_WRITE)
1764 mark_page_accessed(page);
1766 /* fallocated page? */
1767 if (page && !PageUptodate(page)) {
1768 if (sgp != SGP_READ)
1774 if (page || sgp == SGP_READ) {
1780 * Fast cache lookup did not find it:
1781 * bring it back from swap or allocate.
1784 if (vma && userfaultfd_missing(vma)) {
1785 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1789 /* shmem_symlink() */
1790 if (mapping->a_ops != &shmem_aops)
1792 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1794 if (shmem_huge == SHMEM_HUGE_FORCE)
1796 switch (sbinfo->huge) {
1797 case SHMEM_HUGE_NEVER:
1799 case SHMEM_HUGE_WITHIN_SIZE: {
1803 off = round_up(index, HPAGE_PMD_NR);
1804 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1805 if (i_size >= HPAGE_PMD_SIZE &&
1806 i_size >> PAGE_SHIFT >= off)
1811 case SHMEM_HUGE_ADVISE:
1812 if (sgp_huge == SGP_HUGE)
1814 /* TODO: implement fadvise() hints */
1819 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1822 page = shmem_alloc_and_acct_page(gfp, inode,
1828 error = PTR_ERR(page);
1830 if (error != -ENOSPC)
1833 * Try to reclaim some space by splitting a huge page
1834 * beyond i_size on the filesystem.
1839 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1840 if (ret == SHRINK_STOP)
1848 if (PageTransHuge(page))
1849 hindex = round_down(index, HPAGE_PMD_NR);
1853 if (sgp == SGP_WRITE)
1854 __SetPageReferenced(page);
1856 error = shmem_add_to_page_cache(page, mapping, hindex,
1857 NULL, gfp & GFP_RECLAIM_MASK,
1861 lru_cache_add_anon(page);
1863 spin_lock_irq(&info->lock);
1864 info->alloced += compound_nr(page);
1865 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1866 shmem_recalc_inode(inode);
1867 spin_unlock_irq(&info->lock);
1870 if (PageTransHuge(page) &&
1871 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1872 hindex + HPAGE_PMD_NR - 1) {
1874 * Part of the huge page is beyond i_size: subject
1875 * to shrink under memory pressure.
1877 spin_lock(&sbinfo->shrinklist_lock);
1879 * _careful to defend against unlocked access to
1880 * ->shrink_list in shmem_unused_huge_shrink()
1882 if (list_empty_careful(&info->shrinklist)) {
1883 list_add_tail(&info->shrinklist,
1884 &sbinfo->shrinklist);
1885 sbinfo->shrinklist_len++;
1887 spin_unlock(&sbinfo->shrinklist_lock);
1891 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1893 if (sgp == SGP_FALLOC)
1897 * Let SGP_WRITE caller clear ends if write does not fill page;
1898 * but SGP_FALLOC on a page fallocated earlier must initialize
1899 * it now, lest undo on failure cancel our earlier guarantee.
1901 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1902 struct page *head = compound_head(page);
1905 for (i = 0; i < compound_nr(head); i++) {
1906 clear_highpage(head + i);
1907 flush_dcache_page(head + i);
1909 SetPageUptodate(head);
1912 /* Perhaps the file has been truncated since we checked */
1913 if (sgp <= SGP_CACHE &&
1914 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1916 ClearPageDirty(page);
1917 delete_from_page_cache(page);
1918 spin_lock_irq(&info->lock);
1919 shmem_recalc_inode(inode);
1920 spin_unlock_irq(&info->lock);
1925 *pagep = page + index - hindex;
1932 shmem_inode_unacct_blocks(inode, compound_nr(page));
1934 if (PageTransHuge(page)) {
1944 if (error == -ENOSPC && !once++) {
1945 spin_lock_irq(&info->lock);
1946 shmem_recalc_inode(inode);
1947 spin_unlock_irq(&info->lock);
1950 if (error == -EEXIST)
1956 * This is like autoremove_wake_function, but it removes the wait queue
1957 * entry unconditionally - even if something else had already woken the
1960 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1962 int ret = default_wake_function(wait, mode, sync, key);
1963 list_del_init(&wait->entry);
1967 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1969 struct vm_area_struct *vma = vmf->vma;
1970 struct inode *inode = file_inode(vma->vm_file);
1971 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1974 vm_fault_t ret = VM_FAULT_LOCKED;
1977 * Trinity finds that probing a hole which tmpfs is punching can
1978 * prevent the hole-punch from ever completing: which in turn
1979 * locks writers out with its hold on i_mutex. So refrain from
1980 * faulting pages into the hole while it's being punched. Although
1981 * shmem_undo_range() does remove the additions, it may be unable to
1982 * keep up, as each new page needs its own unmap_mapping_range() call,
1983 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1985 * It does not matter if we sometimes reach this check just before the
1986 * hole-punch begins, so that one fault then races with the punch:
1987 * we just need to make racing faults a rare case.
1989 * The implementation below would be much simpler if we just used a
1990 * standard mutex or completion: but we cannot take i_mutex in fault,
1991 * and bloating every shmem inode for this unlikely case would be sad.
1993 if (unlikely(inode->i_private)) {
1994 struct shmem_falloc *shmem_falloc;
1996 spin_lock(&inode->i_lock);
1997 shmem_falloc = inode->i_private;
1999 shmem_falloc->waitq &&
2000 vmf->pgoff >= shmem_falloc->start &&
2001 vmf->pgoff < shmem_falloc->next) {
2003 wait_queue_head_t *shmem_falloc_waitq;
2004 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2006 ret = VM_FAULT_NOPAGE;
2007 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2009 ret = VM_FAULT_RETRY;
2011 shmem_falloc_waitq = shmem_falloc->waitq;
2012 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2013 TASK_UNINTERRUPTIBLE);
2014 spin_unlock(&inode->i_lock);
2018 * shmem_falloc_waitq points into the shmem_fallocate()
2019 * stack of the hole-punching task: shmem_falloc_waitq
2020 * is usually invalid by the time we reach here, but
2021 * finish_wait() does not dereference it in that case;
2022 * though i_lock needed lest racing with wake_up_all().
2024 spin_lock(&inode->i_lock);
2025 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2026 spin_unlock(&inode->i_lock);
2032 spin_unlock(&inode->i_lock);
2037 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2038 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2040 else if (vma->vm_flags & VM_HUGEPAGE)
2043 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2044 gfp, vma, vmf, &ret);
2046 return vmf_error(err);
2050 unsigned long shmem_get_unmapped_area(struct file *file,
2051 unsigned long uaddr, unsigned long len,
2052 unsigned long pgoff, unsigned long flags)
2054 unsigned long (*get_area)(struct file *,
2055 unsigned long, unsigned long, unsigned long, unsigned long);
2057 unsigned long offset;
2058 unsigned long inflated_len;
2059 unsigned long inflated_addr;
2060 unsigned long inflated_offset;
2062 if (len > TASK_SIZE)
2065 get_area = current->mm->get_unmapped_area;
2066 addr = get_area(file, uaddr, len, pgoff, flags);
2068 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2070 if (IS_ERR_VALUE(addr))
2072 if (addr & ~PAGE_MASK)
2074 if (addr > TASK_SIZE - len)
2077 if (shmem_huge == SHMEM_HUGE_DENY)
2079 if (len < HPAGE_PMD_SIZE)
2081 if (flags & MAP_FIXED)
2084 * Our priority is to support MAP_SHARED mapped hugely;
2085 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2086 * But if caller specified an address hint and we allocated area there
2087 * successfully, respect that as before.
