]> Git Repo - linux.git/blob - mm/shmem.c
mm: memcontrol: convert page cache to a new mem_cgroup_charge() API
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int removed = 0, split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         removed++;
485                         goto next;
486                 }
487
488                 /* Check if there's anything to gain */
489                 if (round_up(inode->i_size, PAGE_SIZE) ==
490                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491                         list_move(&info->shrinklist, &to_remove);
492                         removed++;
493                         goto next;
494                 }
495
496                 list_move(&info->shrinklist, &list);
497 next:
498                 if (!--batch)
499                         break;
500         }
501         spin_unlock(&sbinfo->shrinklist_lock);
502
503         list_for_each_safe(pos, next, &to_remove) {
504                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505                 inode = &info->vfs_inode;
506                 list_del_init(&info->shrinklist);
507                 iput(inode);
508         }
509
510         list_for_each_safe(pos, next, &list) {
511                 int ret;
512
513                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514                 inode = &info->vfs_inode;
515
516                 if (nr_to_split && split >= nr_to_split)
517                         goto leave;
518
519                 page = find_get_page(inode->i_mapping,
520                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521                 if (!page)
522                         goto drop;
523
524                 /* No huge page at the end of the file: nothing to split */
525                 if (!PageTransHuge(page)) {
526                         put_page(page);
527                         goto drop;
528                 }
529
530                 /*
531                  * Leave the inode on the list if we failed to lock
532                  * the page at this time.
533                  *
534                  * Waiting for the lock may lead to deadlock in the
535                  * reclaim path.
536                  */
537                 if (!trylock_page(page)) {
538                         put_page(page);
539                         goto leave;
540                 }
541
542                 ret = split_huge_page(page);
543                 unlock_page(page);
544                 put_page(page);
545
546                 /* If split failed leave the inode on the list */
547                 if (ret)
548                         goto leave;
549
550                 split++;
551 drop:
552                 list_del_init(&info->shrinklist);
553                 removed++;
554 leave:
555                 iput(inode);
556         }
557
558         spin_lock(&sbinfo->shrinklist_lock);
559         list_splice_tail(&list, &sbinfo->shrinklist);
560         sbinfo->shrinklist_len -= removed;
561         spin_unlock(&sbinfo->shrinklist_lock);
562
563         return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567                 struct shrink_control *sc)
568 {
569         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571         if (!READ_ONCE(sbinfo->shrinklist_len))
572                 return SHRINK_STOP;
573
574         return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578                 struct shrink_control *sc)
579 {
580         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581         return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588                 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590         return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598             shmem_huge != SHMEM_HUGE_DENY)
599                 return true;
600         return false;
601 }
602
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607                                    struct address_space *mapping,
608                                    pgoff_t index, void *expected, gfp_t gfp,
609                                    struct mm_struct *charge_mm)
610 {
611         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612         unsigned long i = 0;
613         unsigned long nr = compound_nr(page);
614         int error;
615
616         VM_BUG_ON_PAGE(PageTail(page), page);
617         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618         VM_BUG_ON_PAGE(!PageLocked(page), page);
619         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620         VM_BUG_ON(expected && PageTransHuge(page));
621
622         page_ref_add(page, nr);
623         page->mapping = mapping;
624         page->index = index;
625
626         error = mem_cgroup_charge(page, charge_mm, gfp, PageSwapCache(page));
627         if (error) {
628                 if (!PageSwapCache(page) && PageTransHuge(page)) {
629                         count_vm_event(THP_FILE_FALLBACK);
630                         count_vm_event(THP_FILE_FALLBACK_CHARGE);
631                 }
632                 goto error;
633         }
634         cgroup_throttle_swaprate(page, gfp);
635
636         do {
637                 void *entry;
638                 xas_lock_irq(&xas);
639                 entry = xas_find_conflict(&xas);
640                 if (entry != expected)
641                         xas_set_err(&xas, -EEXIST);
642                 xas_create_range(&xas);
643                 if (xas_error(&xas))
644                         goto unlock;
645 next:
646                 xas_store(&xas, page);
647                 if (++i < nr) {
648                         xas_next(&xas);
649                         goto next;
650                 }
651                 if (PageTransHuge(page)) {
652                         count_vm_event(THP_FILE_ALLOC);
653                         __inc_node_page_state(page, NR_SHMEM_THPS);
654                 }
655                 mapping->nrpages += nr;
656                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
657                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
658 unlock:
659                 xas_unlock_irq(&xas);
660         } while (xas_nomem(&xas, gfp));
661
662         if (xas_error(&xas)) {
663                 error = xas_error(&xas);
664                 goto error;
665         }
666
667         return 0;
668 error:
669         page->mapping = NULL;
670         page_ref_sub(page, nr);
671         return error;
672 }
673
674 /*
675  * Like delete_from_page_cache, but substitutes swap for page.
676  */
677 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
678 {
679         struct address_space *mapping = page->mapping;
680         int error;
681
682         VM_BUG_ON_PAGE(PageCompound(page), page);
683
684         xa_lock_irq(&mapping->i_pages);
685         error = shmem_replace_entry(mapping, page->index, page, radswap);
686         page->mapping = NULL;
687         mapping->nrpages--;
688         __dec_node_page_state(page, NR_FILE_PAGES);
689         __dec_node_page_state(page, NR_SHMEM);
690         xa_unlock_irq(&mapping->i_pages);
691         put_page(page);
692         BUG_ON(error);
693 }
694
695 /*
696  * Remove swap entry from page cache, free the swap and its page cache.
697  */
698 static int shmem_free_swap(struct address_space *mapping,
699                            pgoff_t index, void *radswap)
700 {
701         void *old;
702
703         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
704         if (old != radswap)
705                 return -ENOENT;
706         free_swap_and_cache(radix_to_swp_entry(radswap));
707         return 0;
708 }
709
710 /*
711  * Determine (in bytes) how many of the shmem object's pages mapped by the
712  * given offsets are swapped out.
713  *
714  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715  * as long as the inode doesn't go away and racy results are not a problem.
716  */
717 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
718                                                 pgoff_t start, pgoff_t end)
719 {
720         XA_STATE(xas, &mapping->i_pages, start);
721         struct page *page;
722         unsigned long swapped = 0;
723
724         rcu_read_lock();
725         xas_for_each(&xas, page, end - 1) {
726                 if (xas_retry(&xas, page))
727                         continue;
728                 if (xa_is_value(page))
729                         swapped++;
730
731                 if (need_resched()) {
732                         xas_pause(&xas);
733                         cond_resched_rcu();
734                 }
735         }
736
737         rcu_read_unlock();
738
739         return swapped << PAGE_SHIFT;
740 }
741
742 /*
743  * Determine (in bytes) how many of the shmem object's pages mapped by the
744  * given vma is swapped out.
745  *
746  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
747  * as long as the inode doesn't go away and racy results are not a problem.
748  */
749 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
750 {
751         struct inode *inode = file_inode(vma->vm_file);
752         struct shmem_inode_info *info = SHMEM_I(inode);
753         struct address_space *mapping = inode->i_mapping;
754         unsigned long swapped;
755
756         /* Be careful as we don't hold info->lock */
757         swapped = READ_ONCE(info->swapped);
758
759         /*
760          * The easier cases are when the shmem object has nothing in swap, or
761          * the vma maps it whole. Then we can simply use the stats that we
762          * already track.
763          */
764         if (!swapped)
765                 return 0;
766
767         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
768                 return swapped << PAGE_SHIFT;
769
770         /* Here comes the more involved part */
771         return shmem_partial_swap_usage(mapping,
772                         linear_page_index(vma, vma->vm_start),
773                         linear_page_index(vma, vma->vm_end));
774 }
775
776 /*
777  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
778  */
779 void shmem_unlock_mapping(struct address_space *mapping)
780 {
781         struct pagevec pvec;
782         pgoff_t indices[PAGEVEC_SIZE];
783         pgoff_t index = 0;
784
785         pagevec_init(&pvec);
786         /*
787          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
788          */
789         while (!mapping_unevictable(mapping)) {
790                 /*
791                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
792                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
793                  */
794                 pvec.nr = find_get_entries(mapping, index,
795                                            PAGEVEC_SIZE, pvec.pages, indices);
796                 if (!pvec.nr)
797                         break;
798                 index = indices[pvec.nr - 1] + 1;
799                 pagevec_remove_exceptionals(&pvec);
800                 check_move_unevictable_pages(&pvec);
801                 pagevec_release(&pvec);
802                 cond_resched();
803         }
804 }
805
806 /*
807  * Check whether a hole-punch or truncation needs to split a huge page,
808  * returning true if no split was required, or the split has been successful.
809  *
810  * Eviction (or truncation to 0 size) should never need to split a huge page;
811  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
812  * head, and then succeeded to trylock on tail.
813  *
814  * A split can only succeed when there are no additional references on the
815  * huge page: so the split below relies upon find_get_entries() having stopped
816  * when it found a subpage of the huge page, without getting further references.
817  */
818 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
819 {
820         if (!PageTransCompound(page))
821                 return true;
822
823         /* Just proceed to delete a huge page wholly within the range punched */
824         if (PageHead(page) &&
825             page->index >= start && page->index + HPAGE_PMD_NR <= end)
826                 return true;
827
828         /* Try to split huge page, so we can truly punch the hole or truncate */
829         return split_huge_page(page) >= 0;
830 }
831
832 /*
833  * Remove range of pages and swap entries from page cache, and free them.
834  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
835  */
836 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
837                                                                  bool unfalloc)
838 {
839         struct address_space *mapping = inode->i_mapping;
840         struct shmem_inode_info *info = SHMEM_I(inode);
841         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
842         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
843         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
844         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
845         struct pagevec pvec;
846         pgoff_t indices[PAGEVEC_SIZE];
847         long nr_swaps_freed = 0;
848         pgoff_t index;
849         int i;
850
851         if (lend == -1)
852                 end = -1;       /* unsigned, so actually very big */
853
854         pagevec_init(&pvec);
855         index = start;
856         while (index < end) {
857                 pvec.nr = find_get_entries(mapping, index,
858                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
859                         pvec.pages, indices);
860                 if (!pvec.nr)
861                         break;
862                 for (i = 0; i < pagevec_count(&pvec); i++) {
863                         struct page *page = pvec.pages[i];
864
865                         index = indices[i];
866                         if (index >= end)
867                                 break;
868
869                         if (xa_is_value(page)) {
870                                 if (unfalloc)
871                                         continue;
872                                 nr_swaps_freed += !shmem_free_swap(mapping,
873                                                                 index, page);
874                                 continue;
875                         }
876
877                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
878
879                         if (!trylock_page(page))
880                                 continue;
881
882                         if ((!unfalloc || !PageUptodate(page)) &&
883                             page_mapping(page) == mapping) {
884                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
885                                 if (shmem_punch_compound(page, start, end))
886                                         truncate_inode_page(mapping, page);
887                         }
888                         unlock_page(page);
889                 }
890                 pagevec_remove_exceptionals(&pvec);
891                 pagevec_release(&pvec);
892                 cond_resched();
893                 index++;
894         }
895
896         if (partial_start) {
897                 struct page *page = NULL;
898                 shmem_getpage(inode, start - 1, &page, SGP_READ);
899                 if (page) {
900                         unsigned int top = PAGE_SIZE;
901                         if (start > end) {
902                                 top = partial_end;
903                                 partial_end = 0;
904                         }
905                         zero_user_segment(page, partial_start, top);
906                         set_page_dirty(page);
907                         unlock_page(page);
908                         put_page(page);
909                 }
910         }
911         if (partial_end) {
912                 struct page *page = NULL;
913                 shmem_getpage(inode, end, &page, SGP_READ);
914                 if (page) {
915                         zero_user_segment(page, 0, partial_end);
916                         set_page_dirty(page);
917                         unlock_page(page);
918                         put_page(page);
919                 }
920         }
921         if (start >= end)
922                 return;
923
924         index = start;
925         while (index < end) {
926                 cond_resched();
927
928                 pvec.nr = find_get_entries(mapping, index,
929                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
930                                 pvec.pages, indices);
931                 if (!pvec.nr) {
932                         /* If all gone or hole-punch or unfalloc, we're done */
933                         if (index == start || end != -1)
934                                 break;
935                         /* But if truncating, restart to make sure all gone */
936                         index = start;
937                         continue;
938                 }
939                 for (i = 0; i < pagevec_count(&pvec); i++) {
940                         struct page *page = pvec.pages[i];
941
942                         index = indices[i];
943                         if (index >= end)
944                                 break;
945
946                         if (xa_is_value(page)) {
947                                 if (unfalloc)
948                                         continue;
949                                 if (shmem_free_swap(mapping, index, page)) {
950                                         /* Swap was replaced by page: retry */
951                                         index--;
952                                         break;
953                                 }
954                                 nr_swaps_freed++;
955                                 continue;
956                         }
957
958                         lock_page(page);
959
960                         if (!unfalloc || !PageUptodate(page)) {
961                                 if (page_mapping(page) != mapping) {
962                                         /* Page was replaced by swap: retry */
963                                         unlock_page(page);
964                                         index--;
965                                         break;
966                                 }
967                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
968                                 if (shmem_punch_compound(page, start, end))
969                                         truncate_inode_page(mapping, page);
970                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
971                                         /* Wipe the page and don't get stuck */
972                                         clear_highpage(page);
973                                         flush_dcache_page(page);
974                                         set_page_dirty(page);
975                                         if (index <
976                                             round_up(start, HPAGE_PMD_NR))
977                                                 start = index + 1;
978                                 }
979                         }
980                         unlock_page(page);
981                 }
982                 pagevec_remove_exceptionals(&pvec);
983                 pagevec_release(&pvec);
984                 index++;
985         }
986
987         spin_lock_irq(&info->lock);
988         info->swapped -= nr_swaps_freed;
989         shmem_recalc_inode(inode);
990         spin_unlock_irq(&info->lock);
991 }
992
993 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
994 {
995         shmem_undo_range(inode, lstart, lend, false);
996         inode->i_ctime = inode->i_mtime = current_time(inode);
997 }
998 EXPORT_SYMBOL_GPL(shmem_truncate_range);
999
1000 static int shmem_getattr(const struct path *path, struct kstat *stat,
1001                          u32 request_mask, unsigned int query_flags)
1002 {
1003         struct inode *inode = path->dentry->d_inode;
1004         struct shmem_inode_info *info = SHMEM_I(inode);
1005         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1006
1007         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008                 spin_lock_irq(&info->lock);
1009                 shmem_recalc_inode(inode);
1010                 spin_unlock_irq(&info->lock);
1011         }
1012         generic_fillattr(inode, stat);
1013
1014         if (is_huge_enabled(sb_info))
1015                 stat->blksize = HPAGE_PMD_SIZE;
1016
1017         return 0;
1018 }
1019
1020 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1021 {
1022         struct inode *inode = d_inode(dentry);
1023         struct shmem_inode_info *info = SHMEM_I(inode);
1024         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1025         int error;
1026
1027         error = setattr_prepare(dentry, attr);
1028         if (error)
1029                 return error;
1030
1031         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032                 loff_t oldsize = inode->i_size;
1033                 loff_t newsize = attr->ia_size;
1034
1035                 /* protected by i_mutex */
1036                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1038                         return -EPERM;
1039
1040                 if (newsize != oldsize) {
1041                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042                                         oldsize, newsize);
1043                         if (error)
1044                                 return error;
1045                         i_size_write(inode, newsize);
1046                         inode->i_ctime = inode->i_mtime = current_time(inode);
1047                 }
1048                 if (newsize <= oldsize) {
1049                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050                         if (oldsize > holebegin)
1051                                 unmap_mapping_range(inode->i_mapping,
1052                                                         holebegin, 0, 1);
1053                         if (info->alloced)
1054                                 shmem_truncate_range(inode,
1055                                                         newsize, (loff_t)-1);
1056                         /* unmap again to remove racily COWed private pages */
1057                         if (oldsize > holebegin)
1058                                 unmap_mapping_range(inode->i_mapping,
1059                                                         holebegin, 0, 1);
1060
1061                         /*
1062                          * Part of the huge page can be beyond i_size: subject
1063                          * to shrink under memory pressure.
