4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy)
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
132 static inline int task_has_rt_policy(struct task_struct *p)
134 return rt_policy(p->policy);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
150 struct hrtimer rt_period_timer;
153 static struct rt_bandwidth def_rt_bandwidth;
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172 idle = do_sched_rt_period_timer(rt_b, overrun);
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime >= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
203 if (hrtimer_active(&rt_b->rt_period_timer))
206 raw_spin_lock(&rt_b->rt_runtime_lock);
211 if (hrtimer_active(&rt_b->rt_period_timer))
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 hrtimer_cancel(&rt_b->rt_period_timer);
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups);
247 /* task group related information */
249 struct cgroup_subsys_state css;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
258 atomic_t load_weight;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
265 struct rt_bandwidth rt_bandwidth;
269 struct list_head list;
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load;
311 unsigned long nr_running;
316 u64 min_vruntime_copy;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last, *skip;
331 unsigned int nr_spread_over;
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load;
363 * Maintaining per-cpu shares distribution for group scheduling
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
371 u64 load_stamp, load_last, load_unacc_exec_time;
373 unsigned long load_contribution;
378 /* Real-Time classes' related field in a runqueue: */
380 struct rt_prio_array active;
381 unsigned long rt_nr_running;
382 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
384 int curr; /* highest queued rt task prio */
386 int next; /* next highest */
391 unsigned long rt_nr_migratory;
392 unsigned long rt_nr_total;
394 struct plist_head pushable_tasks;
399 /* Nests inside the rq lock: */
400 raw_spinlock_t rt_runtime_lock;
402 #ifdef CONFIG_RT_GROUP_SCHED
403 unsigned long rt_nr_boosted;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
414 * We add the notion of a root-domain which will be used to define per-domain
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
417 * exclusive cpuset is created, we also create and attach a new root-domain
424 cpumask_var_t online;
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
430 cpumask_var_t rto_mask;
432 struct cpupri cpupri;
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
439 static struct root_domain def_root_domain;
441 #endif /* CONFIG_SMP */
444 * This is the main, per-CPU runqueue data structure.
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
458 unsigned long nr_running;
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461 unsigned long last_load_update_tick;
464 unsigned char nohz_balance_kick;
466 unsigned int skip_clock_update;
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
470 unsigned long nr_load_updates;
476 #ifdef CONFIG_FAIR_GROUP_SCHED
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
480 #ifdef CONFIG_RT_GROUP_SCHED
481 struct list_head leaf_rt_rq_list;
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
490 unsigned long nr_uninterruptible;
492 struct task_struct *curr, *idle, *stop;
493 unsigned long next_balance;
494 struct mm_struct *prev_mm;
502 struct root_domain *rd;
503 struct sched_domain *sd;
505 unsigned long cpu_power;
507 unsigned char idle_at_tick;
508 /* For active balancing */
512 struct cpu_stop_work active_balance_work;
513 /* cpu of this runqueue: */
517 unsigned long avg_load_per_task;
525 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
533 #ifdef CONFIG_SCHED_HRTICK
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
538 struct hrtimer hrtick_timer;
541 #ifdef CONFIG_SCHEDSTATS
543 struct sched_info rq_sched_info;
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
547 /* sys_sched_yield() stats */
548 unsigned int yld_count;
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct task_group *tg;
609 struct cgroup_subsys_state *css;
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
612 lockdep_is_held(&task_rq(p)->lock));
613 tg = container_of(css, struct task_group, css);
615 return autogroup_task_group(p, tg);
618 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 #ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
626 #ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
632 #else /* CONFIG_CGROUP_SCHED */
634 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635 static inline struct task_group *task_group(struct task_struct *p)
640 #endif /* CONFIG_CGROUP_SCHED */
642 static void update_rq_clock_task(struct rq *rq, s64 delta);
644 static void update_rq_clock(struct rq *rq)
648 if (rq->skip_clock_update)
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 update_rq_clock_task(rq, delta);
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 #ifdef CONFIG_SCHED_DEBUG
660 # define const_debug __read_mostly
662 # define const_debug static const
666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
667 * @cpu: the processor in question.
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
672 int runqueue_is_locked(int cpu)
674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
678 * Debugging: various feature bits
681 #define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
685 #include "sched_features.h"
690 #define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
693 const_debug unsigned int sysctl_sched_features =
694 #include "sched_features.h"
699 #ifdef CONFIG_SCHED_DEBUG
700 #define SCHED_FEAT(name, enabled) \
703 static __read_mostly char *sched_feat_names[] = {
704 #include "sched_features.h"
710 static int sched_feat_show(struct seq_file *m, void *v)
714 for (i = 0; sched_feat_names[i]; i++) {
715 if (!(sysctl_sched_features & (1UL << i)))
717 seq_printf(m, "%s ", sched_feat_names[i]);
725 sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
736 if (copy_from_user(&buf, ubuf, cnt))
742 if (strncmp(cmp, "NO_", 3) == 0) {
747 for (i = 0; sched_feat_names[i]; i++) {
748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
750 sysctl_sched_features &= ~(1UL << i);
752 sysctl_sched_features |= (1UL << i);
757 if (!sched_feat_names[i])
765 static int sched_feat_open(struct inode *inode, struct file *filp)
767 return single_open(filp, sched_feat_show, NULL);
770 static const struct file_operations sched_feat_fops = {
771 .open = sched_feat_open,
772 .write = sched_feat_write,
775 .release = single_release,
778 static __init int sched_init_debug(void)
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
785 late_initcall(sched_init_debug);
789 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
795 const_debug unsigned int sysctl_sched_nr_migrate = 32;
798 * period over which we average the RT time consumption, measured
803 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806 * period over which we measure -rt task cpu usage in us.
809 unsigned int sysctl_sched_rt_period = 1000000;
811 static __read_mostly int scheduler_running;
814 * part of the period that we allow rt tasks to run in us.
817 int sysctl_sched_rt_runtime = 950000;
819 static inline u64 global_rt_period(void)
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 static inline u64 global_rt_runtime(void)
826 if (sysctl_sched_rt_runtime < 0)
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 #ifndef prepare_arch_switch
833 # define prepare_arch_switch(next) do { } while (0)
835 #ifndef finish_arch_switch
836 # define finish_arch_switch(prev) do { } while (0)
839 static inline int task_current(struct rq *rq, struct task_struct *p)
841 return rq->curr == p;
844 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
877 #ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888 raw_spin_unlock_irq(&rq->lock);
891 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
905 raw_spin_unlock(&rq->lock);
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
930 static inline int task_is_waking(struct task_struct *p)
932 return unlikely(p->state == TASK_WAKING);
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
949 raw_spin_unlock(&rq->lock);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
964 local_irq_save(*flags);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 static void __task_rq_unlock(struct rq *rq)
976 raw_spin_unlock(&rq->lock);
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq *this_rq_lock(void)
995 raw_spin_lock(&rq->lock);
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq *rq)
1019 if (!sched_feat(HRTICK))
1021 if (!cpu_active(cpu_of(rq)))
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 static void hrtick_clear(struct rq *rq)
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042 raw_spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 raw_spin_unlock(&rq->lock);
1047 return HRTIMER_NORESTART;
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg)
1056 struct rq *rq = arg;
1058 raw_spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 raw_spin_unlock(&rq->lock);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq *rq, u64 delay)
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074 hrtimer_set_expires(timer, time);
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 rq->hrtick_csd_pending = 1;
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 int cpu = (int)(long)hcpu;
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1103 static __init void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick, 0);
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq *rq, u64 delay)
1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116 HRTIMER_MODE_REL_PINNED, 0);
1119 static inline void init_hrtick(void)
1122 #endif /* CONFIG_SMP */
1124 static void init_rq_hrtick(struct rq *rq)
1127 rq->hrtick_csd_pending = 0;
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1142 static inline void init_rq_hrtick(struct rq *rq)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 static void resched_task(struct task_struct *p)
1168 assert_raw_spin_locked(&task_rq(p)->lock);
1170 if (test_tsk_need_resched(p))
1173 set_tsk_need_resched(p);
1176 if (cpu == smp_processor_id())
1179 /* NEED_RESCHED must be visible before we test polling */
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1185 static void resched_cpu(int cpu)
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1192 resched_task(cpu_curr(cpu));
1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1205 int get_nohz_timer_target(void)
1207 int cpu = smp_processor_id();
1209 struct sched_domain *sd;
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu)
1230 struct rq *rq = cpu_rq(cpu);
1232 if (cpu == smp_processor_id())
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq->curr != rq->idle)
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_need_resched(rq->idle);
1252 /* NEED_RESCHED must be visible before we test polling */
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1258 #endif /* CONFIG_NO_HZ */
1260 static u64 sched_avg_period(void)
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1265 static void sched_avg_update(struct rq *rq)
1267 s64 period = sched_avg_period();
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1275 asm("" : "+rm" (rq->age_stamp));
1276 rq->age_stamp += period;
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct *p)
1290 assert_raw_spin_locked(&task_rq(p)->lock);
1291 set_tsk_need_resched(p);
1294 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298 static void sched_avg_update(struct rq *rq)
1301 #endif /* CONFIG_SMP */
1303 #if BITS_PER_LONG == 32
1304 # define WMULT_CONST (~0UL)
1306 # define WMULT_CONST (1UL << 32)
1309 #define WMULT_SHIFT 32
1312 * Shift right and round:
1314 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1317 * delta *= weight / lw
1319 static unsigned long
1320 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1333 tmp = (u64)delta_exec * weight;
1335 * Check whether we'd overflow the 64-bit multiplication:
1337 if (unlikely(tmp > WMULT_CONST))
1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1346 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1352 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1358 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1365 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1366 * of tasks with abnormal "nice" values across CPUs the contribution that
1367 * each task makes to its run queue's load is weighted according to its
1368 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1369 * scaled version of the new time slice allocation that they receive on time
1373 #define WEIGHT_IDLEPRIO 3
1374 #define WMULT_IDLEPRIO 1431655765
1377 * Nice levels are multiplicative, with a gentle 10% change for every
1378 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1379 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1380 * that remained on nice 0.
1382 * The "10% effect" is relative and cumulative: from _any_ nice level,
1383 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1384 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1385 * If a task goes up by ~10% and another task goes down by ~10% then
1386 * the relative distance between them is ~25%.)
1388 static const int prio_to_weight[40] = {
1389 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1390 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1391 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1392 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1393 /* 0 */ 1024, 820, 655, 526, 423,
1394 /* 5 */ 335, 272, 215, 172, 137,
1395 /* 10 */ 110, 87, 70, 56, 45,
1396 /* 15 */ 36, 29, 23, 18, 15,
1400 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1402 * In cases where the weight does not change often, we can use the
1403 * precalculated inverse to speed up arithmetics by turning divisions
1404 * into multiplications:
1406 static const u32 prio_to_wmult[40] = {
1407 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1408 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1409 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1410 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1411 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1412 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1413 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1414 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422 CPUACCT_STAT_NSTATS,
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
1430 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
1435 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437 update_load_add(&rq->load, load);
1440 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_sub(&rq->load, load);
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor)(struct task_group *, void *);
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1452 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 struct task_group *parent, *child;
1458 parent = &root_task_group;
1460 ret = (*down)(parent, data);
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 ret = (*up)(parent, data);
1475 parent = parent->parent;
1484 static int tg_nop(struct task_group *tg, void *data)
1491 /* Used instead of source_load when we know the type == 0 */
1492 static unsigned long weighted_cpuload(const int cpu)
1494 return cpu_rq(cpu)->load.weight;
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1504 static unsigned long source_load(int cpu, int type)
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1509 if (type == 0 || !sched_feat(LB_BIAS))
1512 return min(rq->cpu_load[type-1], total);
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1519 static unsigned long target_load(int cpu, int type)
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1524 if (type == 0 || !sched_feat(LB_BIAS))
1527 return max(rq->cpu_load[type-1], total);
1530 static unsigned long power_of(int cpu)
1532 return cpu_rq(cpu)->cpu_power;
1535 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1537 static unsigned long cpu_avg_load_per_task(int cpu)
1539 struct rq *rq = cpu_rq(cpu);
1540 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1543 rq->avg_load_per_task = rq->load.weight / nr_running;
1545 rq->avg_load_per_task = 0;
1547 return rq->avg_load_per_task;
1550 #ifdef CONFIG_FAIR_GROUP_SCHED
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1557 static int tg_load_down(struct task_group *tg, void *data)
1560 long cpu = (long)data;
1563 load = cpu_rq(cpu)->load.weight;
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->se[cpu]->load.weight;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1570 tg->cfs_rq[cpu]->h_load = load;
1575 static void update_h_load(long cpu)
1577 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1582 #ifdef CONFIG_PREEMPT
1584 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1587 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1588 * way at the expense of forcing extra atomic operations in all
1589 * invocations. This assures that the double_lock is acquired using the
1590 * same underlying policy as the spinlock_t on this architecture, which
1591 * reduces latency compared to the unfair variant below. However, it
1592 * also adds more overhead and therefore may reduce throughput.
1594 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1595 __releases(this_rq->lock)
1596 __acquires(busiest->lock)
1597 __acquires(this_rq->lock)
1599 raw_spin_unlock(&this_rq->lock);
1600 double_rq_lock(this_rq, busiest);
1607 * Unfair double_lock_balance: Optimizes throughput at the expense of
1608 * latency by eliminating extra atomic operations when the locks are
1609 * already in proper order on entry. This favors lower cpu-ids and will
1610 * grant the double lock to lower cpus over higher ids under contention,
1611 * regardless of entry order into the function.
1613 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1620 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1621 if (busiest < this_rq) {
1622 raw_spin_unlock(&this_rq->lock);
1623 raw_spin_lock(&busiest->lock);
1624 raw_spin_lock_nested(&this_rq->lock,
1625 SINGLE_DEPTH_NESTING);
1628 raw_spin_lock_nested(&busiest->lock,
1629 SINGLE_DEPTH_NESTING);
1634 #endif /* CONFIG_PREEMPT */
1637 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1639 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 if (unlikely(!irqs_disabled())) {
1642 /* printk() doesn't work good under rq->lock */
1643 raw_spin_unlock(&this_rq->lock);
1647 return _double_lock_balance(this_rq, busiest);
1650 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1651 __releases(busiest->lock)
1653 raw_spin_unlock(&busiest->lock);
1654 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1658 * double_rq_lock - safely lock two runqueues
1660 * Note this does not disable interrupts like task_rq_lock,
1661 * you need to do so manually before calling.
1663 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1664 __acquires(rq1->lock)
1665 __acquires(rq2->lock)
1667 BUG_ON(!irqs_disabled());
1669 raw_spin_lock(&rq1->lock);
1670 __acquire(rq2->lock); /* Fake it out ;) */
1673 raw_spin_lock(&rq1->lock);
1674 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1676 raw_spin_lock(&rq2->lock);
1677 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1683 * double_rq_unlock - safely unlock two runqueues
1685 * Note this does not restore interrupts like task_rq_unlock,
1686 * you need to do so manually after calling.
1688 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1689 __releases(rq1->lock)
1690 __releases(rq2->lock)
1692 raw_spin_unlock(&rq1->lock);
1694 raw_spin_unlock(&rq2->lock);
1696 __release(rq2->lock);
1699 #else /* CONFIG_SMP */
1702 * double_rq_lock - safely lock two runqueues
1704 * Note this does not disable interrupts like task_rq_lock,
1705 * you need to do so manually before calling.
1707 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1708 __acquires(rq1->lock)
1709 __acquires(rq2->lock)
1711 BUG_ON(!irqs_disabled());
1713 raw_spin_lock(&rq1->lock);
1714 __acquire(rq2->lock); /* Fake it out ;) */
1718 * double_rq_unlock - safely unlock two runqueues
1720 * Note this does not restore interrupts like task_rq_unlock,
1721 * you need to do so manually after calling.
1723 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1724 __releases(rq1->lock)
1725 __releases(rq2->lock)
1728 raw_spin_unlock(&rq1->lock);
1729 __release(rq2->lock);
1734 static void calc_load_account_idle(struct rq *this_rq);
1735 static void update_sysctl(void);
1736 static int get_update_sysctl_factor(void);
1737 static void update_cpu_load(struct rq *this_rq);
1739 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741 set_task_rq(p, cpu);
1744 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1745 * successfuly executed on another CPU. We must ensure that updates of
1746 * per-task data have been completed by this moment.
1749 task_thread_info(p)->cpu = cpu;
1753 static const struct sched_class rt_sched_class;
1755 #define sched_class_highest (&stop_sched_class)
1756 #define for_each_class(class) \
1757 for (class = sched_class_highest; class; class = class->next)
1759 #include "sched_stats.h"
1761 static void inc_nr_running(struct rq *rq)
1766 static void dec_nr_running(struct rq *rq)
1771 static void set_load_weight(struct task_struct *p)
1774 * SCHED_IDLE tasks get minimal weight:
1776 if (p->policy == SCHED_IDLE) {
1777 p->se.load.weight = WEIGHT_IDLEPRIO;
1778 p->se.load.inv_weight = WMULT_IDLEPRIO;
1782 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1783 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1788 update_rq_clock(rq);
1789 sched_info_queued(p);
1790 p->sched_class->enqueue_task(rq, p, flags);
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1795 update_rq_clock(rq);
1796 sched_info_dequeued(p);
1797 p->sched_class->dequeue_task(rq, p, flags);
1801 * activate_task - move a task to the runqueue.
1803 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1808 enqueue_task(rq, p, flags);
1813 * deactivate_task - remove a task from the runqueue.
1815 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1820 dequeue_task(rq, p, flags);
1824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
1837 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1840 static DEFINE_PER_CPU(u64, irq_start_time);
1841 static int sched_clock_irqtime;
1843 void enable_sched_clock_irqtime(void)
1845 sched_clock_irqtime = 1;
1848 void disable_sched_clock_irqtime(void)
1850 sched_clock_irqtime = 0;
1853 #ifndef CONFIG_64BIT
1854 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1856 static inline void irq_time_write_begin(void)
1858 __this_cpu_inc(irq_time_seq.sequence);
1862 static inline void irq_time_write_end(void)
1865 __this_cpu_inc(irq_time_seq.sequence);
1868 static inline u64 irq_time_read(int cpu)
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1881 #else /* CONFIG_64BIT */
1882 static inline void irq_time_write_begin(void)
1886 static inline void irq_time_write_end(void)
1890 static inline u64 irq_time_read(int cpu)
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1894 #endif /* CONFIG_64BIT */
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1900 void account_system_vtime(struct task_struct *curr)
1902 unsigned long flags;
1906 if (!sched_clock_irqtime)
1909 local_irq_save(flags);
1911 cpu = smp_processor_id();
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1915 irq_time_write_begin();
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1922 if (hardirq_count())
1923 __this_cpu_add(cpu_hardirq_time, delta);
1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1925 __this_cpu_add(cpu_softirq_time, delta);
1927 irq_time_write_end();
1928 local_irq_restore(flags);
1930 EXPORT_SYMBOL_GPL(account_system_vtime);
1932 static void update_rq_clock_task(struct rq *rq, s64 delta)
1936 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1939 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1940 * this case when a previous update_rq_clock() happened inside a
1941 * {soft,}irq region.
1943 * When this happens, we stop ->clock_task and only update the
1944 * prev_irq_time stamp to account for the part that fit, so that a next
1945 * update will consume the rest. This ensures ->clock_task is
1948 * It does however cause some slight miss-attribution of {soft,}irq
1949 * time, a more accurate solution would be to update the irq_time using
1950 * the current rq->clock timestamp, except that would require using
1953 if (irq_delta > delta)
1956 rq->prev_irq_time += irq_delta;
1958 rq->clock_task += delta;
1960 if (irq_delta && sched_feat(NONIRQ_POWER))
1961 sched_rt_avg_update(rq, irq_delta);
1964 static int irqtime_account_hi_update(void)
1966 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1967 unsigned long flags;
1971 local_irq_save(flags);
1972 latest_ns = this_cpu_read(cpu_hardirq_time);
1973 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1975 local_irq_restore(flags);
1979 static int irqtime_account_si_update(void)
1981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1982 unsigned long flags;
1986 local_irq_save(flags);
1987 latest_ns = this_cpu_read(cpu_softirq_time);
1988 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1990 local_irq_restore(flags);
1994 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1996 #define sched_clock_irqtime (0)
1998 static void update_rq_clock_task(struct rq *rq, s64 delta)
2000 rq->clock_task += delta;
2003 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2005 #include "sched_idletask.c"
2006 #include "sched_fair.c"
2007 #include "sched_rt.c"
2008 #include "sched_autogroup.c"
2009 #include "sched_stoptask.c"
2010 #ifdef CONFIG_SCHED_DEBUG
2011 # include "sched_debug.c"
2014 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2030 stop->sched_class = &stop_sched_class;
2033 cpu_rq(cpu)->stop = stop;
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2040 old_stop->sched_class = &rt_sched_class;
2045 * __normal_prio - return the priority that is based on the static prio
2047 static inline int __normal_prio(struct task_struct *p)
2049 return p->static_prio;
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2059 static inline int normal_prio(struct task_struct *p)
2063 if (task_has_rt_policy(p))
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2066 prio = __normal_prio(p);
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2077 static int effective_prio(struct task_struct *p)
2079 p->normal_prio = normal_prio(p);
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2094 inline int task_curr(const struct task_struct *p)
2096 return cpu_curr(task_cpu(p)) == p;
2099 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
2105 prev_class->switched_from(rq, p);
2106 p->sched_class->switched_to(rq, p);
2107 } else if (oldprio != p->prio)
2108 p->sched_class->prio_changed(rq, p, oldprio);
2111 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2113 const struct sched_class *class;
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2132 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2133 rq->skip_clock_update = 1;
2138 * Is this task likely cache-hot:
2141 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2145 if (p->sched_class != &fair_sched_class)
2148 if (unlikely(p->policy == SCHED_IDLE))
2152 * Buddy candidates are cache hot:
2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
2159 if (sysctl_sched_migration_cost == -1)
2161 if (sysctl_sched_migration_cost == 0)
2164 delta = now - p->se.exec_start;
2166 return delta < (s64)sysctl_sched_migration_cost;
2169 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2171 #ifdef CONFIG_SCHED_DEBUG
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2180 trace_sched_migrate_task(p, new_cpu);
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2187 __set_task_cpu(p, new_cpu);
2190 struct migration_arg {
2191 struct task_struct *task;
2195 static int migration_cpu_stop(void *data);
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2201 static bool need_migrate_task(struct task_struct *p)
2204 * If the task is not on a runqueue (and not running), then
2205 * the next wake-up will properly place the task.