2092 if (shmem_huge != SHMEM_HUGE_FORCE) {
2093 struct super_block *sb;
2096 VM_BUG_ON(file->f_op != &shmem_file_operations);
2097 sb = file_inode(file)->i_sb;
2100 * Called directly from mm/mmap.c, or drivers/char/mem.c
2101 * for "/dev/zero", to create a shared anonymous object.
2103 if (IS_ERR(shm_mnt))
2105 sb = shm_mnt->mnt_sb;
2107 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2111 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2112 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2114 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2117 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2118 if (inflated_len > TASK_SIZE)
2120 if (inflated_len < len)
2123 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2124 if (IS_ERR_VALUE(inflated_addr))
2126 if (inflated_addr & ~PAGE_MASK)
2129 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2130 inflated_addr += offset - inflated_offset;
2131 if (inflated_offset > offset)
2132 inflated_addr += HPAGE_PMD_SIZE;
2134 if (inflated_addr > TASK_SIZE - len)
2136 return inflated_addr;
2140 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2142 struct inode *inode = file_inode(vma->vm_file);
2143 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2146 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2149 struct inode *inode = file_inode(vma->vm_file);
2152 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2153 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2157 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2159 struct inode *inode = file_inode(file);
2160 struct shmem_inode_info *info = SHMEM_I(inode);
2161 int retval = -ENOMEM;
2164 * What serializes the accesses to info->flags?
2165 * ipc_lock_object() when called from shmctl_do_lock(),
2166 * no serialization needed when called from shm_destroy().
2168 if (lock && !(info->flags & VM_LOCKED)) {
2169 if (!user_shm_lock(inode->i_size, user))
2171 info->flags |= VM_LOCKED;
2172 mapping_set_unevictable(file->f_mapping);
2174 if (!lock && (info->flags & VM_LOCKED) && user) {
2175 user_shm_unlock(inode->i_size, user);
2176 info->flags &= ~VM_LOCKED;
2177 mapping_clear_unevictable(file->f_mapping);
2185 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2187 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2189 if (info->seals & F_SEAL_FUTURE_WRITE) {
2191 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2192 * "future write" seal active.
2194 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2198 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2199 * MAP_SHARED and read-only, take care to not allow mprotect to
2200 * revert protections on such mappings. Do this only for shared
2201 * mappings. For private mappings, don't need to mask
2202 * VM_MAYWRITE as we still want them to be COW-writable.
2204 if (vma->vm_flags & VM_SHARED)
2205 vma->vm_flags &= ~(VM_MAYWRITE);
2208 file_accessed(file);
2209 vma->vm_ops = &shmem_vm_ops;
2210 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2211 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2212 (vma->vm_end & HPAGE_PMD_MASK)) {
2213 khugepaged_enter(vma, vma->vm_flags);
2218 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2219 umode_t mode, dev_t dev, unsigned long flags)
2221 struct inode *inode;
2222 struct shmem_inode_info *info;
2223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2225 if (shmem_reserve_inode(sb))
2228 inode = new_inode(sb);
2230 inode->i_ino = get_next_ino();
2231 inode_init_owner(inode, dir, mode);
2232 inode->i_blocks = 0;
2233 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2234 inode->i_generation = prandom_u32();
2235 info = SHMEM_I(inode);
2236 memset(info, 0, (char *)inode - (char *)info);
2237 spin_lock_init(&info->lock);
2238 atomic_set(&info->stop_eviction, 0);
2239 info->seals = F_SEAL_SEAL;
2240 info->flags = flags & VM_NORESERVE;
2241 INIT_LIST_HEAD(&info->shrinklist);
2242 INIT_LIST_HEAD(&info->swaplist);
2243 simple_xattrs_init(&info->xattrs);
2244 cache_no_acl(inode);
2246 switch (mode & S_IFMT) {
2248 inode->i_op = &shmem_special_inode_operations;
2249 init_special_inode(inode, mode, dev);
2252 inode->i_mapping->a_ops = &shmem_aops;
2253 inode->i_op = &shmem_inode_operations;
2254 inode->i_fop = &shmem_file_operations;
2255 mpol_shared_policy_init(&info->policy,
2256 shmem_get_sbmpol(sbinfo));
2260 /* Some things misbehave if size == 0 on a directory */
2261 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2262 inode->i_op = &shmem_dir_inode_operations;
2263 inode->i_fop = &simple_dir_operations;
2267 * Must not load anything in the rbtree,
2268 * mpol_free_shared_policy will not be called.
2270 mpol_shared_policy_init(&info->policy, NULL);
2274 lockdep_annotate_inode_mutex_key(inode);
2276 shmem_free_inode(sb);
2280 bool shmem_mapping(struct address_space *mapping)
2282 return mapping->a_ops == &shmem_aops;
2285 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2287 struct vm_area_struct *dst_vma,
2288 unsigned long dst_addr,
2289 unsigned long src_addr,
2291 struct page **pagep)
2293 struct inode *inode = file_inode(dst_vma->vm_file);
2294 struct shmem_inode_info *info = SHMEM_I(inode);
2295 struct address_space *mapping = inode->i_mapping;
2296 gfp_t gfp = mapping_gfp_mask(mapping);
2297 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2301 pte_t _dst_pte, *dst_pte;
2303 pgoff_t offset, max_off;
2306 if (!shmem_inode_acct_block(inode, 1))
2310 page = shmem_alloc_page(gfp, info, pgoff);
2312 goto out_unacct_blocks;
2314 if (!zeropage) { /* mcopy_atomic */
2315 page_kaddr = kmap_atomic(page);
2316 ret = copy_from_user(page_kaddr,
2317 (const void __user *)src_addr,
2319 kunmap_atomic(page_kaddr);
2321 /* fallback to copy_from_user outside mmap_sem */
2322 if (unlikely(ret)) {
2324 shmem_inode_unacct_blocks(inode, 1);
2325 /* don't free the page */
2328 } else { /* mfill_zeropage_atomic */
2329 clear_highpage(page);
2336 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2337 __SetPageLocked(page);
2338 __SetPageSwapBacked(page);
2339 __SetPageUptodate(page);
2342 offset = linear_page_index(dst_vma, dst_addr);
2343 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2344 if (unlikely(offset >= max_off))
2347 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2348 gfp & GFP_RECLAIM_MASK, dst_mm);
2352 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2353 if (dst_vma->vm_flags & VM_WRITE)
2354 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2357 * We don't set the pte dirty if the vma has no
2358 * VM_WRITE permission, so mark the page dirty or it
2359 * could be freed from under us. We could do it
2360 * unconditionally before unlock_page(), but doing it
2361 * only if VM_WRITE is not set is faster.