1064                          */
1065                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1066                                 spin_lock(&sbinfo->shrinklist_lock);
1067                                 /*
1068                                  * _careful to defend against unlocked access to
1069                                  * ->shrink_list in shmem_unused_huge_shrink()
1070                                  */
1071                                 if (list_empty_careful(&info->shrinklist)) {
1072                                         list_add_tail(&info->shrinklist,
1073                                                         &sbinfo->shrinklist);
1074                                         sbinfo->shrinklist_len++;
1075                                 }
1076                                 spin_unlock(&sbinfo->shrinklist_lock);
1077                         }
1078                 }
1079         }
1080
1081         setattr_copy(inode, attr);
1082         if (attr->ia_valid & ATTR_MODE)
1083                 error = posix_acl_chmod(inode, inode->i_mode);
1084         return error;
1085 }
1086
1087 static void shmem_evict_inode(struct inode *inode)
1088 {
1089         struct shmem_inode_info *info = SHMEM_I(inode);
1090         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1091
1092         if (inode->i_mapping->a_ops == &shmem_aops) {
1093                 shmem_unacct_size(info->flags, inode->i_size);
1094                 inode->i_size = 0;
1095                 shmem_truncate_range(inode, 0, (loff_t)-1);
1096                 if (!list_empty(&info->shrinklist)) {
1097                         spin_lock(&sbinfo->shrinklist_lock);
1098                         if (!list_empty(&info->shrinklist)) {
1099                                 list_del_init(&info->shrinklist);
1100                                 sbinfo->shrinklist_len--;
1101                         }
1102                         spin_unlock(&sbinfo->shrinklist_lock);
1103                 }
1104                 while (!list_empty(&info->swaplist)) {
1105                         /* Wait while shmem_unuse() is scanning this inode... */
1106                         wait_var_event(&info->stop_eviction,
1107                                        !atomic_read(&info->stop_eviction));
1108                         mutex_lock(&shmem_swaplist_mutex);
1109                         /* ...but beware of the race if we peeked too early */
1110                         if (!atomic_read(&info->stop_eviction))
1111                                 list_del_init(&info->swaplist);
1112                         mutex_unlock(&shmem_swaplist_mutex);
1113                 }
1114         }
1115
1116         simple_xattrs_free(&info->xattrs);
1117         WARN_ON(inode->i_blocks);
1118         shmem_free_inode(inode->i_sb);
1119         clear_inode(inode);
1120 }
1121
1122 extern struct swap_info_struct *swap_info[];
1123
1124 static int shmem_find_swap_entries(struct address_space *mapping,
1125                                    pgoff_t start, unsigned int nr_entries,
1126                                    struct page **entries, pgoff_t *indices,
1127                                    unsigned int type, bool frontswap)
1128 {
1129         XA_STATE(xas, &mapping->i_pages, start);
1130         struct page *page;
1131         swp_entry_t entry;
1132         unsigned int ret = 0;
1133
1134         if (!nr_entries)
1135                 return 0;
1136
1137         rcu_read_lock();
1138         xas_for_each(&xas, page, ULONG_MAX) {
1139                 if (xas_retry(&xas, page))
1140                         continue;
1141
1142                 if (!xa_is_value(page))
1143                         continue;
1144
1145                 entry = radix_to_swp_entry(page);
1146                 if (swp_type(entry) != type)
1147                         continue;
1148                 if (frontswap &&
1149                     !frontswap_test(swap_info[type], swp_offset(entry)))
1150                         continue;
1151
1152                 indices[ret] = xas.xa_index;
1153                 entries[ret] = page;
1154
1155                 if (need_resched()) {
1156                         xas_pause(&xas);
1157                         cond_resched_rcu();
1158                 }
1159                 if (++ret == nr_entries)
1160                         break;
1161         }
1162         rcu_read_unlock();
1163
1164         return ret;
1165 }
1166
1167 /*
1168  * Move the swapped pages for an inode to page cache. Returns the count
1169  * of pages swapped in, or the error in case of failure.
1170  */
1171 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1172                                     pgoff_t *indices)
1173 {
1174         int i = 0;
1175         int ret = 0;
1176         int error = 0;
1177         struct address_space *mapping = inode->i_mapping;
1178
1179         for (i = 0; i < pvec.nr; i++) {
1180                 struct page *page = pvec.pages[i];
1181
1182                 if (!xa_is_value(page))
1183                         continue;
1184                 error = shmem_swapin_page(inode, indices[i],
1185                                           &page, SGP_CACHE,
1186                                           mapping_gfp_mask(mapping),
1187                                           NULL, NULL);
1188                 if (error == 0) {
1189                         unlock_page(page);
1190                         put_page(page);
1191                         ret++;
1192                 }
1193                 if (error == -ENOMEM)
1194                         break;
1195                 error = 0;
1196         }
1197         return error ? error : ret;
1198 }
1199
1200 /*
1201  * If swap found in inode, free it and move page from swapcache to filecache.
1202  */
1203 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1204                              bool frontswap, unsigned long *fs_pages_to_unuse)
1205 {
1206         struct address_space *mapping = inode->i_mapping;
1207         pgoff_t start = 0;
1208         struct pagevec pvec;
1209         pgoff_t indices[PAGEVEC_SIZE];
1210         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1211         int ret = 0;
1212
1213         pagevec_init(&pvec);
1214         do {
1215                 unsigned int nr_entries = PAGEVEC_SIZE;
1216
1217                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1218                         nr_entries = *fs_pages_to_unuse;
1219
1220                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1221                                                   pvec.pages, indices,
1222                                                   type, frontswap);
1223                 if (pvec.nr == 0) {
1224                         ret = 0;
1225                         break;
1226                 }
1227
1228                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1229                 if (ret < 0)
1230                         break;
1231
1232                 if (frontswap_partial) {
1233                         *fs_pages_to_unuse -= ret;
1234                         if (*fs_pages_to_unuse == 0) {
1235                                 ret = FRONTSWAP_PAGES_UNUSED;
1236                                 break;
1237                         }
1238                 }
1239
1240                 start = indices[pvec.nr - 1];
1241         } while (true);
1242
1243         return ret;
1244 }
1245
1246 /*
1247  * Read all the shared memory data that resides in the swap
1248  * device 'type' back into memory, so the swap device can be
1249  * unused.
1250  */
1251 int shmem_unuse(unsigned int type, bool frontswap,
1252                 unsigned long *fs_pages_to_unuse)
1253 {
1254         struct shmem_inode_info *info, *next;
1255         int error = 0;
1256
1257         if (list_empty(&shmem_swaplist))
1258                 return 0;
1259
1260         mutex_lock(&shmem_swaplist_mutex);
1261         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1262                 if (!info->swapped) {
1263                         list_del_init(&info->swaplist);
1264                         continue;
1265                 }
1266                 /*
1267                  * Drop the swaplist mutex while searching the inode for swap;
1268                  * but before doing so, make sure shmem_evict_inode() will not
1269                  * remove placeholder inode from swaplist, nor let it be freed
1270                  * (igrab() would protect from unlink, but not from unmount).
1271                  */
1272                 atomic_inc(&info->stop_eviction);
1273                 mutex_unlock(&shmem_swaplist_mutex);
1274
1275                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1276                                           fs_pages_to_unuse);
1277                 cond_resched();
1278
1279                 mutex_lock(&shmem_swaplist_mutex);
1280                 next = list_next_entry(info, swaplist);
1281                 if (!info->swapped)
1282                         list_del_init(&info->swaplist);
1283                 if (atomic_dec_and_test(&info->stop_eviction))
1284                         wake_up_var(&info->stop_eviction);
1285                 if (error)
1286                         break;
1287         }
1288         mutex_unlock(&shmem_swaplist_mutex);
1289
1290         return error;
1291 }
1292
1293 /*
1294  * Move the page from the page cache to the swap cache.
1295  */
1296 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1297 {
1298         struct shmem_inode_info *info;
1299         struct address_space *mapping;
1300         struct inode *inode;
1301         swp_entry_t swap;
1302         pgoff_t index;
1303
1304         VM_BUG_ON_PAGE(PageCompound(page), page);
1305         BUG_ON(!PageLocked(page));
1306         mapping = page->mapping;
1307         index = page->index;
1308         inode = mapping->host;
1309         info = SHMEM_I(inode);
1310         if (info->flags & VM_LOCKED)
1311                 goto redirty;
1312         if (!total_swap_pages)
1313                 goto redirty;
1314
1315         /*
1316          * Our capabilities prevent regular writeback or sync from ever calling
1317          * shmem_writepage; but a stacking filesystem might use ->writepage of
1318          * its underlying filesystem, in which case tmpfs should write out to
1319          * swap only in response to memory pressure, and not for the writeback
1320          * threads or sync.
1321          */
1322         if (!wbc->for_reclaim) {
1323                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1324                 goto redirty;
1325         }
1326
1327         /*
1328          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1329          * value into swapfile.c, the only way we can correctly account for a
1330          * fallocated page arriving here is now to initialize it and write it.
1331          *
1332          * That's okay for a page already fallocated earlier, but if we have
1333          * not yet completed the fallocation, then (a) we want to keep track
1334          * of this page in case we have to undo it, and (b) it may not be a
1335          * good idea to continue anyway, once we're pushing into swap.  So
1336          * reactivate the page, and let shmem_fallocate() quit when too many.
1337          */
1338         if (!PageUptodate(page)) {
1339                 if (inode->i_private) {
1340                         struct shmem_falloc *shmem_falloc;
1341                         spin_lock(&inode->i_lock);
1342                         shmem_falloc = inode->i_private;
1343                         if (shmem_falloc &&
1344                             !shmem_falloc->waitq &&
1345                             index >= shmem_falloc->start &&
1346                             index < shmem_falloc->next)
1347                                 shmem_falloc->nr_unswapped++;
1348                         else
1349                                 shmem_falloc = NULL;
1350                         spin_unlock(&inode->i_lock);
1351                         if (shmem_falloc)
1352                                 goto redirty;
1353                 }
1354                 clear_highpage(page);
1355                 flush_dcache_page(page);
1356                 SetPageUptodate(page);
1357         }
1358
1359         swap = get_swap_page(page);
1360         if (!swap.val)
1361                 goto redirty;
1362
1363         /*
1364          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1365          * if it's not already there.  Do it now before the page is
1366          * moved to swap cache, when its pagelock no longer protects
1367          * the inode from eviction.  But don't unlock the mutex until
1368          * we've incremented swapped, because shmem_unuse_inode() will
1369          * prune a !swapped inode from the swaplist under this mutex.