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2213 * wait_task_inactive - wait for a thread to unschedule.
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2228 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2230 unsigned long flags;
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2266 rq = task_rq_lock(p, &flags);
2267 trace_sched_wait_task(p);
2268 running = task_running(rq, p);
2271 if (!match_state || p->state == match_state)
2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273 task_rq_unlock(rq, &flags);
2276 * If it changed from the expected state, bail out now.
2278 if (unlikely(!ncsw))
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2285 * Oops. Go back and try again..
2287 if (unlikely(running)) {
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2301 if (unlikely(on_rq)) {
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2327 * NOTE: this function doesn't have to take the runqueue lock,
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2333 void kick_process(struct task_struct *p)
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2343 EXPORT_SYMBOL_GPL(kick_process);
2344 #endif /* CONFIG_SMP */
2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2350 static int select_fallback_rq(int cpu, struct task_struct *p)
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2365 /* No more Mr. Nice Guy. */
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2384 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2393 * Since this is common to all placement strategies, this lives here.
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2400 cpu = select_fallback_rq(task_cpu(p), p);
2405 static void update_avg(u64 *avg, u64 sample)
2407 s64 diff = sample - *avg;
2413 ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
2415 #ifdef CONFIG_SCHEDSTATS
2417 int this_cpu = smp_processor_id();
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2423 struct sched_domain *sd;
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2433 #endif /* CONFIG_SMP */
2435 schedstat_inc(rq, ttwu_count);
2436 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441 if (cpu != task_cpu(p))
2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2444 #endif /* CONFIG_SCHEDSTATS */
2447 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2449 activate_task(rq, p, en_flags);
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
2458 ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
2460 trace_sched_wakeup(p, true);
2461 check_preempt_curr(rq, p, wake_flags);
2463 p->state = TASK_RUNNING;
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2475 update_avg(&rq->avg_idle, delta);
2482 * try_to_wake_up - wake up a thread
2483 * @p: the thread to be awakened
2484 * @state: the mask of task states that can be woken
2485 * @wake_flags: wake modifier flags (WF_*)
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
2496 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2499 int cpu, orig_cpu, this_cpu, success = 0;
2500 unsigned long flags;
2501 unsigned long en_flags = ENQUEUE_WAKEUP;
2504 this_cpu = get_cpu();
2507 raw_spin_lock_irqsave(&p->pi_lock, flags);
2508 rq = __task_rq_lock(p);
2509 if (!(p->state & state))
2519 if (unlikely(task_running(rq, p)))
2523 * In order to handle concurrent wakeups and release the rq->lock
2524 * we put the task in TASK_WAKING state.
2526 * First fix up the nr_uninterruptible count:
2528 if (task_contributes_to_load(p)) {
2529 if (likely(cpu_online(orig_cpu)))
2530 rq->nr_uninterruptible--;
2532 this_rq()->nr_uninterruptible--;
2534 p->state = TASK_WAKING;
2536 if (p->sched_class->task_waking) {
2537 p->sched_class->task_waking(p);
2538 en_flags |= ENQUEUE_WAKING;
2541 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2542 if (cpu != orig_cpu)
2543 set_task_cpu(p, cpu);
2544 __task_rq_unlock(rq);
2547 raw_spin_lock(&rq->lock);
2550 * We migrated the task without holding either rq->lock, however
2551 * since the task is not on the task list itself, nobody else
2552 * will try and migrate the task, hence the rq should match the
2553 * cpu we just moved it to.
2555 WARN_ON(task_cpu(p) != cpu);
2556 WARN_ON(p->state != TASK_WAKING);
2559 #endif /* CONFIG_SMP */
2560 ttwu_activate(rq, p, en_flags);
2562 ttwu_post_activation(p, rq, wake_flags);
2563 ttwu_stat(rq, p, cpu, wake_flags);
2566 __task_rq_unlock(rq);
2567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2574 * try_to_wake_up_local - try to wake up a local task with rq lock held
2575 * @p: the thread to be awakened
2577 * Put @p on the run-queue if it's not already there. The caller must
2578 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2579 * the current task. this_rq() stays locked over invocation.
2581 static void try_to_wake_up_local(struct task_struct *p)
2583 struct rq *rq = task_rq(p);
2585 BUG_ON(rq != this_rq());
2586 BUG_ON(p == current);
2587 lockdep_assert_held(&rq->lock);
2589 if (!(p->state & TASK_NORMAL))
2593 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2595 ttwu_post_activation(p, rq, 0);
2596 ttwu_stat(rq, p, smp_processor_id(), 0);
2600 * wake_up_process - Wake up a specific process
2601 * @p: The process to be woken up.
2603 * Attempt to wake up the nominated process and move it to the set of runnable
2604 * processes. Returns 1 if the process was woken up, 0 if it was already
2607 * It may be assumed that this function implies a write memory barrier before
2608 * changing the task state if and only if any tasks are woken up.
2610 int wake_up_process(struct task_struct *p)
2612 return try_to_wake_up(p, TASK_ALL, 0);
2614 EXPORT_SYMBOL(wake_up_process);
2616 int wake_up_state(struct task_struct *p, unsigned int state)
2618 return try_to_wake_up(p, state, 0);
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
2625 * __sched_fork() is basic setup used by init_idle() too:
2627 static void __sched_fork(struct task_struct *p)
2632 p->se.exec_start = 0;
2633 p->se.sum_exec_runtime = 0;
2634 p->se.prev_sum_exec_runtime = 0;
2635 p->se.nr_migrations = 0;
2637 INIT_LIST_HEAD(&p->se.group_node);
2639 #ifdef CONFIG_SCHEDSTATS
2640 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2643 INIT_LIST_HEAD(&p->rt.run_list);
2645 #ifdef CONFIG_PREEMPT_NOTIFIERS
2646 INIT_HLIST_HEAD(&p->preempt_notifiers);
2651 * fork()/clone()-time setup:
2653 void sched_fork(struct task_struct *p, int clone_flags)
2655 int cpu = get_cpu();
2659 * We mark the process as running here. This guarantees that
2660 * nobody will actually run it, and a signal or other external
2661 * event cannot wake it up and insert it on the runqueue either.
2663 p->state = TASK_RUNNING;
2666 * Revert to default priority/policy on fork if requested.
2668 if (unlikely(p->sched_reset_on_fork)) {
2669 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2670 p->policy = SCHED_NORMAL;
2671 p->normal_prio = p->static_prio;
2674 if (PRIO_TO_NICE(p->static_prio) < 0) {
2675 p->static_prio = NICE_TO_PRIO(0);
2676 p->normal_prio = p->static_prio;
2681 * We don't need the reset flag anymore after the fork. It has
2682 * fulfilled its duty:
2684 p->sched_reset_on_fork = 0;
2688 * Make sure we do not leak PI boosting priority to the child.
2690 p->prio = current->normal_prio;
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
2695 if (p->sched_class->task_fork)
2696 p->sched_class->task_fork(p);
2699 * The child is not yet in the pid-hash so no cgroup attach races,
2700 * and the cgroup is pinned to this child due to cgroup_fork()
2701 * is ran before sched_fork().
2703 * Silence PROVE_RCU.
2706 set_task_cpu(p, cpu);
2709 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2710 if (likely(sched_info_on()))
2711 memset(&p->sched_info, 0, sizeof(p->sched_info));
2713 #if defined(CONFIG_SMP)
2716 #ifdef CONFIG_PREEMPT
2717 /* Want to start with kernel preemption disabled. */
2718 task_thread_info(p)->preempt_count = 1;
2721 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2728 * wake_up_new_task - wake up a newly created task for the first time.
2730 * This function will do some initial scheduler statistics housekeeping
2731 * that must be done for every newly created context, then puts the task
2732 * on the runqueue and wakes it.
2734 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2736 unsigned long flags;
2738 int cpu __maybe_unused = get_cpu();
2741 rq = task_rq_lock(p, &flags);
2742 p->state = TASK_WAKING;
2745 * Fork balancing, do it here and not earlier because:
2746 * - cpus_allowed can change in the fork path
2747 * - any previously selected cpu might disappear through hotplug
2749 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2750 * without people poking at ->cpus_allowed.
2752 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2753 set_task_cpu(p, cpu);
2755 p->state = TASK_RUNNING;
2756 task_rq_unlock(rq, &flags);
2759 rq = task_rq_lock(p, &flags);
2760 activate_task(rq, p, 0);
2762 trace_sched_wakeup_new(p, true);
2763 check_preempt_curr(rq, p, WF_FORK);
2765 if (p->sched_class->task_woken)
2766 p->sched_class->task_woken(rq, p);
2768 task_rq_unlock(rq, &flags);
2772 #ifdef CONFIG_PREEMPT_NOTIFIERS
2775 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2776 * @notifier: notifier struct to register
2778 void preempt_notifier_register(struct preempt_notifier *notifier)
2780 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2782 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2785 * preempt_notifier_unregister - no longer interested in preemption notifications
2786 * @notifier: notifier struct to unregister
2788 * This is safe to call from within a preemption notifier.
2790 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2792 hlist_del(¬ifier->link);
2794 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2796 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2798 struct preempt_notifier *notifier;
2799 struct hlist_node *node;
2801 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2802 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2806 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2807 struct task_struct *next)
2809 struct preempt_notifier *notifier;
2810 struct hlist_node *node;
2812 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2813 notifier->ops->sched_out(notifier, next);
2816 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2818 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2823 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2824 struct task_struct *next)
2828 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2831 * prepare_task_switch - prepare to switch tasks
2832 * @rq: the runqueue preparing to switch
2833 * @prev: the current task that is being switched out
2834 * @next: the task we are going to switch to.
2836 * This is called with the rq lock held and interrupts off. It must
2837 * be paired with a subsequent finish_task_switch after the context
2840 * prepare_task_switch sets up locking and calls architecture specific
2844 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2845 struct task_struct *next)
2847 sched_info_switch(prev, next);
2848 perf_event_task_sched_out(prev, next);
2849 fire_sched_out_preempt_notifiers(prev, next);
2850 prepare_lock_switch(rq, next);
2851 prepare_arch_switch(next);
2852 trace_sched_switch(prev, next);
2856 * finish_task_switch - clean up after a task-switch
2857 * @rq: runqueue associated with task-switch
2858 * @prev: the thread we just switched away from.
2860 * finish_task_switch must be called after the context switch, paired
2861 * with a prepare_task_switch call before the context switch.
2862 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2863 * and do any other architecture-specific cleanup actions.
2865 * Note that we may have delayed dropping an mm in context_switch(). If
2866 * so, we finish that here outside of the runqueue lock. (Doing it
2867 * with the lock held can cause deadlocks; see schedule() for
2870 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2871 __releases(rq->lock)
2873 struct mm_struct *mm = rq->prev_mm;
2879 * A task struct has one reference for the use as "current".
2880 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2881 * schedule one last time. The schedule call will never return, and
2882 * the scheduled task must drop that reference.
2883 * The test for TASK_DEAD must occur while the runqueue locks are
2884 * still held, otherwise prev could be scheduled on another cpu, die
2885 * there before we look at prev->state, and then the reference would
2889 prev_state = prev->state;
2890 finish_arch_switch(prev);
2891 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2892 local_irq_disable();
2893 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2894 perf_event_task_sched_in(current);
2895 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2898 finish_lock_switch(rq, prev);
2900 fire_sched_in_preempt_notifiers(current);
2903 if (unlikely(prev_state == TASK_DEAD)) {
2905 * Remove function-return probe instances associated with this
2906 * task and put them back on the free list.
2908 kprobe_flush_task(prev);
2909 put_task_struct(prev);
2915 /* assumes rq->lock is held */
2916 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2918 if (prev->sched_class->pre_schedule)
2919 prev->sched_class->pre_schedule(rq, prev);
2922 /* rq->lock is NOT held, but preemption is disabled */
2923 static inline void post_schedule(struct rq *rq)
2925 if (rq->post_schedule) {
2926 unsigned long flags;
2928 raw_spin_lock_irqsave(&rq->lock, flags);
2929 if (rq->curr->sched_class->post_schedule)
2930 rq->curr->sched_class->post_schedule(rq);
2931 raw_spin_unlock_irqrestore(&rq->lock, flags);
2933 rq->post_schedule = 0;
2939 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2943 static inline void post_schedule(struct rq *rq)
2950 * schedule_tail - first thing a freshly forked thread must call.
2951 * @prev: the thread we just switched away from.
2953 asmlinkage void schedule_tail(struct task_struct *prev)
2954 __releases(rq->lock)
2956 struct rq *rq = this_rq();
2958 finish_task_switch(rq, prev);
2961 * FIXME: do we need to worry about rq being invalidated by the
2966 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2967 /* In this case, finish_task_switch does not reenable preemption */
2970 if (current->set_child_tid)
2971 put_user(task_pid_vnr(current), current->set_child_tid);
2975 * context_switch - switch to the new MM and the new
2976 * thread's register state.
2979 context_switch(struct rq *rq, struct task_struct *prev,
2980 struct task_struct *next)
2982 struct mm_struct *mm, *oldmm;
2984 prepare_task_switch(rq, prev, next);
2987 oldmm = prev->active_mm;
2989 * For paravirt, this is coupled with an exit in switch_to to
2990 * combine the page table reload and the switch backend into
2993 arch_start_context_switch(prev);
2996 next->active_mm = oldmm;
2997 atomic_inc(&oldmm->mm_count);
2998 enter_lazy_tlb(oldmm, next);
3000 switch_mm(oldmm, mm, next);
3003 prev->active_mm = NULL;
3004 rq->prev_mm = oldmm;
3007 * Since the runqueue lock will be released by the next
3008 * task (which is an invalid locking op but in the case
3009 * of the scheduler it's an obvious special-case), so we
3010 * do an early lockdep release here:
3012 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3013 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3016 /* Here we just switch the register state and the stack. */
3017 switch_to(prev, next, prev);
3021 * this_rq must be evaluated again because prev may have moved
3022 * CPUs since it called schedule(), thus the 'rq' on its stack
3023 * frame will be invalid.
3025 finish_task_switch(this_rq(), prev);
3029 * nr_running, nr_uninterruptible and nr_context_switches:
3031 * externally visible scheduler statistics: current number of runnable
3032 * threads, current number of uninterruptible-sleeping threads, total
3033 * number of context switches performed since bootup.
3035 unsigned long nr_running(void)
3037 unsigned long i, sum = 0;
3039 for_each_online_cpu(i)
3040 sum += cpu_rq(i)->nr_running;
3045 unsigned long nr_uninterruptible(void)
3047 unsigned long i, sum = 0;
3049 for_each_possible_cpu(i)
3050 sum += cpu_rq(i)->nr_uninterruptible;
3053 * Since we read the counters lockless, it might be slightly
3054 * inaccurate. Do not allow it to go below zero though:
3056 if (unlikely((long)sum < 0))
3062 unsigned long long nr_context_switches(void)
3065 unsigned long long sum = 0;
3067 for_each_possible_cpu(i)
3068 sum += cpu_rq(i)->nr_switches;
3073 unsigned long nr_iowait(void)
3075 unsigned long i, sum = 0;
3077 for_each_possible_cpu(i)
3078 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3083 unsigned long nr_iowait_cpu(int cpu)
3085 struct rq *this = cpu_rq(cpu);
3086 return atomic_read(&this->nr_iowait);
3089 unsigned long this_cpu_load(void)
3091 struct rq *this = this_rq();
3092 return this->cpu_load[0];
3096 /* Variables and functions for calc_load */
3097 static atomic_long_t calc_load_tasks;
3098 static unsigned long calc_load_update;
3099 unsigned long avenrun[3];
3100 EXPORT_SYMBOL(avenrun);
3102 static long calc_load_fold_active(struct rq *this_rq)
3104 long nr_active, delta = 0;
3106 nr_active = this_rq->nr_running;
3107 nr_active += (long) this_rq->nr_uninterruptible;
3109 if (nr_active != this_rq->calc_load_active) {
3110 delta = nr_active - this_rq->calc_load_active;
3111 this_rq->calc_load_active = nr_active;
3117 static unsigned long
3118 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3121 load += active * (FIXED_1 - exp);
3122 load += 1UL << (FSHIFT - 1);
3123 return load >> FSHIFT;
3128 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3130 * When making the ILB scale, we should try to pull this in as well.
3132 static atomic_long_t calc_load_tasks_idle;
3134 static void calc_load_account_idle(struct rq *this_rq)
3138 delta = calc_load_fold_active(this_rq);
3140 atomic_long_add(delta, &calc_load_tasks_idle);
3143 static long calc_load_fold_idle(void)
3148 * Its got a race, we don't care...
3150 if (atomic_long_read(&calc_load_tasks_idle))
3151 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3157 * fixed_power_int - compute: x^n, in O(log n) time
3159 * @x: base of the power
3160 * @frac_bits: fractional bits of @x
3161 * @n: power to raise @x to.
3163 * By exploiting the relation between the definition of the natural power
3164 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3165 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3166 * (where: n_i \elem {0, 1}, the binary vector representing n),
3167 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3168 * of course trivially computable in O(log_2 n), the length of our binary
3171 static unsigned long
3172 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3174 unsigned long result = 1UL << frac_bits;
3179 result += 1UL << (frac_bits - 1);
3180 result >>= frac_bits;
3186 x += 1UL << (frac_bits - 1);
3194 * a1 = a0 * e + a * (1 - e)
3196 * a2 = a1 * e + a * (1 - e)
3197 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3198 * = a0 * e^2 + a * (1 - e) * (1 + e)
3200 * a3 = a2 * e + a * (1 - e)
3201 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3202 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3206 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3207 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3208 * = a0 * e^n + a * (1 - e^n)
3210 * [1] application of the geometric series:
3213 * S_n := \Sum x^i = -------------
3216 static unsigned long
3217 calc_load_n(unsigned long load, unsigned long exp,
3218 unsigned long active, unsigned int n)
3221 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3225 * NO_HZ can leave us missing all per-cpu ticks calling
3226 * calc_load_account_active(), but since an idle CPU folds its delta into
3227 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3228 * in the pending idle delta if our idle period crossed a load cycle boundary.
3230 * Once we've updated the global active value, we need to apply the exponential
3231 * weights adjusted to the number of cycles missed.
3233 static void calc_global_nohz(unsigned long ticks)
3235 long delta, active, n;
3237 if (time_before(jiffies, calc_load_update))
3241 * If we crossed a calc_load_update boundary, make sure to fold
3242 * any pending idle changes, the respective CPUs might have
3243 * missed the tick driven calc_load_account_active() update
3246 delta = calc_load_fold_idle();
3248 atomic_long_add(delta, &calc_load_tasks);
3251 * If we were idle for multiple load cycles, apply them.
3253 if (ticks >= LOAD_FREQ) {
3254 n = ticks / LOAD_FREQ;
3256 active = atomic_long_read(&calc_load_tasks);
3257 active = active > 0 ? active * FIXED_1 : 0;
3259 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3260 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3261 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3263 calc_load_update += n * LOAD_FREQ;
3267 * Its possible the remainder of the above division also crosses
3268 * a LOAD_FREQ period, the regular check in calc_global_load()
3269 * which comes after this will take care of that.
3271 * Consider us being 11 ticks before a cycle completion, and us
3272 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3273 * age us 4 cycles, and the test in calc_global_load() will
3274 * pick up the final one.
3278 static void calc_load_account_idle(struct rq *this_rq)
3282 static inline long calc_load_fold_idle(void)
3287 static void calc_global_nohz(unsigned long ticks)
3293 * get_avenrun - get the load average array
3294 * @loads: pointer to dest load array
3295 * @offset: offset to add
3296 * @shift: shift count to shift the result left
3298 * These values are estimates at best, so no need for locking.