2363 set_page_dirty(page);
2366 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2369 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2370 if (unlikely(offset >= max_off))
2371 goto out_release_unlock;
2374 if (!pte_none(*dst_pte))
2375 goto out_release_unlock;
2377 lru_cache_add_anon(page);
2379 spin_lock_irq(&info->lock);
2381 inode->i_blocks += BLOCKS_PER_PAGE;
2382 shmem_recalc_inode(inode);
2383 spin_unlock_irq(&info->lock);
2385 inc_mm_counter(dst_mm, mm_counter_file(page));
2386 page_add_file_rmap(page, false);
2387 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2389 /* No need to invalidate - it was non-present before */
2390 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2391 pte_unmap_unlock(dst_pte, ptl);
2397 pte_unmap_unlock(dst_pte, ptl);
2398 ClearPageDirty(page);
2399 delete_from_page_cache(page);
2404 shmem_inode_unacct_blocks(inode, 1);
2408 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2410 struct vm_area_struct *dst_vma,
2411 unsigned long dst_addr,
2412 unsigned long src_addr,
2413 struct page **pagep)
2415 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2416 dst_addr, src_addr, false, pagep);
2419 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2421 struct vm_area_struct *dst_vma,
2422 unsigned long dst_addr)
2424 struct page *page = NULL;
2426 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2427 dst_addr, 0, true, &page);
2431 static const struct inode_operations shmem_symlink_inode_operations;
2432 static const struct inode_operations shmem_short_symlink_operations;
2434 #ifdef CONFIG_TMPFS_XATTR
2435 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2437 #define shmem_initxattrs NULL
2441 shmem_write_begin(struct file *file, struct address_space *mapping,
2442 loff_t pos, unsigned len, unsigned flags,
2443 struct page **pagep, void **fsdata)
2445 struct inode *inode = mapping->host;
2446 struct shmem_inode_info *info = SHMEM_I(inode);
2447 pgoff_t index = pos >> PAGE_SHIFT;
2449 /* i_mutex is held by caller */
2450 if (unlikely(info->seals & (F_SEAL_GROW |
2451 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2452 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2454 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2458 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2462 shmem_write_end(struct file *file, struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
2466 struct inode *inode = mapping->host;
2468 if (pos + copied > inode->i_size)
2469 i_size_write(inode, pos + copied);
2471 if (!PageUptodate(page)) {
2472 struct page *head = compound_head(page);
2473 if (PageTransCompound(page)) {
2476 for (i = 0; i < HPAGE_PMD_NR; i++) {
2477 if (head + i == page)
2479 clear_highpage(head + i);
2480 flush_dcache_page(head + i);
2483 if (copied < PAGE_SIZE) {
2484 unsigned from = pos & (PAGE_SIZE - 1);
2485 zero_user_segments(page, 0, from,
2486 from + copied, PAGE_SIZE);
2488 SetPageUptodate(head);
2490 set_page_dirty(page);
2497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2499 struct file *file = iocb->ki_filp;
2500 struct inode *inode = file_inode(file);
2501 struct address_space *mapping = inode->i_mapping;
2503 unsigned long offset;
2504 enum sgp_type sgp = SGP_READ;
2507 loff_t *ppos = &iocb->ki_pos;
2510 * Might this read be for a stacking filesystem? Then when reading
2511 * holes of a sparse file, we actually need to allocate those pages,
2512 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2514 if (!iter_is_iovec(to))
2517 index = *ppos >> PAGE_SHIFT;
2518 offset = *ppos & ~PAGE_MASK;
2521 struct page *page = NULL;
2523 unsigned long nr, ret;
2524 loff_t i_size = i_size_read(inode);
2526 end_index = i_size >> PAGE_SHIFT;
2527 if (index > end_index)
2529 if (index == end_index) {
2530 nr = i_size & ~PAGE_MASK;
2535 error = shmem_getpage(inode, index, &page, sgp);
2537 if (error == -EINVAL)
2542 if (sgp == SGP_CACHE)
2543 set_page_dirty(page);
2548 * We must evaluate after, since reads (unlike writes)
2549 * are called without i_mutex protection against truncate
2552 i_size = i_size_read(inode);
2553 end_index = i_size >> PAGE_SHIFT;
2554 if (index == end_index) {
2555 nr = i_size & ~PAGE_MASK;
2566 * If users can be writing to this page using arbitrary
2567 * virtual addresses, take care about potential aliasing
2568 * before reading the page on the kernel side.
2570 if (mapping_writably_mapped(mapping))
2571 flush_dcache_page(page);
2573 * Mark the page accessed if we read the beginning.
2576 mark_page_accessed(page);
2578 page = ZERO_PAGE(0);
2583 * Ok, we have the page, and it's up-to-date, so
2584 * now we can copy it to user space...