1370          */
1371         mutex_lock(&shmem_swaplist_mutex);
1372         if (list_empty(&info->swaplist))
1373                 list_add(&info->swaplist, &shmem_swaplist);
1374
1375         if (add_to_swap_cache(page, swap,
1376                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1377                 spin_lock_irq(&info->lock);
1378                 shmem_recalc_inode(inode);
1379                 info->swapped++;
1380                 spin_unlock_irq(&info->lock);
1381
1382                 swap_shmem_alloc(swap);
1383                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1384
1385                 mutex_unlock(&shmem_swaplist_mutex);
1386                 BUG_ON(page_mapped(page));
1387                 swap_writepage(page, wbc);
1388                 return 0;
1389         }
1390
1391         mutex_unlock(&shmem_swaplist_mutex);
1392         put_swap_page(page, swap);
1393 redirty:
1394         set_page_dirty(page);
1395         if (wbc->for_reclaim)
1396                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1397         unlock_page(page);
1398         return 0;
1399 }
1400
1401 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1402 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1403 {
1404         char buffer[64];
1405
1406         if (!mpol || mpol->mode == MPOL_DEFAULT)
1407                 return;         /* show nothing */
1408
1409         mpol_to_str(buffer, sizeof(buffer), mpol);
1410
1411         seq_printf(seq, ",mpol=%s", buffer);
1412 }
1413
1414 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1415 {
1416         struct mempolicy *mpol = NULL;
1417         if (sbinfo->mpol) {
1418                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1419                 mpol = sbinfo->mpol;
1420                 mpol_get(mpol);
1421                 spin_unlock(&sbinfo->stat_lock);
1422         }
1423         return mpol;
1424 }
1425 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1426 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1427 {
1428 }
1429 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1430 {
1431         return NULL;
1432 }
1433 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1434 #ifndef CONFIG_NUMA
1435 #define vm_policy vm_private_data
1436 #endif
1437
1438 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1439                 struct shmem_inode_info *info, pgoff_t index)
1440 {
1441         /* Create a pseudo vma that just contains the policy */
1442         vma_init(vma, NULL);
1443         /* Bias interleave by inode number to distribute better across nodes */
1444         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1445         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1446 }
1447
1448 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1449 {
1450         /* Drop reference taken by mpol_shared_policy_lookup() */
1451         mpol_cond_put(vma->vm_policy);
1452 }
1453
1454 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1455                         struct shmem_inode_info *info, pgoff_t index)
1456 {
1457         struct vm_area_struct pvma;
1458         struct page *page;
1459         struct vm_fault vmf;
1460
1461         shmem_pseudo_vma_init(&pvma, info, index);
1462         vmf.vma = &pvma;
1463         vmf.address = 0;
1464         page = swap_cluster_readahead(swap, gfp, &vmf);
1465         shmem_pseudo_vma_destroy(&pvma);
1466
1467         return page;
1468 }
1469
1470 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1471                 struct shmem_inode_info *info, pgoff_t index)
1472 {
1473         struct vm_area_struct pvma;
1474         struct address_space *mapping = info->vfs_inode.i_mapping;
1475         pgoff_t hindex;
1476         struct page *page;
1477
1478         hindex = round_down(index, HPAGE_PMD_NR);
1479         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1480                                                                 XA_PRESENT))
1481                 return NULL;
1482
1483         shmem_pseudo_vma_init(&pvma, info, hindex);
1484         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1485                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1486         shmem_pseudo_vma_destroy(&pvma);
1487         if (page)
1488                 prep_transhuge_page(page);
1489         else
1490                 count_vm_event(THP_FILE_FALLBACK);
1491         return page;
1492 }
1493
1494 static struct page *shmem_alloc_page(gfp_t gfp,
1495                         struct shmem_inode_info *info, pgoff_t index)
1496 {
1497         struct vm_area_struct pvma;
1498         struct page *page;
1499
1500         shmem_pseudo_vma_init(&pvma, info, index);
1501         page = alloc_page_vma(gfp, &pvma, 0);
1502         shmem_pseudo_vma_destroy(&pvma);
1503
1504         return page;
1505 }
1506
1507 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1508                 struct inode *inode,
1509                 pgoff_t index, bool huge)
1510 {
1511         struct shmem_inode_info *info = SHMEM_I(inode);
1512         struct page *page;
1513         int nr;
1514         int err = -ENOSPC;
1515
1516         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1517                 huge = false;
1518         nr = huge ? HPAGE_PMD_NR : 1;
1519
1520         if (!shmem_inode_acct_block(inode, nr))
1521                 goto failed;
1522
1523         if (huge)
1524                 page = shmem_alloc_hugepage(gfp, info, index);
1525         else
1526                 page = shmem_alloc_page(gfp, info, index);
1527         if (page) {
1528                 __SetPageLocked(page);
1529                 __SetPageSwapBacked(page);
1530                 return page;
1531         }
1532
1533         err = -ENOMEM;
1534         shmem_inode_unacct_blocks(inode, nr);
1535 failed:
1536         return ERR_PTR(err);
1537 }
1538
1539 /*
1540  * When a page is moved from swapcache to shmem filecache (either by the
1541  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1542  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1543  * ignorance of the mapping it belongs to.  If that mapping has special
1544  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1545  * we may need to copy to a suitable page before moving to filecache.
1546  *
1547  * In a future release, this may well be extended to respect cpuset and
1548  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1549  * but for now it is a simple matter of zone.
1550  */
1551 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1552 {
1553         return page_zonenum(page) > gfp_zone(gfp);
1554 }
1555
1556 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1557                                 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559         struct page *oldpage, *newpage;
1560         struct address_space *swap_mapping;
1561         swp_entry_t entry;
1562         pgoff_t swap_index;
1563         int error;
1564
1565         oldpage = *pagep;
1566         entry.val = page_private(oldpage);
1567         swap_index = swp_offset(entry);
1568         swap_mapping = page_mapping(oldpage);
1569
1570         /*
1571          * We have arrived here because our zones are constrained, so don't
1572          * limit chance of success by further cpuset and node constraints.
1573          */
1574         gfp &= ~GFP_CONSTRAINT_MASK;
1575         newpage = shmem_alloc_page(gfp, info, index);
1576         if (!newpage)
1577                 return -ENOMEM;
1578
1579         get_page(newpage);
1580         copy_highpage(newpage, oldpage);
1581         flush_dcache_page(newpage);
1582
1583         __SetPageLocked(newpage);
1584         __SetPageSwapBacked(newpage);
1585         SetPageUptodate(newpage);
1586         set_page_private(newpage, entry.val);
1587         SetPageSwapCache(newpage);
1588
1589         /*
1590          * Our caller will very soon move newpage out of swapcache, but it's
1591          * a nice clean interface for us to replace oldpage by newpage there.
1592          */
1593         xa_lock_irq(&swap_mapping->i_pages);
1594         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1595         if (!error) {
1596                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1597                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1598         }
1599         xa_unlock_irq(&swap_mapping->i_pages);
1600
1601         if (unlikely(error)) {
1602                 /*
1603                  * Is this possible?  I think not, now that our callers check
1604                  * both PageSwapCache and page_private after getting page lock;
1605                  * but be defensive.  Reverse old to newpage for clear and free.
1606                  */
1607                 oldpage = newpage;
1608         } else {
1609                 mem_cgroup_migrate(oldpage, newpage);
1610                 lru_cache_add_anon(newpage);
1611                 *pagep = newpage;
1612         }
1613
1614         ClearPageSwapCache(oldpage);
1615         set_page_private(oldpage, 0);
1616
1617         unlock_page(oldpage);
1618         put_page(oldpage);
1619         put_page(oldpage);
1620         return error;
1621 }
1622
1623 /*
1624  * Swap in the page pointed to by *pagep.
1625  * Caller has to make sure that *pagep contains a valid swapped page.
1626  * Returns 0 and the page in pagep if success. On failure, returns the
1627  * the error code and NULL in *pagep.
1628  */
1629 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1630                              struct page **pagep, enum sgp_type sgp,
1631                              gfp_t gfp, struct vm_area_struct *vma,
1632                              vm_fault_t *fault_type)
1633 {
1634         struct address_space *mapping = inode->i_mapping;
1635         struct shmem_inode_info *info = SHMEM_I(inode);
1636         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1637         struct page *page;
1638         swp_entry_t swap;
1639         int error;
1640
1641         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1642         swap = radix_to_swp_entry(*pagep);
1643         *pagep = NULL;
1644
1645         /* Look it up and read it in.. */
1646         page = lookup_swap_cache(swap, NULL, 0);
1647         if (!page) {
1648                 /* Or update major stats only when swapin succeeds?? */
1649                 if (fault_type) {
1650                         *fault_type |= VM_FAULT_MAJOR;
1651                         count_vm_event(PGMAJFAULT);
1652                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1653                 }
1654                 /* Here we actually start the io */
1655                 page = shmem_swapin(swap, gfp, info, index);
1656                 if (!page) {
1657                         error = -ENOMEM;
1658                         goto failed;
1659                 }
1660         }
1661
1662         /* We have to do this with page locked to prevent races */
1663         lock_page(page);
1664         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1665             !shmem_confirm_swap(mapping, index, swap)) {
1666                 error = -EEXIST;
1667                 goto unlock;
1668         }
1669         if (!PageUptodate(page)) {
1670                 error = -EIO;
1671                 goto failed;
1672         }
1673         wait_on_page_writeback(page);
1674
1675         if (shmem_should_replace_page(page, gfp)) {
1676                 error = shmem_replace_page(&page, gfp, info, index);
1677                 if (error)
1678                         goto failed;
1679         }
1680
1681         error = shmem_add_to_page_cache(page, mapping, index,
1682                                         swp_to_radix_entry(swap), gfp,
1683                                         charge_mm);
1684         if (error)
1685                 goto failed;
1686
1687         spin_lock_irq(&info->lock);
1688         info->swapped--;
1689         shmem_recalc_inode(inode);
1690         spin_unlock_irq(&info->lock);
1691
1692         if (sgp == SGP_WRITE)
1693                 mark_page_accessed(page);
1694
1695         delete_from_swap_cache(page);
1696         set_page_dirty(page);
1697         swap_free(swap);
1698
1699         *pagep = page;
1700         return 0;
1701 failed:
1702         if (!shmem_confirm_swap(mapping, index, swap))
1703                 error = -EEXIST;
1704 unlock:
1705         if (page) {
1706                 unlock_page(page);
1707                 put_page(page);
1708         }
1709
1710         return error;
1711 }
1712
1713 /*
1714  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1715  *
1716  * If we allocate a new one we do not mark it dirty. That's up to the
1717  * vm. If we swap it in we mark it dirty since we also free the swap
1718  * entry since a page cannot live in both the swap and page cache.
1719  *
1720  * vmf and fault_type are only supplied by shmem_fault:
1721  * otherwise they are NULL.
1722  */
1723 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1724         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1725         struct vm_area_struct *vma, struct vm_fault *vmf,
1726                         vm_fault_t *fault_type)
1727 {
1728         struct address_space *mapping = inode->i_mapping;
1729         struct shmem_inode_info *info = SHMEM_I(inode);
1730         struct shmem_sb_info *sbinfo;
1731         struct mm_struct *charge_mm;
1732         struct page *page;
1733         enum sgp_type sgp_huge = sgp;
1734         pgoff_t hindex = index;
1735         int error;
1736         int once = 0;
1737         int alloced = 0;
1738
1739         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1740                 return -EFBIG;
1741         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1742                 sgp = SGP_CACHE;
1743 repeat:
1744         if (sgp <= SGP_CACHE &&
1745             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1746                 return -EINVAL;
1747         }
1748
1749         sbinfo = SHMEM_SB(inode->i_sb);
1750         charge_mm = vma ? vma->vm_mm : current->mm;
1751
1752         page = find_lock_entry(mapping, index);
1753         if (xa_is_value(page)) {
1754                 error = shmem_swapin_page(inode, index, &page,
1755                                           sgp, gfp, vma, fault_type);
1756                 if (error == -EEXIST)
1757                         goto repeat;
1758
1759                 *pagep = page;
1760                 return error;
1761         }
1762
1763         if (page && sgp == SGP_WRITE)
1764                 mark_page_accessed(page);
1765
1766         /* fallocated page? */
1767         if (page && !PageUptodate(page)) {
1768                 if (sgp != SGP_READ)
1769                         goto clear;
1770                 unlock_page(page);
1771                 put_page(page);
1772                 page = NULL;
1773         }
1774         if (page || sgp == SGP_READ) {
1775                 *pagep = page;
1776                 return 0;
1777         }
1778
1779         /*
1780          * Fast cache lookup did not find it:
1781          * bring it back from swap or allocate.
1782          */
1783
1784         if (vma && userfaultfd_missing(vma)) {
1785                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1786                 return 0;
1787         }
1788
1789         /* shmem_symlink() */
1790         if (mapping->a_ops != &shmem_aops)
1791                 goto alloc_nohuge;
1792         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1793                 goto alloc_nohuge;
1794         if (shmem_huge == SHMEM_HUGE_FORCE)
1795                 goto alloc_huge;
1796         switch (sbinfo->huge) {
1797         case SHMEM_HUGE_NEVER:
1798                 goto alloc_nohuge;
1799         case SHMEM_HUGE_WITHIN_SIZE: {
1800                 loff_t i_size;
1801                 pgoff_t off;
1802
1803                 off = round_up(index, HPAGE_PMD_NR);
1804                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1805                 if (i_size >= HPAGE_PMD_SIZE &&
1806                     i_size >> PAGE_SHIFT >= off)
1807                         goto alloc_huge;
1808
1809                 fallthrough;
1810         }
1811         case SHMEM_HUGE_ADVISE:
1812                 if (sgp_huge == SGP_HUGE)
1813                         goto alloc_huge;
1814                 /* TODO: implement fadvise() hints */
1815                 goto alloc_nohuge;
1816         }
1817
1818 alloc_huge:
1819         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1820         if (IS_ERR(page)) {
1821 alloc_nohuge:
1822                 page = shmem_alloc_and_acct_page(gfp, inode,
1823                                                  index, false);
1824         }
1825         if (IS_ERR(page)) {
1826                 int retry = 5;
1827
1828                 error = PTR_ERR(page);
1829                 page = NULL;
1830                 if (error != -ENOSPC)
1831                         goto unlock;
1832                 /*
1833                  * Try to reclaim some space by splitting a huge page
1834                  * beyond i_size on the filesystem.
1835                  */
1836                 while (retry--) {
1837                         int ret;
1838
1839                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1840                         if (ret == SHRINK_STOP)
1841                                 break;
1842                         if (ret)
1843                                 goto alloc_nohuge;
1844                 }
1845                 goto unlock;
1846         }
1847
1848         if (PageTransHuge(page))
1849                 hindex = round_down(index, HPAGE_PMD_NR);
1850         else
1851                 hindex = index;
1852
1853         if (sgp == SGP_WRITE)
1854                 __SetPageReferenced(page);
1855
1856         error = shmem_add_to_page_cache(page, mapping, hindex,
1857                                         NULL, gfp & GFP_RECLAIM_MASK,
1858                                         charge_mm);
1859         if (error)
1860                 goto unacct;
1861         lru_cache_add_anon(page);
1862
1863         spin_lock_irq(&info->lock);
1864         info->alloced += compound_nr(page);
1865         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1866         shmem_recalc_inode(inode);
1867         spin_unlock_irq(&info->lock);
1868         alloced = true;
1869
1870         if (PageTransHuge(page) &&
1871             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1872                         hindex + HPAGE_PMD_NR - 1) {
1873                 /*
1874                  * Part of the huge page is beyond i_size: subject
1875                  * to shrink under memory pressure.
1876                  */
1877                 spin_lock(&sbinfo->shrinklist_lock);
1878                 /*
1879                  * _careful to defend against unlocked access to
1880                  * ->shrink_list in shmem_unused_huge_shrink()
1881                  */
1882                 if (list_empty_careful(&info->shrinklist)) {
1883                         list_add_tail(&info->shrinklist,
1884                                       &sbinfo->shrinklist);
1885                         sbinfo->shrinklist_len++;
1886                 }
1887                 spin_unlock(&sbinfo->shrinklist_lock);
1888         }
1889
1890         /*
1891          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1892          */
1893         if (sgp == SGP_FALLOC)
1894                 sgp = SGP_WRITE;
1895 clear:
1896         /*
1897          * Let SGP_WRITE caller clear ends if write does not fill page;
1898          * but SGP_FALLOC on a page fallocated earlier must initialize
1899          * it now, lest undo on failure cancel our earlier guarantee.