3300 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3302 loads[0] = (avenrun[0] + offset) << shift;
3303 loads[1] = (avenrun[1] + offset) << shift;
3304 loads[2] = (avenrun[2] + offset) << shift;
3308 * calc_load - update the avenrun load estimates 10 ticks after the
3309 * CPUs have updated calc_load_tasks.
3311 void calc_global_load(unsigned long ticks)
3315 calc_global_nohz(ticks);
3317 if (time_before(jiffies, calc_load_update + 10))
3320 active = atomic_long_read(&calc_load_tasks);
3321 active = active > 0 ? active * FIXED_1 : 0;
3323 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3324 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3325 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3327 calc_load_update += LOAD_FREQ;
3331 * Called from update_cpu_load() to periodically update this CPU's
3334 static void calc_load_account_active(struct rq *this_rq)
3338 if (time_before(jiffies, this_rq->calc_load_update))
3341 delta = calc_load_fold_active(this_rq);
3342 delta += calc_load_fold_idle();
3344 atomic_long_add(delta, &calc_load_tasks);
3346 this_rq->calc_load_update += LOAD_FREQ;
3350 * The exact cpuload at various idx values, calculated at every tick would be
3351 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3353 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3354 * on nth tick when cpu may be busy, then we have:
3355 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3356 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3358 * decay_load_missed() below does efficient calculation of
3359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3360 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3362 * The calculation is approximated on a 128 point scale.
3363 * degrade_zero_ticks is the number of ticks after which load at any
3364 * particular idx is approximated to be zero.
3365 * degrade_factor is a precomputed table, a row for each load idx.
3366 * Each column corresponds to degradation factor for a power of two ticks,
3367 * based on 128 point scale.
3369 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3370 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3372 * With this power of 2 load factors, we can degrade the load n times
3373 * by looking at 1 bits in n and doing as many mult/shift instead of
3374 * n mult/shifts needed by the exact degradation.
3376 #define DEGRADE_SHIFT 7
3377 static const unsigned char
3378 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3379 static const unsigned char
3380 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3381 {0, 0, 0, 0, 0, 0, 0, 0},
3382 {64, 32, 8, 0, 0, 0, 0, 0},
3383 {96, 72, 40, 12, 1, 0, 0},
3384 {112, 98, 75, 43, 15, 1, 0},
3385 {120, 112, 98, 76, 45, 16, 2} };
3388 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3389 * would be when CPU is idle and so we just decay the old load without
3390 * adding any new load.
3392 static unsigned long
3393 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3397 if (!missed_updates)
3400 if (missed_updates >= degrade_zero_ticks[idx])
3404 return load >> missed_updates;
3406 while (missed_updates) {
3407 if (missed_updates % 2)
3408 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3410 missed_updates >>= 1;
3417 * Update rq->cpu_load[] statistics. This function is usually called every
3418 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3419 * every tick. We fix it up based on jiffies.
3421 static void update_cpu_load(struct rq *this_rq)
3423 unsigned long this_load = this_rq->load.weight;
3424 unsigned long curr_jiffies = jiffies;
3425 unsigned long pending_updates;
3428 this_rq->nr_load_updates++;
3430 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3431 if (curr_jiffies == this_rq->last_load_update_tick)
3434 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3435 this_rq->last_load_update_tick = curr_jiffies;
3437 /* Update our load: */
3438 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3439 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3440 unsigned long old_load, new_load;
3442 /* scale is effectively 1 << i now, and >> i divides by scale */
3444 old_load = this_rq->cpu_load[i];
3445 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3446 new_load = this_load;
3448 * Round up the averaging division if load is increasing. This
3449 * prevents us from getting stuck on 9 if the load is 10, for
3452 if (new_load > old_load)
3453 new_load += scale - 1;
3455 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3458 sched_avg_update(this_rq);
3461 static void update_cpu_load_active(struct rq *this_rq)
3463 update_cpu_load(this_rq);
3465 calc_load_account_active(this_rq);
3471 * sched_exec - execve() is a valuable balancing opportunity, because at
3472 * this point the task has the smallest effective memory and cache footprint.
3474 void sched_exec(void)
3476 struct task_struct *p = current;
3477 unsigned long flags;
3481 rq = task_rq_lock(p, &flags);
3482 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3483 if (dest_cpu == smp_processor_id())
3487 * select_task_rq() can race against ->cpus_allowed
3489 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3490 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
3491 struct migration_arg arg = { p, dest_cpu };
3493 task_rq_unlock(rq, &flags);
3494 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3498 task_rq_unlock(rq, &flags);
3503 DEFINE_PER_CPU(struct kernel_stat, kstat);
3505 EXPORT_PER_CPU_SYMBOL(kstat);
3508 * Return any ns on the sched_clock that have not yet been accounted in
3509 * @p in case that task is currently running.
3511 * Called with task_rq_lock() held on @rq.
3513 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3517 if (task_current(rq, p)) {
3518 update_rq_clock(rq);
3519 ns = rq->clock_task - p->se.exec_start;
3527 unsigned long long task_delta_exec(struct task_struct *p)
3529 unsigned long flags;
3533 rq = task_rq_lock(p, &flags);
3534 ns = do_task_delta_exec(p, rq);
3535 task_rq_unlock(rq, &flags);
3541 * Return accounted runtime for the task.
3542 * In case the task is currently running, return the runtime plus current's
3543 * pending runtime that have not been accounted yet.
3545 unsigned long long task_sched_runtime(struct task_struct *p)
3547 unsigned long flags;
3551 rq = task_rq_lock(p, &flags);
3552 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3553 task_rq_unlock(rq, &flags);
3559 * Return sum_exec_runtime for the thread group.
3560 * In case the task is currently running, return the sum plus current's
3561 * pending runtime that have not been accounted yet.
3563 * Note that the thread group might have other running tasks as well,
3564 * so the return value not includes other pending runtime that other
3565 * running tasks might have.
3567 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3569 struct task_cputime totals;
3570 unsigned long flags;
3574 rq = task_rq_lock(p, &flags);
3575 thread_group_cputime(p, &totals);
3576 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3577 task_rq_unlock(rq, &flags);
3583 * Account user cpu time to a process.
3584 * @p: the process that the cpu time gets accounted to
3585 * @cputime: the cpu time spent in user space since the last update
3586 * @cputime_scaled: cputime scaled by cpu frequency
3588 void account_user_time(struct task_struct *p, cputime_t cputime,
3589 cputime_t cputime_scaled)
3591 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3594 /* Add user time to process. */
3595 p->utime = cputime_add(p->utime, cputime);
3596 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3597 account_group_user_time(p, cputime);
3599 /* Add user time to cpustat. */
3600 tmp = cputime_to_cputime64(cputime);
3601 if (TASK_NICE(p) > 0)
3602 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3604 cpustat->user = cputime64_add(cpustat->user, tmp);
3606 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3607 /* Account for user time used */
3608 acct_update_integrals(p);
3612 * Account guest cpu time to a process.
3613 * @p: the process that the cpu time gets accounted to
3614 * @cputime: the cpu time spent in virtual machine since the last update
3615 * @cputime_scaled: cputime scaled by cpu frequency
3617 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3618 cputime_t cputime_scaled)
3621 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3623 tmp = cputime_to_cputime64(cputime);
3625 /* Add guest time to process. */
3626 p->utime = cputime_add(p->utime, cputime);
3627 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3628 account_group_user_time(p, cputime);
3629 p->gtime = cputime_add(p->gtime, cputime);
3631 /* Add guest time to cpustat. */
3632 if (TASK_NICE(p) > 0) {
3633 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3634 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3636 cpustat->user = cputime64_add(cpustat->user, tmp);
3637 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3642 * Account system cpu time to a process and desired cpustat field
3643 * @p: the process that the cpu time gets accounted to
3644 * @cputime: the cpu time spent in kernel space since the last update
3645 * @cputime_scaled: cputime scaled by cpu frequency
3646 * @target_cputime64: pointer to cpustat field that has to be updated
3649 void __account_system_time(struct task_struct *p, cputime_t cputime,
3650 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3652 cputime64_t tmp = cputime_to_cputime64(cputime);
3654 /* Add system time to process. */
3655 p->stime = cputime_add(p->stime, cputime);
3656 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3657 account_group_system_time(p, cputime);
3659 /* Add system time to cpustat. */
3660 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3661 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3663 /* Account for system time used */
3664 acct_update_integrals(p);
3668 * Account system cpu time to a process.
3669 * @p: the process that the cpu time gets accounted to
3670 * @hardirq_offset: the offset to subtract from hardirq_count()
3671 * @cputime: the cpu time spent in kernel space since the last update
3672 * @cputime_scaled: cputime scaled by cpu frequency
3674 void account_system_time(struct task_struct *p, int hardirq_offset,
3675 cputime_t cputime, cputime_t cputime_scaled)
3677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3678 cputime64_t *target_cputime64;
3680 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3681 account_guest_time(p, cputime, cputime_scaled);
3685 if (hardirq_count() - hardirq_offset)
3686 target_cputime64 = &cpustat->irq;
3687 else if (in_serving_softirq())
3688 target_cputime64 = &cpustat->softirq;
3690 target_cputime64 = &cpustat->system;
3692 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3696 * Account for involuntary wait time.
3697 * @cputime: the cpu time spent in involuntary wait
3699 void account_steal_time(cputime_t cputime)
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3702 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3704 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3708 * Account for idle time.
3709 * @cputime: the cpu time spent in idle wait
3711 void account_idle_time(cputime_t cputime)
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3714 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3715 struct rq *rq = this_rq();
3717 if (atomic_read(&rq->nr_iowait) > 0)
3718 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3720 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3723 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3725 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3727 * Account a tick to a process and cpustat
3728 * @p: the process that the cpu time gets accounted to
3729 * @user_tick: is the tick from userspace
3730 * @rq: the pointer to rq
3732 * Tick demultiplexing follows the order
3733 * - pending hardirq update
3734 * - pending softirq update
3738 * - check for guest_time
3739 * - else account as system_time
3741 * Check for hardirq is done both for system and user time as there is
3742 * no timer going off while we are on hardirq and hence we may never get an
3743 * opportunity to update it solely in system time.
3744 * p->stime and friends are only updated on system time and not on irq
3745 * softirq as those do not count in task exec_runtime any more.
3747 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3750 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3751 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3752 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3754 if (irqtime_account_hi_update()) {
3755 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3756 } else if (irqtime_account_si_update()) {
3757 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3758 } else if (this_cpu_ksoftirqd() == p) {
3760 * ksoftirqd time do not get accounted in cpu_softirq_time.
3761 * So, we have to handle it separately here.
3762 * Also, p->stime needs to be updated for ksoftirqd.
3764 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3766 } else if (user_tick) {
3767 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3768 } else if (p == rq->idle) {
3769 account_idle_time(cputime_one_jiffy);
3770 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3771 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3773 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3778 static void irqtime_account_idle_ticks(int ticks)
3781 struct rq *rq = this_rq();
3783 for (i = 0; i < ticks; i++)
3784 irqtime_account_process_tick(current, 0, rq);
3786 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3787 static void irqtime_account_idle_ticks(int ticks) {}
3788 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3790 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3793 * Account a single tick of cpu time.
3794 * @p: the process that the cpu time gets accounted to
3795 * @user_tick: indicates if the tick is a user or a system tick
3797 void account_process_tick(struct task_struct *p, int user_tick)
3799 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3800 struct rq *rq = this_rq();
3802 if (sched_clock_irqtime) {
3803 irqtime_account_process_tick(p, user_tick, rq);
3808 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3809 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3810 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3813 account_idle_time(cputime_one_jiffy);
3817 * Account multiple ticks of steal time.
3818 * @p: the process from which the cpu time has been stolen
3819 * @ticks: number of stolen ticks
3821 void account_steal_ticks(unsigned long ticks)
3823 account_steal_time(jiffies_to_cputime(ticks));
3827 * Account multiple ticks of idle time.
3828 * @ticks: number of stolen ticks
3830 void account_idle_ticks(unsigned long ticks)
3833 if (sched_clock_irqtime) {
3834 irqtime_account_idle_ticks(ticks);
3838 account_idle_time(jiffies_to_cputime(ticks));
3844 * Use precise platform statistics if available:
3846 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3847 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3853 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3855 struct task_cputime cputime;
3857 thread_group_cputime(p, &cputime);
3859 *ut = cputime.utime;
3860 *st = cputime.stime;
3864 #ifndef nsecs_to_cputime
3865 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3868 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3870 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3873 * Use CFS's precise accounting:
3875 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3881 do_div(temp, total);
3882 utime = (cputime_t)temp;
3887 * Compare with previous values, to keep monotonicity:
3889 p->prev_utime = max(p->prev_utime, utime);
3890 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3892 *ut = p->prev_utime;
3893 *st = p->prev_stime;
3897 * Must be called with siglock held.
3899 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3901 struct signal_struct *sig = p->signal;
3902 struct task_cputime cputime;
3903 cputime_t rtime, utime, total;
3905 thread_group_cputime(p, &cputime);
3907 total = cputime_add(cputime.utime, cputime.stime);
3908 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3913 temp *= cputime.utime;
3914 do_div(temp, total);
3915 utime = (cputime_t)temp;
3919 sig->prev_utime = max(sig->prev_utime, utime);
3920 sig->prev_stime = max(sig->prev_stime,
3921 cputime_sub(rtime, sig->prev_utime));
3923 *ut = sig->prev_utime;
3924 *st = sig->prev_stime;
3929 * This function gets called by the timer code, with HZ frequency.
3930 * We call it with interrupts disabled.
3932 * It also gets called by the fork code, when changing the parent's
3935 void scheduler_tick(void)
3937 int cpu = smp_processor_id();
3938 struct rq *rq = cpu_rq(cpu);
3939 struct task_struct *curr = rq->curr;
3943 raw_spin_lock(&rq->lock);
3944 update_rq_clock(rq);
3945 update_cpu_load_active(rq);
3946 curr->sched_class->task_tick(rq, curr, 0);
3947 raw_spin_unlock(&rq->lock);
3949 perf_event_task_tick();
3952 rq->idle_at_tick = idle_cpu(cpu);
3953 trigger_load_balance(rq, cpu);
3957 notrace unsigned long get_parent_ip(unsigned long addr)
3959 if (in_lock_functions(addr)) {
3960 addr = CALLER_ADDR2;
3961 if (in_lock_functions(addr))
3962 addr = CALLER_ADDR3;
3967 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3968 defined(CONFIG_PREEMPT_TRACER))
3970 void __kprobes add_preempt_count(int val)
3972 #ifdef CONFIG_DEBUG_PREEMPT
3976 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3979 preempt_count() += val;
3980 #ifdef CONFIG_DEBUG_PREEMPT
3982 * Spinlock count overflowing soon?
3984 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3987 if (preempt_count() == val)
3988 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3990 EXPORT_SYMBOL(add_preempt_count);
3992 void __kprobes sub_preempt_count(int val)
3994 #ifdef CONFIG_DEBUG_PREEMPT
3998 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4001 * Is the spinlock portion underflowing?
4003 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4004 !(preempt_count() & PREEMPT_MASK)))
4008 if (preempt_count() == val)
4009 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4010 preempt_count() -= val;
4012 EXPORT_SYMBOL(sub_preempt_count);
4017 * Print scheduling while atomic bug:
4019 static noinline void __schedule_bug(struct task_struct *prev)
4021 struct pt_regs *regs = get_irq_regs();
4023 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4024 prev->comm, prev->pid, preempt_count());
4026 debug_show_held_locks(prev);
4028 if (irqs_disabled())
4029 print_irqtrace_events(prev);
4038 * Various schedule()-time debugging checks and statistics:
4040 static inline void schedule_debug(struct task_struct *prev)
4043 * Test if we are atomic. Since do_exit() needs to call into
4044 * schedule() atomically, we ignore that path for now.
4045 * Otherwise, whine if we are scheduling when we should not be.
4047 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4048 __schedule_bug(prev);
4050 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4052 schedstat_inc(this_rq(), sched_count);
4053 #ifdef CONFIG_SCHEDSTATS
4054 if (unlikely(prev->lock_depth >= 0)) {
4055 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4056 schedstat_inc(prev, sched_info.bkl_count);
4061 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4064 update_rq_clock(rq);
4065 prev->sched_class->put_prev_task(rq, prev);
4069 * Pick up the highest-prio task:
4071 static inline struct task_struct *
4072 pick_next_task(struct rq *rq)
4074 const struct sched_class *class;
4075 struct task_struct *p;
4078 * Optimization: we know that if all tasks are in
4079 * the fair class we can call that function directly:
4081 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4082 p = fair_sched_class.pick_next_task(rq);
4087 for_each_class(class) {
4088 p = class->pick_next_task(rq);
4093 BUG(); /* the idle class will always have a runnable task */
4097 * schedule() is the main scheduler function.
4099 asmlinkage void __sched schedule(void)
4101 struct task_struct *prev, *next;
4102 unsigned long *switch_count;
4108 cpu = smp_processor_id();
4110 rcu_note_context_switch(cpu);
4113 schedule_debug(prev);
4115 if (sched_feat(HRTICK))
4118 raw_spin_lock_irq(&rq->lock);
4120 switch_count = &prev->nivcsw;
4121 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4122 if (unlikely(signal_pending_state(prev->state, prev))) {
4123 prev->state = TASK_RUNNING;
4126 * If a worker is going to sleep, notify and
4127 * ask workqueue whether it wants to wake up a
4128 * task to maintain concurrency. If so, wake
4131 if (prev->flags & PF_WQ_WORKER) {
4132 struct task_struct *to_wakeup;
4134 to_wakeup = wq_worker_sleeping(prev, cpu);
4136 try_to_wake_up_local(to_wakeup);
4139 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4143 * If we are going to sleep and we have plugged IO queued, make
4144 * sure to submit it to avoid deadlocks.
4146 if (blk_needs_flush_plug(prev)) {
4147 raw_spin_unlock(&rq->lock);
4148 blk_flush_plug(prev);
4149 raw_spin_lock(&rq->lock);
4152 switch_count = &prev->nvcsw;
4155 pre_schedule(rq, prev);
4157 if (unlikely(!rq->nr_running))
4158 idle_balance(cpu, rq);
4160 put_prev_task(rq, prev);
4161 next = pick_next_task(rq);
4162 clear_tsk_need_resched(prev);
4163 rq->skip_clock_update = 0;
4165 if (likely(prev != next)) {
4170 context_switch(rq, prev, next); /* unlocks the rq */
4172 * The context switch have flipped the stack from under us
4173 * and restored the local variables which were saved when
4174 * this task called schedule() in the past. prev == current
4175 * is still correct, but it can be moved to another cpu/rq.
4177 cpu = smp_processor_id();
4180 raw_spin_unlock_irq(&rq->lock);
4184 preempt_enable_no_resched();
4188 EXPORT_SYMBOL(schedule);
4190 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4192 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4197 if (lock->owner != owner)
4201 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4202 * lock->owner still matches owner, if that fails, owner might
4203 * point to free()d memory, if it still matches, the rcu_read_lock()
4204 * ensures the memory stays valid.
4208 ret = owner->on_cpu;
4216 * Look out! "owner" is an entirely speculative pointer
4217 * access and not reliable.
4219 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4221 if (!sched_feat(OWNER_SPIN))
4224 while (owner_running(lock, owner)) {
4228 arch_mutex_cpu_relax();
4232 * If the owner changed to another task there is likely
4233 * heavy contention, stop spinning.
4242 #ifdef CONFIG_PREEMPT
4244 * this is the entry point to schedule() from in-kernel preemption
4245 * off of preempt_enable. Kernel preemptions off return from interrupt
4246 * occur there and call schedule directly.
4248 asmlinkage void __sched notrace preempt_schedule(void)
4250 struct thread_info *ti = current_thread_info();
4253 * If there is a non-zero preempt_count or interrupts are disabled,
4254 * we do not want to preempt the current task. Just return..
4256 if (likely(ti->preempt_count || irqs_disabled()))
4260 add_preempt_count_notrace(PREEMPT_ACTIVE);
4262 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4265 * Check again in case we missed a preemption opportunity
4266 * between schedule and now.
4269 } while (need_resched());
4271 EXPORT_SYMBOL(preempt_schedule);
4274 * this is the entry point to schedule() from kernel preemption
4275 * off of irq context.
4276 * Note, that this is called and return with irqs disabled. This will
4277 * protect us against recursive calling from irq.
4279 asmlinkage void __sched preempt_schedule_irq(void)
4281 struct thread_info *ti = current_thread_info();
4283 /* Catch callers which need to be fixed */
4284 BUG_ON(ti->preempt_count || !irqs_disabled());
4287 add_preempt_count(PREEMPT_ACTIVE);
4290 local_irq_disable();
4291 sub_preempt_count(PREEMPT_ACTIVE);
4294 * Check again in case we missed a preemption opportunity
4295 * between schedule and now.
4298 } while (need_resched());
4301 #endif /* CONFIG_PREEMPT */
4303 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4306 return try_to_wake_up(curr->private, mode, wake_flags);
4308 EXPORT_SYMBOL(default_wake_function);
4311 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4312 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4313 * number) then we wake all the non-exclusive tasks and one exclusive task.