2586 ret = copy_page_to_iter(page, offset, nr, to);
2589 index += offset >> PAGE_SHIFT;
2590 offset &= ~PAGE_MASK;
2593 if (!iov_iter_count(to))
2602 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2603 file_accessed(file);
2604 return retval ? retval : error;
2608 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2610 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2611 pgoff_t index, pgoff_t end, int whence)
2614 struct pagevec pvec;
2615 pgoff_t indices[PAGEVEC_SIZE];
2619 pagevec_init(&pvec);
2620 pvec.nr = 1; /* start small: we may be there already */
2622 pvec.nr = find_get_entries(mapping, index,
2623 pvec.nr, pvec.pages, indices);
2625 if (whence == SEEK_DATA)
2629 for (i = 0; i < pvec.nr; i++, index++) {
2630 if (index < indices[i]) {
2631 if (whence == SEEK_HOLE) {
2637 page = pvec.pages[i];
2638 if (page && !xa_is_value(page)) {
2639 if (!PageUptodate(page))
2643 (page && whence == SEEK_DATA) ||
2644 (!page && whence == SEEK_HOLE)) {
2649 pagevec_remove_exceptionals(&pvec);
2650 pagevec_release(&pvec);
2651 pvec.nr = PAGEVEC_SIZE;
2657 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2659 struct address_space *mapping = file->f_mapping;
2660 struct inode *inode = mapping->host;
2664 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2665 return generic_file_llseek_size(file, offset, whence,
2666 MAX_LFS_FILESIZE, i_size_read(inode));
2668 /* We're holding i_mutex so we can access i_size directly */
2670 if (offset < 0 || offset >= inode->i_size)
2673 start = offset >> PAGE_SHIFT;
2674 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2675 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2676 new_offset <<= PAGE_SHIFT;
2677 if (new_offset > offset) {
2678 if (new_offset < inode->i_size)
2679 offset = new_offset;
2680 else if (whence == SEEK_DATA)
2683 offset = inode->i_size;
2688 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2689 inode_unlock(inode);
2693 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696 struct inode *inode = file_inode(file);
2697 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2698 struct shmem_inode_info *info = SHMEM_I(inode);
2699 struct shmem_falloc shmem_falloc;
2700 pgoff_t start, index, end;
2703 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2708 if (mode & FALLOC_FL_PUNCH_HOLE) {
2709 struct address_space *mapping = file->f_mapping;
2710 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2711 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2712 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2714 /* protected by i_mutex */
2715 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2720 shmem_falloc.waitq = &shmem_falloc_waitq;
2721 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2722 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2723 spin_lock(&inode->i_lock);
2724 inode->i_private = &shmem_falloc;
2725 spin_unlock(&inode->i_lock);
2727 if ((u64)unmap_end > (u64)unmap_start)
2728 unmap_mapping_range(mapping, unmap_start,
2729 1 + unmap_end - unmap_start, 0);
2730 shmem_truncate_range(inode, offset, offset + len - 1);
2731 /* No need to unmap again: hole-punching leaves COWed pages */
2733 spin_lock(&inode->i_lock);
2734 inode->i_private = NULL;
2735 wake_up_all(&shmem_falloc_waitq);
2736 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2737 spin_unlock(&inode->i_lock);
2742 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2743 error = inode_newsize_ok(inode, offset + len);
2747 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2752 start = offset >> PAGE_SHIFT;
2753 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2754 /* Try to avoid a swapstorm if len is impossible to satisfy */
2755 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2760 shmem_falloc.waitq = NULL;
2761 shmem_falloc.start = start;
2762 shmem_falloc.next = start;
2763 shmem_falloc.nr_falloced = 0;
2764 shmem_falloc.nr_unswapped = 0;
2765 spin_lock(&inode->i_lock);
2766 inode->i_private = &shmem_falloc;
2767 spin_unlock(&inode->i_lock);
2769 for (index = start; index < end; index++) {
2773 * Good, the fallocate(2) manpage permits EINTR: we may have
2774 * been interrupted because we are using up too much memory.
2776 if (signal_pending(current))
2778 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2783 /* Remove the !PageUptodate pages we added */
2784 if (index > start) {
2785 shmem_undo_range(inode,
2786 (loff_t)start << PAGE_SHIFT,
2787 ((loff_t)index << PAGE_SHIFT) - 1, true);
2793 * Inform shmem_writepage() how far we have reached.
2794 * No need for lock or barrier: we have the page lock.
2796 shmem_falloc.next++;
2797 if (!PageUptodate(page))
2798 shmem_falloc.nr_falloced++;
2801 * If !PageUptodate, leave it that way so that freeable pages
2802 * can be recognized if we need to rollback on error later.
2803 * But set_page_dirty so that memory pressure will swap rather
2804 * than free the pages we are allocating (and SGP_CACHE pages
2805 * might still be clean: we now need to mark those dirty too).
2807 set_page_dirty(page);
2813 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2814 i_size_write(inode, offset + len);
2815 inode->i_ctime = current_time(inode);
2817 spin_lock(&inode->i_lock);
2818 inode->i_private = NULL;
2819 spin_unlock(&inode->i_lock);
2821 inode_unlock(inode);
2825 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2827 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2829 buf->f_type = TMPFS_MAGIC;
2830 buf->f_bsize = PAGE_SIZE;
2831 buf->f_namelen = NAME_MAX;
2832 if (sbinfo->max_blocks) {
2833 buf->f_blocks = sbinfo->max_blocks;
2835 buf->f_bfree = sbinfo->max_blocks -
2836 percpu_counter_sum(&sbinfo->used_blocks);
2838 if (sbinfo->max_inodes) {
2839 buf->f_files = sbinfo->max_inodes;
2840 buf->f_ffree = sbinfo->free_inodes;
2842 /* else leave those fields 0 like simple_statfs */
2847 * File creation. Allocate an inode, and we're done..
2850 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2852 struct inode *inode;
2853 int error = -ENOSPC;
2855 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2857 error = simple_acl_create(dir, inode);
2860 error = security_inode_init_security(inode, dir,
2862 shmem_initxattrs, NULL);
2863 if (error && error != -EOPNOTSUPP)
2867 dir->i_size += BOGO_DIRENT_SIZE;
2868 dir->i_ctime = dir->i_mtime = current_time(dir);
2869 d_instantiate(dentry, inode);
2870 dget(dentry); /* Extra count - pin the dentry in core */
2879 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2881 struct inode *inode;
2882 int error = -ENOSPC;
2884 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2886 error = security_inode_init_security(inode, dir,
2888 shmem_initxattrs, NULL);
2889 if (error && error != -EOPNOTSUPP)
2891 error = simple_acl_create(dir, inode);
2894 d_tmpfile(dentry, inode);
2902 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2906 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2912 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2915 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2921 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923 struct inode *inode = d_inode(old_dentry);
2927 * No ordinary (disk based) filesystem counts links as inodes;
2928 * but each new link needs a new dentry, pinning lowmem, and
2929 * tmpfs dentries cannot be pruned until they are unlinked.
2930 * But if an O_TMPFILE file is linked into the tmpfs, the
2931 * first link must skip that, to get the accounting right.
2933 if (inode->i_nlink) {
2934 ret = shmem_reserve_inode(inode->i_sb);
2939 dir->i_size += BOGO_DIRENT_SIZE;
2940 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942 ihold(inode); /* New dentry reference */
2943 dget(dentry); /* Extra pinning count for the created dentry */
2944 d_instantiate(dentry, inode);
2949 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951 struct inode *inode = d_inode(dentry);
2953 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2954 shmem_free_inode(inode->i_sb);
2956 dir->i_size -= BOGO_DIRENT_SIZE;
2957 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2959 dput(dentry); /* Undo the count from "create" - this does all the work */
2963 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965 if (!simple_empty(dentry))
2968 drop_nlink(d_inode(dentry));
2970 return shmem_unlink(dir, dentry);
2973 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975 bool old_is_dir = d_is_dir(old_dentry);
2976 bool new_is_dir = d_is_dir(new_dentry);
2978 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980 drop_nlink(old_dir);
2983 drop_nlink(new_dir);
2987 old_dir->i_ctime = old_dir->i_mtime =
2988 new_dir->i_ctime = new_dir->i_mtime =
2989 d_inode(old_dentry)->i_ctime =
2990 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2995 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2997 struct dentry *whiteout;
3000 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3004 error = shmem_mknod(old_dir, whiteout,
3005 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3011 * Cheat and hash the whiteout while the old dentry is still in
3012 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3014 * d_lookup() will consistently find one of them at this point,
3015 * not sure which one, but that isn't even important.