1900          */
1901         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1902                 struct page *head = compound_head(page);
1903                 int i;
1904
1905                 for (i = 0; i < compound_nr(head); i++) {
1906                         clear_highpage(head + i);
1907                         flush_dcache_page(head + i);
1908                 }
1909                 SetPageUptodate(head);
1910         }
1911
1912         /* Perhaps the file has been truncated since we checked */
1913         if (sgp <= SGP_CACHE &&
1914             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1915                 if (alloced) {
1916                         ClearPageDirty(page);
1917                         delete_from_page_cache(page);
1918                         spin_lock_irq(&info->lock);
1919                         shmem_recalc_inode(inode);
1920                         spin_unlock_irq(&info->lock);
1921                 }
1922                 error = -EINVAL;
1923                 goto unlock;
1924         }
1925         *pagep = page + index - hindex;
1926         return 0;
1927
1928         /*
1929          * Error recovery.
1930          */
1931 unacct:
1932         shmem_inode_unacct_blocks(inode, compound_nr(page));
1933
1934         if (PageTransHuge(page)) {
1935                 unlock_page(page);
1936                 put_page(page);
1937                 goto alloc_nohuge;
1938         }
1939 unlock:
1940         if (page) {
1941                 unlock_page(page);
1942                 put_page(page);
1943         }
1944         if (error == -ENOSPC && !once++) {
1945                 spin_lock_irq(&info->lock);
1946                 shmem_recalc_inode(inode);
1947                 spin_unlock_irq(&info->lock);
1948                 goto repeat;
1949         }
1950         if (error == -EEXIST)
1951                 goto repeat;
1952         return error;
1953 }
1954
1955 /*
1956  * This is like autoremove_wake_function, but it removes the wait queue
1957  * entry unconditionally - even if something else had already woken the
1958  * target.
1959  */
1960 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1961 {
1962         int ret = default_wake_function(wait, mode, sync, key);
1963         list_del_init(&wait->entry);
1964         return ret;
1965 }
1966
1967 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1968 {
1969         struct vm_area_struct *vma = vmf->vma;
1970         struct inode *inode = file_inode(vma->vm_file);
1971         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1972         enum sgp_type sgp;
1973         int err;
1974         vm_fault_t ret = VM_FAULT_LOCKED;
1975
1976         /*
1977          * Trinity finds that probing a hole which tmpfs is punching can
1978          * prevent the hole-punch from ever completing: which in turn
1979          * locks writers out with its hold on i_mutex.  So refrain from
1980          * faulting pages into the hole while it's being punched.  Although
1981          * shmem_undo_range() does remove the additions, it may be unable to
1982          * keep up, as each new page needs its own unmap_mapping_range() call,
1983          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1984          *
1985          * It does not matter if we sometimes reach this check just before the
1986          * hole-punch begins, so that one fault then races with the punch:
1987          * we just need to make racing faults a rare case.
1988          *
1989          * The implementation below would be much simpler if we just used a
1990          * standard mutex or completion: but we cannot take i_mutex in fault,
1991          * and bloating every shmem inode for this unlikely case would be sad.
1992          */
1993         if (unlikely(inode->i_private)) {
1994                 struct shmem_falloc *shmem_falloc;
1995
1996                 spin_lock(&inode->i_lock);
1997                 shmem_falloc = inode->i_private;
1998                 if (shmem_falloc &&
1999                     shmem_falloc->waitq &&
2000                     vmf->pgoff >= shmem_falloc->start &&
2001                     vmf->pgoff < shmem_falloc->next) {
2002                         struct file *fpin;
2003                         wait_queue_head_t *shmem_falloc_waitq;
2004                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2005
2006                         ret = VM_FAULT_NOPAGE;
2007                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2008                         if (fpin)
2009                                 ret = VM_FAULT_RETRY;
2010
2011                         shmem_falloc_waitq = shmem_falloc->waitq;
2012                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2013                                         TASK_UNINTERRUPTIBLE);
2014                         spin_unlock(&inode->i_lock);
2015                         schedule();
2016
2017                         /*
2018                          * shmem_falloc_waitq points into the shmem_fallocate()
2019                          * stack of the hole-punching task: shmem_falloc_waitq
2020                          * is usually invalid by the time we reach here, but
2021                          * finish_wait() does not dereference it in that case;
2022                          * though i_lock needed lest racing with wake_up_all().
2023                          */
2024                         spin_lock(&inode->i_lock);
2025                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2026                         spin_unlock(&inode->i_lock);
2027
2028                         if (fpin)
2029                                 fput(fpin);
2030                         return ret;
2031                 }
2032                 spin_unlock(&inode->i_lock);
2033         }
2034
2035         sgp = SGP_CACHE;
2036
2037         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2038             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2039                 sgp = SGP_NOHUGE;
2040         else if (vma->vm_flags & VM_HUGEPAGE)
2041                 sgp = SGP_HUGE;
2042
2043         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2044                                   gfp, vma, vmf, &ret);
2045         if (err)
2046                 return vmf_error(err);
2047         return ret;
2048 }
2049
2050 unsigned long shmem_get_unmapped_area(struct file *file,
2051                                       unsigned long uaddr, unsigned long len,
2052                                       unsigned long pgoff, unsigned long flags)
2053 {
2054         unsigned long (*get_area)(struct file *,
2055                 unsigned long, unsigned long, unsigned long, unsigned long);
2056         unsigned long addr;
2057         unsigned long offset;
2058         unsigned long inflated_len;
2059         unsigned long inflated_addr;
2060         unsigned long inflated_offset;
2061
2062         if (len > TASK_SIZE)
2063                 return -ENOMEM;
2064
2065         get_area = current->mm->get_unmapped_area;
2066         addr = get_area(file, uaddr, len, pgoff, flags);
2067
2068         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2069                 return addr;
2070         if (IS_ERR_VALUE(addr))
2071                 return addr;
2072         if (addr & ~PAGE_MASK)
2073                 return addr;
2074         if (addr > TASK_SIZE - len)
2075                 return addr;
2076
2077         if (shmem_huge == SHMEM_HUGE_DENY)
2078                 return addr;
2079         if (len < HPAGE_PMD_SIZE)
2080                 return addr;
2081         if (flags & MAP_FIXED)
2082                 return addr;
2083         /*
2084          * Our priority is to support MAP_SHARED mapped hugely;
2085          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2086          * But if caller specified an address hint and we allocated area there
2087          * successfully, respect that as before.
2088          */
2089         if (uaddr == addr)
2090                 return addr;
2091
2092         if (shmem_huge != SHMEM_HUGE_FORCE) {
2093                 struct super_block *sb;
2094
2095                 if (file) {
2096                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2097                         sb = file_inode(file)->i_sb;
2098                 } else {
2099                         /*
2100                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2101                          * for "/dev/zero", to create a shared anonymous object.
2102                          */
2103                         if (IS_ERR(shm_mnt))
2104                                 return addr;
2105                         sb = shm_mnt->mnt_sb;
2106                 }
2107                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2108                         return addr;
2109         }
2110
2111         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2112         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2113                 return addr;
2114         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2115                 return addr;
2116
2117         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2118         if (inflated_len > TASK_SIZE)
2119                 return addr;
2120         if (inflated_len < len)
2121                 return addr;
2122
2123         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2124         if (IS_ERR_VALUE(inflated_addr))
2125                 return addr;
2126         if (inflated_addr & ~PAGE_MASK)
2127                 return addr;
2128
2129         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2130         inflated_addr += offset - inflated_offset;
2131         if (inflated_offset > offset)
2132                 inflated_addr += HPAGE_PMD_SIZE;
2133
2134         if (inflated_addr > TASK_SIZE - len)
2135                 return addr;
2136         return inflated_addr;
2137 }
2138
2139 #ifdef CONFIG_NUMA
2140 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2141 {
2142         struct inode *inode = file_inode(vma->vm_file);
2143         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2144 }
2145
2146 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2147                                           unsigned long addr)
2148 {
2149         struct inode *inode = file_inode(vma->vm_file);
2150         pgoff_t index;
2151
2152         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2153         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2154 }
2155 #endif
2156
2157 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2158 {
2159         struct inode *inode = file_inode(file);
2160         struct shmem_inode_info *info = SHMEM_I(inode);
2161         int retval = -ENOMEM;
2162
2163         /*
2164          * What serializes the accesses to info->flags?
2165          * ipc_lock_object() when called from shmctl_do_lock(),
2166          * no serialization needed when called from shm_destroy().
2167          */
2168         if (lock && !(info->flags & VM_LOCKED)) {
2169                 if (!user_shm_lock(inode->i_size, user))
2170                         goto out_nomem;
2171                 info->flags |= VM_LOCKED;
2172                 mapping_set_unevictable(file->f_mapping);
2173         }
2174         if (!lock && (info->flags & VM_LOCKED) && user) {
2175                 user_shm_unlock(inode->i_size, user);
2176                 info->flags &= ~VM_LOCKED;
2177                 mapping_clear_unevictable(file->f_mapping);
2178         }
2179         retval = 0;
2180
2181 out_nomem:
2182         return retval;
2183 }
2184
2185 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2186 {
2187         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2188
2189         if (info->seals & F_SEAL_FUTURE_WRITE) {
2190                 /*
2191                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2192                  * "future write" seal active.
2193                  */
2194                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2195                         return -EPERM;
2196
2197                 /*
2198                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2199                  * MAP_SHARED and read-only, take care to not allow mprotect to
2200                  * revert protections on such mappings. Do this only for shared
2201                  * mappings. For private mappings, don't need to mask
2202                  * VM_MAYWRITE as we still want them to be COW-writable.
2203                  */
2204                 if (vma->vm_flags & VM_SHARED)
2205                         vma->vm_flags &= ~(VM_MAYWRITE);
2206         }
2207
2208         file_accessed(file);
2209         vma->vm_ops = &shmem_vm_ops;
2210         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2211                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2212                         (vma->vm_end & HPAGE_PMD_MASK)) {
2213                 khugepaged_enter(vma, vma->vm_flags);
2214         }
2215         return 0;
2216 }
2217
2218 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2219                                      umode_t mode, dev_t dev, unsigned long flags)
2220 {
2221         struct inode *inode;
2222         struct shmem_inode_info *info;
2223         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2224
2225         if (shmem_reserve_inode(sb))
2226                 return NULL;
2227
2228         inode = new_inode(sb);
2229         if (inode) {
2230                 inode->i_ino = get_next_ino();
2231                 inode_init_owner(inode, dir, mode);
2232                 inode->i_blocks = 0;
2233                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2234                 inode->i_generation = prandom_u32();
2235                 info = SHMEM_I(inode);
2236                 memset(info, 0, (char *)inode - (char *)info);
2237                 spin_lock_init(&info->lock);
2238                 atomic_set(&info->stop_eviction, 0);
2239                 info->seals = F_SEAL_SEAL;
2240                 info->flags = flags & VM_NORESERVE;
2241                 INIT_LIST_HEAD(&info->shrinklist);
2242                 INIT_LIST_HEAD(&info->swaplist);
2243                 simple_xattrs_init(&info->xattrs);
2244                 cache_no_acl(inode);
2245
2246                 switch (mode & S_IFMT) {
2247                 default:
2248                         inode->i_op = &shmem_special_inode_operations;
2249                         init_special_inode(inode, mode, dev);
2250                         break;
2251                 case S_IFREG:
2252                         inode->i_mapping->a_ops = &shmem_aops;
2253                         inode->i_op = &shmem_inode_operations;
2254                         inode->i_fop = &shmem_file_operations;
2255                         mpol_shared_policy_init(&info->policy,
2256                                                  shmem_get_sbmpol(sbinfo));
2257                         break;
2258                 case S_IFDIR:
2259                         inc_nlink(inode);
2260                         /* Some things misbehave if size == 0 on a directory */
2261                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2262                         inode->i_op = &shmem_dir_inode_operations;
2263                         inode->i_fop = &simple_dir_operations;
2264                         break;
2265                 case S_IFLNK:
2266                         /*
2267                          * Must not load anything in the rbtree,
2268                          * mpol_free_shared_policy will not be called.
2269                          */
2270                         mpol_shared_policy_init(&info->policy, NULL);
2271                         break;
2272                 }
2273
2274                 lockdep_annotate_inode_mutex_key(inode);
2275         } else
2276                 shmem_free_inode(sb);
2277         return inode;
2278 }
2279
2280 bool shmem_mapping(struct address_space *mapping)
2281 {
2282         return mapping->a_ops == &shmem_aops;
2283 }
2284
2285 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2286                                   pmd_t *dst_pmd,
2287                                   struct vm_area_struct *dst_vma,
2288                                   unsigned long dst_addr,
2289                                   unsigned long src_addr,
2290                                   bool zeropage,
2291                                   struct page **pagep)
2292 {
2293         struct inode *inode = file_inode(dst_vma->vm_file);
2294         struct shmem_inode_info *info = SHMEM_I(inode);
2295         struct address_space *mapping = inode->i_mapping;
2296         gfp_t gfp = mapping_gfp_mask(mapping);
2297         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2298         spinlock_t *ptl;
2299         void *page_kaddr;
2300         struct page *page;
2301         pte_t _dst_pte, *dst_pte;
2302         int ret;
2303         pgoff_t offset, max_off;
2304
2305         ret = -ENOMEM;
2306         if (!shmem_inode_acct_block(inode, 1))
2307                 goto out;
2308
2309         if (!*pagep) {
2310                 page = shmem_alloc_page(gfp, info, pgoff);
2311                 if (!page)
2312                         goto out_unacct_blocks;
2313
2314                 if (!zeropage) {        /* mcopy_atomic */
2315                         page_kaddr = kmap_atomic(page);
2316                         ret = copy_from_user(page_kaddr,
2317                                              (const void __user *)src_addr,
2318                                              PAGE_SIZE);
2319                         kunmap_atomic(page_kaddr);
2320
2321                         /* fallback to copy_from_user outside mmap_sem */
2322                         if (unlikely(ret)) {
2323                                 *pagep = page;
2324                                 shmem_inode_unacct_blocks(inode, 1);
2325                                 /* don't free the page */
2326                                 return -ENOENT;
2327                         }
2328                 } else {                /* mfill_zeropage_atomic */
2329                         clear_highpage(page);
2330                 }
2331         } else {
2332                 page = *pagep;
2333                 *pagep = NULL;
2334         }
2335
2336         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2337         __SetPageLocked(page);
2338         __SetPageSwapBacked(page);
2339         __SetPageUptodate(page);
2340
2341         ret = -EFAULT;
2342         offset = linear_page_index(dst_vma, dst_addr);
2343         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2344         if (unlikely(offset >= max_off))
2345                 goto out_release;
2346
2347         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2348                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2349         if (ret)
2350                 goto out_release;
2351
2352         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2353         if (dst_vma->vm_flags & VM_WRITE)
2354                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2355         else {
2356                 /*
2357                  * We don't set the pte dirty if the vma has no
2358                  * VM_WRITE permission, so mark the page dirty or it
2359                  * could be freed from under us. We could do it
2360                  * unconditionally before unlock_page(), but doing it
2361                  * only if VM_WRITE is not set is faster.