4315 * There are circumstances in which we can try to wake a task which has already
4316 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4317 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4319 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4320 int nr_exclusive, int wake_flags, void *key)
4322 wait_queue_t *curr, *next;
4324 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4325 unsigned flags = curr->flags;
4327 if (curr->func(curr, mode, wake_flags, key) &&
4328 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4334 * __wake_up - wake up threads blocked on a waitqueue.
4336 * @mode: which threads
4337 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4338 * @key: is directly passed to the wakeup function
4340 * It may be assumed that this function implies a write memory barrier before
4341 * changing the task state if and only if any tasks are woken up.
4343 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4344 int nr_exclusive, void *key)
4346 unsigned long flags;
4348 spin_lock_irqsave(&q->lock, flags);
4349 __wake_up_common(q, mode, nr_exclusive, 0, key);
4350 spin_unlock_irqrestore(&q->lock, flags);
4352 EXPORT_SYMBOL(__wake_up);
4355 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4357 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4359 __wake_up_common(q, mode, 1, 0, NULL);
4361 EXPORT_SYMBOL_GPL(__wake_up_locked);
4363 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4365 __wake_up_common(q, mode, 1, 0, key);
4367 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4370 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4372 * @mode: which threads
4373 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4374 * @key: opaque value to be passed to wakeup targets
4376 * The sync wakeup differs that the waker knows that it will schedule
4377 * away soon, so while the target thread will be woken up, it will not
4378 * be migrated to another CPU - ie. the two threads are 'synchronized'
4379 * with each other. This can prevent needless bouncing between CPUs.
4381 * On UP it can prevent extra preemption.
4383 * It may be assumed that this function implies a write memory barrier before
4384 * changing the task state if and only if any tasks are woken up.
4386 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4387 int nr_exclusive, void *key)
4389 unsigned long flags;
4390 int wake_flags = WF_SYNC;
4395 if (unlikely(!nr_exclusive))
4398 spin_lock_irqsave(&q->lock, flags);
4399 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4400 spin_unlock_irqrestore(&q->lock, flags);
4402 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4405 * __wake_up_sync - see __wake_up_sync_key()
4407 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4409 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4411 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4414 * complete: - signals a single thread waiting on this completion
4415 * @x: holds the state of this particular completion
4417 * This will wake up a single thread waiting on this completion. Threads will be
4418 * awakened in the same order in which they were queued.
4420 * See also complete_all(), wait_for_completion() and related routines.
4422 * It may be assumed that this function implies a write memory barrier before
4423 * changing the task state if and only if any tasks are woken up.
4425 void complete(struct completion *x)
4427 unsigned long flags;
4429 spin_lock_irqsave(&x->wait.lock, flags);
4431 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4432 spin_unlock_irqrestore(&x->wait.lock, flags);
4434 EXPORT_SYMBOL(complete);
4437 * complete_all: - signals all threads waiting on this completion
4438 * @x: holds the state of this particular completion
4440 * This will wake up all threads waiting on this particular completion event.
4442 * It may be assumed that this function implies a write memory barrier before
4443 * changing the task state if and only if any tasks are woken up.
4445 void complete_all(struct completion *x)
4447 unsigned long flags;
4449 spin_lock_irqsave(&x->wait.lock, flags);
4450 x->done += UINT_MAX/2;
4451 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4452 spin_unlock_irqrestore(&x->wait.lock, flags);
4454 EXPORT_SYMBOL(complete_all);
4456 static inline long __sched
4457 do_wait_for_common(struct completion *x, long timeout, int state)
4460 DECLARE_WAITQUEUE(wait, current);
4462 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4464 if (signal_pending_state(state, current)) {
4465 timeout = -ERESTARTSYS;
4468 __set_current_state(state);
4469 spin_unlock_irq(&x->wait.lock);
4470 timeout = schedule_timeout(timeout);
4471 spin_lock_irq(&x->wait.lock);
4472 } while (!x->done && timeout);
4473 __remove_wait_queue(&x->wait, &wait);
4478 return timeout ?: 1;
4482 wait_for_common(struct completion *x, long timeout, int state)
4486 spin_lock_irq(&x->wait.lock);
4487 timeout = do_wait_for_common(x, timeout, state);
4488 spin_unlock_irq(&x->wait.lock);
4493 * wait_for_completion: - waits for completion of a task
4494 * @x: holds the state of this particular completion
4496 * This waits to be signaled for completion of a specific task. It is NOT
4497 * interruptible and there is no timeout.
4499 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4500 * and interrupt capability. Also see complete().
4502 void __sched wait_for_completion(struct completion *x)
4504 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4506 EXPORT_SYMBOL(wait_for_completion);
4509 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4510 * @x: holds the state of this particular completion
4511 * @timeout: timeout value in jiffies
4513 * This waits for either a completion of a specific task to be signaled or for a
4514 * specified timeout to expire. The timeout is in jiffies. It is not
4517 unsigned long __sched
4518 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4520 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4522 EXPORT_SYMBOL(wait_for_completion_timeout);
4525 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4526 * @x: holds the state of this particular completion
4528 * This waits for completion of a specific task to be signaled. It is
4531 int __sched wait_for_completion_interruptible(struct completion *x)
4533 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4534 if (t == -ERESTARTSYS)
4538 EXPORT_SYMBOL(wait_for_completion_interruptible);
4541 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4542 * @x: holds the state of this particular completion
4543 * @timeout: timeout value in jiffies
4545 * This waits for either a completion of a specific task to be signaled or for a
4546 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4549 wait_for_completion_interruptible_timeout(struct completion *x,
4550 unsigned long timeout)
4552 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4554 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4557 * wait_for_completion_killable: - waits for completion of a task (killable)
4558 * @x: holds the state of this particular completion
4560 * This waits to be signaled for completion of a specific task. It can be
4561 * interrupted by a kill signal.
4563 int __sched wait_for_completion_killable(struct completion *x)
4565 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4566 if (t == -ERESTARTSYS)
4570 EXPORT_SYMBOL(wait_for_completion_killable);
4573 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4574 * @x: holds the state of this particular completion
4575 * @timeout: timeout value in jiffies
4577 * This waits for either a completion of a specific task to be
4578 * signaled or for a specified timeout to expire. It can be
4579 * interrupted by a kill signal. The timeout is in jiffies.
4582 wait_for_completion_killable_timeout(struct completion *x,
4583 unsigned long timeout)
4585 return wait_for_common(x, timeout, TASK_KILLABLE);
4587 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4590 * try_wait_for_completion - try to decrement a completion without blocking
4591 * @x: completion structure
4593 * Returns: 0 if a decrement cannot be done without blocking
4594 * 1 if a decrement succeeded.
4596 * If a completion is being used as a counting completion,
4597 * attempt to decrement the counter without blocking. This
4598 * enables us to avoid waiting if the resource the completion
4599 * is protecting is not available.
4601 bool try_wait_for_completion(struct completion *x)
4603 unsigned long flags;
4606 spin_lock_irqsave(&x->wait.lock, flags);
4611 spin_unlock_irqrestore(&x->wait.lock, flags);
4614 EXPORT_SYMBOL(try_wait_for_completion);
4617 * completion_done - Test to see if a completion has any waiters
4618 * @x: completion structure
4620 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4621 * 1 if there are no waiters.
4624 bool completion_done(struct completion *x)
4626 unsigned long flags;
4629 spin_lock_irqsave(&x->wait.lock, flags);
4632 spin_unlock_irqrestore(&x->wait.lock, flags);
4635 EXPORT_SYMBOL(completion_done);
4638 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4640 unsigned long flags;
4643 init_waitqueue_entry(&wait, current);
4645 __set_current_state(state);
4647 spin_lock_irqsave(&q->lock, flags);
4648 __add_wait_queue(q, &wait);
4649 spin_unlock(&q->lock);
4650 timeout = schedule_timeout(timeout);
4651 spin_lock_irq(&q->lock);
4652 __remove_wait_queue(q, &wait);
4653 spin_unlock_irqrestore(&q->lock, flags);
4658 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4660 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4662 EXPORT_SYMBOL(interruptible_sleep_on);
4665 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4667 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4669 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4671 void __sched sleep_on(wait_queue_head_t *q)
4673 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4675 EXPORT_SYMBOL(sleep_on);
4677 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4679 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4681 EXPORT_SYMBOL(sleep_on_timeout);
4683 #ifdef CONFIG_RT_MUTEXES
4686 * rt_mutex_setprio - set the current priority of a task
4688 * @prio: prio value (kernel-internal form)
4690 * This function changes the 'effective' priority of a task. It does
4691 * not touch ->normal_prio like __setscheduler().
4693 * Used by the rt_mutex code to implement priority inheritance logic.
4695 void rt_mutex_setprio(struct task_struct *p, int prio)
4697 unsigned long flags;
4698 int oldprio, on_rq, running;
4700 const struct sched_class *prev_class;
4702 BUG_ON(prio < 0 || prio > MAX_PRIO);
4704 lockdep_assert_held(&p->pi_lock);
4706 rq = task_rq_lock(p, &flags);
4708 trace_sched_pi_setprio(p, prio);
4710 prev_class = p->sched_class;
4712 running = task_current(rq, p);
4714 dequeue_task(rq, p, 0);
4716 p->sched_class->put_prev_task(rq, p);
4719 p->sched_class = &rt_sched_class;
4721 p->sched_class = &fair_sched_class;
4726 p->sched_class->set_curr_task(rq);
4728 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4730 check_class_changed(rq, p, prev_class, oldprio);
4731 task_rq_unlock(rq, &flags);
4736 void set_user_nice(struct task_struct *p, long nice)
4738 int old_prio, delta, on_rq;
4739 unsigned long flags;
4742 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4748 rq = task_rq_lock(p, &flags);
4750 * The RT priorities are set via sched_setscheduler(), but we still
4751 * allow the 'normal' nice value to be set - but as expected
4752 * it wont have any effect on scheduling until the task is
4753 * SCHED_FIFO/SCHED_RR:
4755 if (task_has_rt_policy(p)) {
4756 p->static_prio = NICE_TO_PRIO(nice);
4761 dequeue_task(rq, p, 0);
4763 p->static_prio = NICE_TO_PRIO(nice);
4766 p->prio = effective_prio(p);
4767 delta = p->prio - old_prio;
4770 enqueue_task(rq, p, 0);
4772 * If the task increased its priority or is running and
4773 * lowered its priority, then reschedule its CPU:
4775 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4776 resched_task(rq->curr);
4779 task_rq_unlock(rq, &flags);
4781 EXPORT_SYMBOL(set_user_nice);
4784 * can_nice - check if a task can reduce its nice value
4788 int can_nice(const struct task_struct *p, const int nice)
4790 /* convert nice value [19,-20] to rlimit style value [1,40] */
4791 int nice_rlim = 20 - nice;
4793 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4794 capable(CAP_SYS_NICE));
4797 #ifdef __ARCH_WANT_SYS_NICE
4800 * sys_nice - change the priority of the current process.
4801 * @increment: priority increment
4803 * sys_setpriority is a more generic, but much slower function that
4804 * does similar things.
4806 SYSCALL_DEFINE1(nice, int, increment)
4811 * Setpriority might change our priority at the same moment.
4812 * We don't have to worry. Conceptually one call occurs first
4813 * and we have a single winner.
4815 if (increment < -40)
4820 nice = TASK_NICE(current) + increment;
4826 if (increment < 0 && !can_nice(current, nice))
4829 retval = security_task_setnice(current, nice);
4833 set_user_nice(current, nice);
4840 * task_prio - return the priority value of a given task.
4841 * @p: the task in question.
4843 * This is the priority value as seen by users in /proc.
4844 * RT tasks are offset by -200. Normal tasks are centered
4845 * around 0, value goes from -16 to +15.
4847 int task_prio(const struct task_struct *p)
4849 return p->prio - MAX_RT_PRIO;
4853 * task_nice - return the nice value of a given task.
4854 * @p: the task in question.
4856 int task_nice(const struct task_struct *p)
4858 return TASK_NICE(p);
4860 EXPORT_SYMBOL(task_nice);
4863 * idle_cpu - is a given cpu idle currently?
4864 * @cpu: the processor in question.
4866 int idle_cpu(int cpu)
4868 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4872 * idle_task - return the idle task for a given cpu.
4873 * @cpu: the processor in question.
4875 struct task_struct *idle_task(int cpu)
4877 return cpu_rq(cpu)->idle;
4881 * find_process_by_pid - find a process with a matching PID value.
4882 * @pid: the pid in question.
4884 static struct task_struct *find_process_by_pid(pid_t pid)
4886 return pid ? find_task_by_vpid(pid) : current;
4889 /* Actually do priority change: must hold rq lock. */
4891 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4894 p->rt_priority = prio;
4895 p->normal_prio = normal_prio(p);
4896 /* we are holding p->pi_lock already */
4897 p->prio = rt_mutex_getprio(p);
4898 if (rt_prio(p->prio))
4899 p->sched_class = &rt_sched_class;
4901 p->sched_class = &fair_sched_class;
4906 * check the target process has a UID that matches the current process's
4908 static bool check_same_owner(struct task_struct *p)
4910 const struct cred *cred = current_cred(), *pcred;
4914 pcred = __task_cred(p);
4915 if (cred->user->user_ns == pcred->user->user_ns)
4916 match = (cred->euid == pcred->euid ||
4917 cred->euid == pcred->uid);
4924 static int __sched_setscheduler(struct task_struct *p, int policy,
4925 const struct sched_param *param, bool user)
4927 int retval, oldprio, oldpolicy = -1, on_rq, running;
4928 unsigned long flags;
4929 const struct sched_class *prev_class;
4933 /* may grab non-irq protected spin_locks */
4934 BUG_ON(in_interrupt());
4936 /* double check policy once rq lock held */
4938 reset_on_fork = p->sched_reset_on_fork;
4939 policy = oldpolicy = p->policy;
4941 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4942 policy &= ~SCHED_RESET_ON_FORK;
4944 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4945 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4946 policy != SCHED_IDLE)
4951 * Valid priorities for SCHED_FIFO and SCHED_RR are
4952 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4953 * SCHED_BATCH and SCHED_IDLE is 0.
4955 if (param->sched_priority < 0 ||
4956 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4957 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4959 if (rt_policy(policy) != (param->sched_priority != 0))
4963 * Allow unprivileged RT tasks to decrease priority:
4965 if (user && !capable(CAP_SYS_NICE)) {
4966 if (rt_policy(policy)) {
4967 unsigned long rlim_rtprio =
4968 task_rlimit(p, RLIMIT_RTPRIO);
4970 /* can't set/change the rt policy */
4971 if (policy != p->policy && !rlim_rtprio)
4974 /* can't increase priority */
4975 if (param->sched_priority > p->rt_priority &&
4976 param->sched_priority > rlim_rtprio)
4981 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4982 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4984 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4985 if (!can_nice(p, TASK_NICE(p)))
4989 /* can't change other user's priorities */
4990 if (!check_same_owner(p))
4993 /* Normal users shall not reset the sched_reset_on_fork flag */
4994 if (p->sched_reset_on_fork && !reset_on_fork)
4999 retval = security_task_setscheduler(p);
5005 * make sure no PI-waiters arrive (or leave) while we are
5006 * changing the priority of the task:
5008 raw_spin_lock_irqsave(&p->pi_lock, flags);
5010 * To be able to change p->policy safely, the appropriate
5011 * runqueue lock must be held.
5013 rq = __task_rq_lock(p);
5016 * Changing the policy of the stop threads its a very bad idea
5018 if (p == rq->stop) {
5019 __task_rq_unlock(rq);
5020 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5025 * If not changing anything there's no need to proceed further:
5027 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5028 param->sched_priority == p->rt_priority))) {
5030 __task_rq_unlock(rq);
5031 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5035 #ifdef CONFIG_RT_GROUP_SCHED
5038 * Do not allow realtime tasks into groups that have no runtime
5041 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5042 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5043 !task_group_is_autogroup(task_group(p))) {
5044 __task_rq_unlock(rq);
5045 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5051 /* recheck policy now with rq lock held */
5052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5053 policy = oldpolicy = -1;
5054 __task_rq_unlock(rq);
5055 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5059 running = task_current(rq, p);
5061 deactivate_task(rq, p, 0);
5063 p->sched_class->put_prev_task(rq, p);
5065 p->sched_reset_on_fork = reset_on_fork;
5068 prev_class = p->sched_class;
5069 __setscheduler(rq, p, policy, param->sched_priority);
5072 p->sched_class->set_curr_task(rq);
5074 activate_task(rq, p, 0);
5076 check_class_changed(rq, p, prev_class, oldprio);
5077 __task_rq_unlock(rq);
5078 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5080 rt_mutex_adjust_pi(p);
5086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5087 * @p: the task in question.
5088 * @policy: new policy.
5089 * @param: structure containing the new RT priority.
5091 * NOTE that the task may be already dead.
5093 int sched_setscheduler(struct task_struct *p, int policy,
5094 const struct sched_param *param)
5096 return __sched_setscheduler(p, policy, param, true);
5098 EXPORT_SYMBOL_GPL(sched_setscheduler);
5101 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5102 * @p: the task in question.
5103 * @policy: new policy.
5104 * @param: structure containing the new RT priority.
5106 * Just like sched_setscheduler, only don't bother checking if the
5107 * current context has permission. For example, this is needed in
5108 * stop_machine(): we create temporary high priority worker threads,
5109 * but our caller might not have that capability.
5111 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5112 const struct sched_param *param)
5114 return __sched_setscheduler(p, policy, param, false);
5118 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5120 struct sched_param lparam;
5121 struct task_struct *p;
5124 if (!param || pid < 0)
5126 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5131 p = find_process_by_pid(pid);
5133 retval = sched_setscheduler(p, policy, &lparam);
5140 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5141 * @pid: the pid in question.
5142 * @policy: new policy.
5143 * @param: structure containing the new RT priority.
5145 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5146 struct sched_param __user *, param)
5148 /* negative values for policy are not valid */
5152 return do_sched_setscheduler(pid, policy, param);
5156 * sys_sched_setparam - set/change the RT priority of a thread
5157 * @pid: the pid in question.
5158 * @param: structure containing the new RT priority.
5160 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5162 return do_sched_setscheduler(pid, -1, param);
5166 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5167 * @pid: the pid in question.
5169 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5171 struct task_struct *p;
5179 p = find_process_by_pid(pid);
5181 retval = security_task_getscheduler(p);
5184 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5191 * sys_sched_getparam - get the RT priority of a thread
5192 * @pid: the pid in question.
5193 * @param: structure containing the RT priority.
5195 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5197 struct sched_param lp;
5198 struct task_struct *p;
5201 if (!param || pid < 0)
5205 p = find_process_by_pid(pid);
5210 retval = security_task_getscheduler(p);
5214 lp.sched_priority = p->rt_priority;
5218 * This one might sleep, we cannot do it with a spinlock held ...
5220 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5229 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5231 cpumask_var_t cpus_allowed, new_mask;
5232 struct task_struct *p;
5238 p = find_process_by_pid(pid);
5245 /* Prevent p going away */
5249 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5253 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5255 goto out_free_cpus_allowed;
5258 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5261 retval = security_task_setscheduler(p);
5265 cpuset_cpus_allowed(p, cpus_allowed);
5266 cpumask_and(new_mask, in_mask, cpus_allowed);
5268 retval = set_cpus_allowed_ptr(p, new_mask);
5271 cpuset_cpus_allowed(p, cpus_allowed);
5272 if (!cpumask_subset(new_mask, cpus_allowed)) {
5274 * We must have raced with a concurrent cpuset
5275 * update. Just reset the cpus_allowed to the
5276 * cpuset's cpus_allowed
5278 cpumask_copy(new_mask, cpus_allowed);
5283 free_cpumask_var(new_mask);
5284 out_free_cpus_allowed:
5285 free_cpumask_var(cpus_allowed);
5292 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5293 struct cpumask *new_mask)
5295 if (len < cpumask_size())
5296 cpumask_clear(new_mask);
5297 else if (len > cpumask_size())
5298 len = cpumask_size();
5300 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5304 * sys_sched_setaffinity - set the cpu affinity of a process
5305 * @pid: pid of the process
5306 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5307 * @user_mask_ptr: user-space pointer to the new cpu mask
5309 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5310 unsigned long __user *, user_mask_ptr)
5312 cpumask_var_t new_mask;
5315 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5318 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5320 retval = sched_setaffinity(pid, new_mask);
5321 free_cpumask_var(new_mask);
5325 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5327 struct task_struct *p;
5328 unsigned long flags;
5335 p = find_process_by_pid(pid);
5339 retval = security_task_getscheduler(p);
5343 raw_spin_lock_irqsave(&p->pi_lock, flags);
5344 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5345 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5355 * sys_sched_getaffinity - get the cpu affinity of a process
5356 * @pid: pid of the process
5357 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5358 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5360 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5361 unsigned long __user *, user_mask_ptr)
5366 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5368 if (len & (sizeof(unsigned long)-1))
5371 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5374 ret = sched_getaffinity(pid, mask);
5376 size_t retlen = min_t(size_t, len, cpumask_size());
5378 if (copy_to_user(user_mask_ptr, mask, retlen))
5383 free_cpumask_var(mask);
5389 * sys_sched_yield - yield the current processor to other threads.