3022 * The VFS layer already does all the dentry stuff for rename,
3023 * we just have to decrement the usage count for the target if
3024 * it exists so that the VFS layer correctly free's it when it
3027 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3029 struct inode *inode = d_inode(old_dentry);
3030 int they_are_dirs = S_ISDIR(inode->i_mode);
3032 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3035 if (flags & RENAME_EXCHANGE)
3036 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3038 if (!simple_empty(new_dentry))
3041 if (flags & RENAME_WHITEOUT) {
3044 error = shmem_whiteout(old_dir, old_dentry);
3049 if (d_really_is_positive(new_dentry)) {
3050 (void) shmem_unlink(new_dir, new_dentry);
3051 if (they_are_dirs) {
3052 drop_nlink(d_inode(new_dentry));
3053 drop_nlink(old_dir);
3055 } else if (they_are_dirs) {
3056 drop_nlink(old_dir);
3060 old_dir->i_size -= BOGO_DIRENT_SIZE;
3061 new_dir->i_size += BOGO_DIRENT_SIZE;
3062 old_dir->i_ctime = old_dir->i_mtime =
3063 new_dir->i_ctime = new_dir->i_mtime =
3064 inode->i_ctime = current_time(old_dir);
3068 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3072 struct inode *inode;
3075 len = strlen(symname) + 1;
3076 if (len > PAGE_SIZE)
3077 return -ENAMETOOLONG;
3079 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3084 error = security_inode_init_security(inode, dir, &dentry->d_name,
3085 shmem_initxattrs, NULL);
3086 if (error && error != -EOPNOTSUPP) {
3091 inode->i_size = len-1;
3092 if (len <= SHORT_SYMLINK_LEN) {
3093 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3094 if (!inode->i_link) {
3098 inode->i_op = &shmem_short_symlink_operations;
3100 inode_nohighmem(inode);
3101 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3106 inode->i_mapping->a_ops = &shmem_aops;
3107 inode->i_op = &shmem_symlink_inode_operations;
3108 memcpy(page_address(page), symname, len);
3109 SetPageUptodate(page);
3110 set_page_dirty(page);
3114 dir->i_size += BOGO_DIRENT_SIZE;
3115 dir->i_ctime = dir->i_mtime = current_time(dir);
3116 d_instantiate(dentry, inode);
3121 static void shmem_put_link(void *arg)
3123 mark_page_accessed(arg);
3127 static const char *shmem_get_link(struct dentry *dentry,
3128 struct inode *inode,
3129 struct delayed_call *done)
3131 struct page *page = NULL;
3134 page = find_get_page(inode->i_mapping, 0);
3136 return ERR_PTR(-ECHILD);
3137 if (!PageUptodate(page)) {
3139 return ERR_PTR(-ECHILD);
3142 error = shmem_getpage(inode, 0, &page, SGP_READ);
3144 return ERR_PTR(error);
3147 set_delayed_call(done, shmem_put_link, page);
3148 return page_address(page);
3151 #ifdef CONFIG_TMPFS_XATTR
3153 * Superblocks without xattr inode operations may get some security.* xattr
3154 * support from the LSM "for free". As soon as we have any other xattrs
3155 * like ACLs, we also need to implement the security.* handlers at
3156 * filesystem level, though.
3160 * Callback for security_inode_init_security() for acquiring xattrs.
3162 static int shmem_initxattrs(struct inode *inode,
3163 const struct xattr *xattr_array,
3166 struct shmem_inode_info *info = SHMEM_I(inode);
3167 const struct xattr *xattr;
3168 struct simple_xattr *new_xattr;
3171 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3172 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3176 len = strlen(xattr->name) + 1;
3177 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3179 if (!new_xattr->name) {
3184 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3185 XATTR_SECURITY_PREFIX_LEN);
3186 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3189 simple_xattr_list_add(&info->xattrs, new_xattr);
3195 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3196 struct dentry *unused, struct inode *inode,
3197 const char *name, void *buffer, size_t size)
3199 struct shmem_inode_info *info = SHMEM_I(inode);
3201 name = xattr_full_name(handler, name);
3202 return simple_xattr_get(&info->xattrs, name, buffer, size);
3205 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3206 struct dentry *unused, struct inode *inode,
3207 const char *name, const void *value,
3208 size_t size, int flags)
3210 struct shmem_inode_info *info = SHMEM_I(inode);
3212 name = xattr_full_name(handler, name);
3213 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3216 static const struct xattr_handler shmem_security_xattr_handler = {
3217 .prefix = XATTR_SECURITY_PREFIX,
3218 .get = shmem_xattr_handler_get,
3219 .set = shmem_xattr_handler_set,
3222 static const struct xattr_handler shmem_trusted_xattr_handler = {
3223 .prefix = XATTR_TRUSTED_PREFIX,
3224 .get = shmem_xattr_handler_get,
3225 .set = shmem_xattr_handler_set,
3228 static const struct xattr_handler *shmem_xattr_handlers[] = {
3229 #ifdef CONFIG_TMPFS_POSIX_ACL
3230 &posix_acl_access_xattr_handler,
3231 &posix_acl_default_xattr_handler,
3233 &shmem_security_xattr_handler,
3234 &shmem_trusted_xattr_handler,
3238 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3240 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3241 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3243 #endif /* CONFIG_TMPFS_XATTR */
3245 static const struct inode_operations shmem_short_symlink_operations = {
3246 .get_link = simple_get_link,
3247 #ifdef CONFIG_TMPFS_XATTR
3248 .listxattr = shmem_listxattr,
3252 static const struct inode_operations shmem_symlink_inode_operations = {
3253 .get_link = shmem_get_link,
3254 #ifdef CONFIG_TMPFS_XATTR
3255 .listxattr = shmem_listxattr,
3259 static struct dentry *shmem_get_parent(struct dentry *child)
3261 return ERR_PTR(-ESTALE);
3264 static int shmem_match(struct inode *ino, void *vfh)
3268 inum = (inum << 32) | fh[1];
3269 return ino->i_ino == inum && fh[0] == ino->i_generation;
3272 /* Find any alias of inode, but prefer a hashed alias */
3273 static struct dentry *shmem_find_alias(struct inode *inode)
3275 struct dentry *alias = d_find_alias(inode);
3277 return alias ?: d_find_any_alias(inode);
3281 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3282 struct fid *fid, int fh_len, int fh_type)
3284 struct inode *inode;
3285 struct dentry *dentry = NULL;
3292 inum = (inum << 32) | fid->raw[1];
3294 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3295 shmem_match, fid->raw);
3297 dentry = shmem_find_alias(inode);
3304 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3305 struct inode *parent)
3309 return FILEID_INVALID;
3312 if (inode_unhashed(inode)) {
3313 /* Unfortunately insert_inode_hash is not idempotent,