2362                  */
2363                 set_page_dirty(page);
2364         }
2365
2366         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2367
2368         ret = -EFAULT;
2369         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2370         if (unlikely(offset >= max_off))
2371                 goto out_release_unlock;
2372
2373         ret = -EEXIST;
2374         if (!pte_none(*dst_pte))
2375                 goto out_release_unlock;
2376
2377         lru_cache_add_anon(page);
2378
2379         spin_lock_irq(&info->lock);
2380         info->alloced++;
2381         inode->i_blocks += BLOCKS_PER_PAGE;
2382         shmem_recalc_inode(inode);
2383         spin_unlock_irq(&info->lock);
2384
2385         inc_mm_counter(dst_mm, mm_counter_file(page));
2386         page_add_file_rmap(page, false);
2387         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2388
2389         /* No need to invalidate - it was non-present before */
2390         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2391         pte_unmap_unlock(dst_pte, ptl);
2392         unlock_page(page);
2393         ret = 0;
2394 out:
2395         return ret;
2396 out_release_unlock:
2397         pte_unmap_unlock(dst_pte, ptl);
2398         ClearPageDirty(page);
2399         delete_from_page_cache(page);
2400 out_release:
2401         unlock_page(page);
2402         put_page(page);
2403 out_unacct_blocks:
2404         shmem_inode_unacct_blocks(inode, 1);
2405         goto out;
2406 }
2407
2408 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2409                            pmd_t *dst_pmd,
2410                            struct vm_area_struct *dst_vma,
2411                            unsigned long dst_addr,
2412                            unsigned long src_addr,
2413                            struct page **pagep)
2414 {
2415         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2416                                       dst_addr, src_addr, false, pagep);
2417 }
2418
2419 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2420                              pmd_t *dst_pmd,
2421                              struct vm_area_struct *dst_vma,
2422                              unsigned long dst_addr)
2423 {
2424         struct page *page = NULL;
2425
2426         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2427                                       dst_addr, 0, true, &page);
2428 }
2429
2430 #ifdef CONFIG_TMPFS
2431 static const struct inode_operations shmem_symlink_inode_operations;
2432 static const struct inode_operations shmem_short_symlink_operations;
2433
2434 #ifdef CONFIG_TMPFS_XATTR
2435 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2436 #else
2437 #define shmem_initxattrs NULL
2438 #endif
2439
2440 static int
2441 shmem_write_begin(struct file *file, struct address_space *mapping,
2442                         loff_t pos, unsigned len, unsigned flags,
2443                         struct page **pagep, void **fsdata)
2444 {
2445         struct inode *inode = mapping->host;
2446         struct shmem_inode_info *info = SHMEM_I(inode);
2447         pgoff_t index = pos >> PAGE_SHIFT;
2448
2449         /* i_mutex is held by caller */
2450         if (unlikely(info->seals & (F_SEAL_GROW |
2451                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2452                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2453                         return -EPERM;
2454                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2455                         return -EPERM;
2456         }
2457
2458         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2459 }
2460
2461 static int
2462 shmem_write_end(struct file *file, struct address_space *mapping,
2463                         loff_t pos, unsigned len, unsigned copied,
2464                         struct page *page, void *fsdata)
2465 {
2466         struct inode *inode = mapping->host;
2467
2468         if (pos + copied > inode->i_size)
2469                 i_size_write(inode, pos + copied);
2470
2471         if (!PageUptodate(page)) {
2472                 struct page *head = compound_head(page);
2473                 if (PageTransCompound(page)) {
2474                         int i;
2475
2476                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2477                                 if (head + i == page)
2478                                         continue;
2479                                 clear_highpage(head + i);
2480                                 flush_dcache_page(head + i);
2481                         }
2482                 }
2483                 if (copied < PAGE_SIZE) {
2484                         unsigned from = pos & (PAGE_SIZE - 1);
2485                         zero_user_segments(page, 0, from,
2486                                         from + copied, PAGE_SIZE);
2487                 }
2488                 SetPageUptodate(head);
2489         }
2490         set_page_dirty(page);
2491         unlock_page(page);
2492         put_page(page);
2493
2494         return copied;
2495 }
2496
2497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2498 {
2499         struct file *file = iocb->ki_filp;
2500         struct inode *inode = file_inode(file);
2501         struct address_space *mapping = inode->i_mapping;
2502         pgoff_t index;
2503         unsigned long offset;
2504         enum sgp_type sgp = SGP_READ;
2505         int error = 0;
2506         ssize_t retval = 0;
2507         loff_t *ppos = &iocb->ki_pos;
2508
2509         /*
2510          * Might this read be for a stacking filesystem?  Then when reading
2511          * holes of a sparse file, we actually need to allocate those pages,
2512          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2513          */
2514         if (!iter_is_iovec(to))
2515                 sgp = SGP_CACHE;
2516
2517         index = *ppos >> PAGE_SHIFT;
2518         offset = *ppos & ~PAGE_MASK;
2519
2520         for (;;) {
2521                 struct page *page = NULL;
2522                 pgoff_t end_index;
2523                 unsigned long nr, ret;
2524                 loff_t i_size = i_size_read(inode);
2525
2526                 end_index = i_size >> PAGE_SHIFT;
2527                 if (index > end_index)
2528                         break;
2529                 if (index == end_index) {
2530                         nr = i_size & ~PAGE_MASK;
2531                         if (nr <= offset)
2532                                 break;
2533                 }
2534
2535                 error = shmem_getpage(inode, index, &page, sgp);
2536                 if (error) {
2537                         if (error == -EINVAL)
2538                                 error = 0;
2539                         break;
2540                 }
2541                 if (page) {
2542                         if (sgp == SGP_CACHE)
2543                                 set_page_dirty(page);
2544                         unlock_page(page);
2545                 }
2546
2547                 /*
2548                  * We must evaluate after, since reads (unlike writes)
2549                  * are called without i_mutex protection against truncate
2550                  */
2551                 nr = PAGE_SIZE;
2552                 i_size = i_size_read(inode);
2553                 end_index = i_size >> PAGE_SHIFT;
2554                 if (index == end_index) {
2555                         nr = i_size & ~PAGE_MASK;
2556                         if (nr <= offset) {
2557                                 if (page)
2558                                         put_page(page);
2559                                 break;
2560                         }
2561                 }
2562                 nr -= offset;
2563
2564                 if (page) {
2565                         /*
2566                          * If users can be writing to this page using arbitrary
2567                          * virtual addresses, take care about potential aliasing
2568                          * before reading the page on the kernel side.
2569                          */
2570                         if (mapping_writably_mapped(mapping))
2571                                 flush_dcache_page(page);
2572                         /*
2573                          * Mark the page accessed if we read the beginning.
2574                          */
2575                         if (!offset)
2576                                 mark_page_accessed(page);
2577                 } else {
2578                         page = ZERO_PAGE(0);
2579                         get_page(page);
2580                 }
2581
2582                 /*
2583                  * Ok, we have the page, and it's up-to-date, so
2584                  * now we can copy it to user space...
2585                  */
2586                 ret = copy_page_to_iter(page, offset, nr, to);
2587                 retval += ret;
2588                 offset += ret;
2589                 index += offset >> PAGE_SHIFT;
2590                 offset &= ~PAGE_MASK;
2591
2592                 put_page(page);
2593                 if (!iov_iter_count(to))
2594                         break;
2595                 if (ret < nr) {
2596                         error = -EFAULT;
2597                         break;
2598                 }
2599                 cond_resched();
2600         }
2601
2602         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2603         file_accessed(file);
2604         return retval ? retval : error;
2605 }
2606
2607 /*
2608  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2609  */
2610 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2611                                     pgoff_t index, pgoff_t end, int whence)
2612 {
2613         struct page *page;
2614         struct pagevec pvec;
2615         pgoff_t indices[PAGEVEC_SIZE];
2616         bool done = false;
2617         int i;
2618
2619         pagevec_init(&pvec);
2620         pvec.nr = 1;            /* start small: we may be there already */
2621         while (!done) {
2622                 pvec.nr = find_get_entries(mapping, index,
2623                                         pvec.nr, pvec.pages, indices);
2624                 if (!pvec.nr) {
2625                         if (whence == SEEK_DATA)
2626                                 index = end;
2627                         break;
2628                 }
2629                 for (i = 0; i < pvec.nr; i++, index++) {
2630                         if (index < indices[i]) {
2631                                 if (whence == SEEK_HOLE) {
2632                                         done = true;
2633                                         break;
2634                                 }
2635                                 index = indices[i];
2636                         }
2637                         page = pvec.pages[i];
2638                         if (page && !xa_is_value(page)) {
2639                                 if (!PageUptodate(page))
2640                                         page = NULL;
2641                         }
2642                         if (index >= end ||
2643                             (page && whence == SEEK_DATA) ||
2644                             (!page && whence == SEEK_HOLE)) {
2645                                 done = true;
2646                                 break;
2647                         }
2648                 }
2649                 pagevec_remove_exceptionals(&pvec);
2650                 pagevec_release(&pvec);
2651                 pvec.nr = PAGEVEC_SIZE;
2652                 cond_resched();
2653         }
2654         return index;
2655 }
2656
2657 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2658 {
2659         struct address_space *mapping = file->f_mapping;
2660         struct inode *inode = mapping->host;
2661         pgoff_t start, end;
2662         loff_t new_offset;
2663
2664         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2665                 return generic_file_llseek_size(file, offset, whence,
2666                                         MAX_LFS_FILESIZE, i_size_read(inode));
2667         inode_lock(inode);
2668         /* We're holding i_mutex so we can access i_size directly */
2669
2670         if (offset < 0 || offset >= inode->i_size)
2671                 offset = -ENXIO;
2672         else {
2673                 start = offset >> PAGE_SHIFT;
2674                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2675                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2676                 new_offset <<= PAGE_SHIFT;
2677                 if (new_offset > offset) {
2678                         if (new_offset < inode->i_size)
2679                                 offset = new_offset;
2680                         else if (whence == SEEK_DATA)
2681                                 offset = -ENXIO;
2682                         else
2683                                 offset = inode->i_size;
2684                 }
2685         }
2686
2687         if (offset >= 0)
2688                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2689         inode_unlock(inode);
2690         return offset;
2691 }
2692
2693 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2694                                                          loff_t len)
2695 {
2696         struct inode *inode = file_inode(file);
2697         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2698         struct shmem_inode_info *info = SHMEM_I(inode);
2699         struct shmem_falloc shmem_falloc;
2700         pgoff_t start, index, end;
2701         int error;
2702
2703         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2704                 return -EOPNOTSUPP;
2705
2706         inode_lock(inode);
2707
2708         if (mode & FALLOC_FL_PUNCH_HOLE) {
2709                 struct address_space *mapping = file->f_mapping;
2710                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2711                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2712                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2713
2714                 /* protected by i_mutex */
2715                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2716                         error = -EPERM;
2717                         goto out;
2718                 }
2719
2720                 shmem_falloc.waitq = &shmem_falloc_waitq;
2721                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2722                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2723                 spin_lock(&inode->i_lock);
2724                 inode->i_private = &shmem_falloc;
2725                 spin_unlock(&inode->i_lock);
2726
2727                 if ((u64)unmap_end > (u64)unmap_start)
2728                         unmap_mapping_range(mapping, unmap_start,
2729                                             1 + unmap_end - unmap_start, 0);
2730                 shmem_truncate_range(inode, offset, offset + len - 1);
2731                 /* No need to unmap again: hole-punching leaves COWed pages */
2732
2733                 spin_lock(&inode->i_lock);
2734                 inode->i_private = NULL;
2735                 wake_up_all(&shmem_falloc_waitq);
2736                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2737                 spin_unlock(&inode->i_lock);
2738                 error = 0;
2739                 goto out;
2740         }
2741
2742         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2743         error = inode_newsize_ok(inode, offset + len);
2744         if (error)
2745                 goto out;
2746
2747         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2748                 error = -EPERM;
2749                 goto out;
2750         }
2751
2752         start = offset >> PAGE_SHIFT;
2753         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2754         /* Try to avoid a swapstorm if len is impossible to satisfy */
2755         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2756                 error = -ENOSPC;
2757                 goto out;
2758         }
2759
2760         shmem_falloc.waitq = NULL;
2761         shmem_falloc.start = start;
2762         shmem_falloc.next  = start;
2763         shmem_falloc.nr_falloced = 0;
2764         shmem_falloc.nr_unswapped = 0;
2765         spin_lock(&inode->i_lock);
2766         inode->i_private = &shmem_falloc;
2767         spin_unlock(&inode->i_lock);
2768
2769         for (index = start; index < end; index++) {
2770                 struct page *page;
2771
2772                 /*
2773                  * Good, the fallocate(2) manpage permits EINTR: we may have
2774                  * been interrupted because we are using up too much memory.
2775                  */
2776                 if (signal_pending(current))
2777                         error = -EINTR;
2778                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2779                         error = -ENOMEM;
2780                 else
2781                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2782                 if (error) {
2783                         /* Remove the !PageUptodate pages we added */
2784                         if (index > start) {
2785                                 shmem_undo_range(inode,
2786                                     (loff_t)start << PAGE_SHIFT,
2787                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2788                         }
2789                         goto undone;
2790                 }
2791
2792                 /*
2793                  * Inform shmem_writepage() how far we have reached.
2794                  * No need for lock or barrier: we have the page lock.
2795                  */
2796                 shmem_falloc.next++;
2797                 if (!PageUptodate(page))
2798                         shmem_falloc.nr_falloced++;
2799
2800                 /*
2801                  * If !PageUptodate, leave it that way so that freeable pages
2802                  * can be recognized if we need to rollback on error later.
2803                  * But set_page_dirty so that memory pressure will swap rather
2804                  * than free the pages we are allocating (and SGP_CACHE pages
2805                  * might still be clean: we now need to mark those dirty too).