5391 * This function yields the current CPU to other tasks. If there are no
5392 * other threads running on this CPU then this function will return.
5394 SYSCALL_DEFINE0(sched_yield)
5396 struct rq *rq = this_rq_lock();
5398 schedstat_inc(rq, yld_count);
5399 current->sched_class->yield_task(rq);
5402 * Since we are going to call schedule() anyway, there's
5403 * no need to preempt or enable interrupts:
5405 __release(rq->lock);
5406 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5407 do_raw_spin_unlock(&rq->lock);
5408 preempt_enable_no_resched();
5415 static inline int should_resched(void)
5417 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5420 static void __cond_resched(void)
5422 add_preempt_count(PREEMPT_ACTIVE);
5424 sub_preempt_count(PREEMPT_ACTIVE);
5427 int __sched _cond_resched(void)
5429 if (should_resched()) {
5435 EXPORT_SYMBOL(_cond_resched);
5438 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5439 * call schedule, and on return reacquire the lock.
5441 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5442 * operations here to prevent schedule() from being called twice (once via
5443 * spin_unlock(), once by hand).
5445 int __cond_resched_lock(spinlock_t *lock)
5447 int resched = should_resched();
5450 lockdep_assert_held(lock);
5452 if (spin_needbreak(lock) || resched) {
5463 EXPORT_SYMBOL(__cond_resched_lock);
5465 int __sched __cond_resched_softirq(void)
5467 BUG_ON(!in_softirq());
5469 if (should_resched()) {
5477 EXPORT_SYMBOL(__cond_resched_softirq);
5480 * yield - yield the current processor to other threads.
5482 * This is a shortcut for kernel-space yielding - it marks the
5483 * thread runnable and calls sys_sched_yield().
5485 void __sched yield(void)
5487 set_current_state(TASK_RUNNING);
5490 EXPORT_SYMBOL(yield);
5493 * yield_to - yield the current processor to another thread in
5494 * your thread group, or accelerate that thread toward the
5495 * processor it's on.
5497 * @preempt: whether task preemption is allowed or not
5499 * It's the caller's job to ensure that the target task struct
5500 * can't go away on us before we can do any checks.
5502 * Returns true if we indeed boosted the target task.
5504 bool __sched yield_to(struct task_struct *p, bool preempt)
5506 struct task_struct *curr = current;
5507 struct rq *rq, *p_rq;
5508 unsigned long flags;
5511 local_irq_save(flags);
5516 double_rq_lock(rq, p_rq);
5517 while (task_rq(p) != p_rq) {
5518 double_rq_unlock(rq, p_rq);
5522 if (!curr->sched_class->yield_to_task)
5525 if (curr->sched_class != p->sched_class)
5528 if (task_running(p_rq, p) || p->state)
5531 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5533 schedstat_inc(rq, yld_count);
5535 * Make p's CPU reschedule; pick_next_entity takes care of
5538 if (preempt && rq != p_rq)
5539 resched_task(p_rq->curr);
5543 double_rq_unlock(rq, p_rq);
5544 local_irq_restore(flags);
5551 EXPORT_SYMBOL_GPL(yield_to);
5554 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5555 * that process accounting knows that this is a task in IO wait state.
5557 void __sched io_schedule(void)
5559 struct rq *rq = raw_rq();
5561 delayacct_blkio_start();
5562 atomic_inc(&rq->nr_iowait);
5563 blk_flush_plug(current);
5564 current->in_iowait = 1;
5566 current->in_iowait = 0;
5567 atomic_dec(&rq->nr_iowait);
5568 delayacct_blkio_end();
5570 EXPORT_SYMBOL(io_schedule);
5572 long __sched io_schedule_timeout(long timeout)
5574 struct rq *rq = raw_rq();
5577 delayacct_blkio_start();
5578 atomic_inc(&rq->nr_iowait);
5579 blk_flush_plug(current);
5580 current->in_iowait = 1;
5581 ret = schedule_timeout(timeout);
5582 current->in_iowait = 0;
5583 atomic_dec(&rq->nr_iowait);
5584 delayacct_blkio_end();
5589 * sys_sched_get_priority_max - return maximum RT priority.
5590 * @policy: scheduling class.
5592 * this syscall returns the maximum rt_priority that can be used
5593 * by a given scheduling class.
5595 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5602 ret = MAX_USER_RT_PRIO-1;
5614 * sys_sched_get_priority_min - return minimum RT priority.
5615 * @policy: scheduling class.
5617 * this syscall returns the minimum rt_priority that can be used
5618 * by a given scheduling class.
5620 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5638 * sys_sched_rr_get_interval - return the default timeslice of a process.
5639 * @pid: pid of the process.
5640 * @interval: userspace pointer to the timeslice value.
5642 * this syscall writes the default timeslice value of a given process
5643 * into the user-space timespec buffer. A value of '0' means infinity.
5645 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5646 struct timespec __user *, interval)
5648 struct task_struct *p;
5649 unsigned int time_slice;
5650 unsigned long flags;
5660 p = find_process_by_pid(pid);
5664 retval = security_task_getscheduler(p);
5668 rq = task_rq_lock(p, &flags);
5669 time_slice = p->sched_class->get_rr_interval(rq, p);
5670 task_rq_unlock(rq, &flags);
5673 jiffies_to_timespec(time_slice, &t);
5674 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5682 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5684 void sched_show_task(struct task_struct *p)
5686 unsigned long free = 0;
5689 state = p->state ? __ffs(p->state) + 1 : 0;
5690 printk(KERN_INFO "%-15.15s %c", p->comm,
5691 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5692 #if BITS_PER_LONG == 32
5693 if (state == TASK_RUNNING)
5694 printk(KERN_CONT " running ");
5696 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5698 if (state == TASK_RUNNING)
5699 printk(KERN_CONT " running task ");
5701 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5703 #ifdef CONFIG_DEBUG_STACK_USAGE
5704 free = stack_not_used(p);
5706 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5707 task_pid_nr(p), task_pid_nr(p->real_parent),
5708 (unsigned long)task_thread_info(p)->flags);
5710 show_stack(p, NULL);
5713 void show_state_filter(unsigned long state_filter)
5715 struct task_struct *g, *p;
5717 #if BITS_PER_LONG == 32
5719 " task PC stack pid father\n");
5722 " task PC stack pid father\n");
5724 read_lock(&tasklist_lock);
5725 do_each_thread(g, p) {
5727 * reset the NMI-timeout, listing all files on a slow
5728 * console might take a lot of time:
5730 touch_nmi_watchdog();
5731 if (!state_filter || (p->state & state_filter))
5733 } while_each_thread(g, p);
5735 touch_all_softlockup_watchdogs();
5737 #ifdef CONFIG_SCHED_DEBUG
5738 sysrq_sched_debug_show();
5740 read_unlock(&tasklist_lock);
5742 * Only show locks if all tasks are dumped:
5745 debug_show_all_locks();
5748 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5750 idle->sched_class = &idle_sched_class;
5754 * init_idle - set up an idle thread for a given CPU
5755 * @idle: task in question
5756 * @cpu: cpu the idle task belongs to
5758 * NOTE: this function does not set the idle thread's NEED_RESCHED
5759 * flag, to make booting more robust.
5761 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5763 struct rq *rq = cpu_rq(cpu);
5764 unsigned long flags;
5766 raw_spin_lock_irqsave(&rq->lock, flags);
5769 idle->state = TASK_RUNNING;
5770 idle->se.exec_start = sched_clock();
5772 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5774 * We're having a chicken and egg problem, even though we are
5775 * holding rq->lock, the cpu isn't yet set to this cpu so the
5776 * lockdep check in task_group() will fail.
5778 * Similar case to sched_fork(). / Alternatively we could
5779 * use task_rq_lock() here and obtain the other rq->lock.
5784 __set_task_cpu(idle, cpu);
5787 rq->curr = rq->idle = idle;
5788 #if defined(CONFIG_SMP)
5791 raw_spin_unlock_irqrestore(&rq->lock, flags);
5793 /* Set the preempt count _outside_ the spinlocks! */
5794 #if defined(CONFIG_PREEMPT)
5795 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5797 task_thread_info(idle)->preempt_count = 0;
5800 * The idle tasks have their own, simple scheduling class:
5802 idle->sched_class = &idle_sched_class;
5803 ftrace_graph_init_idle_task(idle, cpu);
5807 * In a system that switches off the HZ timer nohz_cpu_mask
5808 * indicates which cpus entered this state. This is used
5809 * in the rcu update to wait only for active cpus. For system
5810 * which do not switch off the HZ timer nohz_cpu_mask should
5811 * always be CPU_BITS_NONE.
5813 cpumask_var_t nohz_cpu_mask;
5816 * Increase the granularity value when there are more CPUs,
5817 * because with more CPUs the 'effective latency' as visible
5818 * to users decreases. But the relationship is not linear,
5819 * so pick a second-best guess by going with the log2 of the
5822 * This idea comes from the SD scheduler of Con Kolivas:
5824 static int get_update_sysctl_factor(void)
5826 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5827 unsigned int factor;
5829 switch (sysctl_sched_tunable_scaling) {
5830 case SCHED_TUNABLESCALING_NONE:
5833 case SCHED_TUNABLESCALING_LINEAR:
5836 case SCHED_TUNABLESCALING_LOG:
5838 factor = 1 + ilog2(cpus);
5845 static void update_sysctl(void)
5847 unsigned int factor = get_update_sysctl_factor();
5849 #define SET_SYSCTL(name) \
5850 (sysctl_##name = (factor) * normalized_sysctl_##name)
5851 SET_SYSCTL(sched_min_granularity);
5852 SET_SYSCTL(sched_latency);
5853 SET_SYSCTL(sched_wakeup_granularity);
5857 static inline void sched_init_granularity(void)
5864 * This is how migration works:
5866 * 1) we invoke migration_cpu_stop() on the target CPU using
5868 * 2) stopper starts to run (implicitly forcing the migrated thread
5870 * 3) it checks whether the migrated task is still in the wrong runqueue.
5871 * 4) if it's in the wrong runqueue then the migration thread removes
5872 * it and puts it into the right queue.
5873 * 5) stopper completes and stop_one_cpu() returns and the migration
5878 * Change a given task's CPU affinity. Migrate the thread to a
5879 * proper CPU and schedule it away if the CPU it's executing on
5880 * is removed from the allowed bitmask.
5882 * NOTE: the caller must have a valid reference to the task, the
5883 * task must not exit() & deallocate itself prematurely. The
5884 * call is not atomic; no spinlocks may be held.
5886 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5888 unsigned long flags;
5890 unsigned int dest_cpu;
5893 raw_spin_lock_irqsave(&p->pi_lock, flags);
5894 rq = __task_rq_lock(p);
5896 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5901 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5902 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5907 if (p->sched_class->set_cpus_allowed)
5908 p->sched_class->set_cpus_allowed(p, new_mask);
5910 cpumask_copy(&p->cpus_allowed, new_mask);
5911 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5914 /* Can the task run on the task's current CPU? If so, we're done */
5915 if (cpumask_test_cpu(task_cpu(p), new_mask))
5918 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5919 if (need_migrate_task(p)) {
5920 struct migration_arg arg = { p, dest_cpu };
5921 /* Need help from migration thread: drop lock and wait. */
5922 __task_rq_unlock(rq);
5923 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5924 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5925 tlb_migrate_finish(p->mm);
5929 __task_rq_unlock(rq);
5930 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5934 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5937 * Move (not current) task off this cpu, onto dest cpu. We're doing
5938 * this because either it can't run here any more (set_cpus_allowed()
5939 * away from this CPU, or CPU going down), or because we're
5940 * attempting to rebalance this task on exec (sched_exec).
5942 * So we race with normal scheduler movements, but that's OK, as long
5943 * as the task is no longer on this CPU.
5945 * Returns non-zero if task was successfully migrated.
5947 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5949 struct rq *rq_dest, *rq_src;
5952 if (unlikely(!cpu_active(dest_cpu)))
5955 rq_src = cpu_rq(src_cpu);
5956 rq_dest = cpu_rq(dest_cpu);
5958 double_rq_lock(rq_src, rq_dest);
5959 /* Already moved. */
5960 if (task_cpu(p) != src_cpu)
5962 /* Affinity changed (again). */
5963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5967 * If we're not on a rq, the next wake-up will ensure we're
5971 deactivate_task(rq_src, p, 0);
5972 set_task_cpu(p, dest_cpu);
5973 activate_task(rq_dest, p, 0);
5974 check_preempt_curr(rq_dest, p, 0);
5979 double_rq_unlock(rq_src, rq_dest);
5984 * migration_cpu_stop - this will be executed by a highprio stopper thread
5985 * and performs thread migration by bumping thread off CPU then
5986 * 'pushing' onto another runqueue.
5988 static int migration_cpu_stop(void *data)
5990 struct migration_arg *arg = data;
5993 * The original target cpu might have gone down and we might
5994 * be on another cpu but it doesn't matter.
5996 local_irq_disable();
5997 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6002 #ifdef CONFIG_HOTPLUG_CPU
6005 * Ensures that the idle task is using init_mm right before its cpu goes
6008 void idle_task_exit(void)
6010 struct mm_struct *mm = current->active_mm;
6012 BUG_ON(cpu_online(smp_processor_id()));
6015 switch_mm(mm, &init_mm, current);
6020 * While a dead CPU has no uninterruptible tasks queued at this point,
6021 * it might still have a nonzero ->nr_uninterruptible counter, because
6022 * for performance reasons the counter is not stricly tracking tasks to
6023 * their home CPUs. So we just add the counter to another CPU's counter,
6024 * to keep the global sum constant after CPU-down:
6026 static void migrate_nr_uninterruptible(struct rq *rq_src)
6028 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6030 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6031 rq_src->nr_uninterruptible = 0;
6035 * remove the tasks which were accounted by rq from calc_load_tasks.
6037 static void calc_global_load_remove(struct rq *rq)
6039 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6040 rq->calc_load_active = 0;
6044 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6045 * try_to_wake_up()->select_task_rq().
6047 * Called with rq->lock held even though we'er in stop_machine() and
6048 * there's no concurrency possible, we hold the required locks anyway
6049 * because of lock validation efforts.
6051 static void migrate_tasks(unsigned int dead_cpu)
6053 struct rq *rq = cpu_rq(dead_cpu);
6054 struct task_struct *next, *stop = rq->stop;
6058 * Fudge the rq selection such that the below task selection loop
6059 * doesn't get stuck on the currently eligible stop task.
6061 * We're currently inside stop_machine() and the rq is either stuck
6062 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6063 * either way we should never end up calling schedule() until we're
6070 * There's this thread running, bail when that's the only
6073 if (rq->nr_running == 1)
6076 next = pick_next_task(rq);
6078 next->sched_class->put_prev_task(rq, next);
6080 /* Find suitable destination for @next, with force if needed. */
6081 dest_cpu = select_fallback_rq(dead_cpu, next);
6082 raw_spin_unlock(&rq->lock);
6084 __migrate_task(next, dead_cpu, dest_cpu);
6086 raw_spin_lock(&rq->lock);
6092 #endif /* CONFIG_HOTPLUG_CPU */
6094 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6096 static struct ctl_table sd_ctl_dir[] = {
6098 .procname = "sched_domain",
6104 static struct ctl_table sd_ctl_root[] = {
6106 .procname = "kernel",
6108 .child = sd_ctl_dir,
6113 static struct ctl_table *sd_alloc_ctl_entry(int n)
6115 struct ctl_table *entry =
6116 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6121 static void sd_free_ctl_entry(struct ctl_table **tablep)
6123 struct ctl_table *entry;
6126 * In the intermediate directories, both the child directory and
6127 * procname are dynamically allocated and could fail but the mode
6128 * will always be set. In the lowest directory the names are
6129 * static strings and all have proc handlers.
6131 for (entry = *tablep; entry->mode; entry++) {
6133 sd_free_ctl_entry(&entry->child);
6134 if (entry->proc_handler == NULL)
6135 kfree(entry->procname);
6143 set_table_entry(struct ctl_table *entry,
6144 const char *procname, void *data, int maxlen,
6145 mode_t mode, proc_handler *proc_handler)
6147 entry->procname = procname;
6149 entry->maxlen = maxlen;
6151 entry->proc_handler = proc_handler;
6154 static struct ctl_table *
6155 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6157 struct ctl_table *table = sd_alloc_ctl_entry(13);
6162 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6163 sizeof(long), 0644, proc_doulongvec_minmax);
6164 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6165 sizeof(long), 0644, proc_doulongvec_minmax);
6166 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6167 sizeof(int), 0644, proc_dointvec_minmax);
6168 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6169 sizeof(int), 0644, proc_dointvec_minmax);
6170 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6171 sizeof(int), 0644, proc_dointvec_minmax);
6172 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6173 sizeof(int), 0644, proc_dointvec_minmax);
6174 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6175 sizeof(int), 0644, proc_dointvec_minmax);
6176 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6177 sizeof(int), 0644, proc_dointvec_minmax);
6178 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6179 sizeof(int), 0644, proc_dointvec_minmax);
6180 set_table_entry(&table[9], "cache_nice_tries",
6181 &sd->cache_nice_tries,
6182 sizeof(int), 0644, proc_dointvec_minmax);
6183 set_table_entry(&table[10], "flags", &sd->flags,
6184 sizeof(int), 0644, proc_dointvec_minmax);
6185 set_table_entry(&table[11], "name", sd->name,
6186 CORENAME_MAX_SIZE, 0444, proc_dostring);
6187 /* &table[12] is terminator */
6192 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6194 struct ctl_table *entry, *table;
6195 struct sched_domain *sd;
6196 int domain_num = 0, i;
6199 for_each_domain(cpu, sd)
6201 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6206 for_each_domain(cpu, sd) {
6207 snprintf(buf, 32, "domain%d", i);
6208 entry->procname = kstrdup(buf, GFP_KERNEL);
6210 entry->child = sd_alloc_ctl_domain_table(sd);
6217 static struct ctl_table_header *sd_sysctl_header;
6218 static void register_sched_domain_sysctl(void)
6220 int i, cpu_num = num_possible_cpus();
6221 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6224 WARN_ON(sd_ctl_dir[0].child);
6225 sd_ctl_dir[0].child = entry;
6230 for_each_possible_cpu(i) {
6231 snprintf(buf, 32, "cpu%d", i);
6232 entry->procname = kstrdup(buf, GFP_KERNEL);
6234 entry->child = sd_alloc_ctl_cpu_table(i);
6238 WARN_ON(sd_sysctl_header);
6239 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6242 /* may be called multiple times per register */
6243 static void unregister_sched_domain_sysctl(void)
6245 if (sd_sysctl_header)
6246 unregister_sysctl_table(sd_sysctl_header);
6247 sd_sysctl_header = NULL;
6248 if (sd_ctl_dir[0].child)
6249 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6252 static void register_sched_domain_sysctl(void)
6255 static void unregister_sched_domain_sysctl(void)
6260 static void set_rq_online(struct rq *rq)
6263 const struct sched_class *class;
6265 cpumask_set_cpu(rq->cpu, rq->rd->online);
6268 for_each_class(class) {
6269 if (class->rq_online)
6270 class->rq_online(rq);
6275 static void set_rq_offline(struct rq *rq)
6278 const struct sched_class *class;
6280 for_each_class(class) {
6281 if (class->rq_offline)
6282 class->rq_offline(rq);
6285 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6291 * migration_call - callback that gets triggered when a CPU is added.
6292 * Here we can start up the necessary migration thread for the new CPU.
6294 static int __cpuinit
6295 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6297 int cpu = (long)hcpu;
6298 unsigned long flags;
6299 struct rq *rq = cpu_rq(cpu);
6301 switch (action & ~CPU_TASKS_FROZEN) {
6303 case CPU_UP_PREPARE:
6304 rq->calc_load_update = calc_load_update;
6308 /* Update our root-domain */
6309 raw_spin_lock_irqsave(&rq->lock, flags);
6311 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6315 raw_spin_unlock_irqrestore(&rq->lock, flags);
6318 #ifdef CONFIG_HOTPLUG_CPU
6320 /* Update our root-domain */
6321 raw_spin_lock_irqsave(&rq->lock, flags);
6323 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6327 BUG_ON(rq->nr_running != 1); /* the migration thread */
6328 raw_spin_unlock_irqrestore(&rq->lock, flags);
6330 migrate_nr_uninterruptible(rq);
6331 calc_global_load_remove(rq);
6336 update_max_interval();
6342 * Register at high priority so that task migration (migrate_all_tasks)
6343 * happens before everything else. This has to be lower priority than
6344 * the notifier in the perf_event subsystem, though.