3314 * so as we hash inodes here rather than at creation
3315 * time, we need a lock to ensure we only try
3318 static DEFINE_SPINLOCK(lock);
3320 if (inode_unhashed(inode))
3321 __insert_inode_hash(inode,
3322 inode->i_ino + inode->i_generation);
3326 fh[0] = inode->i_generation;
3327 fh[1] = inode->i_ino;
3328 fh[2] = ((__u64)inode->i_ino) >> 32;
3334 static const struct export_operations shmem_export_ops = {
3335 .get_parent = shmem_get_parent,
3336 .encode_fh = shmem_encode_fh,
3337 .fh_to_dentry = shmem_fh_to_dentry,
3351 static const struct constant_table shmem_param_enums_huge[] = {
3352 {"never", SHMEM_HUGE_NEVER },
3353 {"always", SHMEM_HUGE_ALWAYS },
3354 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3355 {"advise", SHMEM_HUGE_ADVISE },
3359 const struct fs_parameter_spec shmem_fs_parameters[] = {
3360 fsparam_u32 ("gid", Opt_gid),
3361 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3362 fsparam_u32oct("mode", Opt_mode),
3363 fsparam_string("mpol", Opt_mpol),
3364 fsparam_string("nr_blocks", Opt_nr_blocks),
3365 fsparam_string("nr_inodes", Opt_nr_inodes),
3366 fsparam_string("size", Opt_size),
3367 fsparam_u32 ("uid", Opt_uid),
3371 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3373 struct shmem_options *ctx = fc->fs_private;
3374 struct fs_parse_result result;
3375 unsigned long long size;
3379 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3385 size = memparse(param->string, &rest);
3387 size <<= PAGE_SHIFT;
3388 size *= totalram_pages();
3394 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3395 ctx->seen |= SHMEM_SEEN_BLOCKS;
3398 ctx->blocks = memparse(param->string, &rest);
3401 ctx->seen |= SHMEM_SEEN_BLOCKS;
3404 ctx->inodes = memparse(param->string, &rest);
3407 ctx->seen |= SHMEM_SEEN_INODES;
3410 ctx->mode = result.uint_32 & 07777;
3413 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3414 if (!uid_valid(ctx->uid))
3418 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3419 if (!gid_valid(ctx->gid))
3423 ctx->huge = result.uint_32;
3424 if (ctx->huge != SHMEM_HUGE_NEVER &&
3425 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3426 has_transparent_hugepage()))
3427 goto unsupported_parameter;
3428 ctx->seen |= SHMEM_SEEN_HUGE;
3431 if (IS_ENABLED(CONFIG_NUMA)) {
3432 mpol_put(ctx->mpol);
3434 if (mpol_parse_str(param->string, &ctx->mpol))
3438 goto unsupported_parameter;
3442 unsupported_parameter:
3443 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3445 return invalfc(fc, "Bad value for '%s'", param->key);
3448 static int shmem_parse_options(struct fs_context *fc, void *data)
3450 char *options = data;
3453 int err = security_sb_eat_lsm_opts(options, &fc->security);
3458 while (options != NULL) {
3459 char *this_char = options;
3462 * NUL-terminate this option: unfortunately,
3463 * mount options form a comma-separated list,
3464 * but mpol's nodelist may also contain commas.
3466 options = strchr(options, ',');
3467 if (options == NULL)
3470 if (!isdigit(*options)) {
3476 char *value = strchr(this_char,'=');
3482 len = strlen(value);
3484 err = vfs_parse_fs_string(fc, this_char, value, len);
3493 * Reconfigure a shmem filesystem.
3495 * Note that we disallow change from limited->unlimited blocks/inodes while any
3496 * are in use; but we must separately disallow unlimited->limited, because in
3497 * that case we have no record of how much is already in use.
3499 static int shmem_reconfigure(struct fs_context *fc)
3501 struct shmem_options *ctx = fc->fs_private;
3502 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3503 unsigned long inodes;
3506 spin_lock(&sbinfo->stat_lock);
3507 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509 if (!sbinfo->max_blocks) {
3510 err = "Cannot retroactively limit size";
3513 if (percpu_counter_compare(&sbinfo->used_blocks,
3515 err = "Too small a size for current use";
3519 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520 if (!sbinfo->max_inodes) {
3521 err = "Cannot retroactively limit inodes";
3524 if (ctx->inodes < inodes) {
3525 err = "Too few inodes for current use";
3530 if (ctx->seen & SHMEM_SEEN_HUGE)
3531 sbinfo->huge = ctx->huge;
3532 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3533 sbinfo->max_blocks = ctx->blocks;
3534 if (ctx->seen & SHMEM_SEEN_INODES) {
3535 sbinfo->max_inodes = ctx->inodes;
3536 sbinfo->free_inodes = ctx->inodes - inodes;
3540 * Preserve previous mempolicy unless mpol remount option was specified.
3543 mpol_put(sbinfo->mpol);
3544 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3547 spin_unlock(&sbinfo->stat_lock);
3550 spin_unlock(&sbinfo->stat_lock);
3551 return invalfc(fc, "%s", err);
3554 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3556 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3558 if (sbinfo->max_blocks != shmem_default_max_blocks())
3559 seq_printf(seq, ",size=%luk",
3560 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3561 if (sbinfo->max_inodes != shmem_default_max_inodes())
3562 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3563 if (sbinfo->mode != (0777 | S_ISVTX))
3564 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3565 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3566 seq_printf(seq, ",uid=%u",
3567 from_kuid_munged(&init_user_ns, sbinfo->uid));
3568 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3569 seq_printf(seq, ",gid=%u",
3570 from_kgid_munged(&init_user_ns, sbinfo->gid));
3571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3572 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3574 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3576 shmem_show_mpol(seq, sbinfo->mpol);
3580 #endif /* CONFIG_TMPFS */
3582 static void shmem_put_super(struct super_block *sb)
3584 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3586 percpu_counter_destroy(&sbinfo->used_blocks);
3587 mpol_put(sbinfo->mpol);
3589 sb->s_fs_info = NULL;
3592 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3594 struct shmem_options *ctx = fc->fs_private;
3595 struct inode *inode;
3596 struct shmem_sb_info *sbinfo;
3599 /* Round up to L1_CACHE_BYTES to resist false sharing */
3600 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3601 L1_CACHE_BYTES), GFP_KERNEL);
3605 sb->s_fs_info = sbinfo;
3609 * Per default we only allow half of the physical ram per
3610 * tmpfs instance, limiting inodes to one per page of lowmem;
3611 * but the internal instance is left unlimited.