2806                  */
2807                 set_page_dirty(page);
2808                 unlock_page(page);
2809                 put_page(page);
2810                 cond_resched();
2811         }
2812
2813         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2814                 i_size_write(inode, offset + len);
2815         inode->i_ctime = current_time(inode);
2816 undone:
2817         spin_lock(&inode->i_lock);
2818         inode->i_private = NULL;
2819         spin_unlock(&inode->i_lock);
2820 out:
2821         inode_unlock(inode);
2822         return error;
2823 }
2824
2825 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2826 {
2827         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2828
2829         buf->f_type = TMPFS_MAGIC;
2830         buf->f_bsize = PAGE_SIZE;
2831         buf->f_namelen = NAME_MAX;
2832         if (sbinfo->max_blocks) {
2833                 buf->f_blocks = sbinfo->max_blocks;
2834                 buf->f_bavail =
2835                 buf->f_bfree  = sbinfo->max_blocks -
2836                                 percpu_counter_sum(&sbinfo->used_blocks);
2837         }
2838         if (sbinfo->max_inodes) {
2839                 buf->f_files = sbinfo->max_inodes;
2840                 buf->f_ffree = sbinfo->free_inodes;
2841         }
2842         /* else leave those fields 0 like simple_statfs */
2843         return 0;
2844 }
2845
2846 /*
2847  * File creation. Allocate an inode, and we're done..
2848  */
2849 static int
2850 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2851 {
2852         struct inode *inode;
2853         int error = -ENOSPC;
2854
2855         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2856         if (inode) {
2857                 error = simple_acl_create(dir, inode);
2858                 if (error)
2859                         goto out_iput;
2860                 error = security_inode_init_security(inode, dir,
2861                                                      &dentry->d_name,
2862                                                      shmem_initxattrs, NULL);
2863                 if (error && error != -EOPNOTSUPP)
2864                         goto out_iput;
2865
2866                 error = 0;
2867                 dir->i_size += BOGO_DIRENT_SIZE;
2868                 dir->i_ctime = dir->i_mtime = current_time(dir);
2869                 d_instantiate(dentry, inode);
2870                 dget(dentry); /* Extra count - pin the dentry in core */
2871         }
2872         return error;
2873 out_iput:
2874         iput(inode);
2875         return error;
2876 }
2877
2878 static int
2879 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2880 {
2881         struct inode *inode;
2882         int error = -ENOSPC;
2883
2884         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2885         if (inode) {
2886                 error = security_inode_init_security(inode, dir,
2887                                                      NULL,
2888                                                      shmem_initxattrs, NULL);
2889                 if (error && error != -EOPNOTSUPP)
2890                         goto out_iput;
2891                 error = simple_acl_create(dir, inode);
2892                 if (error)
2893                         goto out_iput;
2894                 d_tmpfile(dentry, inode);
2895         }
2896         return error;
2897 out_iput:
2898         iput(inode);
2899         return error;
2900 }
2901
2902 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2903 {
2904         int error;
2905
2906         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2907                 return error;
2908         inc_nlink(dir);
2909         return 0;
2910 }
2911
2912 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2913                 bool excl)
2914 {
2915         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2916 }
2917
2918 /*
2919  * Link a file..
2920  */
2921 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2922 {
2923         struct inode *inode = d_inode(old_dentry);
2924         int ret = 0;
2925
2926         /*
2927          * No ordinary (disk based) filesystem counts links as inodes;
2928          * but each new link needs a new dentry, pinning lowmem, and
2929          * tmpfs dentries cannot be pruned until they are unlinked.
2930          * But if an O_TMPFILE file is linked into the tmpfs, the
2931          * first link must skip that, to get the accounting right.
2932          */
2933         if (inode->i_nlink) {
2934                 ret = shmem_reserve_inode(inode->i_sb);
2935                 if (ret)
2936                         goto out;
2937         }
2938
2939         dir->i_size += BOGO_DIRENT_SIZE;
2940         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2941         inc_nlink(inode);
2942         ihold(inode);   /* New dentry reference */
2943         dget(dentry);           /* Extra pinning count for the created dentry */
2944         d_instantiate(dentry, inode);
2945 out:
2946         return ret;
2947 }
2948
2949 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2950 {
2951         struct inode *inode = d_inode(dentry);
2952
2953         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2954                 shmem_free_inode(inode->i_sb);
2955
2956         dir->i_size -= BOGO_DIRENT_SIZE;
2957         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2958         drop_nlink(inode);
2959         dput(dentry);   /* Undo the count from "create" - this does all the work */
2960         return 0;
2961 }
2962
2963 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2964 {
2965         if (!simple_empty(dentry))
2966                 return -ENOTEMPTY;
2967
2968         drop_nlink(d_inode(dentry));
2969         drop_nlink(dir);
2970         return shmem_unlink(dir, dentry);
2971 }
2972
2973 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2974 {
2975         bool old_is_dir = d_is_dir(old_dentry);
2976         bool new_is_dir = d_is_dir(new_dentry);
2977
2978         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2979                 if (old_is_dir) {
2980                         drop_nlink(old_dir);
2981                         inc_nlink(new_dir);
2982                 } else {
2983                         drop_nlink(new_dir);
2984                         inc_nlink(old_dir);
2985                 }
2986         }
2987         old_dir->i_ctime = old_dir->i_mtime =
2988         new_dir->i_ctime = new_dir->i_mtime =
2989         d_inode(old_dentry)->i_ctime =
2990         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2991
2992         return 0;
2993 }
2994
2995 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2996 {
2997         struct dentry *whiteout;
2998         int error;
2999
3000         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3001         if (!whiteout)
3002                 return -ENOMEM;
3003
3004         error = shmem_mknod(old_dir, whiteout,
3005                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3006         dput(whiteout);
3007         if (error)
3008                 return error;
3009
3010         /*
3011          * Cheat and hash the whiteout while the old dentry is still in
3012          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3013          *
3014          * d_lookup() will consistently find one of them at this point,
3015          * not sure which one, but that isn't even important.
3016          */
3017         d_rehash(whiteout);
3018         return 0;
3019 }
3020
3021 /*
3022  * The VFS layer already does all the dentry stuff for rename,
3023  * we just have to decrement the usage count for the target if
3024  * it exists so that the VFS layer correctly free's it when it
3025  * gets overwritten.
3026  */
3027 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3028 {
3029         struct inode *inode = d_inode(old_dentry);
3030         int they_are_dirs = S_ISDIR(inode->i_mode);
3031
3032         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3033                 return -EINVAL;
3034
3035         if (flags & RENAME_EXCHANGE)
3036                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3037
3038         if (!simple_empty(new_dentry))
3039                 return -ENOTEMPTY;
3040
3041         if (flags & RENAME_WHITEOUT) {
3042                 int error;
3043
3044                 error = shmem_whiteout(old_dir, old_dentry);
3045                 if (error)
3046                         return error;
3047         }
3048
3049         if (d_really_is_positive(new_dentry)) {
3050                 (void) shmem_unlink(new_dir, new_dentry);
3051                 if (they_are_dirs) {
3052                         drop_nlink(d_inode(new_dentry));
3053                         drop_nlink(old_dir);
3054                 }
3055         } else if (they_are_dirs) {
3056                 drop_nlink(old_dir);
3057                 inc_nlink(new_dir);
3058         }
3059
3060         old_dir->i_size -= BOGO_DIRENT_SIZE;
3061         new_dir->i_size += BOGO_DIRENT_SIZE;
3062         old_dir->i_ctime = old_dir->i_mtime =
3063         new_dir->i_ctime = new_dir->i_mtime =
3064         inode->i_ctime = current_time(old_dir);
3065         return 0;
3066 }
3067
3068 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3069 {
3070         int error;
3071         int len;
3072         struct inode *inode;
3073         struct page *page;
3074
3075         len = strlen(symname) + 1;
3076         if (len > PAGE_SIZE)
3077                 return -ENAMETOOLONG;
3078
3079         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3080                                 VM_NORESERVE);
3081         if (!inode)
3082                 return -ENOSPC;
3083
3084         error = security_inode_init_security(inode, dir, &dentry->d_name,
3085                                              shmem_initxattrs, NULL);
3086         if (error && error != -EOPNOTSUPP) {
3087                 iput(inode);
3088                 return error;
3089         }
3090
3091         inode->i_size = len-1;
3092         if (len <= SHORT_SYMLINK_LEN) {
3093                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3094                 if (!inode->i_link) {
3095                         iput(inode);
3096                         return -ENOMEM;
3097                 }
3098                 inode->i_op = &shmem_short_symlink_operations;
3099         } else {
3100                 inode_nohighmem(inode);
3101                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3102                 if (error) {
3103                         iput(inode);
3104                         return error;
3105                 }
3106                 inode->i_mapping->a_ops = &shmem_aops;
3107                 inode->i_op = &shmem_symlink_inode_operations;
3108                 memcpy(page_address(page), symname, len);
3109                 SetPageUptodate(page);
3110                 set_page_dirty(page);
3111                 unlock_page(page);
3112                 put_page(page);
3113         }
3114         dir->i_size += BOGO_DIRENT_SIZE;
3115         dir->i_ctime = dir->i_mtime = current_time(dir);
3116         d_instantiate(dentry, inode);
3117         dget(dentry);
3118         return 0;
3119 }
3120
3121 static void shmem_put_link(void *arg)
3122 {
3123         mark_page_accessed(arg);
3124         put_page(arg);
3125 }
3126
3127 static const char *shmem_get_link(struct dentry *dentry,
3128                                   struct inode *inode,
3129                                   struct delayed_call *done)
3130 {
3131         struct page *page = NULL;
3132         int error;
3133         if (!dentry) {
3134                 page = find_get_page(inode->i_mapping, 0);
3135                 if (!page)
3136                         return ERR_PTR(-ECHILD);
3137                 if (!PageUptodate(page)) {
3138                         put_page(page);
3139                         return ERR_PTR(-ECHILD);
3140                 }
3141         } else {
3142                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3143                 if (error)
3144                         return ERR_PTR(error);
3145                 unlock_page(page);
3146         }
3147         set_delayed_call(done, shmem_put_link, page);
3148         return page_address(page);
3149 }
3150
3151 #ifdef CONFIG_TMPFS_XATTR
3152 /*
3153  * Superblocks without xattr inode operations may get some security.* xattr
3154  * support from the LSM "for free". As soon as we have any other xattrs
3155  * like ACLs, we also need to implement the security.* handlers at
3156  * filesystem level, though.
3157  */
3158
3159 /*
3160  * Callback for security_inode_init_security() for acquiring xattrs.