6346 static struct notifier_block __cpuinitdata migration_notifier = {
6347 .notifier_call = migration_call,
6348 .priority = CPU_PRI_MIGRATION,
6351 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6352 unsigned long action, void *hcpu)
6354 switch (action & ~CPU_TASKS_FROZEN) {
6356 case CPU_DOWN_FAILED:
6357 set_cpu_active((long)hcpu, true);
6364 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6365 unsigned long action, void *hcpu)
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_DOWN_PREPARE:
6369 set_cpu_active((long)hcpu, false);
6376 static int __init migration_init(void)
6378 void *cpu = (void *)(long)smp_processor_id();
6381 /* Initialize migration for the boot CPU */
6382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6383 BUG_ON(err == NOTIFY_BAD);
6384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6385 register_cpu_notifier(&migration_notifier);
6387 /* Register cpu active notifiers */
6388 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6389 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6393 early_initcall(migration_init);
6398 #ifdef CONFIG_SCHED_DEBUG
6400 static __read_mostly int sched_domain_debug_enabled;
6402 static int __init sched_domain_debug_setup(char *str)
6404 sched_domain_debug_enabled = 1;
6408 early_param("sched_debug", sched_domain_debug_setup);
6410 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6411 struct cpumask *groupmask)
6413 struct sched_group *group = sd->groups;
6416 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6417 cpumask_clear(groupmask);
6419 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6421 if (!(sd->flags & SD_LOAD_BALANCE)) {
6422 printk("does not load-balance\n");
6424 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6429 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6431 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6432 printk(KERN_ERR "ERROR: domain->span does not contain "
6435 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6436 printk(KERN_ERR "ERROR: domain->groups does not contain"
6440 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6444 printk(KERN_ERR "ERROR: group is NULL\n");
6448 if (!group->cpu_power) {
6449 printk(KERN_CONT "\n");
6450 printk(KERN_ERR "ERROR: domain->cpu_power not "
6455 if (!cpumask_weight(sched_group_cpus(group))) {
6456 printk(KERN_CONT "\n");
6457 printk(KERN_ERR "ERROR: empty group\n");
6461 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6462 printk(KERN_CONT "\n");
6463 printk(KERN_ERR "ERROR: repeated CPUs\n");
6467 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6469 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6471 printk(KERN_CONT " %s", str);
6472 if (group->cpu_power != SCHED_LOAD_SCALE) {
6473 printk(KERN_CONT " (cpu_power = %d)",
6477 group = group->next;
6478 } while (group != sd->groups);
6479 printk(KERN_CONT "\n");
6481 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6482 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6485 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6486 printk(KERN_ERR "ERROR: parent span is not a superset "
6487 "of domain->span\n");
6491 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6493 cpumask_var_t groupmask;
6496 if (!sched_domain_debug_enabled)
6500 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6504 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6506 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6507 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6512 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6519 free_cpumask_var(groupmask);
6521 #else /* !CONFIG_SCHED_DEBUG */
6522 # define sched_domain_debug(sd, cpu) do { } while (0)
6523 #endif /* CONFIG_SCHED_DEBUG */
6525 static int sd_degenerate(struct sched_domain *sd)
6527 if (cpumask_weight(sched_domain_span(sd)) == 1)
6530 /* Following flags need at least 2 groups */
6531 if (sd->flags & (SD_LOAD_BALANCE |
6532 SD_BALANCE_NEWIDLE |
6536 SD_SHARE_PKG_RESOURCES)) {
6537 if (sd->groups != sd->groups->next)
6541 /* Following flags don't use groups */
6542 if (sd->flags & (SD_WAKE_AFFINE))
6549 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6551 unsigned long cflags = sd->flags, pflags = parent->flags;
6553 if (sd_degenerate(parent))
6556 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6559 /* Flags needing groups don't count if only 1 group in parent */
6560 if (parent->groups == parent->groups->next) {
6561 pflags &= ~(SD_LOAD_BALANCE |
6562 SD_BALANCE_NEWIDLE |
6566 SD_SHARE_PKG_RESOURCES);
6567 if (nr_node_ids == 1)
6568 pflags &= ~SD_SERIALIZE;
6570 if (~cflags & pflags)
6576 static void free_rootdomain(struct root_domain *rd)
6578 synchronize_sched();
6580 cpupri_cleanup(&rd->cpupri);
6582 free_cpumask_var(rd->rto_mask);
6583 free_cpumask_var(rd->online);
6584 free_cpumask_var(rd->span);
6588 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6590 struct root_domain *old_rd = NULL;
6591 unsigned long flags;
6593 raw_spin_lock_irqsave(&rq->lock, flags);
6598 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6601 cpumask_clear_cpu(rq->cpu, old_rd->span);
6604 * If we dont want to free the old_rt yet then
6605 * set old_rd to NULL to skip the freeing later
6608 if (!atomic_dec_and_test(&old_rd->refcount))
6612 atomic_inc(&rd->refcount);
6615 cpumask_set_cpu(rq->cpu, rd->span);
6616 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6619 raw_spin_unlock_irqrestore(&rq->lock, flags);
6622 free_rootdomain(old_rd);
6625 static int init_rootdomain(struct root_domain *rd)
6627 memset(rd, 0, sizeof(*rd));
6629 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6631 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6633 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6636 if (cpupri_init(&rd->cpupri) != 0)
6641 free_cpumask_var(rd->rto_mask);
6643 free_cpumask_var(rd->online);
6645 free_cpumask_var(rd->span);
6650 static void init_defrootdomain(void)
6652 init_rootdomain(&def_root_domain);
6654 atomic_set(&def_root_domain.refcount, 1);
6657 static struct root_domain *alloc_rootdomain(void)
6659 struct root_domain *rd;
6661 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6665 if (init_rootdomain(rd) != 0) {
6674 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6675 * hold the hotplug lock.
6678 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6680 struct rq *rq = cpu_rq(cpu);
6681 struct sched_domain *tmp;
6683 for (tmp = sd; tmp; tmp = tmp->parent)
6684 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6686 /* Remove the sched domains which do not contribute to scheduling. */
6687 for (tmp = sd; tmp; ) {
6688 struct sched_domain *parent = tmp->parent;
6692 if (sd_parent_degenerate(tmp, parent)) {
6693 tmp->parent = parent->parent;
6695 parent->parent->child = tmp;
6700 if (sd && sd_degenerate(sd)) {
6706 sched_domain_debug(sd, cpu);
6708 rq_attach_root(rq, rd);
6709 rcu_assign_pointer(rq->sd, sd);
6712 /* cpus with isolated domains */
6713 static cpumask_var_t cpu_isolated_map;
6715 /* Setup the mask of cpus configured for isolated domains */
6716 static int __init isolated_cpu_setup(char *str)
6718 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6719 cpulist_parse(str, cpu_isolated_map);
6723 __setup("isolcpus=", isolated_cpu_setup);
6726 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6727 * to a function which identifies what group(along with sched group) a CPU
6728 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6729 * (due to the fact that we keep track of groups covered with a struct cpumask).
6731 * init_sched_build_groups will build a circular linked list of the groups
6732 * covered by the given span, and will set each group's ->cpumask correctly,
6733 * and ->cpu_power to 0.
6736 init_sched_build_groups(const struct cpumask *span,
6737 const struct cpumask *cpu_map,
6738 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6739 struct sched_group **sg,
6740 struct cpumask *tmpmask),
6741 struct cpumask *covered, struct cpumask *tmpmask)
6743 struct sched_group *first = NULL, *last = NULL;
6746 cpumask_clear(covered);
6748 for_each_cpu(i, span) {
6749 struct sched_group *sg;
6750 int group = group_fn(i, cpu_map, &sg, tmpmask);
6753 if (cpumask_test_cpu(i, covered))
6756 cpumask_clear(sched_group_cpus(sg));
6759 for_each_cpu(j, span) {
6760 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6763 cpumask_set_cpu(j, covered);
6764 cpumask_set_cpu(j, sched_group_cpus(sg));
6775 #define SD_NODES_PER_DOMAIN 16
6780 * find_next_best_node - find the next node to include in a sched_domain
6781 * @node: node whose sched_domain we're building
6782 * @used_nodes: nodes already in the sched_domain
6784 * Find the next node to include in a given scheduling domain. Simply
6785 * finds the closest node not already in the @used_nodes map.
6787 * Should use nodemask_t.
6789 static int find_next_best_node(int node, nodemask_t *used_nodes)
6791 int i, n, val, min_val, best_node = 0;
6795 for (i = 0; i < nr_node_ids; i++) {
6796 /* Start at @node */
6797 n = (node + i) % nr_node_ids;
6799 if (!nr_cpus_node(n))
6802 /* Skip already used nodes */
6803 if (node_isset(n, *used_nodes))
6806 /* Simple min distance search */
6807 val = node_distance(node, n);
6809 if (val < min_val) {
6815 node_set(best_node, *used_nodes);
6820 * sched_domain_node_span - get a cpumask for a node's sched_domain
6821 * @node: node whose cpumask we're constructing
6822 * @span: resulting cpumask
6824 * Given a node, construct a good cpumask for its sched_domain to span. It
6825 * should be one that prevents unnecessary balancing, but also spreads tasks
6828 static void sched_domain_node_span(int node, struct cpumask *span)
6830 nodemask_t used_nodes;
6833 cpumask_clear(span);
6834 nodes_clear(used_nodes);
6836 cpumask_or(span, span, cpumask_of_node(node));
6837 node_set(node, used_nodes);
6839 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6840 int next_node = find_next_best_node(node, &used_nodes);
6842 cpumask_or(span, span, cpumask_of_node(next_node));
6845 #endif /* CONFIG_NUMA */
6847 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6850 * The cpus mask in sched_group and sched_domain hangs off the end.
6852 * ( See the the comments in include/linux/sched.h:struct sched_group
6853 * and struct sched_domain. )
6855 struct static_sched_group {
6856 struct sched_group sg;
6857 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6860 struct static_sched_domain {
6861 struct sched_domain sd;
6862 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6868 cpumask_var_t domainspan;
6869 cpumask_var_t covered;
6870 cpumask_var_t notcovered;
6872 cpumask_var_t nodemask;
6873 cpumask_var_t this_sibling_map;
6874 cpumask_var_t this_core_map;
6875 cpumask_var_t this_book_map;
6876 cpumask_var_t send_covered;
6877 cpumask_var_t tmpmask;
6878 struct sched_group **sched_group_nodes;
6879 struct root_domain *rd;
6883 sa_sched_groups = 0,
6889 sa_this_sibling_map,
6891 sa_sched_group_nodes,
6901 * SMT sched-domains:
6903 #ifdef CONFIG_SCHED_SMT
6904 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6905 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6908 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6909 struct sched_group **sg, struct cpumask *unused)
6912 *sg = &per_cpu(sched_groups, cpu).sg;
6915 #endif /* CONFIG_SCHED_SMT */
6918 * multi-core sched-domains:
6920 #ifdef CONFIG_SCHED_MC
6921 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6922 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6925 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6926 struct sched_group **sg, struct cpumask *mask)
6929 #ifdef CONFIG_SCHED_SMT
6930 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6931 group = cpumask_first(mask);
6936 *sg = &per_cpu(sched_group_core, group).sg;
6939 #endif /* CONFIG_SCHED_MC */
6942 * book sched-domains:
6944 #ifdef CONFIG_SCHED_BOOK
6945 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6946 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6949 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6950 struct sched_group **sg, struct cpumask *mask)
6953 #ifdef CONFIG_SCHED_MC
6954 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956 #elif defined(CONFIG_SCHED_SMT)
6957 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6958 group = cpumask_first(mask);
6961 *sg = &per_cpu(sched_group_book, group).sg;
6964 #endif /* CONFIG_SCHED_BOOK */
6966 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6967 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6970 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6971 struct sched_group **sg, struct cpumask *mask)
6974 #ifdef CONFIG_SCHED_BOOK
6975 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6976 group = cpumask_first(mask);
6977 #elif defined(CONFIG_SCHED_MC)
6978 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6979 group = cpumask_first(mask);
6980 #elif defined(CONFIG_SCHED_SMT)
6981 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6982 group = cpumask_first(mask);
6987 *sg = &per_cpu(sched_group_phys, group).sg;
6993 * The init_sched_build_groups can't handle what we want to do with node
6994 * groups, so roll our own. Now each node has its own list of groups which
6995 * gets dynamically allocated.
6997 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6998 static struct sched_group ***sched_group_nodes_bycpu;
7000 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7001 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7003 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7004 struct sched_group **sg,
7005 struct cpumask *nodemask)
7009 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7010 group = cpumask_first(nodemask);
7013 *sg = &per_cpu(sched_group_allnodes, group).sg;
7017 static void init_numa_sched_groups_power(struct sched_group *group_head)
7019 struct sched_group *sg = group_head;
7025 for_each_cpu(j, sched_group_cpus(sg)) {
7026 struct sched_domain *sd;
7028 sd = &per_cpu(phys_domains, j).sd;
7029 if (j != group_first_cpu(sd->groups)) {
7031 * Only add "power" once for each
7037 sg->cpu_power += sd->groups->cpu_power;
7040 } while (sg != group_head);
7043 static int build_numa_sched_groups(struct s_data *d,
7044 const struct cpumask *cpu_map, int num)
7046 struct sched_domain *sd;
7047 struct sched_group *sg, *prev;
7050 cpumask_clear(d->covered);
7051 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7052 if (cpumask_empty(d->nodemask)) {
7053 d->sched_group_nodes[num] = NULL;
7057 sched_domain_node_span(num, d->domainspan);
7058 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7060 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7063 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7067 d->sched_group_nodes[num] = sg;
7069 for_each_cpu(j, d->nodemask) {
7070 sd = &per_cpu(node_domains, j).sd;
7075 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7077 cpumask_or(d->covered, d->covered, d->nodemask);
7080 for (j = 0; j < nr_node_ids; j++) {
7081 n = (num + j) % nr_node_ids;
7082 cpumask_complement(d->notcovered, d->covered);
7083 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7084 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7085 if (cpumask_empty(d->tmpmask))
7087 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7088 if (cpumask_empty(d->tmpmask))
7090 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7094 "Can not alloc domain group for node %d\n", j);
7098 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7099 sg->next = prev->next;
7100 cpumask_or(d->covered, d->covered, d->tmpmask);
7107 #endif /* CONFIG_NUMA */
7110 /* Free memory allocated for various sched_group structures */
7111 static void free_sched_groups(const struct cpumask *cpu_map,
7112 struct cpumask *nodemask)
7116 for_each_cpu(cpu, cpu_map) {
7117 struct sched_group **sched_group_nodes
7118 = sched_group_nodes_bycpu[cpu];
7120 if (!sched_group_nodes)
7123 for (i = 0; i < nr_node_ids; i++) {
7124 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7126 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7127 if (cpumask_empty(nodemask))
7137 if (oldsg != sched_group_nodes[i])
7140 kfree(sched_group_nodes);
7141 sched_group_nodes_bycpu[cpu] = NULL;
7144 #else /* !CONFIG_NUMA */
7145 static void free_sched_groups(const struct cpumask *cpu_map,
7146 struct cpumask *nodemask)
7149 #endif /* CONFIG_NUMA */
7152 * Initialize sched groups cpu_power.
7154 * cpu_power indicates the capacity of sched group, which is used while
7155 * distributing the load between different sched groups in a sched domain.
7156 * Typically cpu_power for all the groups in a sched domain will be same unless
7157 * there are asymmetries in the topology. If there are asymmetries, group
7158 * having more cpu_power will pickup more load compared to the group having
7161 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7163 struct sched_domain *child;
7164 struct sched_group *group;
7168 WARN_ON(!sd || !sd->groups);
7170 if (cpu != group_first_cpu(sd->groups))
7173 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7177 sd->groups->cpu_power = 0;
7180 power = SCHED_LOAD_SCALE;
7181 weight = cpumask_weight(sched_domain_span(sd));
7183 * SMT siblings share the power of a single core.
7184 * Usually multiple threads get a better yield out of
7185 * that one core than a single thread would have,
7186 * reflect that in sd->smt_gain.
7188 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7189 power *= sd->smt_gain;
7191 power >>= SCHED_LOAD_SHIFT;
7193 sd->groups->cpu_power += power;
7198 * Add cpu_power of each child group to this groups cpu_power.
7200 group = child->groups;
7202 sd->groups->cpu_power += group->cpu_power;
7203 group = group->next;
7204 } while (group != child->groups);
7208 * Initializers for schedule domains
7209 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7212 #ifdef CONFIG_SCHED_DEBUG
7213 # define SD_INIT_NAME(sd, type) sd->name = #type
7215 # define SD_INIT_NAME(sd, type) do { } while (0)
7218 #define SD_INIT(sd, type) sd_init_##type(sd)
7220 #define SD_INIT_FUNC(type) \
7221 static noinline void sd_init_##type(struct sched_domain *sd) \
7223 memset(sd, 0, sizeof(*sd)); \
7224 *sd = SD_##type##_INIT; \
7225 sd->level = SD_LV_##type; \
7226 SD_INIT_NAME(sd, type); \
7231 SD_INIT_FUNC(ALLNODES)
7234 #ifdef CONFIG_SCHED_SMT
7235 SD_INIT_FUNC(SIBLING)
7237 #ifdef CONFIG_SCHED_MC
7240 #ifdef CONFIG_SCHED_BOOK
7244 static int default_relax_domain_level = -1;
7246 static int __init setup_relax_domain_level(char *str)
7250 val = simple_strtoul(str, NULL, 0);
7251 if (val < SD_LV_MAX)
7252 default_relax_domain_level = val;
7256 __setup("relax_domain_level=", setup_relax_domain_level);
7258 static void set_domain_attribute(struct sched_domain *sd,
7259 struct sched_domain_attr *attr)
7263 if (!attr || attr->relax_domain_level < 0) {
7264 if (default_relax_domain_level < 0)
7267 request = default_relax_domain_level;
7269 request = attr->relax_domain_level;
7270 if (request < sd->level) {
7271 /* turn off idle balance on this domain */
7272 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7274 /* turn on idle balance on this domain */
7275 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7279 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7280 const struct cpumask *cpu_map)
7283 case sa_sched_groups:
7284 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7285 d->sched_group_nodes = NULL;
7287 free_rootdomain(d->rd); /* fall through */
7289 free_cpumask_var(d->tmpmask); /* fall through */
7290 case sa_send_covered:
7291 free_cpumask_var(d->send_covered); /* fall through */
7292 case sa_this_book_map:
7293 free_cpumask_var(d->this_book_map); /* fall through */
7294 case sa_this_core_map:
7295 free_cpumask_var(d->this_core_map); /* fall through */
7296 case sa_this_sibling_map:
7297 free_cpumask_var(d->this_sibling_map); /* fall through */
7299 free_cpumask_var(d->nodemask); /* fall through */
7300 case sa_sched_group_nodes:
7302 kfree(d->sched_group_nodes); /* fall through */
7304 free_cpumask_var(d->notcovered); /* fall through */
7306 free_cpumask_var(d->covered); /* fall through */
7308 free_cpumask_var(d->domainspan); /* fall through */
7315 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7316 const struct cpumask *cpu_map)
7319 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7321 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7322 return sa_domainspan;
7323 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7325 /* Allocate the per-node list of sched groups */
7326 d->sched_group_nodes = kcalloc(nr_node_ids,
7327 sizeof(struct sched_group *), GFP_KERNEL);
7328 if (!d->sched_group_nodes) {
7329 printk(KERN_WARNING "Can not alloc sched group node list\n");
7330 return sa_notcovered;
7332 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7334 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7335 return sa_sched_group_nodes;
7336 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7338 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7339 return sa_this_sibling_map;
7340 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7341 return sa_this_core_map;
7342 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7343 return sa_this_book_map;
7344 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7345 return sa_send_covered;
7346 d->rd = alloc_rootdomain();
7348 printk(KERN_WARNING "Cannot alloc root domain\n");
7351 return sa_rootdomain;
7354 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7355 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7357 struct sched_domain *sd = NULL;
7359 struct sched_domain *parent;
7362 if (cpumask_weight(cpu_map) >
7363 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7364 sd = &per_cpu(allnodes_domains, i).sd;
7365 SD_INIT(sd, ALLNODES);
7366 set_domain_attribute(sd, attr);
7367 cpumask_copy(sched_domain_span(sd), cpu_map);
7368 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7373 sd = &per_cpu(node_domains, i).sd;
7375 set_domain_attribute(sd, attr);
7376 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7377 sd->parent = parent;
7380 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7385 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7386 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7387 struct sched_domain *parent, int i)
7389 struct sched_domain *sd;
7390 sd = &per_cpu(phys_domains, i).sd;
7392 set_domain_attribute(sd, attr);
7393 cpumask_copy(sched_domain_span(sd), d->nodemask);
7394 sd->parent = parent;
7397 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7401 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7402 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7403 struct sched_domain *parent, int i)
7405 struct sched_domain *sd = parent;
7406 #ifdef CONFIG_SCHED_BOOK
7407 sd = &per_cpu(book_domains, i).sd;
7409 set_domain_attribute(sd, attr);
7410 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7411 sd->parent = parent;
7413 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7418 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7419 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7420 struct sched_domain *parent, int i)
7422 struct sched_domain *sd = parent;
7423 #ifdef CONFIG_SCHED_MC
7424 sd = &per_cpu(core_domains, i).sd;
7426 set_domain_attribute(sd, attr);
7427 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7428 sd->parent = parent;
7430 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7435 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7436 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7437 struct sched_domain *parent, int i)
7439 struct sched_domain *sd = parent;
7440 #ifdef CONFIG_SCHED_SMT
7441 sd = &per_cpu(cpu_domains, i).sd;
7442 SD_INIT(sd, SIBLING);
7443 set_domain_attribute(sd, attr);
7444 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7445 sd->parent = parent;
7447 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7452 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7453 const struct cpumask *cpu_map, int cpu)
7456 #ifdef CONFIG_SCHED_SMT
7457 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7458 cpumask_and(d->this_sibling_map, cpu_map,
7459 topology_thread_cpumask(cpu));
7460 if (cpu == cpumask_first(d->this_sibling_map))
7461 init_sched_build_groups(d->this_sibling_map, cpu_map,
7463 d->send_covered, d->tmpmask);
7466 #ifdef CONFIG_SCHED_MC
7467 case SD_LV_MC: /* set up multi-core groups */
7468 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7469 if (cpu == cpumask_first(d->this_core_map))
7470 init_sched_build_groups(d->this_core_map, cpu_map,
7472 d->send_covered, d->tmpmask);
7475 #ifdef CONFIG_SCHED_BOOK
7476 case SD_LV_BOOK: /* set up book groups */
7477 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7478 if (cpu == cpumask_first(d->this_book_map))
7479 init_sched_build_groups(d->this_book_map, cpu_map,
7481 d->send_covered, d->tmpmask);
7484 case SD_LV_CPU: /* set up physical groups */
7485 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7486 if (!cpumask_empty(d->nodemask))
7487 init_sched_build_groups(d->nodemask, cpu_map,
7489 d->send_covered, d->tmpmask);
7492 case SD_LV_ALLNODES:
7493 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7494 d->send_covered, d->tmpmask);
7503 * Build sched domains for a given set of cpus and attach the sched domains
7504 * to the individual cpus
7506 static int __build_sched_domains(const struct cpumask *cpu_map,
7507 struct sched_domain_attr *attr)
7509 enum s_alloc alloc_state = sa_none;
7511 struct sched_domain *sd;
7517 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7518 if (alloc_state != sa_rootdomain)
7520 alloc_state = sa_sched_groups;
7523 * Set up domains for cpus specified by the cpu_map.