3613 if (!(sb->s_flags & SB_KERNMOUNT)) {
3614 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3615 ctx->blocks = shmem_default_max_blocks();
3616 if (!(ctx->seen & SHMEM_SEEN_INODES))
3617 ctx->inodes = shmem_default_max_inodes();
3619 sb->s_flags |= SB_NOUSER;
3621 sb->s_export_op = &shmem_export_ops;
3622 sb->s_flags |= SB_NOSEC;
3624 sb->s_flags |= SB_NOUSER;
3626 sbinfo->max_blocks = ctx->blocks;
3627 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3628 sbinfo->uid = ctx->uid;
3629 sbinfo->gid = ctx->gid;
3630 sbinfo->mode = ctx->mode;
3631 sbinfo->huge = ctx->huge;
3632 sbinfo->mpol = ctx->mpol;
3635 spin_lock_init(&sbinfo->stat_lock);
3636 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3638 spin_lock_init(&sbinfo->shrinklist_lock);
3639 INIT_LIST_HEAD(&sbinfo->shrinklist);
3641 sb->s_maxbytes = MAX_LFS_FILESIZE;
3642 sb->s_blocksize = PAGE_SIZE;
3643 sb->s_blocksize_bits = PAGE_SHIFT;
3644 sb->s_magic = TMPFS_MAGIC;
3645 sb->s_op = &shmem_ops;
3646 sb->s_time_gran = 1;
3647 #ifdef CONFIG_TMPFS_XATTR
3648 sb->s_xattr = shmem_xattr_handlers;
3650 #ifdef CONFIG_TMPFS_POSIX_ACL
3651 sb->s_flags |= SB_POSIXACL;
3653 uuid_gen(&sb->s_uuid);
3655 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3658 inode->i_uid = sbinfo->uid;
3659 inode->i_gid = sbinfo->gid;
3660 sb->s_root = d_make_root(inode);
3666 shmem_put_super(sb);
3670 static int shmem_get_tree(struct fs_context *fc)
3672 return get_tree_nodev(fc, shmem_fill_super);
3675 static void shmem_free_fc(struct fs_context *fc)
3677 struct shmem_options *ctx = fc->fs_private;
3680 mpol_put(ctx->mpol);
3685 static const struct fs_context_operations shmem_fs_context_ops = {
3686 .free = shmem_free_fc,
3687 .get_tree = shmem_get_tree,
3689 .parse_monolithic = shmem_parse_options,
3690 .parse_param = shmem_parse_one,
3691 .reconfigure = shmem_reconfigure,
3695 static struct kmem_cache *shmem_inode_cachep;
3697 static struct inode *shmem_alloc_inode(struct super_block *sb)
3699 struct shmem_inode_info *info;
3700 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3703 return &info->vfs_inode;
3706 static void shmem_free_in_core_inode(struct inode *inode)
3708 if (S_ISLNK(inode->i_mode))
3709 kfree(inode->i_link);
3710 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3713 static void shmem_destroy_inode(struct inode *inode)
3715 if (S_ISREG(inode->i_mode))
3716 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3719 static void shmem_init_inode(void *foo)
3721 struct shmem_inode_info *info = foo;
3722 inode_init_once(&info->vfs_inode);
3725 static void shmem_init_inodecache(void)
3727 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3728 sizeof(struct shmem_inode_info),
3729 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3732 static void shmem_destroy_inodecache(void)
3734 kmem_cache_destroy(shmem_inode_cachep);
3737 static const struct address_space_operations shmem_aops = {
3738 .writepage = shmem_writepage,
3739 .set_page_dirty = __set_page_dirty_no_writeback,
3741 .write_begin = shmem_write_begin,
3742 .write_end = shmem_write_end,
3744 #ifdef CONFIG_MIGRATION
3745 .migratepage = migrate_page,
3747 .error_remove_page = generic_error_remove_page,
3750 static const struct file_operations shmem_file_operations = {
3752 .get_unmapped_area = shmem_get_unmapped_area,
3754 .llseek = shmem_file_llseek,
3755 .read_iter = shmem_file_read_iter,
3756 .write_iter = generic_file_write_iter,
3757 .fsync = noop_fsync,
3758 .splice_read = generic_file_splice_read,
3759 .splice_write = iter_file_splice_write,
3760 .fallocate = shmem_fallocate,
3764 static const struct inode_operations shmem_inode_operations = {
3765 .getattr = shmem_getattr,
3766 .setattr = shmem_setattr,
3767 #ifdef CONFIG_TMPFS_XATTR
3768 .listxattr = shmem_listxattr,
3769 .set_acl = simple_set_acl,
3773 static const struct inode_operations shmem_dir_inode_operations = {
3775 .create = shmem_create,
3776 .lookup = simple_lookup,
3778 .unlink = shmem_unlink,
3779 .symlink = shmem_symlink,
3780 .mkdir = shmem_mkdir,
3781 .rmdir = shmem_rmdir,
3782 .mknod = shmem_mknod,
3783 .rename = shmem_rename2,
3784 .tmpfile = shmem_tmpfile,
3786 #ifdef CONFIG_TMPFS_XATTR
3787 .listxattr = shmem_listxattr,
3789 #ifdef CONFIG_TMPFS_POSIX_ACL
3790 .setattr = shmem_setattr,
3791 .set_acl = simple_set_acl,
3795 static const struct inode_operations shmem_special_inode_operations = {
3796 #ifdef CONFIG_TMPFS_XATTR
3797 .listxattr = shmem_listxattr,
3799 #ifdef CONFIG_TMPFS_POSIX_ACL
3800 .setattr = shmem_setattr,
3801 .set_acl = simple_set_acl,
3805 static const struct super_operations shmem_ops = {
3806 .alloc_inode = shmem_alloc_inode,
3807 .free_inode = shmem_free_in_core_inode,
3808 .destroy_inode = shmem_destroy_inode,
3810 .statfs = shmem_statfs,
3811 .show_options = shmem_show_options,
3813 .evict_inode = shmem_evict_inode,
3814 .drop_inode = generic_delete_inode,
3815 .put_super = shmem_put_super,
3816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3817 .nr_cached_objects = shmem_unused_huge_count,
3818 .free_cached_objects = shmem_unused_huge_scan,
3822 static const struct vm_operations_struct shmem_vm_ops = {
3823 .fault = shmem_fault,
3824 .map_pages = filemap_map_pages,
3826 .set_policy = shmem_set_policy,
3827 .get_policy = shmem_get_policy,
3831 int shmem_init_fs_context(struct fs_context *fc)
3833 struct shmem_options *ctx;
3835 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3839 ctx->mode = 0777 | S_ISVTX;
3840 ctx->uid = current_fsuid();
3841 ctx->gid = current_fsgid();
3843 fc->fs_private = ctx;
3844 fc->ops = &shmem_fs_context_ops;
3848 static struct file_system_type shmem_fs_type = {
3849 .owner = THIS_MODULE,
3851 .init_fs_context = shmem_init_fs_context,
3853 .parameters = shmem_fs_parameters,
3855 .kill_sb = kill_litter_super,
3856 .fs_flags = FS_USERNS_MOUNT,
3859 int __init shmem_init(void)
3863 shmem_init_inodecache();
3865 error = register_filesystem(&shmem_fs_type);
3867 pr_err("Could not register tmpfs\n");
3871 shm_mnt = kern_mount(&shmem_fs_type);
3872 if (IS_ERR(shm_mnt)) {
3873 error = PTR_ERR(shm_mnt);
3874 pr_err("Could not kern_mount tmpfs\n");
3878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3880 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3882 shmem_huge = 0; /* just in case it was patched */
3887 unregister_filesystem(&shmem_fs_type);
3889 shmem_destroy_inodecache();
3890 shm_mnt = ERR_PTR(error);
3894 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3895 static ssize_t shmem_enabled_show(struct kobject *kobj,
3896 struct kobj_attribute *attr, char *buf)
3898 static const int values[] = {
3900 SHMEM_HUGE_WITHIN_SIZE,
3908 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3909 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3911 count += sprintf(buf + count, fmt,
3912 shmem_format_huge(values[i]));
3914 buf[count - 1] = '\n';
3918 static ssize_t shmem_enabled_store(struct kobject *kobj,
3919 struct kobj_attribute *attr, const char *buf, size_t count)
3924 if (count + 1 > sizeof(tmp))
3926 memcpy(tmp, buf, count);