3161  */
3162 static int shmem_initxattrs(struct inode *inode,
3163                             const struct xattr *xattr_array,
3164                             void *fs_info)
3165 {
3166         struct shmem_inode_info *info = SHMEM_I(inode);
3167         const struct xattr *xattr;
3168         struct simple_xattr *new_xattr;
3169         size_t len;
3170
3171         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3172                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3173                 if (!new_xattr)
3174                         return -ENOMEM;
3175
3176                 len = strlen(xattr->name) + 1;
3177                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3178                                           GFP_KERNEL);
3179                 if (!new_xattr->name) {
3180                         kfree(new_xattr);
3181                         return -ENOMEM;
3182                 }
3183
3184                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3185                        XATTR_SECURITY_PREFIX_LEN);
3186                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3187                        xattr->name, len);
3188
3189                 simple_xattr_list_add(&info->xattrs, new_xattr);
3190         }
3191
3192         return 0;
3193 }
3194
3195 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3196                                    struct dentry *unused, struct inode *inode,
3197                                    const char *name, void *buffer, size_t size)
3198 {
3199         struct shmem_inode_info *info = SHMEM_I(inode);
3200
3201         name = xattr_full_name(handler, name);
3202         return simple_xattr_get(&info->xattrs, name, buffer, size);
3203 }
3204
3205 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3206                                    struct dentry *unused, struct inode *inode,
3207                                    const char *name, const void *value,
3208                                    size_t size, int flags)
3209 {
3210         struct shmem_inode_info *info = SHMEM_I(inode);
3211
3212         name = xattr_full_name(handler, name);
3213         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3214 }
3215
3216 static const struct xattr_handler shmem_security_xattr_handler = {
3217         .prefix = XATTR_SECURITY_PREFIX,
3218         .get = shmem_xattr_handler_get,
3219         .set = shmem_xattr_handler_set,
3220 };
3221
3222 static const struct xattr_handler shmem_trusted_xattr_handler = {
3223         .prefix = XATTR_TRUSTED_PREFIX,
3224         .get = shmem_xattr_handler_get,
3225         .set = shmem_xattr_handler_set,
3226 };
3227
3228 static const struct xattr_handler *shmem_xattr_handlers[] = {
3229 #ifdef CONFIG_TMPFS_POSIX_ACL
3230         &posix_acl_access_xattr_handler,
3231         &posix_acl_default_xattr_handler,
3232 #endif
3233         &shmem_security_xattr_handler,
3234         &shmem_trusted_xattr_handler,
3235         NULL
3236 };
3237
3238 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3239 {
3240         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3241         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3242 }
3243 #endif /* CONFIG_TMPFS_XATTR */
3244
3245 static const struct inode_operations shmem_short_symlink_operations = {
3246         .get_link       = simple_get_link,
3247 #ifdef CONFIG_TMPFS_XATTR
3248         .listxattr      = shmem_listxattr,
3249 #endif
3250 };
3251
3252 static const struct inode_operations shmem_symlink_inode_operations = {
3253         .get_link       = shmem_get_link,
3254 #ifdef CONFIG_TMPFS_XATTR
3255         .listxattr      = shmem_listxattr,
3256 #endif
3257 };
3258
3259 static struct dentry *shmem_get_parent(struct dentry *child)
3260 {
3261         return ERR_PTR(-ESTALE);
3262 }
3263
3264 static int shmem_match(struct inode *ino, void *vfh)
3265 {
3266         __u32 *fh = vfh;
3267         __u64 inum = fh[2];
3268         inum = (inum << 32) | fh[1];
3269         return ino->i_ino == inum && fh[0] == ino->i_generation;
3270 }
3271
3272 /* Find any alias of inode, but prefer a hashed alias */
3273 static struct dentry *shmem_find_alias(struct inode *inode)
3274 {
3275         struct dentry *alias = d_find_alias(inode);
3276
3277         return alias ?: d_find_any_alias(inode);
3278 }
3279
3280
3281 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3282                 struct fid *fid, int fh_len, int fh_type)
3283 {
3284         struct inode *inode;
3285         struct dentry *dentry = NULL;
3286         u64 inum;
3287
3288         if (fh_len < 3)
3289                 return NULL;
3290
3291         inum = fid->raw[2];
3292         inum = (inum << 32) | fid->raw[1];
3293
3294         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3295                         shmem_match, fid->raw);
3296         if (inode) {
3297                 dentry = shmem_find_alias(inode);
3298                 iput(inode);
3299         }
3300
3301         return dentry;
3302 }
3303
3304 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3305                                 struct inode *parent)
3306 {
3307         if (*len < 3) {
3308                 *len = 3;
3309                 return FILEID_INVALID;
3310         }
3311
3312         if (inode_unhashed(inode)) {
3313                 /* Unfortunately insert_inode_hash is not idempotent,
3314                  * so as we hash inodes here rather than at creation
3315                  * time, we need a lock to ensure we only try
3316                  * to do it once
3317                  */
3318                 static DEFINE_SPINLOCK(lock);
3319                 spin_lock(&lock);
3320                 if (inode_unhashed(inode))
3321                         __insert_inode_hash(inode,
3322                                             inode->i_ino + inode->i_generation);
3323                 spin_unlock(&lock);
3324         }
3325
3326         fh[0] = inode->i_generation;
3327         fh[1] = inode->i_ino;
3328         fh[2] = ((__u64)inode->i_ino) >> 32;
3329
3330         *len = 3;
3331         return 1;
3332 }
3333
3334 static const struct export_operations shmem_export_ops = {
3335         .get_parent     = shmem_get_parent,
3336         .encode_fh      = shmem_encode_fh,
3337         .fh_to_dentry   = shmem_fh_to_dentry,
3338 };
3339
3340 enum shmem_param {
3341         Opt_gid,
3342         Opt_huge,
3343         Opt_mode,
3344         Opt_mpol,
3345         Opt_nr_blocks,
3346         Opt_nr_inodes,
3347         Opt_size,
3348         Opt_uid,
3349 };
3350
3351 static const struct constant_table shmem_param_enums_huge[] = {
3352         {"never",       SHMEM_HUGE_NEVER },
3353         {"always",      SHMEM_HUGE_ALWAYS },
3354         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3355         {"advise",      SHMEM_HUGE_ADVISE },
3356         {}
3357 };
3358
3359 const struct fs_parameter_spec shmem_fs_parameters[] = {
3360         fsparam_u32   ("gid",           Opt_gid),
3361         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3362         fsparam_u32oct("mode",          Opt_mode),
3363         fsparam_string("mpol",          Opt_mpol),
3364         fsparam_string("nr_blocks",     Opt_nr_blocks),
3365         fsparam_string("nr_inodes",     Opt_nr_inodes),
3366         fsparam_string("size",          Opt_size),
3367         fsparam_u32   ("uid",           Opt_uid),
3368         {}
3369 };
3370
3371 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3372 {
3373         struct shmem_options *ctx = fc->fs_private;
3374         struct fs_parse_result result;
3375         unsigned long long size;
3376         char *rest;
3377         int opt;
3378
3379         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3380         if (opt < 0)
3381                 return opt;
3382
3383         switch (opt) {
3384         case Opt_size:
3385                 size = memparse(param->string, &rest);
3386                 if (*rest == '%') {
3387                         size <<= PAGE_SHIFT;
3388                         size *= totalram_pages();
3389                         do_div(size, 100);
3390                         rest++;
3391                 }
3392                 if (*rest)
3393                         goto bad_value;
3394                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3395                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3396                 break;
3397         case Opt_nr_blocks:
3398                 ctx->blocks = memparse(param->string, &rest);
3399                 if (*rest)
3400                         goto bad_value;
3401                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3402                 break;
3403         case Opt_nr_inodes:
3404                 ctx->inodes = memparse(param->string, &rest);
3405                 if (*rest)
3406                         goto bad_value;
3407                 ctx->seen |= SHMEM_SEEN_INODES;
3408                 break;
3409         case Opt_mode:
3410                 ctx->mode = result.uint_32 & 07777;
3411                 break;
3412         case Opt_uid:
3413                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3414                 if (!uid_valid(ctx->uid))
3415                         goto bad_value;
3416                 break;
3417         case Opt_gid:
3418                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3419                 if (!gid_valid(ctx->gid))
3420                         goto bad_value;
3421                 break;
3422         case Opt_huge:
3423                 ctx->huge = result.uint_32;
3424                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3425                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3426                       has_transparent_hugepage()))
3427                         goto unsupported_parameter;
3428                 ctx->seen |= SHMEM_SEEN_HUGE;
3429                 break;
3430         case Opt_mpol:
3431                 if (IS_ENABLED(CONFIG_NUMA)) {
3432                         mpol_put(ctx->mpol);
3433                         ctx->mpol = NULL;
3434                         if (mpol_parse_str(param->string, &ctx->mpol))
3435                                 goto bad_value;
3436                         break;
3437                 }
3438                 goto unsupported_parameter;
3439         }
3440         return 0;
3441
3442 unsupported_parameter:
3443         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3444 bad_value:
3445         return invalfc(fc, "Bad value for '%s'", param->key);
3446 }
3447
3448 static int shmem_parse_options(struct fs_context *fc, void *data)
3449 {
3450         char *options = data;
3451
3452         if (options) {
3453                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3454                 if (err)
3455                         return err;
3456         }
3457
3458         while (options != NULL) {
3459                 char *this_char = options;
3460                 for (;;) {
3461                         /*
3462                          * NUL-terminate this option: unfortunately,
3463                          * mount options form a comma-separated list,
3464                          * but mpol's nodelist may also contain commas.
3465                          */
3466                         options = strchr(options, ',');
3467                         if (options == NULL)
3468                                 break;
3469                         options++;
3470                         if (!isdigit(*options)) {
3471                                 options[-1] = '\0';
3472                                 break;
3473                         }
3474                 }
3475                 if (*this_char) {
3476                         char *value = strchr(this_char,'=');
3477                         size_t len = 0;
3478                         int err;
3479
3480                         if (value) {
3481                                 *value++ = '\0';
3482                                 len = strlen(value);
3483                         }
3484                         err = vfs_parse_fs_string(fc, this_char, value, len);
3485                         if (err < 0)
3486                                 return err;
3487                 }
3488         }
3489         return 0;
3490 }
3491
3492 /*
3493  * Reconfigure a shmem filesystem.
3494  *
3495  * Note that we disallow change from limited->unlimited blocks/inodes while any
3496  * are in use; but we must separately disallow unlimited->limited, because in
3497  * that case we have no record of how much is already in use.
3498  */
3499 static int shmem_reconfigure(struct fs_context *fc)
3500 {
3501         struct shmem_options *ctx = fc->fs_private;
3502         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3503         unsigned long inodes;
3504         const char *err;
3505
3506         spin_lock(&sbinfo->stat_lock);
3507         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509                 if (!sbinfo->max_blocks) {
3510                         err = "Cannot retroactively limit size";
3511                         goto out;
3512                 }
3513                 if (percpu_counter_compare(&sbinfo->used_blocks,
3514                                            ctx->blocks) > 0) {
3515                         err = "Too small a size for current use";
3516                         goto out;
3517                 }
3518         }
3519         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520                 if (!sbinfo->max_inodes) {
3521                         err = "Cannot retroactively limit inodes";
3522                         goto out;
3523                 }
3524                 if (ctx->inodes < inodes) {
3525                         err = "Too few inodes for current use";
3526                         goto out;
3527                 }
3528         }
3529
3530         if (ctx->seen & SHMEM_SEEN_HUGE)
3531                 sbinfo->huge = ctx->huge;
3532         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3533                 sbinfo->max_blocks  = ctx->blocks;
3534         if (ctx->seen & SHMEM_SEEN_INODES) {
3535                 sbinfo->max_inodes  = ctx->inodes;
3536                 sbinfo->free_inodes = ctx->inodes - inodes;
3537         }
3538
3539         /*
3540          * Preserve previous mempolicy unless mpol remount option was specified.
3541          */
3542         if (ctx->mpol) {
3543                 mpol_put(sbinfo->mpol);
3544                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3545                 ctx->mpol = NULL;
3546         }
3547         spin_unlock(&sbinfo->stat_lock);
3548         return 0;
3549 out:
3550         spin_unlock(&sbinfo->stat_lock);
3551         return invalfc(fc, "%s", err);
3552 }
3553
3554 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3555 {
3556         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3557
3558         if (sbinfo->max_blocks != shmem_default_max_blocks())
3559                 seq_printf(seq, ",size=%luk",
3560                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3561         if (sbinfo->max_inodes != shmem_default_max_inodes())
3562                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3563         if (sbinfo->mode != (0777 | S_ISVTX))
3564                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3565         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3566                 seq_printf(seq, ",uid=%u",
3567                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3568         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3569                 seq_printf(seq, ",gid=%u",
3570                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3572         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3573         if (sbinfo->huge)
3574                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3575 #endif
3576         shmem_show_mpol(seq, sbinfo->mpol);
3577         return 0;
3578 }
3579
3580 #endif /* CONFIG_TMPFS */
3581
3582 static void shmem_put_super(struct super_block *sb)
3583 {
3584         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3585
3586         percpu_counter_destroy(&sbinfo->used_blocks);
3587         mpol_put(sbinfo->mpol);
3588         kfree(sbinfo);
3589         sb->s_fs_info = NULL;
3590 }
3591
3592 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3593 {
3594         struct shmem_options *ctx = fc->fs_private;
3595         struct inode *inode;
3596         struct shmem_sb_info *sbinfo;
3597         int err = -ENOMEM;
3598
3599         /* Round up to L1_CACHE_BYTES to resist false sharing */
3600         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3601                                 L1_CACHE_BYTES), GFP_KERNEL);
3602         if (!sbinfo)
3603                 return -ENOMEM;
3604
3605         sb->s_fs_info = sbinfo;
3606
3607 #ifdef CONFIG_TMPFS
3608         /*
3609          * Per default we only allow half of the physical ram per
3610          * tmpfs instance, limiting inodes to one per page of lowmem;
3611          * but the internal instance is left unlimited.
3612          */
3613         if (!(sb->s_flags & SB_KERNMOUNT)) {
3614                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3615                         ctx->blocks = shmem_default_max_blocks();
3616                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3617                         ctx->inodes = shmem_default_max_inodes();
3618         } else {
3619                 sb->s_flags |= SB_NOUSER;
3620         }
3621         sb->s_export_op = &shmem_export_ops;
3622         sb->s_flags |= SB_NOSEC;
3623 #else
3624         sb->s_flags |= SB_NOUSER;
3625 #endif
3626         sbinfo->max_blocks = ctx->blocks;
3627         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3628         sbinfo->uid = ctx->uid;
3629         sbinfo->gid = ctx->gid;
3630         sbinfo->mode = ctx->mode;
3631         sbinfo->huge = ctx->huge;
3632         sbinfo->mpol = ctx->mpol;
3633         ctx->mpol = NULL;
3634
3635         spin_lock_init(&sbinfo->stat_lock);
3636         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3637                 goto failed;
3638         spin_lock_init(&sbinfo->shrinklist_lock);
3639         INIT_LIST_HEAD(&sbinfo->shrinklist);
3640
3641         sb->s_maxbytes = MAX_LFS_FILESIZE;
3642         sb->s_blocksize = PAGE_SIZE;
3643         sb->s_blocksize_bits = PAGE_SHIFT;
3644         sb->s_magic = TMPFS_MAGIC;
3645         sb->s_op = &shmem_ops;
3646         sb->s_time_gran = 1;
3647 #ifdef CONFIG_TMPFS_XATTR
3648         sb->s_xattr = shmem_xattr_handlers;
3649 #endif
3650 #ifdef CONFIG_TMPFS_POSIX_ACL
3651         sb->s_flags |= SB_POSIXACL;
3652 #endif
3653         uuid_gen(&sb->s_uuid);
3654
3655         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3656         if (!inode)
3657                 goto failed;
3658         inode->i_uid = sbinfo->uid;
3659         inode->i_gid = sbinfo->gid;
3660         sb->s_root = d_make_root(inode);
3661         if (!sb->s_root)
3662                 goto failed;
3663         return 0;
3664