7525 for_each_cpu(i, cpu_map) {
7526 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7529 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7530 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7531 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7532 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7533 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7536 for_each_cpu(i, cpu_map) {
7537 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7538 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7539 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7542 /* Set up physical groups */
7543 for (i = 0; i < nr_node_ids; i++)
7544 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7547 /* Set up node groups */
7549 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7551 for (i = 0; i < nr_node_ids; i++)
7552 if (build_numa_sched_groups(&d, cpu_map, i))
7556 /* Calculate CPU power for physical packages and nodes */
7557 #ifdef CONFIG_SCHED_SMT
7558 for_each_cpu(i, cpu_map) {
7559 sd = &per_cpu(cpu_domains, i).sd;
7560 init_sched_groups_power(i, sd);
7563 #ifdef CONFIG_SCHED_MC
7564 for_each_cpu(i, cpu_map) {
7565 sd = &per_cpu(core_domains, i).sd;
7566 init_sched_groups_power(i, sd);
7569 #ifdef CONFIG_SCHED_BOOK
7570 for_each_cpu(i, cpu_map) {
7571 sd = &per_cpu(book_domains, i).sd;
7572 init_sched_groups_power(i, sd);
7576 for_each_cpu(i, cpu_map) {
7577 sd = &per_cpu(phys_domains, i).sd;
7578 init_sched_groups_power(i, sd);
7582 for (i = 0; i < nr_node_ids; i++)
7583 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7585 if (d.sd_allnodes) {
7586 struct sched_group *sg;
7588 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7590 init_numa_sched_groups_power(sg);
7594 /* Attach the domains */
7595 for_each_cpu(i, cpu_map) {
7596 #ifdef CONFIG_SCHED_SMT
7597 sd = &per_cpu(cpu_domains, i).sd;
7598 #elif defined(CONFIG_SCHED_MC)
7599 sd = &per_cpu(core_domains, i).sd;
7600 #elif defined(CONFIG_SCHED_BOOK)
7601 sd = &per_cpu(book_domains, i).sd;
7603 sd = &per_cpu(phys_domains, i).sd;
7605 cpu_attach_domain(sd, d.rd, i);
7608 d.sched_group_nodes = NULL; /* don't free this we still need it */
7609 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7613 __free_domain_allocs(&d, alloc_state, cpu_map);
7617 static int build_sched_domains(const struct cpumask *cpu_map)
7619 return __build_sched_domains(cpu_map, NULL);
7622 static cpumask_var_t *doms_cur; /* current sched domains */
7623 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7624 static struct sched_domain_attr *dattr_cur;
7625 /* attribues of custom domains in 'doms_cur' */
7628 * Special case: If a kmalloc of a doms_cur partition (array of
7629 * cpumask) fails, then fallback to a single sched domain,
7630 * as determined by the single cpumask fallback_doms.
7632 static cpumask_var_t fallback_doms;
7635 * arch_update_cpu_topology lets virtualized architectures update the
7636 * cpu core maps. It is supposed to return 1 if the topology changed
7637 * or 0 if it stayed the same.
7639 int __attribute__((weak)) arch_update_cpu_topology(void)
7644 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7647 cpumask_var_t *doms;
7649 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7652 for (i = 0; i < ndoms; i++) {
7653 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7654 free_sched_domains(doms, i);
7661 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7664 for (i = 0; i < ndoms; i++)
7665 free_cpumask_var(doms[i]);
7670 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7671 * For now this just excludes isolated cpus, but could be used to
7672 * exclude other special cases in the future.
7674 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7678 arch_update_cpu_topology();
7680 doms_cur = alloc_sched_domains(ndoms_cur);
7682 doms_cur = &fallback_doms;
7683 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7685 err = build_sched_domains(doms_cur[0]);
7686 register_sched_domain_sysctl();
7691 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7692 struct cpumask *tmpmask)
7694 free_sched_groups(cpu_map, tmpmask);
7698 * Detach sched domains from a group of cpus specified in cpu_map
7699 * These cpus will now be attached to the NULL domain
7701 static void detach_destroy_domains(const struct cpumask *cpu_map)
7703 /* Save because hotplug lock held. */
7704 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7707 for_each_cpu(i, cpu_map)
7708 cpu_attach_domain(NULL, &def_root_domain, i);
7709 synchronize_sched();
7710 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7713 /* handle null as "default" */
7714 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7715 struct sched_domain_attr *new, int idx_new)
7717 struct sched_domain_attr tmp;
7724 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7725 new ? (new + idx_new) : &tmp,
7726 sizeof(struct sched_domain_attr));
7730 * Partition sched domains as specified by the 'ndoms_new'
7731 * cpumasks in the array doms_new[] of cpumasks. This compares
7732 * doms_new[] to the current sched domain partitioning, doms_cur[].
7733 * It destroys each deleted domain and builds each new domain.
7735 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7736 * The masks don't intersect (don't overlap.) We should setup one
7737 * sched domain for each mask. CPUs not in any of the cpumasks will
7738 * not be load balanced. If the same cpumask appears both in the
7739 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7742 * The passed in 'doms_new' should be allocated using
7743 * alloc_sched_domains. This routine takes ownership of it and will
7744 * free_sched_domains it when done with it. If the caller failed the
7745 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7746 * and partition_sched_domains() will fallback to the single partition
7747 * 'fallback_doms', it also forces the domains to be rebuilt.
7749 * If doms_new == NULL it will be replaced with cpu_online_mask.
7750 * ndoms_new == 0 is a special case for destroying existing domains,
7751 * and it will not create the default domain.
7753 * Call with hotplug lock held
7755 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7756 struct sched_domain_attr *dattr_new)
7761 mutex_lock(&sched_domains_mutex);
7763 /* always unregister in case we don't destroy any domains */
7764 unregister_sched_domain_sysctl();
7766 /* Let architecture update cpu core mappings. */
7767 new_topology = arch_update_cpu_topology();
7769 n = doms_new ? ndoms_new : 0;
7771 /* Destroy deleted domains */
7772 for (i = 0; i < ndoms_cur; i++) {
7773 for (j = 0; j < n && !new_topology; j++) {
7774 if (cpumask_equal(doms_cur[i], doms_new[j])
7775 && dattrs_equal(dattr_cur, i, dattr_new, j))
7778 /* no match - a current sched domain not in new doms_new[] */
7779 detach_destroy_domains(doms_cur[i]);
7784 if (doms_new == NULL) {
7786 doms_new = &fallback_doms;
7787 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7788 WARN_ON_ONCE(dattr_new);
7791 /* Build new domains */
7792 for (i = 0; i < ndoms_new; i++) {
7793 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7794 if (cpumask_equal(doms_new[i], doms_cur[j])
7795 && dattrs_equal(dattr_new, i, dattr_cur, j))
7798 /* no match - add a new doms_new */
7799 __build_sched_domains(doms_new[i],
7800 dattr_new ? dattr_new + i : NULL);
7805 /* Remember the new sched domains */
7806 if (doms_cur != &fallback_doms)
7807 free_sched_domains(doms_cur, ndoms_cur);
7808 kfree(dattr_cur); /* kfree(NULL) is safe */
7809 doms_cur = doms_new;
7810 dattr_cur = dattr_new;
7811 ndoms_cur = ndoms_new;
7813 register_sched_domain_sysctl();
7815 mutex_unlock(&sched_domains_mutex);
7818 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7819 static void arch_reinit_sched_domains(void)
7823 /* Destroy domains first to force the rebuild */
7824 partition_sched_domains(0, NULL, NULL);
7826 rebuild_sched_domains();
7830 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7832 unsigned int level = 0;
7834 if (sscanf(buf, "%u", &level) != 1)
7838 * level is always be positive so don't check for
7839 * level < POWERSAVINGS_BALANCE_NONE which is 0
7840 * What happens on 0 or 1 byte write,
7841 * need to check for count as well?
7844 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7848 sched_smt_power_savings = level;
7850 sched_mc_power_savings = level;
7852 arch_reinit_sched_domains();
7857 #ifdef CONFIG_SCHED_MC
7858 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7859 struct sysdev_class_attribute *attr,
7862 return sprintf(page, "%u\n", sched_mc_power_savings);
7864 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7865 struct sysdev_class_attribute *attr,
7866 const char *buf, size_t count)
7868 return sched_power_savings_store(buf, count, 0);
7870 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7871 sched_mc_power_savings_show,
7872 sched_mc_power_savings_store);
7875 #ifdef CONFIG_SCHED_SMT
7876 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7877 struct sysdev_class_attribute *attr,
7880 return sprintf(page, "%u\n", sched_smt_power_savings);
7882 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7883 struct sysdev_class_attribute *attr,
7884 const char *buf, size_t count)
7886 return sched_power_savings_store(buf, count, 1);
7888 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7889 sched_smt_power_savings_show,
7890 sched_smt_power_savings_store);
7893 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7897 #ifdef CONFIG_SCHED_SMT
7899 err = sysfs_create_file(&cls->kset.kobj,
7900 &attr_sched_smt_power_savings.attr);
7902 #ifdef CONFIG_SCHED_MC
7903 if (!err && mc_capable())
7904 err = sysfs_create_file(&cls->kset.kobj,
7905 &attr_sched_mc_power_savings.attr);
7909 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7912 * Update cpusets according to cpu_active mask. If cpusets are
7913 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7914 * around partition_sched_domains().
7916 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7919 switch (action & ~CPU_TASKS_FROZEN) {
7921 case CPU_DOWN_FAILED:
7922 cpuset_update_active_cpus();
7929 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7932 switch (action & ~CPU_TASKS_FROZEN) {
7933 case CPU_DOWN_PREPARE:
7934 cpuset_update_active_cpus();
7941 static int update_runtime(struct notifier_block *nfb,
7942 unsigned long action, void *hcpu)
7944 int cpu = (int)(long)hcpu;
7947 case CPU_DOWN_PREPARE:
7948 case CPU_DOWN_PREPARE_FROZEN:
7949 disable_runtime(cpu_rq(cpu));
7952 case CPU_DOWN_FAILED:
7953 case CPU_DOWN_FAILED_FROZEN:
7955 case CPU_ONLINE_FROZEN:
7956 enable_runtime(cpu_rq(cpu));
7964 void __init sched_init_smp(void)
7966 cpumask_var_t non_isolated_cpus;
7968 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7969 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7971 #if defined(CONFIG_NUMA)
7972 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7974 BUG_ON(sched_group_nodes_bycpu == NULL);
7977 mutex_lock(&sched_domains_mutex);
7978 arch_init_sched_domains(cpu_active_mask);
7979 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7980 if (cpumask_empty(non_isolated_cpus))
7981 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7982 mutex_unlock(&sched_domains_mutex);
7985 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7986 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7988 /* RT runtime code needs to handle some hotplug events */
7989 hotcpu_notifier(update_runtime, 0);
7993 /* Move init over to a non-isolated CPU */
7994 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7996 sched_init_granularity();
7997 free_cpumask_var(non_isolated_cpus);
7999 init_sched_rt_class();
8002 void __init sched_init_smp(void)
8004 sched_init_granularity();
8006 #endif /* CONFIG_SMP */
8008 const_debug unsigned int sysctl_timer_migration = 1;
8010 int in_sched_functions(unsigned long addr)
8012 return in_lock_functions(addr) ||
8013 (addr >= (unsigned long)__sched_text_start
8014 && addr < (unsigned long)__sched_text_end);
8017 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8019 cfs_rq->tasks_timeline = RB_ROOT;
8020 INIT_LIST_HEAD(&cfs_rq->tasks);
8021 #ifdef CONFIG_FAIR_GROUP_SCHED
8023 /* allow initial update_cfs_load() to truncate */
8025 cfs_rq->load_stamp = 1;
8028 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8031 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8033 struct rt_prio_array *array;
8036 array = &rt_rq->active;
8037 for (i = 0; i < MAX_RT_PRIO; i++) {
8038 INIT_LIST_HEAD(array->queue + i);
8039 __clear_bit(i, array->bitmap);
8041 /* delimiter for bitsearch: */
8042 __set_bit(MAX_RT_PRIO, array->bitmap);
8044 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8045 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8047 rt_rq->highest_prio.next = MAX_RT_PRIO;
8051 rt_rq->rt_nr_migratory = 0;
8052 rt_rq->overloaded = 0;
8053 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8057 rt_rq->rt_throttled = 0;
8058 rt_rq->rt_runtime = 0;
8059 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8061 #ifdef CONFIG_RT_GROUP_SCHED
8062 rt_rq->rt_nr_boosted = 0;
8067 #ifdef CONFIG_FAIR_GROUP_SCHED
8068 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8069 struct sched_entity *se, int cpu,
8070 struct sched_entity *parent)
8072 struct rq *rq = cpu_rq(cpu);
8073 tg->cfs_rq[cpu] = cfs_rq;
8074 init_cfs_rq(cfs_rq, rq);
8078 /* se could be NULL for root_task_group */
8083 se->cfs_rq = &rq->cfs;
8085 se->cfs_rq = parent->my_q;
8088 update_load_set(&se->load, 0);
8089 se->parent = parent;
8093 #ifdef CONFIG_RT_GROUP_SCHED
8094 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8095 struct sched_rt_entity *rt_se, int cpu,
8096 struct sched_rt_entity *parent)
8098 struct rq *rq = cpu_rq(cpu);
8100 tg->rt_rq[cpu] = rt_rq;
8101 init_rt_rq(rt_rq, rq);
8103 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8105 tg->rt_se[cpu] = rt_se;
8110 rt_se->rt_rq = &rq->rt;
8112 rt_se->rt_rq = parent->my_q;
8114 rt_se->my_q = rt_rq;
8115 rt_se->parent = parent;
8116 INIT_LIST_HEAD(&rt_se->run_list);
8120 void __init sched_init(void)
8123 unsigned long alloc_size = 0, ptr;
8125 #ifdef CONFIG_FAIR_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8128 #ifdef CONFIG_RT_GROUP_SCHED
8129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8131 #ifdef CONFIG_CPUMASK_OFFSTACK
8132 alloc_size += num_possible_cpus() * cpumask_size();
8135 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8137 #ifdef CONFIG_FAIR_GROUP_SCHED
8138 root_task_group.se = (struct sched_entity **)ptr;
8139 ptr += nr_cpu_ids * sizeof(void **);
8141 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
8144 #endif /* CONFIG_FAIR_GROUP_SCHED */
8145 #ifdef CONFIG_RT_GROUP_SCHED
8146 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8149 root_task_group.rt_rq = (struct rt_rq **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8152 #endif /* CONFIG_RT_GROUP_SCHED */
8153 #ifdef CONFIG_CPUMASK_OFFSTACK
8154 for_each_possible_cpu(i) {
8155 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8156 ptr += cpumask_size();
8158 #endif /* CONFIG_CPUMASK_OFFSTACK */
8162 init_defrootdomain();
8165 init_rt_bandwidth(&def_rt_bandwidth,
8166 global_rt_period(), global_rt_runtime());
8168 #ifdef CONFIG_RT_GROUP_SCHED
8169 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8170 global_rt_period(), global_rt_runtime());
8171 #endif /* CONFIG_RT_GROUP_SCHED */
8173 #ifdef CONFIG_CGROUP_SCHED
8174 list_add(&root_task_group.list, &task_groups);
8175 INIT_LIST_HEAD(&root_task_group.children);
8176 autogroup_init(&init_task);
8177 #endif /* CONFIG_CGROUP_SCHED */
8179 for_each_possible_cpu(i) {
8183 raw_spin_lock_init(&rq->lock);
8185 rq->calc_load_active = 0;
8186 rq->calc_load_update = jiffies + LOAD_FREQ;
8187 init_cfs_rq(&rq->cfs, rq);
8188 init_rt_rq(&rq->rt, rq);
8189 #ifdef CONFIG_FAIR_GROUP_SCHED
8190 root_task_group.shares = root_task_group_load;
8191 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8193 * How much cpu bandwidth does root_task_group get?
8195 * In case of task-groups formed thr' the cgroup filesystem, it
8196 * gets 100% of the cpu resources in the system. This overall
8197 * system cpu resource is divided among the tasks of
8198 * root_task_group and its child task-groups in a fair manner,
8199 * based on each entity's (task or task-group's) weight
8200 * (se->load.weight).
8202 * In other words, if root_task_group has 10 tasks of weight
8203 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8204 * then A0's share of the cpu resource is:
8206 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8208 * We achieve this by letting root_task_group's tasks sit
8209 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8211 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8212 #endif /* CONFIG_FAIR_GROUP_SCHED */
8214 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8217 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8220 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8221 rq->cpu_load[j] = 0;
8223 rq->last_load_update_tick = jiffies;
8228 rq->cpu_power = SCHED_LOAD_SCALE;
8229 rq->post_schedule = 0;
8230 rq->active_balance = 0;
8231 rq->next_balance = jiffies;
8236 rq->avg_idle = 2*sysctl_sched_migration_cost;
8237 rq_attach_root(rq, &def_root_domain);
8239 rq->nohz_balance_kick = 0;
8240 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8244 atomic_set(&rq->nr_iowait, 0);
8247 set_load_weight(&init_task);
8249 #ifdef CONFIG_PREEMPT_NOTIFIERS
8250 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8254 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8257 #ifdef CONFIG_RT_MUTEXES
8258 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8262 * The boot idle thread does lazy MMU switching as well:
8264 atomic_inc(&init_mm.mm_count);
8265 enter_lazy_tlb(&init_mm, current);
8268 * Make us the idle thread. Technically, schedule() should not be
8269 * called from this thread, however somewhere below it might be,
8270 * but because we are the idle thread, we just pick up running again
8271 * when this runqueue becomes "idle".