3928 if (count && tmp[count - 1] == '\n')
3929 tmp[count - 1] = '\0';
3931 huge = shmem_parse_huge(tmp);
3932 if (huge == -EINVAL)
3934 if (!has_transparent_hugepage() &&
3935 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3939 if (shmem_huge > SHMEM_HUGE_DENY)
3940 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944 struct kobj_attribute shmem_enabled_attr =
3945 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3946 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949 bool shmem_huge_enabled(struct vm_area_struct *vma)
3951 struct inode *inode = file_inode(vma->vm_file);
3952 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3956 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3957 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3959 if (shmem_huge == SHMEM_HUGE_FORCE)
3961 if (shmem_huge == SHMEM_HUGE_DENY)
3963 switch (sbinfo->huge) {
3964 case SHMEM_HUGE_NEVER:
3966 case SHMEM_HUGE_ALWAYS:
3968 case SHMEM_HUGE_WITHIN_SIZE:
3969 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3970 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3971 if (i_size >= HPAGE_PMD_SIZE &&
3972 i_size >> PAGE_SHIFT >= off)
3975 case SHMEM_HUGE_ADVISE:
3976 /* TODO: implement fadvise() hints */
3977 return (vma->vm_flags & VM_HUGEPAGE);
3983 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3985 #else /* !CONFIG_SHMEM */
3988 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3990 * This is intended for small system where the benefits of the full
3991 * shmem code (swap-backed and resource-limited) are outweighed by
3992 * their complexity. On systems without swap this code should be
3993 * effectively equivalent, but much lighter weight.
3996 static struct file_system_type shmem_fs_type = {
3998 .init_fs_context = ramfs_init_fs_context,
3999 .parameters = ramfs_fs_parameters,
4000 .kill_sb = kill_litter_super,
4001 .fs_flags = FS_USERNS_MOUNT,
4004 int __init shmem_init(void)
4006 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4008 shm_mnt = kern_mount(&shmem_fs_type);
4009 BUG_ON(IS_ERR(shm_mnt));
4014 int shmem_unuse(unsigned int type, bool frontswap,
4015 unsigned long *fs_pages_to_unuse)
4020 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4025 void shmem_unlock_mapping(struct address_space *mapping)
4030 unsigned long shmem_get_unmapped_area(struct file *file,
4031 unsigned long addr, unsigned long len,
4032 unsigned long pgoff, unsigned long flags)
4034 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4038 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4040 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4042 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4044 #define shmem_vm_ops generic_file_vm_ops
4045 #define shmem_file_operations ramfs_file_operations
4046 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4047 #define shmem_acct_size(flags, size) 0
4048 #define shmem_unacct_size(flags, size) do {} while (0)
4050 #endif /* CONFIG_SHMEM */
4054 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4055 unsigned long flags, unsigned int i_flags)
4057 struct inode *inode;
4061 return ERR_CAST(mnt);
4063 if (size < 0 || size > MAX_LFS_FILESIZE)
4064 return ERR_PTR(-EINVAL);
4066 if (shmem_acct_size(flags, size))
4067 return ERR_PTR(-ENOMEM);
4069 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4071 if (unlikely(!inode)) {
4072 shmem_unacct_size(flags, size);
4073 return ERR_PTR(-ENOSPC);
4075 inode->i_flags |= i_flags;
4076 inode->i_size = size;
4077 clear_nlink(inode); /* It is unlinked */
4078 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4080 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4081 &shmem_file_operations);
4088 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4089 * kernel internal. There will be NO LSM permission checks against the
4090 * underlying inode. So users of this interface must do LSM checks at a
4091 * higher layer. The users are the big_key and shm implementations. LSM
4092 * checks are provided at the key or shm level rather than the inode.
4093 * @name: name for dentry (to be seen in /proc/<pid>/maps
4094 * @size: size to be set for the file
4095 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4097 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4099 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4103 * shmem_file_setup - get an unlinked file living in tmpfs
4104 * @name: name for dentry (to be seen in /proc/<pid>/maps
4105 * @size: size to be set for the file
4106 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4108 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4110 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4112 EXPORT_SYMBOL_GPL(shmem_file_setup);
4115 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4116 * @mnt: the tmpfs mount where the file will be created
4117 * @name: name for dentry (to be seen in /proc/<pid>/maps
4118 * @size: size to be set for the file
4119 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4122 loff_t size, unsigned long flags)
4124 return __shmem_file_setup(mnt, name, size, flags, 0);
4126 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4129 * shmem_zero_setup - setup a shared anonymous mapping
4130 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4132 int shmem_zero_setup(struct vm_area_struct *vma)
4135 loff_t size = vma->vm_end - vma->vm_start;
4138 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4139 * between XFS directory reading and selinux: since this file is only
4140 * accessible to the user through its mapping, use S_PRIVATE flag to
4141 * bypass file security, in the same way as shmem_kernel_file_setup().
4143 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4145 return PTR_ERR(file);
4149 vma->vm_file = file;
4150 vma->vm_ops = &shmem_vm_ops;
4152 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4153 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4154 (vma->vm_end & HPAGE_PMD_MASK)) {
4155 khugepaged_enter(vma, vma->vm_flags);
4162 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4163 * @mapping: the page's address_space
4164 * @index: the page index
4165 * @gfp: the page allocator flags to use if allocating
4167 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4168 * with any new page allocations done using the specified allocation flags.
4169 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4170 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4171 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4173 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4174 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4176 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4177 pgoff_t index, gfp_t gfp)
4180 struct inode *inode = mapping->host;
4184 BUG_ON(mapping->a_ops != &shmem_aops);
4185 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4186 gfp, NULL, NULL, NULL);
4188 page = ERR_PTR(error);
4194 * The tiny !SHMEM case uses ramfs without swap
4196 return read_cache_page_gfp(mapping, index, gfp);
4199 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);