3665 failed:
3666         shmem_put_super(sb);
3667         return err;
3668 }
3669
3670 static int shmem_get_tree(struct fs_context *fc)
3671 {
3672         return get_tree_nodev(fc, shmem_fill_super);
3673 }
3674
3675 static void shmem_free_fc(struct fs_context *fc)
3676 {
3677         struct shmem_options *ctx = fc->fs_private;
3678
3679         if (ctx) {
3680                 mpol_put(ctx->mpol);
3681                 kfree(ctx);
3682         }
3683 }
3684
3685 static const struct fs_context_operations shmem_fs_context_ops = {
3686         .free                   = shmem_free_fc,
3687         .get_tree               = shmem_get_tree,
3688 #ifdef CONFIG_TMPFS
3689         .parse_monolithic       = shmem_parse_options,
3690         .parse_param            = shmem_parse_one,
3691         .reconfigure            = shmem_reconfigure,
3692 #endif
3693 };
3694
3695 static struct kmem_cache *shmem_inode_cachep;
3696
3697 static struct inode *shmem_alloc_inode(struct super_block *sb)
3698 {
3699         struct shmem_inode_info *info;
3700         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3701         if (!info)
3702                 return NULL;
3703         return &info->vfs_inode;
3704 }
3705
3706 static void shmem_free_in_core_inode(struct inode *inode)
3707 {
3708         if (S_ISLNK(inode->i_mode))
3709                 kfree(inode->i_link);
3710         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3711 }
3712
3713 static void shmem_destroy_inode(struct inode *inode)
3714 {
3715         if (S_ISREG(inode->i_mode))
3716                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3717 }
3718
3719 static void shmem_init_inode(void *foo)
3720 {
3721         struct shmem_inode_info *info = foo;
3722         inode_init_once(&info->vfs_inode);
3723 }
3724
3725 static void shmem_init_inodecache(void)
3726 {
3727         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3728                                 sizeof(struct shmem_inode_info),
3729                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3730 }
3731
3732 static void shmem_destroy_inodecache(void)
3733 {
3734         kmem_cache_destroy(shmem_inode_cachep);
3735 }
3736
3737 static const struct address_space_operations shmem_aops = {
3738         .writepage      = shmem_writepage,
3739         .set_page_dirty = __set_page_dirty_no_writeback,
3740 #ifdef CONFIG_TMPFS
3741         .write_begin    = shmem_write_begin,
3742         .write_end      = shmem_write_end,
3743 #endif
3744 #ifdef CONFIG_MIGRATION
3745         .migratepage    = migrate_page,
3746 #endif
3747         .error_remove_page = generic_error_remove_page,
3748 };
3749
3750 static const struct file_operations shmem_file_operations = {
3751         .mmap           = shmem_mmap,
3752         .get_unmapped_area = shmem_get_unmapped_area,
3753 #ifdef CONFIG_TMPFS
3754         .llseek         = shmem_file_llseek,
3755         .read_iter      = shmem_file_read_iter,
3756         .write_iter     = generic_file_write_iter,
3757         .fsync          = noop_fsync,
3758         .splice_read    = generic_file_splice_read,
3759         .splice_write   = iter_file_splice_write,
3760         .fallocate      = shmem_fallocate,
3761 #endif
3762 };
3763
3764 static const struct inode_operations shmem_inode_operations = {
3765         .getattr        = shmem_getattr,
3766         .setattr        = shmem_setattr,
3767 #ifdef CONFIG_TMPFS_XATTR
3768         .listxattr      = shmem_listxattr,
3769         .set_acl        = simple_set_acl,
3770 #endif
3771 };
3772
3773 static const struct inode_operations shmem_dir_inode_operations = {
3774 #ifdef CONFIG_TMPFS
3775         .create         = shmem_create,
3776         .lookup         = simple_lookup,
3777         .link           = shmem_link,
3778         .unlink         = shmem_unlink,
3779         .symlink        = shmem_symlink,
3780         .mkdir          = shmem_mkdir,
3781         .rmdir          = shmem_rmdir,
3782         .mknod          = shmem_mknod,
3783         .rename         = shmem_rename2,
3784         .tmpfile        = shmem_tmpfile,
3785 #endif
3786 #ifdef CONFIG_TMPFS_XATTR
3787         .listxattr      = shmem_listxattr,
3788 #endif
3789 #ifdef CONFIG_TMPFS_POSIX_ACL
3790         .setattr        = shmem_setattr,
3791         .set_acl        = simple_set_acl,
3792 #endif
3793 };
3794
3795 static const struct inode_operations shmem_special_inode_operations = {
3796 #ifdef CONFIG_TMPFS_XATTR
3797         .listxattr      = shmem_listxattr,
3798 #endif
3799 #ifdef CONFIG_TMPFS_POSIX_ACL
3800         .setattr        = shmem_setattr,
3801         .set_acl        = simple_set_acl,
3802 #endif
3803 };
3804
3805 static const struct super_operations shmem_ops = {
3806         .alloc_inode    = shmem_alloc_inode,
3807         .free_inode     = shmem_free_in_core_inode,
3808         .destroy_inode  = shmem_destroy_inode,
3809 #ifdef CONFIG_TMPFS
3810         .statfs         = shmem_statfs,
3811         .show_options   = shmem_show_options,
3812 #endif
3813         .evict_inode    = shmem_evict_inode,
3814         .drop_inode     = generic_delete_inode,
3815         .put_super      = shmem_put_super,
3816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3817         .nr_cached_objects      = shmem_unused_huge_count,
3818         .free_cached_objects    = shmem_unused_huge_scan,
3819 #endif
3820 };
3821
3822 static const struct vm_operations_struct shmem_vm_ops = {
3823         .fault          = shmem_fault,
3824         .map_pages      = filemap_map_pages,
3825 #ifdef CONFIG_NUMA
3826         .set_policy     = shmem_set_policy,
3827         .get_policy     = shmem_get_policy,
3828 #endif
3829 };
3830
3831 int shmem_init_fs_context(struct fs_context *fc)
3832 {
3833         struct shmem_options *ctx;
3834
3835         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3836         if (!ctx)
3837                 return -ENOMEM;
3838
3839         ctx->mode = 0777 | S_ISVTX;
3840         ctx->uid = current_fsuid();
3841         ctx->gid = current_fsgid();
3842
3843         fc->fs_private = ctx;
3844         fc->ops = &shmem_fs_context_ops;
3845         return 0;
3846 }
3847
3848 static struct file_system_type shmem_fs_type = {
3849         .owner          = THIS_MODULE,
3850         .name           = "tmpfs",
3851         .init_fs_context = shmem_init_fs_context,
3852 #ifdef CONFIG_TMPFS
3853         .parameters     = shmem_fs_parameters,
3854 #endif
3855         .kill_sb        = kill_litter_super,
3856         .fs_flags       = FS_USERNS_MOUNT,
3857 };
3858
3859 int __init shmem_init(void)
3860 {
3861         int error;
3862
3863         shmem_init_inodecache();
3864
3865         error = register_filesystem(&shmem_fs_type);
3866         if (error) {
3867                 pr_err("Could not register tmpfs\n");
3868                 goto out2;
3869         }
3870
3871         shm_mnt = kern_mount(&shmem_fs_type);
3872         if (IS_ERR(shm_mnt)) {
3873                 error = PTR_ERR(shm_mnt);
3874                 pr_err("Could not kern_mount tmpfs\n");
3875                 goto out1;
3876         }
3877
3878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3880                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3881         else
3882                 shmem_huge = 0; /* just in case it was patched */
3883 #endif
3884         return 0;
3885
3886 out1:
3887         unregister_filesystem(&shmem_fs_type);
3888 out2:
3889         shmem_destroy_inodecache();
3890         shm_mnt = ERR_PTR(error);
3891         return error;
3892 }
3893
3894 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3895 static ssize_t shmem_enabled_show(struct kobject *kobj,
3896                 struct kobj_attribute *attr, char *buf)
3897 {
3898         static const int values[] = {
3899                 SHMEM_HUGE_ALWAYS,
3900                 SHMEM_HUGE_WITHIN_SIZE,
3901                 SHMEM_HUGE_ADVISE,
3902                 SHMEM_HUGE_NEVER,
3903                 SHMEM_HUGE_DENY,
3904                 SHMEM_HUGE_FORCE,
3905         };
3906         int i, count;
3907
3908         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3909                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3910
3911                 count += sprintf(buf + count, fmt,
3912                                 shmem_format_huge(values[i]));
3913         }
3914         buf[count - 1] = '\n';
3915         return count;
3916 }
3917
3918 static ssize_t shmem_enabled_store(struct kobject *kobj,
3919                 struct kobj_attribute *attr, const char *buf, size_t count)
3920 {
3921         char tmp[16];
3922         int huge;
3923
3924         if (count + 1 > sizeof(tmp))
3925                 return -EINVAL;
3926         memcpy(tmp, buf, count);
3927         tmp[count] = '\0';
3928         if (count && tmp[count - 1] == '\n')
3929                 tmp[count - 1] = '\0';
3930
3931         huge = shmem_parse_huge(tmp);
3932         if (huge == -EINVAL)
3933                 return -EINVAL;
3934         if (!has_transparent_hugepage() &&
3935                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3936                 return -EINVAL;
3937
3938         shmem_huge = huge;
3939         if (shmem_huge > SHMEM_HUGE_DENY)
3940                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3941         return count;
3942 }
3943
3944 struct kobj_attribute shmem_enabled_attr =
3945         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3946 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3947
3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949 bool shmem_huge_enabled(struct vm_area_struct *vma)
3950 {
3951         struct inode *inode = file_inode(vma->vm_file);
3952         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3953         loff_t i_size;
3954         pgoff_t off;
3955
3956         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3957             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3958                 return false;
3959         if (shmem_huge == SHMEM_HUGE_FORCE)
3960                 return true;
3961         if (shmem_huge == SHMEM_HUGE_DENY)
3962                 return false;
3963         switch (sbinfo->huge) {
3964                 case SHMEM_HUGE_NEVER:
3965                         return false;
3966                 case SHMEM_HUGE_ALWAYS:
3967                         return true;
3968                 case SHMEM_HUGE_WITHIN_SIZE:
3969                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3970                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3971                         if (i_size >= HPAGE_PMD_SIZE &&
3972                                         i_size >> PAGE_SHIFT >= off)
3973                                 return true;
3974                         fallthrough;
3975                 case SHMEM_HUGE_ADVISE:
3976                         /* TODO: implement fadvise() hints */
3977                         return (vma->vm_flags & VM_HUGEPAGE);
3978                 default:
3979                         VM_BUG_ON(1);
3980                         return false;
3981         }
3982 }
3983 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3984
3985 #else /* !CONFIG_SHMEM */
3986
3987 /*
3988  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3989  *
3990  * This is intended for small system where the benefits of the full
3991  * shmem code (swap-backed and resource-limited) are outweighed by
3992  * their complexity. On systems without swap this code should be
3993  * effectively equivalent, but much lighter weight.
3994  */
3995
3996 static struct file_system_type shmem_fs_type = {
3997         .name           = "tmpfs",
3998         .init_fs_context = ramfs_init_fs_context,
3999         .parameters     = ramfs_fs_parameters,
4000         .kill_sb        = kill_litter_super,
4001         .fs_flags       = FS_USERNS_MOUNT,
4002 };
4003
4004 int __init shmem_init(void)
4005 {
4006         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4007
4008         shm_mnt = kern_mount(&shmem_fs_type);
4009         BUG_ON(IS_ERR(shm_mnt));
4010
4011         return 0;
4012 }
4013
4014 int shmem_unuse(unsigned int type, bool frontswap,
4015                 unsigned long *fs_pages_to_unuse)
4016 {
4017         return 0;
4018 }
4019
4020 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4021 {
4022         return 0;
4023 }
4024
4025 void shmem_unlock_mapping(struct address_space *mapping)
4026 {
4027 }
4028
4029 #ifdef CONFIG_MMU
4030 unsigned long shmem_get_unmapped_area(struct file *file,
4031                                       unsigned long addr, unsigned long len,
4032                                       unsigned long pgoff, unsigned long flags)
4033 {
4034         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4035 }
4036 #endif
4037
4038 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4039 {
4040         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4041 }
4042 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4043
4044 #define shmem_vm_ops                            generic_file_vm_ops
4045 #define shmem_file_operations                   ramfs_file_operations
4046 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4047 #define shmem_acct_size(flags, size)            0
4048 #define shmem_unacct_size(flags, size)          do {} while (0)
4049
4050 #endif /* CONFIG_SHMEM */
4051
4052 /* common code */
4053
4054 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4055                                        unsigned long flags, unsigned int i_flags)
4056 {
4057         struct inode *inode;
4058         struct file *res;
4059
4060         if (IS_ERR(mnt))
4061                 return ERR_CAST(mnt);
4062
4063         if (size < 0 || size > MAX_LFS_FILESIZE)
4064                 return ERR_PTR(-EINVAL);
4065
4066         if (shmem_acct_size(flags, size))
4067                 return ERR_PTR(-ENOMEM);
4068
4069         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4070                                 flags);
4071         if (unlikely(!inode)) {
4072                 shmem_unacct_size(flags, size);
4073                 return ERR_PTR(-ENOSPC);
4074         }
4075         inode->i_flags |= i_flags;
4076         inode->i_size = size;
4077         clear_nlink(inode);     /* It is unlinked */
4078         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4079         if (!IS_ERR(res))
4080                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4081                                 &shmem_file_operations);
4082         if (IS_ERR(res))
4083                 iput(inode);
4084         return res;
4085 }
4086
4087 /**
4088  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4089  *      kernel internal.  There will be NO LSM permission checks against the
4090  *      underlying inode.  So users of this interface must do LSM checks at a
4091  *      higher layer.  The users are the big_key and shm implementations.  LSM
4092  *      checks are provided at the key or shm level rather than the inode.
4093  * @name: name for dentry (to be seen in /proc/<pid>/maps
4094  * @size: size to be set for the file
4095  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4096  */
4097 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4098 {
4099         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4100 }
4101
4102 /**
4103  * shmem_file_setup - get an unlinked file living in tmpfs
4104  * @name: name for dentry (to be seen in /proc/<pid>/maps
4105  * @size: size to be set for the file
4106  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4107  */
4108 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4109 {
4110         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4111 }
4112 EXPORT_SYMBOL_GPL(shmem_file_setup);
4113
4114 /**
4115  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4116  * @mnt: the tmpfs mount where the file will be created
4117  * @name: name for dentry (to be seen in /proc/<pid>/maps
4118  * @size: size to be set for the file
4119  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4120  */
4121 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4122                                        loff_t size, unsigned long flags)
4123 {
4124         return __shmem_file_setup(mnt, name, size, flags, 0);
4125 }
4126 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4127
4128 /**
4129  * shmem_zero_setup - setup a shared anonymous mapping
4130  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4131  */
4132 int shmem_zero_setup(struct vm_area_struct *vma)
4133 {
4134         struct file *file;
4135         loff_t size = vma->vm_end - vma->vm_start;
4136
4137         /*
4138          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4139          * between XFS directory reading and selinux: since this file is only
4140          * accessible to the user through its mapping, use S_PRIVATE flag to
4141          * bypass file security, in the same way as shmem_kernel_file_setup().
4142          */
4143         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4144         if (IS_ERR(file))
4145                 return PTR_ERR(file);
4146
4147         if (vma->vm_file)
4148                 fput(vma->vm_file);
4149         vma->vm_file = file;
4150         vma->vm_ops = &shmem_vm_ops;
4151
4152         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4153                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4154                         (vma->vm_end & HPAGE_PMD_MASK)) {
4155                 khugepaged_enter(vma, vma->vm_flags);
4156         }
4157
4158         return 0;
4159 }
4160
4161 /**
4162  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4163  * @mapping:    the page's address_space
4164  * @index:      the page index
4165  * @gfp:        the page allocator flags to use if allocating
4166  *
4167  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4168  * with any new page allocations done using the specified allocation flags.
4169  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4170  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4171  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4172  *
4173  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4174  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4175  */
4176 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4177                                          pgoff_t index, gfp_t gfp)
4178 {
4179 #ifdef CONFIG_SHMEM
4180         struct inode *inode = mapping->host;
4181         struct page *page;
4182         int error;
4183
4184         BUG_ON(mapping->a_ops != &shmem_aops);
4185         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4186                                   gfp, NULL, NULL, NULL);
4187         if (error)
4188                 page = ERR_PTR(error);
4189         else
4190                 unlock_page(page);
4191         return page;
4192 #else
4193         /*
4194          * The tiny !SHMEM case uses ramfs without swap
4195          */
4196         return read_cache_page_gfp(mapping, index, gfp);
4197 #endif
4198 }
4199 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.262609 seconds and 4 git commands to generate.