8273 init_idle(current, smp_processor_id());
8275 calc_load_update = jiffies + LOAD_FREQ;
8278 * During early bootup we pretend to be a normal task:
8280 current->sched_class = &fair_sched_class;
8282 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8283 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8286 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8287 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8288 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8289 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8290 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8292 /* May be allocated at isolcpus cmdline parse time */
8293 if (cpu_isolated_map == NULL)
8294 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8297 scheduler_running = 1;
8300 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8301 static inline int preempt_count_equals(int preempt_offset)
8303 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8305 return (nested == preempt_offset);
8308 void __might_sleep(const char *file, int line, int preempt_offset)
8311 static unsigned long prev_jiffy; /* ratelimiting */
8313 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8314 system_state != SYSTEM_RUNNING || oops_in_progress)
8316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8318 prev_jiffy = jiffies;
8321 "BUG: sleeping function called from invalid context at %s:%d\n",
8324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8325 in_atomic(), irqs_disabled(),
8326 current->pid, current->comm);
8328 debug_show_held_locks(current);
8329 if (irqs_disabled())
8330 print_irqtrace_events(current);
8334 EXPORT_SYMBOL(__might_sleep);
8337 #ifdef CONFIG_MAGIC_SYSRQ
8338 static void normalize_task(struct rq *rq, struct task_struct *p)
8340 const struct sched_class *prev_class = p->sched_class;
8341 int old_prio = p->prio;
8346 deactivate_task(rq, p, 0);
8347 __setscheduler(rq, p, SCHED_NORMAL, 0);
8349 activate_task(rq, p, 0);
8350 resched_task(rq->curr);
8353 check_class_changed(rq, p, prev_class, old_prio);
8356 void normalize_rt_tasks(void)
8358 struct task_struct *g, *p;
8359 unsigned long flags;
8362 read_lock_irqsave(&tasklist_lock, flags);
8363 do_each_thread(g, p) {
8365 * Only normalize user tasks:
8370 p->se.exec_start = 0;
8371 #ifdef CONFIG_SCHEDSTATS
8372 p->se.statistics.wait_start = 0;
8373 p->se.statistics.sleep_start = 0;
8374 p->se.statistics.block_start = 0;
8379 * Renice negative nice level userspace
8382 if (TASK_NICE(p) < 0 && p->mm)
8383 set_user_nice(p, 0);
8387 raw_spin_lock(&p->pi_lock);
8388 rq = __task_rq_lock(p);
8390 normalize_task(rq, p);
8392 __task_rq_unlock(rq);
8393 raw_spin_unlock(&p->pi_lock);
8394 } while_each_thread(g, p);
8396 read_unlock_irqrestore(&tasklist_lock, flags);
8399 #endif /* CONFIG_MAGIC_SYSRQ */
8401 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8403 * These functions are only useful for the IA64 MCA handling, or kdb.
8405 * They can only be called when the whole system has been
8406 * stopped - every CPU needs to be quiescent, and no scheduling
8407 * activity can take place. Using them for anything else would
8408 * be a serious bug, and as a result, they aren't even visible
8409 * under any other configuration.
8413 * curr_task - return the current task for a given cpu.
8414 * @cpu: the processor in question.
8416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8418 struct task_struct *curr_task(int cpu)
8420 return cpu_curr(cpu);
8423 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8431 * Description: This function must only be used when non-maskable interrupts
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 void set_curr_task(int cpu, struct task_struct *p)
8448 #ifdef CONFIG_FAIR_GROUP_SCHED
8449 static void free_fair_sched_group(struct task_group *tg)
8453 for_each_possible_cpu(i) {
8455 kfree(tg->cfs_rq[i]);
8465 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8467 struct cfs_rq *cfs_rq;
8468 struct sched_entity *se;
8471 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8474 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8478 tg->shares = NICE_0_LOAD;
8480 for_each_possible_cpu(i) {
8481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL, cpu_to_node(i));
8486 se = kzalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL, cpu_to_node(i));
8491 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8502 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8504 struct rq *rq = cpu_rq(cpu);
8505 unsigned long flags;
8508 * Only empty task groups can be destroyed; so we can speculatively
8509 * check on_list without danger of it being re-added.
8511 if (!tg->cfs_rq[cpu]->on_list)
8514 raw_spin_lock_irqsave(&rq->lock, flags);
8515 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8516 raw_spin_unlock_irqrestore(&rq->lock, flags);
8518 #else /* !CONFG_FAIR_GROUP_SCHED */
8519 static inline void free_fair_sched_group(struct task_group *tg)
8524 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8529 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8532 #endif /* CONFIG_FAIR_GROUP_SCHED */
8534 #ifdef CONFIG_RT_GROUP_SCHED
8535 static void free_rt_sched_group(struct task_group *tg)
8539 destroy_rt_bandwidth(&tg->rt_bandwidth);
8541 for_each_possible_cpu(i) {
8543 kfree(tg->rt_rq[i]);
8545 kfree(tg->rt_se[i]);
8553 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8555 struct rt_rq *rt_rq;
8556 struct sched_rt_entity *rt_se;
8560 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8563 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8567 init_rt_bandwidth(&tg->rt_bandwidth,
8568 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8570 for_each_possible_cpu(i) {
8573 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8574 GFP_KERNEL, cpu_to_node(i));
8578 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8579 GFP_KERNEL, cpu_to_node(i));
8583 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8593 #else /* !CONFIG_RT_GROUP_SCHED */
8594 static inline void free_rt_sched_group(struct task_group *tg)
8599 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8603 #endif /* CONFIG_RT_GROUP_SCHED */
8605 #ifdef CONFIG_CGROUP_SCHED
8606 static void free_sched_group(struct task_group *tg)
8608 free_fair_sched_group(tg);
8609 free_rt_sched_group(tg);
8614 /* allocate runqueue etc for a new task group */
8615 struct task_group *sched_create_group(struct task_group *parent)
8617 struct task_group *tg;
8618 unsigned long flags;
8620 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8622 return ERR_PTR(-ENOMEM);
8624 if (!alloc_fair_sched_group(tg, parent))
8627 if (!alloc_rt_sched_group(tg, parent))
8630 spin_lock_irqsave(&task_group_lock, flags);
8631 list_add_rcu(&tg->list, &task_groups);
8633 WARN_ON(!parent); /* root should already exist */
8635 tg->parent = parent;
8636 INIT_LIST_HEAD(&tg->children);
8637 list_add_rcu(&tg->siblings, &parent->children);
8638 spin_unlock_irqrestore(&task_group_lock, flags);
8643 free_sched_group(tg);
8644 return ERR_PTR(-ENOMEM);
8647 /* rcu callback to free various structures associated with a task group */
8648 static void free_sched_group_rcu(struct rcu_head *rhp)
8650 /* now it should be safe to free those cfs_rqs */
8651 free_sched_group(container_of(rhp, struct task_group, rcu));
8654 /* Destroy runqueue etc associated with a task group */
8655 void sched_destroy_group(struct task_group *tg)
8657 unsigned long flags;
8660 /* end participation in shares distribution */
8661 for_each_possible_cpu(i)
8662 unregister_fair_sched_group(tg, i);
8664 spin_lock_irqsave(&task_group_lock, flags);
8665 list_del_rcu(&tg->list);
8666 list_del_rcu(&tg->siblings);
8667 spin_unlock_irqrestore(&task_group_lock, flags);
8669 /* wait for possible concurrent references to cfs_rqs complete */
8670 call_rcu(&tg->rcu, free_sched_group_rcu);
8673 /* change task's runqueue when it moves between groups.
8674 * The caller of this function should have put the task in its new group
8675 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8676 * reflect its new group.
8678 void sched_move_task(struct task_struct *tsk)
8681 unsigned long flags;
8684 rq = task_rq_lock(tsk, &flags);
8686 running = task_current(rq, tsk);
8690 dequeue_task(rq, tsk, 0);
8691 if (unlikely(running))
8692 tsk->sched_class->put_prev_task(rq, tsk);
8694 #ifdef CONFIG_FAIR_GROUP_SCHED
8695 if (tsk->sched_class->task_move_group)
8696 tsk->sched_class->task_move_group(tsk, on_rq);
8699 set_task_rq(tsk, task_cpu(tsk));
8701 if (unlikely(running))
8702 tsk->sched_class->set_curr_task(rq);
8704 enqueue_task(rq, tsk, 0);
8706 task_rq_unlock(rq, &flags);
8708 #endif /* CONFIG_CGROUP_SCHED */
8710 #ifdef CONFIG_FAIR_GROUP_SCHED
8711 static DEFINE_MUTEX(shares_mutex);
8713 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8716 unsigned long flags;
8719 * We can't change the weight of the root cgroup.
8724 if (shares < MIN_SHARES)
8725 shares = MIN_SHARES;
8726 else if (shares > MAX_SHARES)
8727 shares = MAX_SHARES;
8729 mutex_lock(&shares_mutex);
8730 if (tg->shares == shares)
8733 tg->shares = shares;
8734 for_each_possible_cpu(i) {
8735 struct rq *rq = cpu_rq(i);
8736 struct sched_entity *se;
8739 /* Propagate contribution to hierarchy */
8740 raw_spin_lock_irqsave(&rq->lock, flags);
8741 for_each_sched_entity(se)
8742 update_cfs_shares(group_cfs_rq(se));
8743 raw_spin_unlock_irqrestore(&rq->lock, flags);
8747 mutex_unlock(&shares_mutex);
8751 unsigned long sched_group_shares(struct task_group *tg)
8757 #ifdef CONFIG_RT_GROUP_SCHED
8759 * Ensure that the real time constraints are schedulable.
8761 static DEFINE_MUTEX(rt_constraints_mutex);
8763 static unsigned long to_ratio(u64 period, u64 runtime)
8765 if (runtime == RUNTIME_INF)
8768 return div64_u64(runtime << 20, period);
8771 /* Must be called with tasklist_lock held */
8772 static inline int tg_has_rt_tasks(struct task_group *tg)
8774 struct task_struct *g, *p;
8776 do_each_thread(g, p) {
8777 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8779 } while_each_thread(g, p);
8784 struct rt_schedulable_data {
8785 struct task_group *tg;
8790 static int tg_schedulable(struct task_group *tg, void *data)
8792 struct rt_schedulable_data *d = data;
8793 struct task_group *child;
8794 unsigned long total, sum = 0;
8795 u64 period, runtime;
8797 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8798 runtime = tg->rt_bandwidth.rt_runtime;
8801 period = d->rt_period;
8802 runtime = d->rt_runtime;
8806 * Cannot have more runtime than the period.
8808 if (runtime > period && runtime != RUNTIME_INF)
8812 * Ensure we don't starve existing RT tasks.
8814 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8817 total = to_ratio(period, runtime);
8820 * Nobody can have more than the global setting allows.
8822 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8826 * The sum of our children's runtime should not exceed our own.
8828 list_for_each_entry_rcu(child, &tg->children, siblings) {
8829 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8830 runtime = child->rt_bandwidth.rt_runtime;
8832 if (child == d->tg) {
8833 period = d->rt_period;
8834 runtime = d->rt_runtime;
8837 sum += to_ratio(period, runtime);
8846 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8848 struct rt_schedulable_data data = {
8850 .rt_period = period,
8851 .rt_runtime = runtime,
8854 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8857 static int tg_set_bandwidth(struct task_group *tg,
8858 u64 rt_period, u64 rt_runtime)
8862 mutex_lock(&rt_constraints_mutex);
8863 read_lock(&tasklist_lock);
8864 err = __rt_schedulable(tg, rt_period, rt_runtime);
8868 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8869 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8870 tg->rt_bandwidth.rt_runtime = rt_runtime;
8872 for_each_possible_cpu(i) {
8873 struct rt_rq *rt_rq = tg->rt_rq[i];
8875 raw_spin_lock(&rt_rq->rt_runtime_lock);
8876 rt_rq->rt_runtime = rt_runtime;
8877 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8879 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8881 read_unlock(&tasklist_lock);
8882 mutex_unlock(&rt_constraints_mutex);
8887 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8889 u64 rt_runtime, rt_period;
8891 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8892 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8893 if (rt_runtime_us < 0)
8894 rt_runtime = RUNTIME_INF;
8896 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8899 long sched_group_rt_runtime(struct task_group *tg)
8903 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8906 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8907 do_div(rt_runtime_us, NSEC_PER_USEC);
8908 return rt_runtime_us;
8911 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8913 u64 rt_runtime, rt_period;
8915 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8916 rt_runtime = tg->rt_bandwidth.rt_runtime;
8921 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8924 long sched_group_rt_period(struct task_group *tg)
8928 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8929 do_div(rt_period_us, NSEC_PER_USEC);
8930 return rt_period_us;
8933 static int sched_rt_global_constraints(void)
8935 u64 runtime, period;
8938 if (sysctl_sched_rt_period <= 0)
8941 runtime = global_rt_runtime();
8942 period = global_rt_period();
8945 * Sanity check on the sysctl variables.
8947 if (runtime > period && runtime != RUNTIME_INF)
8950 mutex_lock(&rt_constraints_mutex);
8951 read_lock(&tasklist_lock);
8952 ret = __rt_schedulable(NULL, 0, 0);
8953 read_unlock(&tasklist_lock);
8954 mutex_unlock(&rt_constraints_mutex);
8959 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8961 /* Don't accept realtime tasks when there is no way for them to run */
8962 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8968 #else /* !CONFIG_RT_GROUP_SCHED */
8969 static int sched_rt_global_constraints(void)
8971 unsigned long flags;
8974 if (sysctl_sched_rt_period <= 0)
8978 * There's always some RT tasks in the root group
8979 * -- migration, kstopmachine etc..
8981 if (sysctl_sched_rt_runtime == 0)
8984 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8985 for_each_possible_cpu(i) {
8986 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8988 raw_spin_lock(&rt_rq->rt_runtime_lock);
8989 rt_rq->rt_runtime = global_rt_runtime();
8990 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8992 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8996 #endif /* CONFIG_RT_GROUP_SCHED */
8998 int sched_rt_handler(struct ctl_table *table, int write,
8999 void __user *buffer, size_t *lenp,
9003 int old_period, old_runtime;
9004 static DEFINE_MUTEX(mutex);
9007 old_period = sysctl_sched_rt_period;
9008 old_runtime = sysctl_sched_rt_runtime;
9010 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9012 if (!ret && write) {
9013 ret = sched_rt_global_constraints();
9015 sysctl_sched_rt_period = old_period;
9016 sysctl_sched_rt_runtime = old_runtime;
9018 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9019 def_rt_bandwidth.rt_period =
9020 ns_to_ktime(global_rt_period());
9023 mutex_unlock(&mutex);
9028 #ifdef CONFIG_CGROUP_SCHED
9030 /* return corresponding task_group object of a cgroup */
9031 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9033 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9034 struct task_group, css);
9037 static struct cgroup_subsys_state *
9038 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9040 struct task_group *tg, *parent;
9042 if (!cgrp->parent) {
9043 /* This is early initialization for the top cgroup */
9044 return &root_task_group.css;
9047 parent = cgroup_tg(cgrp->parent);
9048 tg = sched_create_group(parent);
9050 return ERR_PTR(-ENOMEM);
9056 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9058 struct task_group *tg = cgroup_tg(cgrp);
9060 sched_destroy_group(tg);
9064 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9066 #ifdef CONFIG_RT_GROUP_SCHED
9067 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9070 /* We don't support RT-tasks being in separate groups */
9071 if (tsk->sched_class != &fair_sched_class)
9078 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9079 struct task_struct *tsk, bool threadgroup)
9081 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9085 struct task_struct *c;
9087 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9088 retval = cpu_cgroup_can_attach_task(cgrp, c);
9100 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9101 struct cgroup *old_cont, struct task_struct *tsk,
9104 sched_move_task(tsk);
9106 struct task_struct *c;
9108 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9116 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9117 struct cgroup *old_cgrp, struct task_struct *task)
9120 * cgroup_exit() is called in the copy_process() failure path.
9121 * Ignore this case since the task hasn't ran yet, this avoids
9122 * trying to poke a half freed task state from generic code.
9124 if (!(task->flags & PF_EXITING))
9127 sched_move_task(task);
9130 #ifdef CONFIG_FAIR_GROUP_SCHED
9131 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9134 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9137 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9139 struct task_group *tg = cgroup_tg(cgrp);
9141 return (u64) tg->shares;
9143 #endif /* CONFIG_FAIR_GROUP_SCHED */
9145 #ifdef CONFIG_RT_GROUP_SCHED
9146 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9149 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9152 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9154 return sched_group_rt_runtime(cgroup_tg(cgrp));
9157 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9160 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9163 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9165 return sched_group_rt_period(cgroup_tg(cgrp));
9167 #endif /* CONFIG_RT_GROUP_SCHED */
9169 static struct cftype cpu_files[] = {
9170 #ifdef CONFIG_FAIR_GROUP_SCHED
9173 .read_u64 = cpu_shares_read_u64,
9174 .write_u64 = cpu_shares_write_u64,
9177 #ifdef CONFIG_RT_GROUP_SCHED
9179 .name = "rt_runtime_us",
9180 .read_s64 = cpu_rt_runtime_read,
9181 .write_s64 = cpu_rt_runtime_write,
9184 .name = "rt_period_us",
9185 .read_u64 = cpu_rt_period_read_uint,
9186 .write_u64 = cpu_rt_period_write_uint,
9191 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9193 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9196 struct cgroup_subsys cpu_cgroup_subsys = {
9198 .create = cpu_cgroup_create,
9199 .destroy = cpu_cgroup_destroy,
9200 .can_attach = cpu_cgroup_can_attach,
9201 .attach = cpu_cgroup_attach,
9202 .exit = cpu_cgroup_exit,
9203 .populate = cpu_cgroup_populate,
9204 .subsys_id = cpu_cgroup_subsys_id,
9208 #endif /* CONFIG_CGROUP_SCHED */
9210 #ifdef CONFIG_CGROUP_CPUACCT
9213 * CPU accounting code for task groups.
9219 /* track cpu usage of a group of tasks and its child groups */
9221 struct cgroup_subsys_state css;
9222 /* cpuusage holds pointer to a u64-type object on every cpu */
9223 u64 __percpu *cpuusage;
9224 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9225 struct cpuacct *parent;
9228 struct cgroup_subsys cpuacct_subsys;
9230 /* return cpu accounting group corresponding to this container */
9231 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9233 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9234 struct cpuacct, css);
9237 /* return cpu accounting group to which this task belongs */
9238 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9240 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9241 struct cpuacct, css);
9244 /* create a new cpu accounting group */
9245 static struct cgroup_subsys_state *cpuacct_create(
9246 struct cgroup_subsys *ss, struct cgroup *cgrp)
9248 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9254 ca->cpuusage = alloc_percpu(u64);
9258 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9259 if (percpu_counter_init(&ca->cpustat[i], 0))
9260 goto out_free_counters;
9263 ca->parent = cgroup_ca(cgrp->parent);
9269 percpu_counter_destroy(&ca->cpustat[i]);
9270 free_percpu(ca->cpuusage);
9274 return ERR_PTR(-ENOMEM);
9277 /* destroy an existing cpu accounting group */
9279 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9281 struct cpuacct *ca = cgroup_ca(cgrp);
9284 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9285 percpu_counter_destroy(&ca->cpustat[i]);
9286 free_percpu(ca->cpuusage);
9290 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9292 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9295 #ifndef CONFIG_64BIT
9297 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9299 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9301 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9309 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9311 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9313 #ifndef CONFIG_64BIT
9315 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9317 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9319 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9325 /* return total cpu usage (in nanoseconds) of a group */
9326 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9328 struct cpuacct *ca = cgroup_ca(cgrp);
9329 u64 totalcpuusage = 0;
9332 for_each_present_cpu(i)
9333 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9335 return totalcpuusage;
9338 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9341 struct cpuacct *ca = cgroup_ca(cgrp);
9350 for_each_present_cpu(i)
9351 cpuacct_cpuusage_write(ca, i, 0);
9357 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9360 struct cpuacct *ca = cgroup_ca(cgroup);
9364 for_each_present_cpu(i) {
9365 percpu = cpuacct_cpuusage_read(ca, i);
9366 seq_printf(m, "%llu ", (unsigned long long) percpu);
9368 seq_printf(m, "\n");
9372 static const char *cpuacct_stat_desc[] = {
9373 [CPUACCT_STAT_USER] = "user",
9374 [CPUACCT_STAT_SYSTEM] = "system",
9377 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9378 struct cgroup_map_cb *cb)
9380 struct cpuacct *ca = cgroup_ca(cgrp);
9383 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9384 s64 val = percpu_counter_read(&ca->cpustat[i]);
9385 val = cputime64_to_clock_t(val);
9386 cb->fill(cb, cpuacct_stat_desc[i], val);
9391 static struct cftype files[] = {
9394 .read_u64 = cpuusage_read,
9395 .write_u64 = cpuusage_write,
9398 .name = "usage_percpu",
9399 .read_seq_string = cpuacct_percpu_seq_read,
9403 .read_map = cpuacct_stats_show,
9407 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9409 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9413 * charge this task's execution time to its accounting group.
9415 * called with rq->lock held.
9417 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9422 if (unlikely(!cpuacct_subsys.active))
9425 cpu = task_cpu(tsk);
9431 for (; ca; ca = ca->parent) {
9432 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9433 *cpuusage += cputime;
9440 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9441 * in cputime_t units. As a result, cpuacct_update_stats calls
9442 * percpu_counter_add with values large enough to always overflow the
9443 * per cpu batch limit causing bad SMP scalability.
9445 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9446 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9447 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9450 #define CPUACCT_BATCH \
9451 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9453 #define CPUACCT_BATCH 0
9457 * Charge the system/user time to the task's accounting group.
9459 static void cpuacct_update_stats(struct task_struct *tsk,
9460 enum cpuacct_stat_index idx, cputime_t val)
9463 int batch = CPUACCT_BATCH;
9465 if (unlikely(!cpuacct_subsys.active))
9472 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9478 struct cgroup_subsys cpuacct_subsys = {
9480 .create = cpuacct_create,
9481 .destroy = cpuacct_destroy,
9482 .populate = cpuacct_populate,
9483 .subsys_id = cpuacct_subsys_id,
9485 #endif /* CONFIG_CGROUP_CPUACCT */